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Abstract—  Alternating projections onto conver sets
(POCS) is a powerful tool for signal and image restoration and
synthesis. Convex sets of signals obeying desired constraints
are first specified. Then, by repeated projection onto these
sets, convergence is to a signal obeying all desired constraints.
The method assumes, however, that there is a nonempty in-
tersection of the sets. If the intersection is empty, the result
of POCS is not unique and, if the sets are not ‘close’, gener-
ally considered to be of little use. To construct sets that are
closer, one or more of the convex sets is fuzzified. The a-cuts
of the fuzzified sets, also convex, will eventually result in con-
straints with a nonempty intersection. Using a fuzzification
of the convex constraint set allows approximate satisfaction of
inconsistent constraints. Example applications are presented
for computer tomography and optical diffraction synthesis.

I. INTRODUCTION

Alternating projections onto convez sets (POCS) [1, 2] is
a powerful technique of signal recovery and synthesis. A
(crisp) set, C, is convex if g1 € C and g2 € C implies that
Agr+(1—A)gzeCoorall 0 <AL

The projection onto a convex set is geometrically illus-
trated in Figure 1. E\‘or a given g § C, the projection onto
C is the unique vector f € C such that the mean square
distance between f and g is minimum! . If g € C, then
the projection onto C'is g.

Given two or more convex sets with nonempty intersec-
tion, alternately projecting among the sets will converge
to a point included in the intersection [2]. This is geo-
metrically illustrated in Figure 2. If two convex sets do
not intersect, then convergence is to a limit cycle that is
a mean square solution to the problem. Specifically, the
cycle is between points in each set that are closest in the
mean square sense to the other set [3]. This is illustrated
in Figure 3.

1The space is assumed throughout to be either Ly or #;. The
mean square distance is the corresponding norm.
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POCS was apparently first reported by Bregman [5] and
Gubin et al. [6]. For the specific case of intersecting linear
varieties (hyperplanes), POCS is, as a special case, Von
Neumann’s alternating projection theorem [4, 7, 8]. POCS
was popularized by Youla [2] and Stark [1, 9].

Fuzzy POCS

Fuzzy convex sets were introduced in Zadeh’s seminal pa-
per [12, 13, 15, 16]. Let the fuzzy set C'; have a member-
ship function pc, (). Let Cf denote an a-cut of C;. The
fuzzy set C; is convex if all of its a-cuts (0 < @ < 1) are
convex.

POCS breaks down in the important case where three
or more convex sets do not intersect [10]. POCS, rather,
converges to greedy limit cycles that are dependent on the
ordering of the projections and do not display any desir-
able properties. This is geometrically illustrated in Fig-
ure 4. We propose, however, that optimization using fuzzy
constraints [11, 18] can be applied to find valuable POCS
solutions that are, in some sense, close [13] to each of the
convex constraints. The underlying concept of ‘close’ sug-
gests a fuzzification of the nonintersecting convex sets to
fuzzy convex sets [14]. Even if three or more crisp sets do
not intersect, a-cuts of their fuzzification can. This is il-
lustrated in Figure 5. Even if fuzzy POCS does not result
in a fixed point solution, the extent of the limit cycle is
reduced.

Those seeking a more detailed introduction to fuzzy
POCS are referred to Oh and Marks [17]. They show
specific application of fuzzy POCS to the solution of a set
of ill-conditioned linear equations and to signal extrapo-
lation.

‘We will give a brief review of fuzzy POCS followed by
example applications in diffraction synthesis and tomog-
raphy.

Fuzzified Convex Sets and Their Projeclions

Two methods of fuzzification of crisp convex sets of signals
to fuzzy convex sets are useful in fuzzy POCS. If the crisp
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Figure 1: The point f is the projection of point g onto the
convex set C'.

Figure 2: Alternately projecting between two or more con-
vex sets with a nonempty intersections results in a limit
point common to all sets (shown shaded here). Initiation
at g converges to the point f on the intersection of convex
sets Cy and Cs.

convex set is parameterized, the fuzzy convex set, in many
cases, can be generated by fuzzification of the parameter
set. If the parameter set exists on an interval (e.g. 0 <
Bandwidth < € for a set of bandlimited functions and
0 < Energy < Ej for a set of signals with energy less
than or equal to Ep) then the signal set is trivially convex.
Fuzzification can be achieved simply by fuzzification of the
interval [11]. This is illustrated in Figure 6. Equivalently,
fuzzification can be achieved by dilation [17, 19, 29] of the
underlying crisp set with a convex dilation kernel. If the
dilation kernel is convex, then the dilation result can be
interpreted is an a-cut of a fuzzy convex set [17]. The
degree of membership of a signal in the fuzzy signal set is
equal to that of the membership of the parameter in the
fuzzified parameter set. This is illustrated in Figure 6.

