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Abstract: A neural-network-aided solution to the
problem of static-security assessment of a large
scale power system is proposed. It is based on a
pattern-recognition technique where a group of
neural networks is trained to classify the secure/
insecure status of the power system for specific
contingencies based on the precontingency system
variables. The large dimensionality of the input
data is reduced by partitioning the problem into
smaller subproblems at different stages. When
each trained NN is queried online, it can provide
the power-system operator with the security status
of the current operating point for a specified con-
tingency. Parallel network architecture and the
adaptive capability of the neural networks can be
combined to achieve high speeds of execution and
good classification accuracy.

1 Introduction

One of the main aspects of power-system security is static
security. This is defined as the ability of the system to
reach a state within the specified safety and supply
quality following a contingency. The time period of con-
sideration is such that the fast-acting automatic-control
devices have restored the system load balance, but the
slow-acting controls and human decisions have not
responded [1-3].

The problem of predicting the static-security status of
a large power system is a computationally demanding
task [2]. It involves the solution of a nonlinear-
programming problem with a large number of variables
and limit constraints which define the feasible region of
operation [2, 3]. In addition, the amount of memory
required to store the steady-state security under different
system configurations and contingencies is equally pro-
hibitive. These considerations seriously undermine the
application of static-security assessment in real time
without the support of large computing capability. In an
era when power-system facilities are utilised to their
maximum to supply the growing energy demands, a fast
on-line security-prediction scheme is imperative in ensur-
ing uninterrupted supply quality to the consumers [4].

The concepts of pattern recognition have long been
looked at as a possible means of speeding up these calcu-
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lations [5]. From a pattern-recognition perspective, the
problem of static security assessment (SSA) is considered
as a classification problem where the precontingency
system attributes are used to predict postcontingency
system-security status. Many attempts have been report-
ed where conventional pattern-recognition techniques
have been used to solve both static [5] and transient [5,
6] security problems in power systems, but almost all of
the techniques suffer from the same problem known as
the curse of dimensionality. The computational effort
required to formulate the classifier becomes prohibitively
large and the mapping to be learned becomes increas-
ingly complicated with the increasing size of the power
system [5, 6].

Neural Networks (NNs) have gained renewed popu-
larity as a method of synthetising a mapping between
input and output variables by learning a set of arc
weights and node thresholds of a connectionist model
based on training examples [7,8]. Certain problems in
power systems, with their inherent nonlinear and
complex nature, seem amenable to solutions through
trained NNs. Several such applications have been docu-
mented in the literature: power-factor correction [9],
harmonic analysis [10], topological observability [11],
identification of static- and dynamic-security regions [12,
13] and post-fault dynamic analysis of interconnected
power systems [14].

Layered-perceptron NNs are known to be well suited
for pattern classification [7, 8, 12, 13]. In classification of
steady-state security, the inputs to the NN are the
precontingency-system attributes while the output is the
postcontingency-security status. The NN is trained to
solve the two-class problem by presenting it with a set of
patterns generated by an oracle. An oracle, in this case, is
a valid computational model of the power system which
can be solved to investigate system performance. A prop-
erly trained NN can classify the security of a previously
unencountered input pattern with good accuracy. Due to
its parallel architecture, the time and computational
effort involved in classification are small compared to
other conventional schemes [12].

In a large power system, there are many different
attributes to choose from, and many contingencies to
look at to predict static-security status. Training a single
large NN for this task would be almost impossible.
Instead, the aim is to split up the analysis into small but
well defined tasks in a logical manner and then train a
collection of NNs to handle each classification task. The
most obvious division is at the contingency evaluation
stage where separate NNs can be dedicated to handle
specific contingencies. In evaluating the security under a
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particular contingency, the large-scale power system can
be decomposed into a study system and several external
systems based on the field of influence of the contingency
[2]. Some well-established techniques of feature-selection
algorithms [15, 16] can be used to further reduce the
dimensionality of each individual NN input space. The
collection of NN classifiers can then be integrated to
form a composite security-assessment package. The
inherent parallel-connectionist architecture of the NNs
can be fully exploited this way.

In pattern recognition, the compromise for achieving
on-line speed is the large amounts of processing required
off-line [5-14]. A large number of simulations must be
performed off-line to generate a good representative data
set for training the NNs. For a selected contingency, each
training pattern would require the solution of an AC
power flow, to determine the post-contingency security
picture. The training-data set should also span the entire
demand space brought about by hourly, daily and weekly
variations in load. The effects of different contingencies
that can occur also have to be taken into account, but
once the NNis are successfully trained, on-line SSA can be
done with speed and a predicted statistical accuracy.

