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Abstract

Some 43,000 lower-limb amputations are per-
formed in the United States each year. Current
procedures for fitting a prosthesis to an amputee
are somewhat time-consuming and costly, requir-
ing the subjective judgement of trained pros-
thetists, but necessary to avoid discomfort and
ensure successful rehabilitation of the patient. We
consider a neural network model which automat-
ically recognizes certain types of misalignments
using data obtained from an instrumented shank.
Training procedures and partial results are de-
scribed.

Introduction

Some 43,000 lower-limb amputations are per-
formed in the United States each year [3] and
most patients are fitted with a prosthesis of some
kind. For successful rehabilitation, it is necessary
that the prosthesis be properly aligned. The cur-
rent fitting procedure is a rather time-consuming
iterative process in which a trained prosthetist
observes subtle features of the gait and interprets
the subject’s comments about the ‘feel’ of the
prosthesis. Automatic detection of at least some
forms of misalignment could aid less experienced
prosthetists and might allow quicker diagnoses.

This paper describes a neural network model
which detects certain types of misalignments from
dynamic force and moment data measured in an
instrumented shank as the patient walks. De-
scriptions of the instrumentation and some pre-
liminary results are provided in [5, 6, 4]. This
paper describes data processing procedures and
the neural network model.
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The Data

Six channels of force and moment data are col-
lected from an instrumented shank as the subject
walks. Fig. 1 shows data from a typical session.
Each row represents one segmented step. Column
AX is the axial force, i.e., the vertical compres-
sion; SS and SB are the sagittal shear and sagittal
bending components; FS and FB are the frontal
shear and frontal bending components. The mis-
alignment is the same for all the steps shown.

Five different components of misalignment
are considered: anterior—posterior angle (toe—up
vs. toe—down), anterior—posterior shift (forward~
backward shift), medial-lateral angle (sideways
tip of the shank), medial-lateral shift (side to side
shift), and toe angle (turned in vs. turned out).
Training data was collected at a series of known
misalignments. Compound misalignments involv-
ing more than one alignment component at a time
were not considered.

Preprocessing consists of extracting the steps
from the raw data, discarding the between—stance
swing time, and eliminating abnormal steps (due
to stumbles, turning, etc.). Steps are resampled
to 100 time—points per step to normalize for vari-
ability in duration. The result is a 600—dimension
vector for each step. For prediction experiments,
these are further subsampled by dividing each
step into 10 sections and averaging the points in
each to give a 60—dimension vector. The 1165
steps were divided into 781 training and 384 test
cases.

One might expect that gait distortion increases
monotonically with misalignment so a reasonable
first test is to check how well a linear approxima-
tion fits the data. Table 1 summarizes the results
of a minimum mean squared error linear fit. The
last line, ‘device error’, reports the RMS error in
the units of adjustment significant to the pros-
thetist: screw turns for AP and ML angles, cm
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Figure 1: Typical prosthetic data. Six force components are measured by strain gauges in
the prosthetic shank as the subject walks. Each row represents one step.

Table 1: Prosthetic misalignment detection, linear fit results

AP angle | AP shift | ML angle | ML shift | Toe Angle
Training Data
Target means -0.0338 0.0093 -0.0039 0.0029 -0.0128
Target std—dev 0.2305 0.2148 0.2239 0.2289 0.1741
RMS error 0.0683 0.1076 0.0694 0.1187 0.0724
Normalized error 0.2963 0.5006 0.3099 0.5186 0.4160
Test Data
Target means -0.0317 0.0391 -0.0039 -0.0126 -0.0047
Target std—dev 0.2117 0.2230 0.2393 0.2156 0.1792
RMS error 0.0760 0.1150 0.0746 0.1232 0.0833
Normalized error 0.3589 0.5159 0.3115 0.5716 0.4649
Device error 0.63 turns | 0.25 cm | 0.37 turns | 0.20 cm | 1.37 degrees

for AP and ML shifts, and degrees for toe angle.
The normalized error is the RMS error divided by
the standard deviation of the target value —the
error that would be observed if the mean target
value were used as the prediction. Although the
linear fit explains much of the variation, better
results are required. For comparison, practicing
clinicians are accurate to within 0.25 screw—turns
in the AP component, for example.

