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The feasibility of using certain types of binary phase-only filter (BPOF) is investigated. A critical aspect 
of correlation filters is not often addressed in research on BPOF's: how well do they perform as 
classifiers in the presence of imperfectly matching templates? It is not enough to detect a single given 
signal in the presence of noise; it is equally critical to make the correct classification among a number of 
possible templates with a low false-alarm rate. We show that (+ 1, - 1)-valued BPOF's based on the real 
part of a conventional matched filter can cause misclassification of simple patterns, even in the absence of 
noise. These are known to be suboptimai, but the seriousness of their limitations illustrates an 
important design issue. It is therefore concluded that other types of filters must be used for 
correlator-based neural network implementations and image processing in general. We also include a 
commentary on the potential for facing this type of problem with general POF's and BPOF's. The 
theoretical results are supported by computer simulation and optical experiments. 
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Introduction 

The computation of correlation filters has been a 
burgeoning topic of research over the past several 
years, for good reason. Optical correlators, which 
offer the prospect of massively parallel computation 
germane to various applications, potentially can be 
improved in performance by a wise choice of a correla- 
tion filter. Sometimes this choice is constrained by 
hardware; other times it is made to achieve some 
desirable property. Both of these reasons have led to 
much research on phase-only filters (POF's) and 
binary phase-only filters (BPOFYs). While these fl- 
ters have been subjected to much first-rate mathemat- 
ical analysis, one important quality is frequently left 
unexamined. Most work concentrates on how well 
the filter performs in the presence of input patterns 
that perfectly match the stored template. A more 
critical question is how the filter performs in the 
presence of imperfectly matching inputs. The need 
to do this well is not just some theoretical concern; 
rather, it is the whole reason for doing correlations in 
the first place. It is important that the filter not 
misclassify a close, but imperfectly matching pattern, 
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in favor of some poorly matching pattern. Unfortu- 
nately this is precisely what some popular BPOF's are 
capable of doing. We discovered this in the context 
of using a correlator for neural network implementa- 
tions, so we begin by framing the problem in that 
context. 

Correlator as a Neural Network Hardware 
Implementation 
Optical correlators have attracted renewed interest in 
recent years with the availability of spatial light 
modulators (SLM's) to allow real-time signal process- 
ing. Usually, applications of the devices have fo- 
cused on pattern recognition or feature extraction. 
Another important use, however, is the implementa- 
tion of neural networks. The challenge of neural 
networks has caused much activity in the area of 
hardware implementations, activity that many insist 
is necessary for the field to come to its full fruition. 
Many popular neural models use computations that 
are particularly amenable to hardware implementa- 
tion, at  least in part. The most common of these use 
inner products among their most critical computa- 
tions. Examples include adaptive resonance theoryY1 
backpropagationY2 Adaline and Madaline,3 Hopfield 
 network^,^ alternating projection neural networksY5 
and many others. The point is that, as we review 
below, these inner products are equivalent to correla- 
tions that can be performed by optical correlator~.~ 
This convenient property is augmented by the fad  
that one can utilize the shifl invariance of the Fourier- 
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transform magnitude to allow the simultaneous corre- 
lation of a single input with multiple templates. We 
show a figure that demonstrates how the VanderLugt 
correlator7 can be used for neural network implemen- 
tations (see Fig. 1). The spatial form of the stored 
templates are placed on the first plane's SLM, which 
is denoted as SLM1. This permits the parallel oper- 
ation needed for neural net implementation. 

