
An Equivalence between Sigmoidal Gain Scaling and
Training with Noisy (Jittered) Input Data

Russell Reed, Robert J. Marks 11, Seho Oh
Dept. of Electrical Engineering, FT-10

University of Washington, Seattle, WA, 98195

Abstract
Training with additive input noise (jitter) is a commonly used heuristic for improving general-

ization in layered perceptron artifiaal neural networks. One result of training with jitter is that the
effective target function is the convolution of the actual target and the noise density. For many noise
densities, this is approximately equivalent to a smoothing regularization. A drawback of training
with jitter, in comparison with the unjittered cme, is that many more sample presentations are
required in order to average over the noise and estimate the expected response. In this paper, we
demonstrate that the expected effect of jitter can be computed, in certain cases, by a simple scaling
of the sigmoid nonlinearities. Application of this technique to a singlehidden-layer perceptron with
a linear output is considered.

1 Introduction
Many studies (e.g., [9,8,5,6]) have noted the benefits of adding small amounts of noise to the inputs
during training. Holmstrijm and Koistinen [1,2,3] have shown that the approach is consistent, i.e., that
under appropriate conditions, the resulting error function approaches the true error function as the
number of training samples increases and the degree of jitter decreases.

In a previous paper [7], we have shown that training with noisy (jittered) input data has the result
that the effective target function is the convolution of the actual target with the noise density (see
section A. l) . For many noise densities, this is a smoothing operation. Training with jitter is also
approximately equivalent to a regularization which favors smooth solutions. Regularization is helpful in
improving generalization when the network is underconstrained -when the number of parameters to be
determined is much larger than the number of training samples -and helps to prevent overtraining.

A drawback of training with jitter is that many more sample presentations are required in order to
average over the noise and estimate the expected response. In this paper, we demonstrate that the ex-
pected effect of jitter can be computed, in certain cases, by a simple scaling of the sigmoid nonlinearities.
This means that the benefits of training with noise can be obtained without the computational cost of
averaging over many noisy samples. These results provide justification for gain scaling a s a heuristic for
improving generalization.

2 Linear Output Networks

Consider the function

where g(.) is a sigrnoid nonlinearity (monotonic nondecreasing). This describes a single-hidden-layer
network with a linear output.

With jitter, the expected output for a fixed input x is (see section A.l)

R. Reed, R.J. Marks II and S.Oh, "An equivalence between sigmoidal gain scaling scaling and training with noisy (jittered) input data",
Proceedings of the RNNS/IEEE Symposium on Neuroinformatics and Neurocomputing, (Rostov-on-Don, Russia, October, 1992), pp. 120-127, IEEE

= C vt gdx) P*(x),
k -

i.e., a linear sum of convolutions of the hidden unit responses with the noise density.
In moat neural network applications, the nonlinearity is the sigmoid g(z) = 1/(1+ e"). If, instead,

we use the Gaussian cumulative distribution function (GCDF), which has a very similar shape, then the
shape of the nonlinearity will be invariant to convolution with a Gaussian input noise density. That is,
if we assume that the noise is zero-mean Gaussian and spherically distributed in N dimensions

and the g nonlinearity is the Gaussian cumulative distribution function (GCDF)

w f x - 0 1 - exp (S) dr. = 1 02\/5; 20:

then the convolution can be replaced by a simple scaling operation; i.e.,

A derivation is given in the Appendix (section A.2).

3 Significance
The significance of this is that, if the equivalence (5) holds, then, for the network considered, the
expected response of the network to input noise can be computed exactly by simply scaling the hidden
unit nbnlinearities

where the scaling constant depends on the magnitude of the weight vector wr and the noise variance

(Note that the threshold Bk is not included in the weight vector and has no role in the computation of
a t . It is, however, scaled by at.)

Thus, if we have a network of this type that performs a particular function, we can compute its
expected response to Gaussian input noise by simply scaling the hidden unit nonlinearities appropriately;
we don't have to go through the tirnuonsurning process of estimating the response by averaging over
many noisy samples.

