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Abstract— The parameters of the input and output
fuzzy membership functions for fuzzy H-Then min-max infer-
encing can be adapted using supervised learning applied to
training data. Under the assumption that the inference surface
is in some sense smooth, the process of adaptation can reveal
overdetermination of the fuzzy system in two ways. First, if
two membership functions come sufficiently close to each other,
they can be fused into a single membership function. Second, if
a membership function becomes too narrow, it can be deleted.
In both cases, the number of If-Then rules is reduced. In cer-
tain cases, the overall performance of the fuzzy system can be
improved by this adaptive pruning.

INTRODUCTION

The parameters of the input and output fuzzy membership
functions for fuzzy If-Then inferencing can be adapted us-
ing supervised learning applied to training data [1-5]. The
specific case of adaptation of min-max inferencing using
steepest descent [6] has the advantage of adapting only
those membership functions used in the fuzzy decision
process for each training data input-output pair.

In the process of adapting, two membership functions
may drift close together. If the underlying target sur-
face which we wish to estimate is smooth, then the mem-
bership functions can be fused into a single membership
function. Alternately, if a membership function becomes
too narrow, it can be totally deleted. In either case, the
fuzzy decision process is pruned. In artificial neural net-
works, pruning neurons from hidden layers can improve
the performance of the neural network [7]. Likewise, the
performance of fuzzy inference can be improved through
the adaptation and pruning of membership functions. The
number of If-Then rules is also correspondingly reduced.

ADAPTIVE TRAINING
Considered are fuzzy If-Then rules of the type
Ifz is X; and y is Y;, then z is Z;
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where X;, Y; and Z; are the linguistic variables corre-
sponding to z, y and z. The possibility of the kth conse-
quent is:

@ = maxmin [1x.(2), py,(v)] -

Here px, and py, are the input membership functions,
and the set Si is defined as:

Si ={i,j | Xi and Y; are antecedents
of a rule with consequent Z;}.

Assume that the center of mass of ux,(z) is mx, and the
dispersion (spread) of px,(z) is parameterized by oy,.
The parameter ox, is also proportional to the area of
#x,;(z). The membership functions py, (y) and pz,(z) are
likewise parameterized.

If the output membership functions are pz, (z), then
the defuzzified output using the center of mass of the sum
of weighted output membership functions is

):k armz, 0z,
o= =5~k Tk (1)
Zk X0 Z,

In [6], we outline a procedure whereby the parameters
of the input and output membership functions can be
adapted under the condition that the true output, ¢, is
known for the the input (z,y). The error is

E= %(o— t)?,

and the parameters are adjusted using steepest descent.
For the parameter ox,, for example, the adjustment is

OF
OX; = 0X; — 715;:

where 7 is the step size. The partial derivative can be com-
puted using error back-propagation which, for the problem
under consideration, is presented in detail in [6].

Although we will use min-max inferencing, the proce-
dure of membership function fusion and annihilation can
be applied to other fuzzy inference methods, wherein, for
example, alternate forms of defuzzification are used or in-
tersections and unions other than min and max are em-
ployed [8, 9].



Figure 1: Illustration of the criterion for fusion. When two
membership functions become sufficiently close so that the
maximum of their intersection exceeds v, then the two
membership functions are fused into a single membership
function.

Herein, we will assume all linguistic variables are scaled
to the universe of discourse on the interval [-1,1].
Gaussian membership functions of the form

u(z) = exp [— (”J;)z] ,

will be used throughout.

MEMBERSHIP FUNCTION FuUsiON

Fusion of two membership functions occurs when they be-
come sufficiently close to each other. Annihilation occurs
when a membership function becomes sufficiently narrow.
As illustrated in Fig. 1, two membership functions are
fused when the supremum of their intersection exceeds a
threshold, v. If the means of the membership functions
prior to fusion are m; and mg, then the mean of the fused
membership is set equal to the center of mass of the sum
of the membership functions:

myo1 + mao2
oy + 02

Mfusion =

where oy and o3 are the spread parameters of the two
membership functions. Similarly, the spread of the fused
function is obtained from

o2 _oi+a}
fusion = 5, 1oy

Membership fusion has a direct impact on the fuzzy
decision process. To illustrate, consider Table 1. Here,
N = negative, Z = near zero and P = positive. Assume
that the membership functions for z corresponding to N
and Z fuse. The two left most columns of the rule table are
combined into one. A new linguistic variable, called NZ
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z|N|Z|P z |NZ | P
Yy Y
N Z|P|P - N ?|P
Z Z2|Z|P Z P
P N|N|2Z P N |2