The correlator takes its input in the Fourier plane 
in order to compare it with all the templates simulta- 
neously. This requires computing a filter based on 
the input pattern. Consider using the conventional 
matched filter in this plane. To do this, take the 
input to the neural network i(x, y) and compute its 
Fourier transform I(u, v). Take the complex conju- 
gate of this I* (u, v) to get the conventional matched 
filter. Use of this filter in the Fourier plane results 
in correlations with the pattern or patterns in the 
plane (referred to as Memory and Learning in Fig 1). 
The input pattern i(x, y), which is abbreviated as i in 
Fig. 1, is placed in the memory plane (for some 
applications) to obtain the autocorrelation i * i. (* is 
the correlation operator.) Similarly the stored tem- 
plates ti(x, y), which are abbreviated as ti, are put in 
the memory plane to obtain the cross correlations i * 
ti. The central correlation values shown in the out- 
put plane take the form 

which is an inner product. The equivalent operation 
in a neural network is the sum 

where i is an input vector and ti is the ith weight 
vector. Thus a single input pattern is fed to a 

Memory an Learning- 
SLMl &Polarizer 

Monitor Computer 

Fig. 1. Use of aVanderLugt correlator to compute inner products 
for neural network implementation. The correlation peaks shown 
on the output plane are equivalent to inner products of input 
pattern i ( x , y )  with templates t i (x,y) .  The filter I* must be 
computed in order to do this. 

network with several nodes, and the output of these 
nodes is computed in parallel. 

The neural network implementation described 
above is just one application of a correlator. Another 
operation would be an image processing application, 
in which a single pattern is stored as a template and 
searched for in a scene. (This reverses the roles of 
input pattern and template from what was discussed 
above.) For this problem, consider the Fourier- 
transform pairs g(x, y) and G(u, v). Compute the 
conventional matched filter G* (u, v). Then consider 
an input scene containing a pattern f(x, y) and assess 
how well it matches the filter. A bright output peak 
at the location off (x, y) indicates a good match, and 
an instance of the template g(x, y) has been discov- 
ered in the scene. We use this notation throughout 
the remainder of the paper. Below we review the 
POF and BPOF. We continue with a discussion of 
the magneto-optical SLM to motivate a discussion of 
the BPOF. This discussion is framed in the context 
of experiments with the filter. We then move to an 
analysis of both the POF and the BPOF. We show 
that the same filter can be generated by a number of 
significantly different templates, and discuss how this 
has implications for the results we have observed. 

POF and BPOF 

In our discussion we refer to an input pattern f(x, y), 
its Fourier transform .F[ f(x, y)] = F(u, v), and the 
complex conjugate of F(u, v) = F*(u, v). We also 
consider a template g(x, y) and the corresponding 
operations on it. Consider G(u, v) with the ampli- 
tude and phase information given separately: 

where j = a and + indicates phase. Taking the 
complex conjugate gives us the conventional matched 
filter: 

The POF is given by 

which can be converted to a BPOF GB+(u, v) by a 
number of techniques. For example, we consider 
the popular formulas: 

For measuring inner products, we are really inter- 
ested only in the correlations at  the origin. To 
analyze this, consider the amplitude output 0: 

5682 APPLIED OPTICS / Vol. 31, No. 26 / 10 September 1992 



where * denotes correlation. We evaluate at  the 
origin: 

[Henceforth we suppress the O(0, 0) and simply call 
this 0. We take the pupil function to be the maxi- 
mum width available on the SLM. This is not the 
only way to choose the region of integration, an issue 
that is treated in detail by Kumar and Bah~-i.~] 
Furthermore, measure the intensity only: 

We now consider the signal-to-noise ratio (SNR) 
achieved by the filter G: 

SNR = j's ~ ( u ,  v)l ~ ( u ,  v) 12dudv 

9 

P 

where P(u, v) is the power spectral density of the 
input noise. This is easily shown to be a maximum 
when FIP = G. If we are constrained to the (+ 1, -1) 
filter described above, maximizing the SNR is equiva- 
lent to maximizing the output at  the origin, since 
[GI = 1 implies that the denominator of Eq. (11) is 
independent of G(u, v) (see Ref. 10). If we set P I 1 
(white noise), we get the conventional matched filter 
of Eq. (4), i.e., G* = F* gives us the best SNR. 

