Alternating Projection onto Fuzzy Convex Sets

Seho Oh and Robert J. Marks I1
Department of Electrical Engr., FT-10
University of Washington
Seattle, WA 98195

Abstract—  Alternating projections onto convex sets
(POCS) is powerful tool for signal and image restoration. How-
ever, if POCS is among three or more nonintersecting convex
sets, the result is not unique and POCS is generally not useful.
This, however, can be overcome by allowing solutions that are
in some sense, ‘close’ to each convex set. Such relaxation can
be achieved through fuzzification of the sets into fuzzy convex
sets. By performing POCS among the a-cuts of fuzzified sets,
good solutions can be obtained. We propose morphological di-
lation as a fuzzification procedure. Fuzzy POCS is illustrated
through application to the problems of time-bandwidth prod-
uct minimization, signal extrapolation and solution of simul-
taneous equations.

INTRODUCTION

Alternating projections onto convez sets (POCS) [1] is a
remarkably powerful method of signal recovery and syn-
thesis. A (crisp) set, A, is convex if £} € Aand Z; € A
implies that AZ; + (1 - A)Z; € Aforall0 <A< 1. In
other words, the line segment connecting #; and 75 is to-
tally subsumed in A. Examples of sets of signals that
are convex are the sets of bandlimited signals, duration
limited signals, bounded signals, signals with energy less
than one, signals with unit area, and complex signals with
a specified phase.

The projection onto a convex set is illustrate in Figure
1. For a given ¥ § A, the projection onto A is the unique
vector £ € A such that the mean square distance between
Z and § is minimum. If § € A, then the projection onto
Ais g.

Here is the remarkable result of POCS. Given two or
more convex sets with nonempty intersection, alternately
projecting among the sets will converge to a point included
in the intersection [2]. This is illustrated in Figure 2. If
two convex sets do not intersect, then convergence is to a
limit cycle that is a mean square solution to the problem.
Specifically, the cycle is between points in each set that
are closest in the mean square sense to the other set [3].
This is illustrated in Figure 3.
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POCS breaks down in the important case where three
or more convex sets do not intersect [4]. POCS converges
to greedy limit cycles that are dependent on the order-
ing of the projections and do not display any desirable
optimality properties. This is illustrated in Figure 4.

This third case, however, can be successfully addressed
by fuzzy POCS. The problem becomes one of finding a
solution that is, in some sense, equally close to each of the
convex sets. The concept of ‘close’ suggests a fuzzification
of the nonintersecting convex sets to fuzzy convex sets [5).
Even if three or more crisp sets do not intersect, a-cuts
of their fuzzification can. In some cases, there exists an
« such that intersection occurs at a single point. This is
illustrated in Figure 5.

Fuzzy CONVEX SETS

The fuzzy set A; (f for fuzzy) on the universal set E is
defined by the membership function p4(-) which maps F
to the real value [0,1]. The set A; can be written as

Ay ={Z/pa(Z) | £€ E}

Let A} denote the crisp set corresponding to an a-cut of
Ay

{Z| pa(®)2,Z€E} ; a#0
Af = (1)
E ; a=0

The fuzzy set A; is convex if all of its a-cuts (0 < a < 1)
are convex. Equivalently [6], the fuzzy set A; is convex if
and only if for every 0 < A < 1,

pa[AZ1 + (1= M) 23] > min{pa(ZF1), pa(F2)}

FuzziriED CONVEX SETS AND THEIR PROJECTIONS

Two methods of fuzzification of crisp convex sets of sig-
nals to fuzzy convex sets are useful in fuzzy POCS. If the
crisp convex set is parameterized, the fuzzy convex set, in
many cases, can be generated by fuzzification of parame-
ter set. There is a homomorphism between the signal and



parameter sets. The parameter set typically exists on an
interval (e.g. 0 < Bandwidth < Q for a set of bandlim-
ited functions and 0 < Energy < E for a set of signals
with energy less than or equal to E) and is therefore typ-
ically convex. Fuzzification is achieved by dilation of this
set with a convex dilation kernel. If the dilation kernel is
convex, then the result is an a-cut of a fuzzy convex set.
The degree of membership of a signal in the fuzzy signal
set is equal to that of the membership of the parameter
in the fuzzified parameter set. If, on the other hand, the
crisp set of functions is not parameterized, fuzzification
can be achieved through the direct morphological dilation
of the signal in the set. By choosing convex dilation ker-
nels of increasing dimension, a-cuts of the fuzzified convex
set can be generated.
We now illustrate with some specific examples.

