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Resolution Enhancement of Biomagnetic Images
Using the Method of Alternating Protections

Seho Oh, Ceon Ramon, Member, IEEE, Robert J. Marks II,
Senior Member, IEEE, Alan C. Nelson, and Michael G. Meyer

Abstract— Resolution of biomagnetic images using the tech-
nique of the alternating projections is proposed. Our image recon-
struction procedure is divided in two steps. First, the biomagnetic
inverse problem is solved by use of the projection theorem to
reconstruct an initial image of the current distribution from a
given magnetic field profile. Although the current distribution
thus obtained has poor resolution, it can resemble the original
shape of the current distribution. The second step improves the
resolution of the reconstructed image by using the method of
alternating projections. The procedure assumes that images can
be represented by line like elements and involves finding the line
like elements based on the initial image and projecting back onto
the original solution space. Simulation studies were performed
on a set of parallel conductors and a shape of the conductors
in the form of letters, UWB@. All conductors were of line like
thickness. Restored images closely resemble the original shape of
the conductors.

I. INTRODUCTION

IOMAGNETIC imaging concemns reconstruction of a

current distribution from its measured magnetic field. In
a previous paper [1], we have proposed use of a pseudo-
inverse technique for doing so. The reader is referred to this
paper for motivation and citation of previous work regarding
this important problem. In this paper, the reconstruction is
restored by the use of the method of alternating projections, a
technique commonly used in signal recovery and synthesis.
A commonly used special case of alternating projections
is POCS, an acronym for projection onto convex sets [2].
Although alternating projections have been applied to various
types of tomography [2], [3], this is the first time, to our
knowledge, it has been applied to the biomagnetic image
reconstruction.

II. ALTERNATING PROJECTIONS AND POCS

The method of alternating projections is a powerful image
restoration technique. It allows synthesis or reconstruction of
images that satisfy two or more constraints. The performance
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of alternating projections can be concisely described when the
constraint sets are convex. The alternating projection paradigm
is then referred to as POCS for projection onto convex sets.

Let € denote a constraint set of functions, {¢}, in a single
space. A constraint set is convex if ¢; € C and ¢2 € C,
implies that, for any « in the interval 0 < o < 1, the kernal
ap; + (1 — )¢ € C. Thus, a set is convex if, for every
two points chosen within the set, all of the points in the
line segment connecting the two points are also in the set.
Geometrical shapes corresponding to convex sets include balls,
line segments, planes, boxes, and quadrants.

The convexity of the constraint sets allows use of the
powerful synthesis procedure of projection onto convex sets
(POCS). POCS was initially introduced by Bregman [4] and
Gubin er al. [5], and was later popularized by Youla and
Webb [6], and Sezan and Stark {7] and has been applied to
such topics as sampling theory [8], fuzzy set theory [9], and
artificial neural networks [10], [11]. A superb overview of
POCS with other applications is in a book edited by Stark [2].

A. Convex Set Projections

The projection of an arbitrary function Z, onto a (compact)
convex set € is the unique function in C that is closest to
Z in the mean square sense. Denote the projection operator
by P Note that, if Z € C, then p Z = Z. Projection
operators are thus indempotent. If a function is already within
the set, then the projection is an identity operation. It follows
that p> = p C

A list of useful projection operators can be found in Youla
and Webb’s paper [6] and in Stark’s book [2].

B. Alternating Projections

There are three fundamental lemmas in the theory of POCS.

Lemma 1: Alternately projecting between two or more
convex sets with a nonempty intersection will iteratively
converge to a point common to all sets [2],

Note that the point of convergence generally depends on the
initialization. If, however, there is a single point of intersec-
tion, e.g., two lines, then convergence will be independent of
the initialization.

Lemma 2: Alternately projecting between two intersecting
convex sets will converge to a limit cycle between points in
each set closest to the other set [12].

This property can be used to find the best member in a set
that is closest to another set in the mean square sense. Note
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Fig. 1. The known vector image, D, is the projection of the true object,
D, onto the column space, C, of the matrix R,. The true object, D, is also
known to lie in a set of line like objects, Cr.

that, as can be visualized in the case of two parallel line convex
sets, the limit cycle is not unique.