Now consider the output when we use the POF 
G+(u, u )  instead of G*. Measuring the output, we 
find that 

In the analogous case for the BPOF GB+(u, v), we 
have 

OFF 

Fig. 2. Orientation of a magneto-optical SLM's analyzer polarizer 
to achieve binary ON--OFF (+ 1,O) modulation.ll 

follows Davis and Waas.ll The SLM used for this 
experiment is a 48 x 48 magneto-optic SLM commer- 
cially available from Semetex Corp. (Sightmod, 
SMD48I). This device rotates the polarization axis 
for linearly polarized light as the light passes through 
any electrically activated SLM element. Activated 
elements are defined as the ON state. Light passing 
through unactivated (OFF) elements of the SLM does 
not have its polarization axis rotated. This is de- 
picted in Fig. 2. A polarizer (called the analyzer 
polarizer) is placed in the beam path before the SLM 
(as shown in Fig. 3), in this case with an orientation 
that is perpendicular to that of the OFF state, blocking 
any light passing through unactivated elements. 
Thus light will only pass through the ON elements. 

The SLM can also be configured for bipolar phase 
modulation. This is obtained by orienting the ana- 
lyzer polarizer perpendicular to the bisector of the 
NEG and pos polarization states, as shown in Fig. 4. 
The result is a a phase shift of the E-field vector of the 
transmitted light between the ON and OFF states. 
This leads to the definition of an angle +,, which is the 
bisector of the angle 0 in Fig. 4. (We measured our 
SLM's value of 0 to be T.) The BPOF is then given 
by 

which reduces to Eq. (6 )  if 4, = 0. Of course, these 
are not the only possible orientations of the analyzer 
polarizer. Various complex filters can be realized by 
choosing other analyzer polarizer orientations.12 
If we are not constrained by the rotation angle 0, we 
get the general unconstrained BPOF. Farn and 
Goodmanlo have shown how to compute that filter. 
Our results are consistent with theirs in that they do 
not limit themselves to the device constraints ex- 
plained here. 

We return to these expressions in our analysis sec- SLM 1 L 1 s L M ~  L2 
tion. 

Magneto-Optical Spatial Light Modulator I CCD 
0 

Pol. V Pol. V 

The following discussion is intended as background to Fig. 3. Diagram of a VanderLugt correlator showing the polariz- 
our subsequent experimental section, and closely ers(Po1). 

10 September 1992 / Vol. 31, No. 26 / APPLIED OPTICS 5683 



NEG 

A n a l y z e r  
P o l a r i z e r  

Fig. 4. Orientation of the SLM's analyzer polarizer to achieve 
bipolar (+ 1, - 1) modulation.11 

Experimental and Simulated Results 

We ran several experiments and simulations to imple- 
ment an unsupervised learning neural network archi- 
t e ~ t u r e . ~  This generated many different templates 
in response to alphabet input patterns. Templates 
took the form of conjunctions of various sets of 
alphabet patterns over time. This yielded many 
different examples of inner products between various 
patterns that had been measured by the system. 
This functionality is what we desire for any of the 
neural net models mentioned earlier. We report 
here some key findings that led us to suspect BPOF 
limitations of presenting a problem. In the plots 
below, theoretical inner product is the correct pixel 
overlap between two images. For example, the 5 x 5 
patterns G and E have an overlap of 16 pixels (out of 
25 possible), so 16 is their theoretical inner product. 
In Fig. 5 the BPOF computed inner product is the 
simulated correlator's computation of inner products 
by using the BPOF without any attempt to normalize 
the output numbers. Ideally, the result would be 
some kind of monotonic increasing function. As 
expected, the actual result has some relationship to 
the correct inner product values, but does not provide 
an accurate computation of these. 