Bandlimited Signal
The set of the bandlimited signals with bandwidth Q is
A ={z(t) | X(w)=0 for |w|>0}
where the Fourier transform is
oo
X(w) =/ z(t)e I dt
-0

Clearly, A; is convex. Let £, be a nondecreasing function
of @ for 0 < @ < 1 and ; = 0. The dilation kernel ! [7, 8]
used to generate the a-cut of the fuzzification is

Hf ={w | lw| < Q}
The a-cut of the fuzzified set is
f,={z() | X(w)=0 for lw| > Q2+ Qa}
and the projection onto the convex a-cut is

|w] > 2+ Qa

0 ;
Piz &
X(w) ; otherwise

where < denotes a Fourier transform pair.
Timelimited Signal
The convex set of timelimited signals is

Ay ={z(®) | z(¢) =0 for [t|> T}

where 27 is the centered interval over which the signal
can be nonzero. The dilation kernel for the a-cut of the
fuzzification operator is
HY ={t | |t| <7}
1The dilation of the set C C E with dilation kernel D C E is
C@ D ={& | there exist 7 such that € C and Z- §€ D}
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where 7, is a nondecreasing function a for 0 < o < 1 and
71 = 0. The a-cut of the fuzzified set and the correspond-
ing projection are

2, = {z(®) | z(®) =0 for [t|> 7+ 74}

and
0 ;

z(t) ;

Signals with Bounded Error

[t] > 7+ 74
Pz =
otherwise

For a given signal p(t), the convex set of signals with a
bound of K R(t) is

Az ={z() | le(t) - p(t)| < KR()}
Using the dilation kernel
Hy ={k | |k| < Ko}

where K, is a nondecreasing function « for 0 < a <1
and K; = 0. The convex a-cut of the fuzzified set is

g, = {z(1) | l=(t) - p(t)| < Ra(1)}

where Rq(t) = (K + Ka)R(t). The projection onto a-cut
of the fuzzy set is
p()+a(®) ;

Pz = {
z(t) ;

where g(t) = Ra(t)[z(t) - p(t)]/|2(2) - p(t)|-
Fuzzification by Signal Dilation

|=(t) — P($)] > Ra(t)

otherwise

When the constraint set is not specified by a parameter
or parameter set, then a-cuts of the fuzzification can be
performed by direct dilation of each signal in the set. Let
g(Z) be the fuzzification dilation kernel which maps E' to
the real value [0, 1]. Then the fuzzification of the crisp set,
A, to the fuzzy set Ay is defined by

Ar={5/u(®) | € B} @)
where
p(#) = max{g(& - 9) | §€ A}
Then we have the following theorem.

Theorem 1 Let the crisp set A be convez and let G =
{Z/9(Z) | ¥ € E} be a convez dilation kernel. Then Af
in equation (2) is a fuzzy convez set.



The proof of the above theorem is in Appendix A.

We specify
9(Z) =m(|| Z )

Let m(0) = 1 and m(z) be a monotonic decreasing func-
tion for z > 0. Then the a-cut of the fuzzification kernel,
g(Z), is always a (convex) sphere. Let m(R,) = a. We
then have the following theorem for the projection onto
AO’

!
Theorem 2 Let $o § A and T3 = P*%;. Then

R
FC =7 + %‘(50— 51)
R | Y | F
where 5:'}1, is the projection onto the crisp set. The proof

of is in Appendix B.

METHOD OF ALTERNATING PROJECTIONS ONTO Fuzzy
CONVEX SETS

The optimal POCS solution is achieved by the maximum
value of a that results in a non empty intersection of all
signal sets. In certain cases, this intersection can be at a
single point.

To find the optimal solution, we start at a large value
of & and iterate. If the iteration does not converge, o
is decreased and the iteration is repeated. If convergence
does occur, a search can be performed between the current
and previous values of a for the optimal solution.

EXAMPLES

In this section, we will give the examples of signal synthe-
sis and restoration based on fuzzy POCS.