Simulatio~
Figs. 1 and 2 verify this scaling property. 3-D plots are shown in Fig. 1 and contour plob are shown
in Fig. 2. Fig. l(a) shows the response of a network with two inputs, three GCDF hidden units, and
a linear output unit. Fig. l(b) shows the average response using spherically distributed Gaussian noise
with u = 0.1 and averaged over 2000 noisy samples per grid point. Fig. l(c) rhowr the expected response
computed by scaling the hidden units. The RMS error (on a 64 x 64 grid) between the averaged noisy
response and the scaled expected response is 0.0145. The scaled expected response was computed in
a few seconds; the average noisy response required approximately 20 hours on a 20MHz 386 personal
computer.

The scaling operation is equivalent to

Since the denominator is not less than 1, this always reduces the magnitude of llwll or leaves it unchanged.
When a1 = 0 (no input noise), the weights are unchanged. When u1 -. oo, w -. 0. When llwll is small,
the scaling has little effect. When llwll is large, the scaling is approximately

This has some properties similar to weight decay, another commonly used heuristic for improving gen-
eraiizat~on.

4 Extension to General Layered Neural Networks
The network considered here has a single hidden layer and a linear output node; its computational
capabilities are limited. More general feed-forward networks have multiple layers and nonlinear output
nodes. The invariance property does not hold in this case, but these results lend justification to the idea
of gain scaling [4] and weight decay as heuristics for improving generalization. A singlthidden-layer
network with a nonlinear output node has qualitative properties similar to the network considered here
if the output nonlinearity is not too sharp.

The network considered here uses a GCDF nonlinearity in place of the usual sigmoid nonlinearity,
but these have very similar shapes so this is not an important difference. The precise form of the sigmoid
is not important as long as it is monotonic nondecreasing; the usual sigmoid is widely used because its
derivative is easily calculated.

The GCDF nonlinearity is used here because it has a convenient shape invariance property under
convolution with a Gaussian input noise density. There may be other nonlinearities that, while not
having this shape invariance property, are such that their expected response can still be calculated
reasonably efficiently using a similar approach. If g(z) * pn(z) = h(z), for example, the function h(z)
may be different in form from g(z), but still reasonably easy to calculate. If g(z) is a step function and
p,(z) is uniform (in one dimension), then h(z) is a semi-linear ramp function, for example. The expected
network response can then be computed as a linear sum of h(z) nonlinearities rather than a linear sum
of g(z) nonlinearities. Although different nonlinearities are used in calculating the normal and expected
responses, this should, in general, still be much faster than averaging over many presentations of noisy
samples.

A Appendix

A. l Convolution Property
Consider a network trained with noisy input data, { x + n , t (x)), where n is noise that varies with each
presentation.

During training, the network sees the target t(x) in conjunction with the input 5 = x + n. The
input ji can be produced by various combinations of desired inputs x and noises n , so the net learns
to produce (t (f - n) 1%). If the training data covers the entire input space, the effective target is the
convolution of the clean target t(x) and the noise density pn(x)

(t (Z- J l i) = l t (i - n) p n (n) d n

For many centrally distributed noise densities, this is a smoothing operation. If t(x) is a step function
and p,(x) is Gaussian, for example, then (t(f - n) 1 %) is the Gaussian cumulative distribution, which

is a smooth function similar to the sigmoid. For symmetric noise densities, convolution and correlation
are equivalent; i.e., (i(x - n)) = (t(x + n)).

A.2 CDF-PDF Convolution in n Dimensions
The following shows that the convolution of an n-dimensional spherical Gaussian probability function
(PDF) and a Gaussian cumulative distribution function (CDF) results in another Gaussian CDF.

Let fi(x) be a spherical Gaussian PDF in n-dimensions

and let Fz(x) be a Gaussian CDF of the form

This can be written as

where 6 = w/llwll and uz = l/llwll.
The convolution of F 2 and fl is the n-dimensional integral

F2(x) * h (x) = / F ~ (a) f i (x - a) d.9

but F2(x) is effectively ondimensional in that it d e p e n l only on the projection of x onto w. Separate
x and cr into components parallel and orthogonal to 3

x = I 3 + 7
I = wTx
rirTy = 0

a = k G + P

k = wTa
wTp = 0

X - a = (1 - k)211611 + - k)wT(r - P) + I IY - PI12
= (I - k)' + 117 - P1I2.

where L and k are scalars and y and p are (n - 1)dimensional vectors orthogonal to w.
Then

& l = / - exp (z) d r
-= u 2 a 20;

and

e - r V (2 a :) dr .