Discriminant Analysis Projections

Five neural networks were trained to detect the
misalignments (one network per alignment com-
ponent).  Linear discriminant analysis (LDA),
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e.g. [1], was used to reduce the dimensionality
to a manageable level. It has been shown [7, 2]
that a linear network with a single hidden layer
trained with a 1-of-N target representation forms
a hidden—layer representation which is similar to
a discriminant analysis projection. LDA has di-
mensionality reduction properties like principal
components analysis, but also accounts for class
information in forming the projection. Fig. 2
shows a 2-dimensional LDA projection obtained
by grouping the AP angle targets into discrete
classes. Symbols A, B,...I correspond to AP
angle targets of 0.55, 0.36, 0.18, -0.18, -0.36, -
0.55, -0.73, -0.85, and -0.91. Symbol ‘0’ repre-
sents zero misalignment. (These are scaled val-
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Figure 2: A 2-dimensional discriminant analysis projection of 60—-dimensional prosthetic
alignment data separates the classes reasonably well. Symbols A4, B, ... I correspond to AP
angle misalignments of 0.55, 0.36, 0.18, -0.18, -0.36, -0.55, -0.73, -0.85, and -0.91. Symbol

‘0’ represents zero misalignment.

ues from the actual adjustment units to the -
1,41 range.) Although there is some overlap of
neighboring clusters, they follow a clear trajec-
tory from A, B,C,0,D, E,...I corresponding to
decreasing target values. The trend is almost lin-
ear, but positive and negative misalignments are
not quite symmetric with each other about zero.
(Prosthetists say that positive and negative mis-
alignments have qualitatively different effects on
the gait.) 2-dimensional plots for the other mis-
alignment directions also show reasonable group-
ing of the target classes.

This suggests that the 2-dimensional projec-
tion contains enough information to classify the
target and that a nonlinear system should be able
to improve on the linear approximation results.
Table 2 summarizes the results obtained by train-
ing five networks (one for each misalignment di-
rection) using 3~dimensional LDA projections as
inputs. FEach network had 3 inputs, 5 hidden
nodes, and 1 output node. An extra benefit of
the LDA projection is that the training times are
much shorter because of the reduced network size.
Test set errors are reduced by about 40% relative
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to the linear fit. The network is trained to de-
tect misalignment based on data from a single
step, but a typical data series consists of about
10 steps with the same misalignment. The last
line of the table, ‘with averaging’, indicates errors
can be further reduced by averaging single-step
predictions in the same series. These results are
within range of the 0.25 screw-turn error accepted
by practicing clinicians.

Remarks

These single-subject results are promising, but a
useful system must be subject independent. This
is a harder problem because of subject-to—subject
variabilty due to personality, sex, age, physical
condition, extent of injury, stage of rehabilitation,
etc. Earlier tests with three subjects suggest that
useful results may be obtainable, but this is the
subject of continuing work.

The LDA projection is useful preprocessing
that greatly reduces the dimensionality of the
classification problem and makes the problem
presented to the network much simpler. Without



Table 2: Prosthetic misalignment detection, neural network results

AP angle | AP shift | ML angle | ML shift | Toe Angle
Training Data
Target means -0.0338 | 0.0093 -0.0039 0.0029 -0.0128
Target std—dev 0.2305 0.2148 0.2239 0.2289 0.1741
RMS error 0.0356 0.0673 0.0326 0.0559 0.0297
Normalized error | 0.1543 0.3132 0.1458 0.2440 0.1708
Test Data
Target means -0.0317 0.0391 -0.0039 -0.0126 -0.0047
Target std-dev 0.2117 0.2230 0.2393 0.2156 0.1792
RMS error 0.0402 0.0825 0.0415 0.0745 0.0352
Normalized error 0.1900 0.3699 0.1734 0.3458 0.1967
Device error 0.33turns | 0.18cm | 0.21turns | 0.12cm | 0.58degrees
With averaging | 0.15turns | 0.12cm | 0.13turns | 0.07cm | 0.34degrees

the projection, network training times are consid-
erably longer because of the high dimensionality
plus there is uncertainty that an adequate number
of hidden nodes have been allocated. The LDA
projection provides the researcher with informa-
tion about the structure of the data and, in this
case, gives confidence that the problem is solv-
able and indicates that only a few hidden units
are necessary.

Its effectiveness here is probably due to two fac-
tors: (1) the input variables are interdependent so
the effective dimensionality is much smaller than
the apparent dimensionality, and (2) the under-
lying function is only weakly nonlinear since in-
creasing amounts of misalignment tend to cause
increasing amounts of the same sort of gait dis-
tortion.
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