This property generalizes {0 more than three sets in the
following sense. Let two or more constraint Sets have a
nonempty intersection, C,. Let two Of more other constraint
sets have a nonempty intersection, Co. If €, and Cp do not
intersect, then POCS will converge to a limit cycle between
points convex set €, and Cp each closest to the other in the
mean square Sense.

Lemma 3: Alternately projecting between three or more
nonintersecting convex sets will result in a limit cycle that
can be dependent on both the ordering of the projections and
the initialization [131.

This final lemma states, unfortunately, that POCS can yield
results of questionable worth when three or more of the convex
sets do not intersect. The method of alternating projections can
work even the underlying constraint sets are not convex [2].

1II. APPLICATION TO BIOMAGNETIC
COMPUTED TOMOGRAPHY

We consider use of generalized projections t0 biomagnetic
computed tomography of line like objects. The results illus-
trate the potential use of alternating projection techniques 0
biomagnetic computed tomography.

Let [D] denote the magnitude of the current flow on
the plane whereon current distribution construction is being
performed (i.€., the (z, y) plane in [1]). The corresponding
measurement of the magnetic field, [B), at a distance 2 is
given by the matrix equation

(B] = [R:]1D]
where ijth component of [R.] is

HoTij, z
Il - ol

M

and 735, - is the 2 component of (T; —15;). We are using notation
consistent with that of Ramon et al. {11. Since the matrix [R:]
is not full column rank, direct inversion of the observation

Fig. 2. Tilustration of how altering projections can be used to reconstruct
the object, D.

Fig. 3. Five pixels in an image. The line like projection is obtained by

comparing pixel a to the surrounding pixels.

[B] to the source (D] is not possible. We, rather, settle for
the projection of [B] onto the column space of [Rz] using a
projection

(D] ~ (D) = (R.JT(IR:)(RI) 1B )

The image [D] is the closest O (D] that lies in the column
space of [R:]. (The column space of [R.] is the set of all
vectors that can be represented as a Jinear combination of the
columns of [R].) Note that this operation is a projection onto
a convex set.

We can equivalently write (3) as

(D] = (P:]1D] @)
where
[P] == [RZ]T([RZHRZ]T)_I[RZ] (5)

is the matrix that projects onto the column space, Cz, of the
matrix, [R.]. This is illustrated in Fig. 1. It remains to find
the vector [D1] so that

(D] = (D} + [D1)- (6)
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Fig.4. Reconstruction of two parallel conductors. (a) The geometry of the conductor, (b) vector plot of x and y component of magnetic field, (c) reconstructions
based on the minimum norm solution. Image restorations based on alternating projections: (d) first iteration, (e) eighth iteration, (f) sixteenth iteration.
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Fig. 5. Reconstruction of UWB@ letter shaped conductors. (a) The geometry of the conductor, (b) vector plot of z and y component of magnetic
field, (c) reconstructions based on the minimum norm solution. Image restorations based on alternating projections: (d) first iteration, () eighth iteration,
(f) sixteenth iteration.

The vector [b 1] lies in the orthogonal complement of the Cz
space. This is the space of all vectors that are orthogonal to
each row of [R.]. Denote this space by LCz.

To estimate [D, ], additional constraints must be imposed
on the restored object. We here illustrate this by requiring that
the reconstructed image be “line like.” In Fig. 1, the set of

image vectors that satisfy the line like constraint set denoted
by €. Note that the desired reconstruction, [D], lies in this
set. Denote the projection operator into this space by @r.

A geometrical illustration of the iterative alternating projec-
tion restoration is illustrated in Fig. 2. We first [D] onto the
space of line like image vectors, €. This is next projected
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Fig. 7. Reconstruction same as Fig. 6 with additive noise. The noise level is 46 dB with respect to maximum amplitude of magnetic field.

onto the orthogonal complement of the column space of [R,] then projected onto the LCz space using p;, and is added

resulting in [D}] using the operator to [D] to result in the revised estimate, [D?]. The iteration is

L repeated to yield [D3], etc. Assuming the translated column

o =l—p. =[I] - [P]. space (linear variety set) and line like constraint set intersect

where | is the identity operator and [I] is an identity matrix. ©nly at the desired reconstruction point then, as n — co, we
This vector is added to [D] to give the revised image estimate, €xpect [D7] — [D,] and [D"] — [D].