Thus F2(x) * f l (x) reduces to a one-dimensional convolution of a Gaussian CDF with a 2 = l/llwll and
a Gaussian PDF with standard deviation al. It can be shown (see section A.3) that this is a Gaussian
CDF with standard deviation a3 = d-f.

Letting Z. denote the Gaussian CDF function with standard deviation a,

F2(x) * f l (4 = Zaa(4 * g(e)
= za,(e)

A.3 CDF-PDF Convolution in One Dimension
The following demonstrates that the convolution of Gaussian PDF with variance uf and a Gaussian
CDF with variance a1 results in a Gaussian CDF with variance a: = at +a:. All the functions are
one-dimensional.

f l (z) is the Gaussian PDF

and has the Fourier transform
Fl(u) = e-(2'o')aua/2.

(The notation in this section is independent of the other sections. F2(u) here is different kom Fz(x) in
the previous section.)

f 2 (t) is another Gaussian PDF with variance a$ and gz(z) is the CDF

and has the transform

The transform of the convolution is the product of the transforms

Taking the inverse transform of G ~ (u) gives

which is another Gaussian CDF with variance u$ = u: + u:.

References
[l] L. Holmstrom and P. Koistinen. Using additive noise in back-propagation training. IEEE Thnsac-

lions on Neural Networks, 3(1):24-38, Jan. 1992.

[2] P. Koistinen and L. Holmstrijm. Kernel regression and backpropagation training with noise. In
Proceedings of the International Joint Confennce on Neural Networks, pages 367-372, 1991. (Singa-
pore).

[3] P. Koistinen and L. Holmstr6m. Kernel regression and backpropagation training with noise. In J. E.
Moody, S. J . Hanson, and R P. Lippmann, editors, Advances in Neural Information Processing (I) ,
pages 1035-1039, 1992.

[4] J. K. Krwchke. Creating local and distributed bottlenecks in hidden layers of back-propagation n e t
works. In D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of the 1988 Connectionist
Modek Summer School, page 120-126, Morgan Kwfmann Publishers, 1988.

(51 A. Linden and J. Kindermann. Inversion of multilayer nets. In Proceedings of the Intemationai Joint
Conference on Neural Networks, page 425, 1989.

[6] J. I. Minnix. Fault tolerance of the backpropagation neural network trained on noisy inputs. In
Proceedings of the International Joint Conference on Neuml Networh, pages 847-852, 1992. vol. I,
(Baltimore).

[7] R. Reed, S. Oh, and R J . Mark 11. Regularization using jittered training data. In Proceedings of
the Iniemational Joint Conference on Neuml Networks, pages 147-152, 1992. vol. 111, (Baltimore).

(81 J . Sietsma and R. J. F. DOW. Creating artificial neural networks that generalize. Ncurnl Networks,
4(1):67-69, 1991.

[9] A. S. Weigend, D. E. Rumelhart, and B. A. Huberrnan. Generalization by weightilimination applied
to currency exchange rate prediction. In Proceedings of the Iniernational Joini Conference on Nelrml
Neiworks, page 837, 1991.

Figure 1: The network transfer function (3 4 plots): (a) response of the original network; (b) average
response with additive Gaussian input noise, o = 0.1, averaged over 2000 noisy samples per grid point;
(c) expected response computed by scaling.

Linear sum of CCDP unit#

Linear rum of scaled CCDF unru, ri~ma=O.l

Figure 2: The network transfer functioo (contour ploh): (a) response of the original network; (b) average
response with additive Gaussiilm input noise, u = 0.1, averaged over 2000 noisy samplea per grid point;
(c) expected response compukd by =ding.