The successful implementation of this scheme will of
course depend heavily upon the availability of neural-
network hardware. A software implementation is ruled
out owing to the size and the combinatorial complexity
of the problem at hand, but there are promising signs of
a growing number of parallel architectures and custom
devices [17] which can be used for both generic and
neural-network implementations. This would pave the
way for an actual implementation of the model.

2 Problem formulation

The NN-based pattern-recognition approach for SSA
depends on the assumption that there are some charac-
teristics of precontingency system states that give rise to a
secure or insecure post-contingency system. The task of
the NN is to capture these common underlying charac-
teristics for a set of known operating states and to inter-
polate this knowledge to classify a previously
unencountered state.

The first step in such an application is to obtain a set
of training data which represents the different power-
system operating modes that are likely to be encountered
due to hourly, daily or monthly variations in load
demand. This information is derived from a precontin-
gency optimum-power-flow (OPF) study. The load data
are obtained either from past operating conditions or
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from an approximated load model. Once a set of feasible
operating points is obtained, a selected contingency is
simulated and the post contingency power-flow solution
is investigated for line and voltage violations.

As described earlier, the task of SSA of a large-scale
power system using pattern recognition is an enormous
computational exercise. One way of reducing this com-
plexity is to divide the problem into smaller tasks at dif-
ferent levels and train dedicated NN classifiers to handle
each task. Fig. 1 shows a possible break up of the
problem into smaller tasks.

2.1 Contingency partition

A power system is vulnerable to different types of contin-
gencies. There are different types of contingency selection,
ranking and evaluation algorithms [2, 4] to come up
with a list of critical contingencies for a power system.
Static security under each specific contingency or a spe-
cific class of contingencies should be assessed by a specifi-
cally trained NN. It is envisaged that this partition would
simplify the task of capturing the diverse effects of indi-
vidual contingencies on static security, thereby helping
towards building more accurate classifiers.

When dealing with a large-scale power systems SSA,
the concept of a study system connected to external
systems through a set of boundary buses is well known
[2]. This is based on the assumption that a contingency
within the study system produces the highest reper-
cussions within that system. However, there are always
cases where a contingency in one system is strongly felt in
another [2]. Two possible ways are proposed to avoid
this problem [2]. In the first method, one strives, during
offline studies, to obtain study systems that are insensi-
tive to external influences. Failing that, sensitivity-
analysis techniques can be employed.

Boundary-bus compensation [2] is a sensitivity-based
method used to decouple the external systems from the
local system. The concept assumes that the postcont-
ingency boundary-bus injections are based on the first-
order sensitivities of the corresponding tieline flows to
that particular class of contingencies [2]. Hence, external
network effects are strictly represented by the updated
boundary-bus injections. If the incremental change in
tieline power is significant, the method suggests that the
boundaries be pushed a bit deeper into the external
network.

2.2 Voltage and line violations
A complete SSA involves checking for both voltage and
thermal violations in the postcontingency steady state. It
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was observed that efficient prediction of voltage and
thermal violations cannot be based on the same set of
features. Since the mechanisms leading to thermal and
voltage violations are fundamentally different, it was
decided that the classification under each class be
handled by separate NNs. Partitioning the two tasks
helps towards achieving more accurate predictions.

2.3 Feature selection

It is also well known that some power-system variables
are better indicators of static security than others. Estab-
lished methods of feature selection and extraction algo-
rithms [15, 16] can be used to analyse the internal and
boundary variables of the precontingency study system
to reduce the large-dimensional pattern space into a
smaller but well-representative feature space. NNs can be
trained on these selected features. This makes the learn-
ing phase fast and less complex.

24 Limitations

Each NN is trained by using the appropriate set of fea-
tures which are selected from a larger set of internal and
boundary variables. The feature selection is based on a
heuristic statistical measure which is introduced later.
During NN training, each contingency will have a
separate set of training samples. This is a necessary evil
owing to the wide-ranging characteristics associated with
different types of contingencies.

The paper restricts itself to predicting SSA for single
line outages. Double contingencies are not considered.
NNs are trained only to predict voltage violations. The
partitioning into subsystems is done with the assumption
that there are no mutual intereaction between sub-
systems, ie. boundary-bus injections are assumed to
remain unchanged in the postcontingency system.
However, it should be noted that such interactions can be
easily incorporated into the training data.