Table 1: Rule tables before (left) and after (right) fusion
of two fuzzy membership functions of the variable z.

labels this column. It remains to specify the corresponding
rules. When two adjacent rules are the same prior to
fusing, the answer is simple. For example, since X; =
N and Z both have Z as a consequent for Y; = Z, the
clear choice for the fused rule table for X; = NZ and
Y; = Z is the consequent Z. For Y; = N, however, there
are different consequents when X; = N and X; = Z.
To determine the consequent for X; = NZ and ¥; = N
(marked ‘7’ in Table 1), we chose to query the training
data base. Specifically, training data was found where
(z,y) = (mnz,mn) . The value of the target, ¢, for this
input pair is compared to the means of the existing output
membership functions. The membership function having
the closest mean is assigned as the consequent.

Output membership functions can also fuse. If, for ex-
ample, the output Z fuses with N in the left hand rule
table in Table 1, the resulting fused rule table will place
NZs in the six boxes currently occupied with Zs or Ns.

Once fusion occurs, the membership functions are fur-
ther adapted to the training data. Additional fusion or
annihilation can follow.

MEMBERSHIP FUNCTION ANNIHILATION

If the contribution of a fuzzy membership function be-
comes insignificant, then it can be annihilated. To illus-
trate, consider Fig. 2. The membership function us(z) be-
comes insignificant with respect to the membership func-
tion, p1(z), when, for all z,

oy (z) > Boapa(z)

where 8 > 1 parameterizes the degree of insignificance.
High B corresponds to a severe criterion for annihilation.
It is sufficient for the above criterion to hold only for z =
may:

a1 p1(my) > Boapa(ms) = Bo,

The process is valid when the underlying target surface is
smooth.

When an input membership function is annihilated, all
rules using it are deleted from the fuzzy rule base. For



Figure 2: Illustration of the process of membership func-
tion annihilation. When the membership function, us(z),
becomes narrow with respect to an adjacent membership
function, it can be annihilated.

z|XN|Z]|P Table 2: When the mem-
y bership function for ¥; =
N Z|P|P Z in the left table in Fig.
P N[(N]|2Z 2 is annihilated, the rule

table shown here results.

example, if the membership function corresponding to
Y; = Z in the left hand rule table in Table 1 is anni-
hilated, then the rule table after annihilation would be as
shown in Table 2.

An output membership function can likewise be anni-
hilated. In such a case, one of the remaining membership
functions must take its place in the rule table. The choice,
again, is made by a query to the training data base as was
done for input membership function fusion.

After annihilation, the membership parameters can be
further adapted using the training data. Additional anni-
hilation and/or fusion might subsequently result.

EXAMPLES

We illustrate the process of membership function fusion
and annihilation with two examples. The first is a proof
of principle wherein convergence is to a solution known
to be optimal. The second uses adaptation to fit a given
target surface. We used the parameters # = 2 and v =
0.9 for input membership functions and v == 0.95 for the
output. Iteration was performed until AE/E = 10~3. In
cases where a membership function could either be fused
or annihilated, annihilation was given priority.

1) Convergence to a Known Solution

In this example, the target membership functions shown
in Fig. 3(a) were used. The target rule table is shown
in Table 3. Using a universe of discourse on [—1, 1], the
membership functions are indexed from 1 for large nega-
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yl1]2]3
z Table 3: Target Rule Ta-
1 1 (21 ble for Example 1.
2 3
3 1121

y|1[|2]|3]|]4|5|6 |7 (8|9 ]10]11
x
1 1|1 [|112]|3]|3i3(|2]1 1 1
2 1|12 ]|3|3i3]|]3(3]2 1 1
3 1223|343 |3|2]2]1
4 2|313j4|4|5]|4]|4]3 3 2
5 313 (3|45 |515]41}3 3 3
[ 3[3]|a]5)5|s[s5][sja]3 |3
7 3|3(3|]4)|5|5}|5]4]|3 3 3
8 2|13|(3|4|4|5]4]|4]|3 3 2
9 1|1 12|33 ]|]3]|]2]|1 1 1
10 [tf1[2]3]3[3]3]|s3]2]1]1
11 11212 (3]3]|]4{3|3]2 2 1

Table 4: Rule Table for Example 1.

tive numbers upward. The largest index corresponds to
large positive numbers.

A total of 500 training data points were randomly gen-
erated from these target functions.

