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Abstract 
Training with additive input noise (jitter) is a commonly used heuristic for improving general- 

ization in layered perceptron artifiaal neural networks. One result of training with jitter is that the 
effective target function is the convolution of the actual target and the noise density. For many noise 
densities, this is approximately equivalent to a smoothing regularization. A drawback of training 
with jitter, in comparison with the unjittered cme, is that many more sample presentations are 
required in order to average over the noise and estimate the expected response. In this paper, we 
demonstrate that the expected effect of jitter can be computed, in certain cases, by a simple scaling 
of the sigmoid nonlinearities. Application of this technique to a singlehidden-layer perceptron with 
a linear output is considered. 

1 Introduction 
Many studies (e.g., [9,8,5,6]) have noted the benefits of adding small amounts of noise to the inputs 
during training. Holmstrijm and Koistinen [1,2,3] have shown that the approach is consistent, i.e., that 
under appropriate conditions, the resulting error function approaches the true error function as the 
number of training samples increases and the degree of jitter decreases. 

In a previous paper [7], we have shown that training with noisy (jittered) input data  has the result 
that the effective target function is the convolution of the actual target with the noise density (see 
section A. l ) .  For many noise densities, this is a smoothing operation. Training with jitter is also 
approximately equivalent to  a regularization which favors smooth solutions. Regularization is helpful in 
improving generalization when the network is underconstrained -when the number of parameters to be 
determined is much larger than the number of training samples -and helps to  prevent overtraining. 

A drawback of training with jitter is that many more sample presentations are required in order to  
average over the noise and estimate the expected response. In this paper, we demonstrate that the ex- 
pected effect of jitter can be computed, in certain cases, by a simple scaling of the sigmoid nonlinearities. 
This means that the benefits of training with noise can be obtained without the computational cost of 
averaging over many noisy samples. These results provide justification for gain scaling a s  a heuristic for 
improving generalization. 

2 Linear Output Networks 

Consider the function 

where g(.) is a sigrnoid nonlinearity (monotonic nondecreasing). This describes a single-hidden-layer 
network with a linear output. 

With jitter, the expected output for a fixed input x is (see section A.l) 
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= C vt gdx )  P*(x), 
k - 

i.e., a linear sum of convolutions of the hidden unit responses with the noise density. 
In moat neural network applications, the nonlinearity is the sigmoid g(z) = 1/(1+ e"). If, instead, 

we use the Gaussian cumulative distribution function (GCDF), which has a very similar shape, then the 
shape of the nonlinearity will be invariant to convolution with a Gaussian input noise density. That is, 
if we assume that the noise is zero-mean Gaussian and spherically distributed in N dimensions 

and the g nonlinearity is the Gaussian cumulative distribution function (GCDF) 

w f x - 0  1 - exp (S) dr.  = 1 02\/5; 20: 

then the convolution can be replaced by a simple scaling operation; i.e., 

A derivation is given in the Appendix (section A.2). 

3 Significance 
The significance of this is that, if the equivalence (5) holds, then, for the network considered, the 
expected response of the network to input noise can be computed exactly by simply scaling the hidden 
unit nbnlinearities 

where the scaling constant depends on the magnitude of the weight vector wr and the noise variance 

(Note that the threshold Bk is not included in the weight vector and has no role in the computation of 
a t .  It is, however, scaled by at.) 

Thus, if we have a network of this type that performs a particular function, we can compute its 
expected response to Gaussian input noise by simply scaling the hidden unit nonlinearities appropriately; 
we don't have to go through the tirnuonsurning process of estimating the response by averaging over 
many noisy samples. 

Simulatio~ 
Figs. 1 and 2 verify this scaling property. 3-D plots are shown in Fig. 1 and contour plob are shown 
in Fig. 2. Fig. l(a) shows the response of a network with two inputs, three GCDF hidden units, and 
a linear output unit. Fig. l(b) shows the average response using spherically distributed Gaussian noise 
with u = 0.1 and averaged over 2000 noisy samples per grid point. Fig. l(c) rhowr the expected response 
computed by scaling the hidden units. The RMS error (on a 64 x 64 grid) between the averaged noisy 
response and the scaled expected response is 0.0145. The scaled expected response was computed in 
a few seconds; the average noisy response required approximately 20 hours on a 20MHz 386 personal 
computer. 

The scaling operation is equivalent to 



Since the denominator is not less than 1, this always reduces the magnitude of llwll or leaves it unchanged. 
When a1 = 0 (no input noise), the weights are unchanged. When u1 -. oo, w -. 0. When llwll is small, 
the scaling has little effect. When llwll is large, the scaling is approximately 

This has some properties similar to weight decay, another commonly used heuristic for improving gen- 
eraiizat~on. 

4 Extension to General Layered Neural Networks 
The network considered here has a single hidden layer and a linear output node; its computational 
capabilities are limited. More general feed-forward networks have multiple layers and nonlinear output 
nodes. The invariance property does not hold in this case, but these results lend justification to the idea 
of gain scaling [4] and weight decay as heuristics for improving generalization. A singlthidden-layer 
network with a nonlinear output node has qualitative properties similar to  the network considered here 
if the output nonlinearity is not too sharp. 