3 Static-security assessment

Static security of a power system is assessed once the
system reaches a steady state after a contingency. Assume
the precontingency power-flow solution to be given by

f(O){X(O), U(O), L(O)} =0 (1)

where X is the state vector (complex bus voltages), U is
the control vector (real-power generation and generation
voltage), L is the demand vector (real and reactive-power
demand), and {-}'® are precontingency variables.

The inputs to the equation are U and L. These are real
data from the system, or data generated based on some
preconceived model. The control vector U is usually
selected to minimise a separate objective function
F{X©, U®} which is based on economic considerations.
Under most cases, this is the combined cost of generation
in the precontingency state space. The resulting Lagrang-
ian function to be minimised takes the form

L{X(O), U(O), ED), l} = F{x<0)’ U(D)}
+ATFO O YO fon  (9)
where A is the lagrange multiplier vector. The mini-
misation process is iterative with respect to X©, U, and
A. A gradient-based search technique is used for the
process. The control vector U which could be both the

real power output and the voltage of generator buses is
bounded by the constraint
Upin <UP KU 3)

max
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based on generator ratings and system considerations. A
solution to the constrained-optimisation problem shouid
satisfy the Kuhn-Tucker corner conditions. This pro-
cedure is commonly known as an optimal power flow
(OPF) [1-3].

Security of the postconhngency power system under
the kth contingency is determined by solving for X in
the load flow equations

f""{X“", U(k), Ek)} =0 (4)

I is assumed to remain at its precontingency value [!.
The postcontingency control vector U® is calculated
based on the type of fault. For a sizeable disruption of
real power, such as the loss of a tieline or a generator, the
outputs of the remaining generator are adjusted on the
basis of their individual speed-drop characteristics [2].
Otherwise, only the swing bus absorbs the slack gener-
ation. The specifics used in this paper are explained in
Section 6.

The line flows and bus voltages are then checked
against their safe operating limits specified by

G{X™, U%} <0 )

Depending on whether the postcontingency operating
condition satisfies or violates any one of the operating
limits, the corresponding precontingency power system is
appropriately labelled secure or insecure.

4 Feature selection

One of the classical problems in pattern recognition is to
reduce the dimensionality of the measurement vector
[15]. One advantage of this concept of dimensionality
reduction is that classification in the lower-dimensional
space is faster and less complex [15, 16]. A simple
example of this concept of dimensionality reduction is
when d minimally correlated elements of each n-
dimensional measurement vector (normalised between 0
and 1)

Yj=[y1,y2»~~’ynj]r i=12...,N (6)

are selected where d < n and the classification is based on
these (d-dimensional) patterns.

An acceptable simple criterion for selecting a variable
as a feature is that it should provide more information
for classification than those not selected [5, 6]. The heu-
ristic notion of interclass distance is used to accomplish
this task. Given a set of patterns with dimension n, it is
reasonable to assume that the pattern vectors for each of
the two classes occupy a distinct region in the observa-
tion space {5, 6, 16]. The average pairwise distance
between the patterns is a measure of class separability in
the region with respect to the particular variable. The
index F; provides a measure of this class separation with
respect to the ith variable.
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m{? and 6" are the mean and variance of the ith variable
corresponding to class (-). The superscript (S) stands for
‘secure’ while (1) stands for ‘insecure’. N® and NY indi-
cate the number of secure and insecure patterns that form
the training set {N = N® + N}, Variables with higher
values of F carry more information about class separa-
bility than others. Therefore classification can be based
on d (<n) selected variables which will be referred to as
features. These features are selected as follows:
(a) Calculate F; for all i such that 0 <i < n;
(b) Rank them according to the descending order of
Fy
(¢) Go to the first ranked variable;
(d) Calculate the correlation coefficients (Cc) of all
lower-ranked variables with respect to this variable;
(e) Eliminate all lower-ranked variables which have
|cC| > 09;and
(f) Go to the next-highest-ranked variable and go to
step (d).

The correlation coefficient between the ith and the jth
variable is defined as

E{y,y;} — E{yJED;
Ce, = Uiyt — BUdEYS

= ., n
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The value of 0.9 in step (e) is selected arbitrarily. The
process is repeated until all (n) variables either ranked or
discarded. Subsequently a set of d variables from the top
of the ranked list is selected as the key features for train-
ing the NN classifier. The value d is the minimum
number of features required to obtain the specified classi-
fication accuracy. Hence each original pattern Y; given by
eqn. 6 will now be represented by a reduced d (<n)
dimensional pattern

Y= [yhj,yhj,u-s)’k,,j]r ®)

The values k,, k,, ..., k; are common for all patterns.
Selecting a suitable value for d is a tradeoff between clas-
sification accuracy and classifier design. This is discussed
further in Sections 5 and 6.