In Fig. 6 the optically computed inner product is 
the inner product measured by a VanderLugt correla- 
tor in our laboratory. Figures 5 and 6 qualitatively 
agree in that the correlator fails to correctly order the 
inner products. The principal difference between 
the data in Figs. 5 and 6 is the number of plot points. 
The following figures, however, exhibit significant 

Q 
P -1 1 

0 2 4 6 8 10 12 14 16 18 

Theortical Inner Product 

Fig. 5. Simulation of correlator as an inner product processor 
without normalization. 

Theoretical Inner Product 

Fig. 6. Experimental correlator data for inner produds measured 
without normalization. 

qualitative differences because of different normaliz- 
ing schemes. This is particularly significant in the 
case in which the input pattern is a strict subset of 
more than one template. Each template will corre- 
late well with the input because the latter is a strict 
subset, and the strength of the output peak will be 
determined by the intensity allowed through by the 
template; i.e., the larger template will always win. 
This can be compensated for by inversely scaling the 
measured output by the (already known) size of the 
template pattern. 

We show this in Fig. 7. The reason for choosing 
an inversely scaled normalizing factor is that the 
smaller templates let through less energy, so they 
obtain smaller inner products than larger templates 
even if they have a similar number of pixels overlap- 
ping with the input pattern. While mathematically 
sound, this reasoning fails in practice because of noise 
sensitivity. When the template size is small, divid- 
ing by it results in enhancing the noise. The figure 
reflects this in the large number of small templates 
that give saturated inner product readings. 

A more viable approach is to normalize by using a 
known factor. In our case, one of the computations 
made by the correlator is cheaper than all the others 
to compute electronically. In the particular neural 
network model we are implementing, we need the 
autocorrelation of the input. This term required 
only N ADD operations, instead of N MULTIPLY and N 
ADD operations for the cross correlations. We com- 
puted this electronically in order to find a normaliz- 
ing factor to use for all the other terms. As Fig. 8 
shows, this works better, with none of the small inner 
products giving saturated readings. Other ap- 

.- 
Theoretical Inner Product 

Fig. 7. Correlator data for inner products measured with normal- 
ization by template size. 
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known values of the template matching scores were 
compared with the optical systems' scores. Actual 
measured inner product values were ignored; the only 
performance criterion was correct ordering from larg- 
est to smallest. In Fig. 9, 1 means largest, 2 is 
second largest, and so on. Ties were handled by 
repeating a number twice and skipping the following 
number, e.g., 1,2,2,4. The larger circles correspond 
to overlapping points; the more data at  a single point, 

8 o 2 4 6 8 10  12 14 16 18 20 the bigger the circle. 
Theoretical Inner Product The x axis of this figure is the correct ordering for 

Fig. 8. Cornlator data for inner products measured by using a each data point. The y axis shows the optically 
known normalization factor. computed ordering. The data points are computed 

for various experiments with anywhere from two to 

proaches to normalization have been dealt with by 
Dickey and Romero.13 

We are still seeing less accuracy than we would like 
for neural network implementations. As we will 
discuss, this is not the fault of the normalization 
scheme. If we had used the conventional matched 
filter instead for this computation, the correct theoret- 
ical values would be found in the absence of noise. 
This particular (1, - 1) BPOF cannot do this reliably. 
Furthermore it cannot even correctly obtain the 
relative order reliably within a set of measurements. 
This is really more critical than obtaining the correct 
inner product measurements. The correlator may 
make significant mistakes regarding the value of 
inner products so long as it still classifies the best 
match first, the second best next, and so on. In fact, 
some distortion may be beneficial, such as excessive 
values for the best match a t  the expense of the others. 
Unfortunately for this BPOF, it does not even meet 
this relaxed criterion. 