Overdetermined initialization is shown in Fig. 3(b) with
a rule table shown in Table 4. Input membership func-
tions are spaced evenly. Spacing of output membership
functions is determined from a histogram of the training
data target values. The histogram is divided into inter-
vals of equal area. The number of intervals is chosen to
be equal to the number of output membership functions.
The means of the output membership functions are places
at the boundaries of these intervals.

The result of the first steepest descent adaptation is
shown in Fig. 3(c). Compare this to Fig. 3(d). The
two left most membership functions for z (top plot) fuse.
The third membership function for z is annihilated, etc.
For the output, two membership functions are annihilated.
The rule table becomes that shown in Table 5.

The membership functions in Fig. 3(d) are further
trained. The result is shown in Fig. 3(e). Compare this
to Fig. 3(f), where four input membership functions are
annihilated. The results of Fig. 3(f) are adapted and
converge to the result shown in Fig. 3(g). As can be
seen in Fig. 3(h), two more input membership functions
are annihilated. Further iteration yields Fig. 3(i). For
y (middle plot), three membership functions fuse to two
membership functions (see Fig. 3(j)). The fuzzy rule table
corresponding toFig. 3(j) is as shown in Table 6.

The results in Fig. 3(j) are adapted to those shown in
Fig. 3(k). Fusion occurs as shown in Fig. 3(1). Ad-
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Table 5: Mo@iﬁed Table 4 after first steepest descent adap-
tation followed by fusion and annihilation.

vl1]2][3]4

Table 6: Table 4 after
further adaptation, fu-
sion and annihilation.

W)=
HIN[N| =
N WwiN
RINN] -

N|WwlwiNn

ditional adaptation results in the middle two member-
ship functions for y (middle plot) shown in Fig. 3(m)
to be graphically indistinguishable. They are fused in
Fig. 3(n). The rule table is now exactly the target ta-
ble in Table 3. The input membership functions are the
same as in Fig. 3(a). The output membership functions
are not the same; all defuzzifications from these member-
ship functions though, are. Qutput membership functions
{pz,(z)} will yield the same defuzzification as the mem-
bership functions {yz, (x/o)} when defuzzification is per-
formed as in Eq. 1.

2) Regression Fitting of ¢ Surface

In this example, we assume a target surface of

sin [r(z1 + z2)] cos [x(z1 — z2)].

The initial membership functions are shown in Fig. 4(a).
A contour plot of the target is shown in Fig. 5(a). The
first initialization is shown in Fig. 5(b). A total of ten
steps of iteration followed by fusion and annihilation were
required prior to convergence. The results are shown in
Figs. 4(b) and 5(c). Convergence mean square error is
shown in Fig. 6. Between odd and even steps (e.g., 3 and
4), error is reduced by steepest descent. Between the even
and odd steps (e.g., 4 and 5) fusion and annihilation are
applied, generally resulting in an increase in error.

The final rule table is shown in Table 7. The number of
rules has been reduced from 441 (21%) to 169 (132). The
cardinality of the set of consequents has been reduced from
8 to 5.

yvi1]2]|]3[4|5]|6|7|8|9[10]11]12]13
z
1 314]4j3{2]|2]3]4[14]] 3] 2 2 3
2 45|54 ({3|3]|4]|5]|5] 4 3 3] 4
3 4]15|5]4{3]|3]4]5]5] 4 3 3| 4
4 3]4]4}3{2|]2]3]4]4]3 2 2 3
5 2]1]3|3}j2{1|1]2]3]3]2 1 1 2
6 2]13{3j2({1|1]2]3]3}]2 1 1 2
7 3|4]4|3{2]2]|]3|]4]|]4} 3 2 2 3
8 4|5 |5}4(3]|]3]4]5]51{ 4 3 3] 4
9 4]|5|5}4]13]|]3]J]4]|5]51]4 3 3 4
10 344|312 ]2]|]3)J4]4]| 3 2 2 3
11 21332 |1]1]2]3[3]2 1 1 2
12 23|32 (1]1]2]|3]3]32 1 1 2
13 3]4]4]3]2]2]3|]4]4]3 2 2 3

Table 7: Final rule table for Example 2.
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Figure 3: (a) Target membership functions for Example 1. The top, middle, and bottom plots are for
KX Ky;, and pz, respectively. (b) Initial membership functions. (c-n) Evolution of the adaptation, fusion,
and annihilation process.
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Figure 3: (continued).
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Figure 6: Convergence of the of the root mean square error for Example 2.
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