Interclass-distance measures are the only family of
feature-selection-criterion functions that do not depend
on the estimation of probability-density functions. These
heuristic measures are therefore attractive mainly for
computational reasons [15, 16]. However, in general
whether or not a feature can be selected on the basis of
its individual effectiveness is problem dependent.

5 Neural networks

NNs have been found to be effective systems for learning
discriminants for patterns from a body of examples [7,
8]. Once a set of training patterns is generated and an
optimal set of features is selected, a NN classifier can be
made to learn the mapping associated with them. The
feedforward NN architecture used in the paper is com-
monly known as the multilayer perceptron NN and is
given in Fig. 2. It consists of sets of nodes arranged in
layers. Activation signals of nodes in one layer are trans-
mitted to the next layer through links which either
attenuate or amplify the signal [8].

IEE PROCEEDINGS-C, Vol. 139, No. 1, JANUARY 1992

Representation of an L-layer NN can be described by
the two equations

Ni
ufl+ )= Y wll + Dy + 04+ 1)
j=1

(G=1,2...,N)

y{l + 1) = O{ull + 1)} ®
number of neurons weights layer
N, 3
N, 2
Ny 1
No 0
Fig. 2 Topology of a 3-layer NN

where y{l + 1) is the activation value of the jth neuron of
the (I + 1)th layer; uf{l + 1) is the net input to the jth
neuron in the (I + 1)th layer; w;{l + 1) is the weight
between the jth neuron of the Ith layer and the ith neuron
of the (I + 1)th layer; ® is the sigmoid activation function
[1/(1 + e ¥]1; 64 + 1) is the external input to the jth
neuron in the (I 4+ 1)th layer; and the indices i and [ are
such that 1 <i< N;,, and 0 <I<L — 1. It is impor-
tant to note that the y,(0) denote the inputs and the y{L)
the outputs of the NN.

5.1 Back-propagation learning

The back-propagation training technique adjusts the
weights in all connecting links and thresholds in the
nodes of the NN so that the difference between the actual
output and the target output are minimised for all pat-
terns. This is done by minimising the energy function E
given by,

1 P N
E=2 Y Y-y} (109
2P = =1
with respect to all the weights and thresholds. P is the
number of training patterns while N is the number of
output neurons. y;; and ¢; denote the jth output and the
corresponding target for the ith training pattern, respec-
tively. The update for the weights are calculated using the
iterative-gradient-descent technique where

e TR (ay

Constant 5 is the iteration step while constant v is the
momentum factor. Aw;{)) indicates the weight change in
the previous iteration. The choice of # and v is critical for
satisfactory learning and they are usually selected based
on experience.

For SSA, the inputs to the NN consist of the features
selected as described in Section 4 and are denoted by
Y(0) = ~Y; as given in eqn. 8. The target for the output
Y(L) is a 1 or a 0 depending on whether the pattern is
secure or insecure. The value d in eqn. 8 is the minimum
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number of input features required to achieve the specified
classification accuracy. Selecting the minimum possible
input dimension gives a faster learning rate for the corre-
sponding NN classifier.

Deciding a proper NN architecture for a classification
task is still an open question. Although there have been
numerous efforts to clarify this issue, no generally
adopted treatment can yet provide clear answers. It is
currently accepted that a single-layer feedforward
network can form an arbitrary classification boundary.
The number of hidden neurons is the minimum required
to ensure the desired convergence criteria. The particular
network structure is usually chosen based on the experi-
ence gained during previous trials.

6 Simulation results

The test system consists of the AEP 8-bus study system
[12] connected to two external systems through two tie-
lines as shown in Fig. 3. The study system includes N,

external sys@ external system 2 2
~—  — ~—
s 6 @ ™
1% N

15

~— study system

— S

Fig. 3  Test power system

(=4) generators, N, (=8) loads and N, (=16) transmis-
sion lines. The influence of the external networks is mod-
elled by the bi-directional power flow at the boundary
buses 9 and 10, respectively.