[DY]. The iteration is repeated. The image vector, D! is Note that the iteration shown in Fig. 2 is simply alternating

projected onto the space of line like objects. This vector is between the line like set of vector images, €y, and the set of
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all vectors whose projection onto Cz is [D]. Denote this set
of vector images by Cp. This set is a plane translated from
the origin.

There exist numerous methods for projecting onto line like
objects. We chose the following. With reference to Fig. 3, we
need to decide whether pixel, @, is from a line like surface. If
the answer is “no,” we set it to zero. Pixel a is set to zero if

(e&b)y>aor(b&c)>aor(c&d)>aor(d&e)>a.

Otherwise, the pixel is left as is. The notation (e & b) > a
means that both e and b exceed a. The corresponding operator,
pr, does not correspond to a convex set projection. It is,
however, indempotent, in the p2 = pr..

IV. EAMPLES OF RECONSTRUCTIONS BASED ON MINIMUM
NORM SOLUTIONS AND RESOLUTION ENHANCEMENT

The geometry of a parallel conductor and the z — y com-
ponent of the magnetic fields are shown in Fig. 4(a) and
(b). The magnetic field is sampled at the height of 0.4 units
above the plane containing the conductor. The number of
grid partitions used in the reconstruction were 21 x 21. The
parallel conductor shape is visible in the vector intensity plot.
Iterative improvements are shown in Fig. 4(d)—(f). Increasing
the number of iterations from one to sixteen reduces the width
of the conductor and peaks in the reconstruction become
sharper.

The second example considered is a combination of several
conductor geometries in the shape of letters UWB@ located
in a plane of size 2 x 2 units. The geometry of the conductors
is shown in Fig. 5(a). The magnitude of the current flowing in
each conductor is 1 A. The z — y component of the magnetic
field at the height of 0.25 units is shown in Fig. 5(b). 15 x 15
samples of the magnetic field in a space of 2 X 2 units were
taken. Notice the surface of the magnetic field shows several
peaks and valleys but it does not reveal the shape of the
conductors. The vector intensity plot of reconstruction based
on minimum norm solution is given in Fig. 5(c). The shape of
the conductors are barely recognizable in this figure. Iterative
improvements are given in Fig. 5(d)—(f). Reconstruction based
on minimum norm solution, Fig. 5(c), shows all conductors
are approximately 0.2 units wide. The original width of the
conductors is recovered and resolution is improved in going
from first to sixteenth iterative reconstructions. However, some
of the current elements are slightly displaced with respect to
the original definition of the conductors.

The third and fourth examples are the same as the second
example with the noise in the magnetic field. The noise is
identically independent gaussian noise with the 40 dB (Fig. 6)
and 46 dB (Fig. 7) with respect to the maximum amplitude
of the all magnetic field [1]. In Fig. 6, the reconstruction is
visibly degraded.

In all the above examples we have shown that the recon-
struction based on a minimum norm solution does provide the
recognizable shape of the conductors but with poor resolution.
Conductors tend to have width larger than the original shape
in the reconstructions based on minimum norm solution. The
resolution and the width of reconstruction can be improved by
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some iterative procedures. To this point, the performance of
the iterative method is highly dependent on the accuracy of
the minimum norm solution, especially if the magnetic field
is corrupted by noise.

V. DICUSSION AND CONCLUSIONS

We have shown that alternating projections can be used
to significantly enhance the resolution of reconstructed bio-
magnetic images. The reconstruction consists of generation
of the pseudo-inverse of Biot-Savart’s law from the sampled
magnetic field. The restoration is then iteratively performed by
alternatingly projecting between two or more constraint sets
and the pseudo-inverse. The procedure was illustrated using a
line like constraint set.
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