Figure 9 shows the ordering distortion caused by 
this (1, -1) BPOF in a noise-free simulation. This 
information was acquired by running a simulation of 
the device trying to classify various templates. The 

2j(QJ;oo;, , 1 
1 

0 
0 1 2 3 4 5 6 7 8  

Theoretical Ordering 

Fig. 9. Ordering distortion caused by the BPOF. Larger circles 
indicate a greater overlap of data at the same point. While the 
BPOF is more likely to be correct than incorrect, it makes a 
significant number of serious misclassifications, even in the ab- 
sence of noise. It is especially susceptible to misclassifying the 
highest priority categories. The ideal result would be a set of large 
circles forming a line of unit slope. The lower left data is of much 
greater importance than the upper right in this regard. 

seven classes. - An ideal result would be a single line 
of large circles extending diagonally across the plot. 
Note that the classifications are independent of nor- 
malization. We are looking at only the order of the 
winners, not their relative magnitudes, and we are 
not making comparisons between classifications with 
varying sets of patterns. No normalizing scheme 
can cure the problem illustrated here. 

The figure shows that this BPOF, while usually 
correct or at  least close, occasionally makes disas- 
trous misclassifications, regarding the best match as 
the worst, and vice versa, in the most extreme cases. 
This may be acceptable for some applications in 
which mistakes are tolerable (and this may be the 
case for some neural network implementations) but it 
certainly would cause performance degradation in 
many applications. It  must be emphasized that these 
results are in the absence of noise. Performance 
would degrade further with noisy inputs, with noise 
in the filter values, or with noisy detectors. 

Analysis 
To further assess these results, we derive some useful 
properties of POFs and BPOFs. We begin with the 
description of an output peak achieved by using the 
POF. Refer to Eq. (12). At first glance, it is not 
apparent that G4 is a good approximation to G*. To 
investigate this, consider the approximation of G* by 
an arbitrary phase function expL j o b ,  v)]. The L2 
norm, or mean square error, in such an approxima- 
tion is 

I 

Expanding, we find that 
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Clearly Nu, v) = +(u, v) minimizes ehve r  all possible 
choices of 0. This proves the following theorem: 

Theorem 1.  The filter G+ = exp[ jO(u, v)] is the closest 
approximation (in L2 norm) to G* over the entire 
class of possible POF's. 

This theorem leads us to suspect that G+ will be the 
optimal filter over all POF's, in the sense that it 
maximizes the output peak and, thus, the SNR. 
This was indeed proven by Kumar et al. in 1988. 
(See Kumar et al. for various relevant contribu- 
t i on~ .~ ,~" '~ )  

We now consider the BPOF case by comparing the 
flter to the conventional matched filter. Below we 
consider an arbitrary BPOF B(u, v). We show that 
choosing this to be anything other than the (+ 1, -1) 
filter GB+ from Eq. (6)  will result in a greater error. 
The error in approximating the conventional matched 
filter by the BPOF is: 

2 

eB* = ff I I G * ~ ,  v) lexp[ j+(G*)I - B(u, v)l dudv, 

(18) 

eBm = Sf I G(u, V) I2dudv + Sf dudv 

- 2 fS IG(u, V) Icos(+[G(u, v)I]B(u, vldudv, 

(19) 

where +[G(u, v)] is the phase of G(u, v). The first 
two integrals are unaffected by B(u, v). Then Eq. 
(19) is minimized by choosing B(u, v) to have the 
same sign as cos[+[G(u, v)]], i.e., as the real part of 
G(u, v). Thus the use of any (+ 1, - 1) filter other 
than GB+ yields a greater error. 

Theorem 2. This theorem is proved by the above. 
The filter GBb is the closest (in L2 norm) approxima- 
tion to G* over the entire class of possible BPOF's 
with values of 1 or - 1. 