Table 1 shows the permitted perturbation in the real
and reactive loads at each bus on a 100 MVA base. The

Table 1: Range of load parameters

Bus Bus type Range of  Range of
real-load  reactive-load
variations  variations

(P.u.MW)  (p.u.MVAr)

1 Slack 9.0-11.0 0.01.0
2 Load 11.2-16.8 0.0-1.0
3 Generation 135-165 0.0-1.0
4 Load 14.0-26.0 0.0-1.0
5 Generation 135-165 0.0-1.0
6 Load 15.4-286 9.1-16.9
7 Generation 9.0-11.0 0.0-1.0
8 Load 0.0-2.0 5.0-15.0
9 Boundary -75-75 -75-75
10 Boundary -75-7.5 -75-75

ticline flows are considered either positive or negative
depending on the demand schedule. Different power-
system-loading conditions within the specified range are
generated by randomly perturbing each of the real and
reactive loads with a uniformly distributed random vari-
able. The perturbations are uncorrelated. This is done in
the absence of real operational data. If such data are
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available, they could be used in training and testing the
NNs.

The precontingency optimal-dispatch strategy is to
minimise the cost of generation given by

Nﬂ
F{x(oy’ U(o)} = Z (CziP;i + Clini + COi) (12)
i=1

where C,;, C,; and C,; are the constant coefficients of the
quadratic cost function of the ith generator. The control
vector U is given by

U© =[P.]
[Pg] = [Pgl’PgZ;--',PgNg]T

The generator bus voltages are not considered as control
variables. Also, for tripping of a tie line, the generation
[P,] is updated based on the droop characteristics of the
generators. The droop at each individual generator is
assumed to be proportional to its maximum ratings.
Therefore, if tripping of a tieline causes a deficit of real
power Ap, the individual generator power settings are
adjusted as

13)

U(k) =[U©® + AU (14)
where
A
AU = | 52— |tP,] (15)
'—Zl Pg(max)i

P jmaxyi is the maximum allowable real generation of the
ith generator.

Next, the postcontingency power-system states are
obtained by solving a regular power flow by taking into
account the changes in the system topology and the
control-variable settings if any. The ensuring bus voltages
are tested for violations by checking against their respec-
tive limits, i.e.

Vj(min) < V; < Vj(max) Vj = 1, arey Nb (16)

When any one of the above constraints is violated, that
particular operating point is labelled insecure. Around
3000 random patterns are generated under each contin-
gency. Once the key features are selected, some of the
data are used for training the NN while some are used
for testing the trained NN. To avoid memorising, train-
ing is stopped when the classification error on the test set
becomes a minimum. In some cases, training is stopped
when the desired classification accuracy is reached. To
evaluate the performance of the trained NN classifier, the
following definitions are introduced:

False alarm: When a true secure operating point, as
described by the oracle, is classified as insecure by the
NN.

False dismissal: When a true insecure operating point
as described by the oracle, is classified as secure by the
NN.

The following percentages are also introduced to
obtain a quantitative measure of the classification per-
formance. The percentage false alarms, false dismissals
and false classifications are calculated using the defini-
tions:

number of false alarms

false alarms (%) =
total true secure states

N number of false dismissals
false dismissals (%) = - x 100
total true insecure states
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—

false classifications (%)
false alarms + false dismissals

- true secure + true insecure states

6.1 Case 1: outage of a tie line

In this case, the contingency is the tripping of tieline 16,
between the boundary bus 10 and the local bus 8. The
precontingency operating states are defined by the real
and reactive loads at all local buses and the direction and
magnitude of complex-power flow in the two tielines 15
and 16. The generation is set based on an economic-
dispatch strategy by solving an OPF to minimise the
energy costs.

Before the postcontingency power flow is run, the real
power generation is adjusted as described above. Then
the power flow is reconfigured according to the current
generation settings. The bus voltages are now checked for
security. For different randomly perturbed loads, approx-
imately 3000 patterns are generated. A single pattern
contains 30 attributes which include the real and reactive
injections (P;, Q;) at all buses and the voltage magnitudes
(V) at all buses. All boundary bus injections are con-
sidered as loads in solving the power flow.