FEzample 1 : Time-Bandwidth Product

Our problem is to find a one dimensional signal z[n] which
is positive, bandlimited, timelimited signal and has a spec-
ified area V = 3~ z[n]. There exists no signal that sat-
isfies all of these constraints. To apply fuzzy POCS, we
will keep constant area and positivity sets crisp. The sets
of bandlimited and timelimited signals, though, will be
fuzzified, The convex crisp sets are

Ay = {z[n] | X[k]=0 for k # 0}
A = {z[n] | z[n] =0 for n # 0}
A = {an] | =ln] > 0)
L/2-1
As = {:c[n] ] Z x[n]:V}
n=-L/2

where L is the length of the z[n] and X[k] is the discrete
Fourier transform of z[n]. The a-cuts of the fuzzified sets
are

2, = {eln] | X[k =0 for k] > —/E0u}

Oq

A3, = {:c[n] | z[n] =0 for |n| > —%}

where O, = !;-loga and § parameterize the relative impor-
tance between bandlimitedness and timelimitedness. Fig-
ure 6 using V = L = 1024 shows the results for various
values of £. Figure 6a, 6b and 6¢ result when £ is 4, 1 and
0.25, respectively. In Figure 6, the solid lines show z[n]
and the broken lines show the Gaussian function which has
the same peak value, same mean, and the same variance
as the signal, z[n]. When ¢ is large, then timelimitedness
is more important than bandlimitedness as shown in Fig-
ure 6. Not surprisingly, fuzzy POCS yields a result quite
close to the Gaussian curve. The Gaussian is the function
which displays the minimum time-bandwidth product [9].

Ezample 2 : Bandlimited Signal Extrapolation

This example is motivated by the celebrated Papoulis Ger-
chberg algorithm [10, 11]. The problem is estimation of a
high bandwidth signal, p[r], with a signal of lower band-
width. Assume the signal is p[n] = sinc(2Bn). Let A; be
the set of signals with frequency components no greater
than £. Note that 2[n] §A;. In our simulation, B = 1/64.
The crisp convex sets are

A
As

{z[n] | X[k]=0 for |k| > L/128}
{z[n] | z[n] = p[n]}

where p[n] = sinc(n/32). The a-cuts of the fuzzified set
are

1l

A7, ={z[n] | X[k]=0 for |k| < ®,}

g = {x[n] | Jefn] = pln]l < %lloga}

where VE
L L
$, = — , loge + 128’
¥[n] = 1-— exp(—|2n|/L)’
logamin

and ¢ parameterized the relative importance of the two
constraints. L is the length of 2{n], and « is varied from 1
t0 amin = 1/3. Figure Ta, 7b and 7¢ correspond to values
of £ = 4,1 and 0.25 respectively. In our case, if ¢ is large,
then the known signal is more important than the signal
being bandlimited. Figure 8 shows |X[k]| for each case.

FEzample 3 : Solution of a Set of Overdetermined Linear
Eguations

This example outlines solution of the overdetermined lin-
ear equation, Q% = §, by POCS, assuming that QTQ is
nonsingular. The minimum mean square error solution is

f: — (Q-TQ)—-IQT:D»
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In other words, for a given @ and ¥,
min{]| Q% - 7} =I| @ - 7 ®)

where || - || is I3 norm.
For the POCS solution, however, the result is a quite
different. Let

Q: ['1'1,97'2,' . ‘5q-‘N]T

and 7 = [y1,¥2, - y~}T. Then the linear equation can be

written as [12]
fFéi=y for i=1,2,-- N

The crisp solution set for the i** equation is

B ={% | |§] - wl <0}

Using the fuzzification with a dilation kernel h(a) = e~
on the singleton value of ¥ # — y;, the a-cut of the fuzzi-
fication is

By ={Z | |l & - wl| < —loga} 4

We now seek the maximum value of & (minimum of —loga)
which satisfies (4). In other words,

min{max(|g7 3  vil]}

= min{]| Q% — § [l..)
where || - ||oo 18 o norm of the metric space. Thus, in
contrast to minimum mean square (I norm) solution in
(3), we obtain a minimum L., norm solution using fuzzy
POCS.

When we use the nonparameterized method for fuzzifi-
cation with g(Z) = m(|| £ ||) and m(z) = e, the a-cut
of the fuzzification is

Ci={& | 1§ & wil < — || & || loga} (5)

We now seek the maximum value of a which satisfies (5).
In other words,

i ]

= min{|| D5'Q%; "G lleo}

where

Do =diag{ll @ LIl @ Il -~ 1l 4n I1]

NOTES

1. Consider the case, illustrated in Figure 3, where two
crisp convex sets do not intersect. Let the limit
cycle be between points 74 and §p. If both sets are
fuzzified using the same convex dilation kernel, then
an optimal solution using fuzzy POCS is the point

(ga + 7B)/2.