Nonuniqueness and Its lmpllcations 
Because we are considering problems related to rnis- 
classifications, it is important to note that many 
highly dissimilar functions have the same POF or 
BPOF. This is true because, if we consider 

where g is an arbitrary pattern, we can construct the 
two-lens processor shown in Fig. 10, which optically 

H >O 

l a  L 1 H r e a l  L 2 g 2  

Fig. 10. Optical construction of a different function with the same 
POF. 

constructs the function 

where 9T.I is the Fourier-transform operator. 
The transform of g2(x, y) clearly has the same 

phase as Gl(u, v) because, as shown in Fig. 10, we 
have chosen H to be purely real and positive. H can 
therefore take a myriad of different forms. This 
suggests that the filters cannot see the difference 
between arbitrarily different patterns, yet can miss 
other patterns that are essentially similar. It would 
be possible, for instance, to construct a set of patterns 
such that Fig. 5 or Fig. 9 would have a straight 
horizontal line of points, which is far from the ideal of 
some kind of monotonic increasing function. The 
constraints that H be real and positive are weak, so a 
large class of functions can be constructed with the 
same POF or BPOF. Thus we anticipate a possibil- 
ity of constructing sets of templates that cannot be 
discriminated, given a particular POF or BPOF algo- 
rithm. 

From the observation above it follows that the set 
of functions with the same POF forms a convex set 
since, for an arbitrary constant a with 0 < a < 1, 

where + is the POF operator and - is the logical 
implication operator. The same argument applies to 
the BPOF. The convex nature of the POF or BPOF 
set may prove useful in determining the classification 
performance of the filter because it is a straightfor- 
ward matter to determine the distance between two 
or more nonintersecting convex s e k 5  

The nonuniqueness observation of this section, 
however, is more important than the result on convex- 
ity of the POF set. This is because 

(1) The convexity observation depends on the 
nonuniqueness observation; 

(2) The nonuniqueness has implications on lirnita- 
tions of POF's and BPOF's, including BPOF's com- 
puted in a number of different ways. 

We anticipate that the nonuniqueness observation 
could lead to a choice of useful examples of the 
misclassification potential of various filters, and that 
the convexity observation could lead to characteriza- 
tion of the discrimination properties of these filters. 

Discussion 
The discussion of nonuniqueness above broadens the 
scope of filters that may be affected by the problems 
we consider. Thus we have come full circle and 
suggest that misclassification problems occur in the 
BPOF itself. 

Our results apply to a popular kind of BPOF, but 
not to all of them. It  is worth noting the cases left 
unexamined. We have not shown misclassification 
errors for the unconstrained complex BPOF's dealt 
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with by Farn and Goodman,lo although the non- 
uniqueness analysis applies to these. It  is worth 
noting that if one is willing to add hardware complex- 
ity, one can achieve full unconstrained complex mod- 
ulation with two one-parameter SLM'seZ0 Juday and 
Florence have also shown how to obtain full complex 
modulation out of a single deformable mirror device 
SLM, at the cost of halving its r e s~ lu t ion .~~  We 
predict that the most fruitful work will choose the 
unconstrained complex values rather than the 
(+ 1, - 1) or (+ 1 , O )  filters that have been popular in 
the past. One final caveat: various measures of the 
quality of a BPOF have been devised over the last few 
years,22 some of which were succinctly summarized 
recently by H ~ r n e r . ~ ~  For another recent germane 
discussion, see D o ~ n i e . ~ ~  It is entirely possible that 
some filter might provide better classification perfor- 
mance and perform well within one respect but not in 
another. 

Conclusion 
A class of BPOF's examined for neural network 
implementation is found to have some fundamental 
limitations. We show that this kind of BPOF misclas- 
sifies patterns even in the absence of noise. This is a 
serious limitation on the efficacy of this kinds of 
BPOF for image processing and neural network 
implementation problems. These results are espe- 
cially practical for work involving the magneto- 
optical SLM, which has constraints similar to those 
analyzed here. We point out that a variety of func- 
tions look equivalent to POF's and BPOF's as a 
possible explanation for some of the problems encoun- 
tered. 

We thank the reviewers for many insightful com- 
ments that have significantly improved the final 
version of this paper. Among other things, one 
reviewer suggested a simplification to our proof of 
theorem 2, while another pointed out how our obser- 
vation regarding the nonuniqueness of functions 
yielding a given BPOF relates to the potential for 
classification problems. We are grateful for these 
and other helpful comments. 
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