The network considered here uses a GCDF nonlinearity in place of the usual sigmoid nonlinearity, 
but these have very similar shapes so this is not an important difference. The precise form of the sigmoid 
is not important as long as it is monotonic nondecreasing; the usual sigmoid is widely used because its 
derivative is easily calculated. 

The GCDF nonlinearity is used here because it has a convenient shape invariance property under 
convolution with a Gaussian input noise density. There may be other nonlinearities that, while not 
having this shape invariance property, are such that  their expected response can still be calculated 
reasonably efficiently using a similar approach. If g(z) * pn(z) = h(z), for example, the function h(z) 
may be different in form from g(z), but still reasonably easy to calculate. If g(z) is a step function and 
p,(z) is uniform (in one dimension), then h(z) is a semi-linear ramp function, for example. The expected 
network response can then be computed as  a linear sum of h(z) nonlinearities rather than a linear sum 
of g(z) nonlinearities. Although different nonlinearities are used in calculating the normal and expected 
responses, this should, in general, still be much faster than averaging over many presentations of noisy 
samples. 

A Appendix 

A. l  Convolution Property 
Consider a network trained with noisy input data, { x + n ,  t ( x )  ), where n is noise that varies with each 
presentation. 

During training, the network sees the target t(x) in conjunction with the input 5 = x + n. The 
input ji can be produced by various combinations of desired inputs x and noises n ,  so the net learns 
to produce ( t ( f  - n )  1%). If the training data covers the entire input space, the effective target is the 
convolution of the clean target t(x) and the noise density pn(x) 

( t (Z-  J l i )  = l t ( i - n ) p n ( n ) d n  

For many centrally distributed noise densities, this is a smoothing operation. If t(x) is a step function 
and p,(x) is Gaussian, for example, then (t(f - n )  1 % )  is the Gaussian cumulative distribution, which 



is a smooth function similar to the sigmoid. For symmetric noise densities, convolution and correlation 
are equivalent; i.e., (i(x - n)) = (t(x + n)). 

A.2 CDF-PDF Convolution in n Dimensions 
The following shows that the convolution of an n-dimensional spherical Gaussian probability function 
(PDF) and a Gaussian cumulative distribution function (CDF) results in another Gaussian CDF. 

Let fi(x) be a spherical Gaussian PDF in n-dimensions 

and let Fz(x) be a Gaussian CDF of the form 

This can be written as 

where 6 = w/llwll and uz = l/llwll. 
The convolution of F 2  and fl is the n-dimensional integral 

F2(x) * h ( x )  = / F ~ ( a ) f i ( x  - a )  d.9 

but F2(x) is effectively ondimensional in that it d e p e n l  only on the projection of x onto w. Separate 
x and cr into components parallel and orthogonal to 3 

x = I 3 + 7  
I = wTx 
rirTy = 0 

a = k G + P  

k = wTa 
wTp = 0 

X - a  = (1 - k)211611 + - k)wT(r - P) + I IY - PI12 
= ( I  - k)' + 117 - P1I2. 

where L and k are scalars and y and p are (n - 1)dimensional vectors orthogonal to w.  
Then 

& l  = / - exp (z) d r  
-= u 2 a  20; 



and 

e - r V ( 2 a : )  dr . 

Thus F2(x) * f l (x)  reduces to a one-dimensional convolution of a Gaussian CDF with a 2  = l/llwll and 
a Gaussian PDF with standard deviation al. It can be shown (see section A.3) that this is a Gaussian 
CDF with standard deviation a3 = d-f. 

Letting Z. denote the Gaussian CDF function with standard deviation a, 

F2(x) * f l ( 4  = Zaa(4 * g(e) 
= za,(e) 

A.3 CDF-PDF Convolution in One Dimension 
The following demonstrates that the convolution of Gaussian PDF with variance uf and a Gaussian 
CDF with variance a1 results in a Gaussian CDF with variance a: = at +a:. All the functions are 
one-dimensional. 

f l ( z )  is the Gaussian PDF 

and has the Fourier transform 
Fl(u)  = e-(2'o')aua/2. 

(The notation in this section is independent of the other sections. F2(u) here is different kom Fz(x) in 
the previous section.) 

f 2 ( t )  is another Gaussian PDF with variance a$ and gz(z) is the CDF 



and has the transform 

The transform of the convolution is the product of the transforms 

Taking the inverse transform of G ~ ( u )  gives 

which is another Gaussian CDF with variance u$ = u: + u:. 
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Figure 1: The network transfer function ( 3 4  plots): (a) response of the original network; (b) average 
response with additive Gaussian input noise, o = 0.1, averaged over 2000 noisy samples per grid point; 
(c) expected response computed by scaling. 
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Figure 2: The network transfer functioo (contour ploh): (a) response of the original network; (b) average 
response with additive Gaussiilm input noise, u = 0.1, averaged over 2000 noisy samplea per grid point; 
(c) expected response compukd by =ding. 