Next, the key features for training the NN are selected
as described in Section 4. Table 2 shows the top nine

Table 2: Class statistics of the key variables

Variable m® m as”? o F index
Qg 0.5848 0.1319 0.0591 0.0275 5.2258
Ve 0.5535 0.3276 0.0439 0.0326 2.9555
Qg 0.4452 0.5697 0.0254 0.0216 2.6519
Q, 0.4619 0.5705 0.0261 0.0254 2.1085
V, 0.9928 0.9318 0.0026 0.0281 1.9889
Q,, 0.5533 0.7168 0.0546 0.0305 1.9184
Q, 0.5614 0.7338 0.0518 0.0489 1.7102
Pg 0.5041 05182 0.0293 0.0323 0.2287
v, 0.5351 0.5151 0.0466 0.0528 0.2011

features from the list of ranked variables, their class sta-
tistics, and the corresponding F values as derived from
eqn. 7. It can be seen from Table 2 that there is a signifi-
cant change in the value of F between the first and
second ranked and seventh and eighth ranked variables.
Therefore, as a first attempt, the first seven variables,
namely Qg, V3, Os, Q;, V3, Q0 and Q,, are selected as
the features for training the NN. Similar discontinuity in
the F values may not always be visible in the list of
ranked variables. In such an event the optimum number
of features can be selected by consequent training of the
NNs using a recursively increasing number of features
until the minimum required accuracy is obtained.

The training and testing statistics for the NN which
predicts voltage violations for this contingency are given
in Table 3. It is seen that, starting from 30 dimensional
patterns, classification is done using only seven directly

Table 3: Training and testing statistics for the NN in case 1

NN architecture
and training

Testing statistics

information

Inputs 7 Testing data 500
Outputs 1 True secure patterns 241
Hidden layers 1 True insecure patterns 248
Hidden neurons 9 False alarms 9
Iteration step 0.05 False dismissals 2
Momentum factor 0.05 Percentage false alarms 3.600
Training patterns 1500 Percentage false dismissais 0.800
Iteration cycles 1000 Percentage false classifications 2.200
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measurable features. It is also seen that reasonable classi-
fication accuracy is obtained even with a widely varying
operating point. Note that identical proportions of secure
and insecure data are used in both the training and
testing sets. This is to minimise any bias towards a par-
ticular class during NN training. It is also seen that the
selected features are in the vicinity of buses 8 and 10
which makes intuitive sense. Voltage insecurities are
caused by violations at buses 2, 4, 8 and 9.

6.2 Case 2: outage of a internal transmission line
The test conditions are identical to those for case 1
except that line 12 between buses 5 and 6 within the
study system is tripped. Therefore there is no reconfigur-
ing of the generation in the postcontingency system. The
postcontingency power flow followed by a security
analysis reveals the voltage status of the transmission
system. Based on the cost index F, it is found that a NN
trained on the seven input features Vi, Q,, Qs, P, Ps,
P,, and P, — gives the required classification accuracy.
The training and the testing statistics of the NN are
given in Table 4. A very low classification error is

Table 4: Training and testing statistics for the NN in case 2

Network Testing statistics

architecture

and training

information

Inputs 7 Testing data 500
Outputs 1 True secure patterns 250
Hidden layers 1 True insecure patterns 245
Hidden neurons 6 False alarms 0
Iteration step 0.10 False dismissals 5
Momentum factor 0.01 Percentage false alarms 0.000
Training patterns 1500 Percentage false dismissals 2.000

Iteration cycles 1000 Percentage false classifications 1.000

obtained using the method. As before, equal proportions
of secure and insecure data are used in the training. The
seven variables are selected by looking at the discontin-
uities in the F sequence as explained under case 1.

7 Conclusions

A NN-based static-security-assessment technique for a
large-scale power system is proposed. Multiple neural
networks have been successfully trained to assess static
voltage security of a study power system interconnected
to two external networks under a two specified line con-
tingencies. Feature-selection techniques have been
applied to reduce effective problem dimension. The classi-
fication assumes the availability of P, Q injections and V
magnitude at selected buses. These quantities are directly
measurable from the power system and are usually avail-
able at the control centre. Therefore one could foresee
this technique being used as an approximate fast online
static-security estimator. It is approximate because there
is no guarantee of achieving a zero classification-error
rate. However the computational efficiency of the NN
classifier can far outweigh this drawback.

The applicability of this concept in security assessment
of large-scale power systems depends on how well the
system can be decomposed into multiple subsystems and
boundary buses without compromising accuracy. The
possibility of handling interactions between subsystems is
an area which needs further attention.

The power-system topology undergoes temporal varia-
tions due to component switching, faults, scheduled
outages, etc. Once the topology changes, the transparent
mapping between the feature space and the security
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status is bound to change. Hence a NN trained to handle
one topology may not necessarily perform well under
another. A further understanding of the topological gen-
eralisation capabilities of the NN is required to effectively
overcome the problem. With emerging neural network
hardware, the proposed scheme holds promise as a fast
online classifier of static security of large-scale power
systems.
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