2. Our procedure using fuzzy POCS begins with small
convex sets. The sets grow until intersection occurs.
Alternately, initialization can be initiated with large
a-cuts of convex sets. The sets are reduced in size
until iteration breaks into a small limit cycle.
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Appendices

PROOF OF THEOREM 1

Let G* denote an a-cut of G
G*={Z | ¢(3) 2 o}

Let 1 € A} and Z; € Af. Then there exist #1 and ¥
such that

L1 -Hh€GY, #—jheG”
Now, we examine vZ; + (1 — 7)Z2,
7E1 + (1 - 7)2:
=y(Hh+EH -H)+(1 -G+ 22— 5)
= [y(#1 - 1) + (1 — 7)(F2 - &)
+lvi + (1 - 7))
Because A and G* are convex sets, we have

Th+(1-7)ik€A

(&1 — )+ (1= 7)(&2 — i) € G*
So,
vE + (1 - 7)Z; € A}

Therefore our proof is complete.
Q. E.D.
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PROOF OF THEOREM 2

Before we prove the Theorem, we show the following
Lemma

Lemma 1 For any §j € A and Z § A§, then
| - 7> Ra

Proof : Assume that || Z~ ¥ ||< Ry. Then § € A and
Il #= ¢ |I< R implies # € A}. This contradicts the
assumption and our proof is complete. Q.E.D.

Proof of Theorem 2

=1

o — &

R R
R T ”(:co ;)

Here, || Z5 — %}, ||= Ra and Z, € A. Therefore &5 € AS.
Also,

Fo- = (B 5)+(E-5)
R
- =1 o

= (Zo—%) |1 - 70—

( P)[ EEE
| o= 22 |I=|| o= 2 || ~Ra

For any § € A§, let 37}, = P'§. Then || §— 3'[‘1, [I< Rq-
NF=Z 1215 — 2ol = 11 §— G 1211 5 — o || - Ro
If :I_j}l, # 5:"1,, then

| = Zo |12/l % — Zo || ~Ra

>|| & — Zo || —Ra =} £ — 5 ||
Therefore
Il &= Zo 1>} Zo — &5 ||
If g}, = 5:'11,, then
Ng—Zo 121 Z —Zo |l -1 T-Z} ||

The equality holds for only the case that § = z}.
Il 5= Zo |[>]] £ — 25 ||

Therefore our proof is complete.
Q.E. D.
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Figure 1: The set, A, is convex. The projection of §
onto A is the unique element in A closest to §F in the mean
square sense.

Figure 2: Alternating projection between two or more
convex sets with nonempty intersection results in conver-
gence to a fixed point, in that intersection. Here, sets A (a
line segment) and B are convex. Initializing the iteration
at gg, convergence is t0 oo € AN B.
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>
Ya

Figure 3: If two convex sets, A and B, do not intersect,

POCS converges to a limit cycle, here between the points

ya and §p. The point g € B is the point in B closest to

the set A. A similar property is true for 7.

Figure 4: If three or more convex sets do not intersect,
the POCS convergences to greedy limit cycles with no par-
ticularly useful properties. As illustrated here, the limit
cycles can differ for different choices of set ordering.

Figure 5: Crisp convex sets can be fuzzified into fuzzy
convex sets. The a-cuts of the fuzzifications are con-
vex. As illustrated here, there can exist an a-cut of each
of the convex sets such that the resulting intersection is
nonempty. Application of POCS to these a-cuts will re-
sult to convergence to a point in this intersection. The
solution, for large «, is then ‘close’ to each of the under-
lying crisp sets.
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Figure 6: Fuzzy POCS solutions of a signal that is both
time limited and bandlimited. The importance of being
bandlimited increases from (a) to (c). The result is com-

pared to a Gaussian curve fit (broken line) in each case.
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Figure 7: A bandlimited signal is plotted here with a bro-
ken line. We attempt to fit a signal with lower bandwidth
to the known signal while simultaneously keeping the er-
ror within a specified boundary. The fuzzy POCS results
are shown, from (a) to (c), as the allowable bandwidth
increases and the bound constraint is relaxed.



Figure 8: The magnitudes of the discrete Fourier trans-
form of the signals in Figure 7(a) through Figure 7(c).
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