If the crisp set of functions is not parameterized, fuzzi-

Figure 3: Projection between two non-intersecting convex
sets results in a minimum mean square limit cycle. Point
f1 is the point in C; closest to Cs.

fication can be achieved through the direct morphological
dilation [29] of each signal in the set. By choosing con-
vex dilation kernels of increasing dimension, a-cuts of the
fuzzified convex set can be generated {17].

Fuzzy POCS of another sort can be applied to the case
where two or more convex sets intersect in more than one
point. The intersection of two or more convex sets is con-
vex. By application of morphological erosion [29] to one or
more component sets, convergence to interior points of the
intersection, if they exist, can be obtained. In Figure 2, for
example, convergence would be to a point within rather
than on the shaded area. The approach is similar to the
peeling away of convex hulls to find the most interior of
a set of points [21]. This operation will not be considered
here.

I1. DIFFRACTION SYNTHESIS (BEAM FORMING AND
HOLOGRAPHY)

POCS type synthesis of computer generated algorithms
has been applied to cases where an image 1s desired at
a single distance from an aperture [22]. For the single
image synthesis problem, the convex sets of the underly-
ing problem intersect. When the problem is generalized
to two or more images, the sets do not intersect. Appli-
cation of conventional POCS can result in a significant
variation in image quality. Fuzzy POCS can be used to
tune uniformity in the image quality.

To illustrate, consider the diffraction system shown in
Figure 7. An aperture with transmittance f(z,y) is illu-
minated from the right by planar monochromatic coherent
illumination with wavelength A. The beam will propagate
a distance of z;. On this plane, we require the diffracted
beam to satisfy some constraint corresponding to a set of
planar field amplitudes, C;. The beam propagates an ad-
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Figure 4: Projection between three or more nonintersect-
ing convex sets results in greedy limit cycles. The path
with solid points corresponds to a projection or der of 123.
The path with hollow points corresponds to the path 132.
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Figure 5: Three nonintersecting convex sets, shown

shaded, are fuzzified through morphological dilation.
Shown are contours of two alpha cuts. The three convex
sets corresponding to the larger of the contours intersect
in at the pont f which is ‘close’ to each of the three con-

straint sets.
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Figure 6: Fuzzification of the constraint set of signals with
energy less than Ej.
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Figure 7: The diffraction synthesis problem is to construct
a transmittance, f(z,y, so that the diffracted beam at
various distances, z, obey given constraints.

ditional distance to z3 where a constraint set C; must be
satisfied, etc. A total of N planes corresponds to N con-
straints. For the nth plane, we define the pupil function

_ |1 ;in the pupil
Pa(2,9) = { 0 ;outside @

The constraint on the nth plane is that the field amplitude
must be equal to zero outside of the nth pupil.

The diffraction in Figure 7 is governed by the Helmholtz
equation {28]. All electric fields that satisfy the Helmholtz
equation form a convex set?. For an aperture transmit-
tance of f(z,y), the electric field amplitude on the nth
plane, g,(z,y), can be computed using the propagation of
the angular spectrum [28].

[Lrea
exp (it T= TP = (R

x Ity dy

gn(z,y)

X

hy
where k_27"
D)

and F'(u,v) is the Fourier transform of f(x,y),

Flu,v) = // flz,y)e I3 Bsto)gp gy (3)
aperture

The angular spectrum solution in Equation 3 satisfies the
Helmbholtz equation.

To project the aperture, f(z,y), onto the nth constraint
set, the field gn(x,y) is first computed using Equation 2.
This field is multiplied by the nth pupil to form

3n(2,3) = Pale, ¥)gn(2, v) 4

and back projected to the aperture plane to form

2A subspace
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where @, (u,v) is the Fourier transform of ¢,(z,y). The
function f,,(z,y) is the projection onto the constraint set
imposed by the nth plane. To avoid the degenerate solu-
tion f(z,y) = 0, we will also require that

[ee) o
/ / R gn(z,y)de dy=c (6)

where | denotes ‘the real part of’ and ¢ is a constant.
The set of all functions satisfying Equation 6 is convex®.
If the pupils are of finite extent and N > 1, there exists
no aperture, f(z,y), that satisfies (1) the N constraints
corresponding to the pupils, (2) the Helmholtz equation
and (3) the constant area constraint of in Equation 6. The
convex sets corresponding to these constraints thus have a
null intersection. The convex constraint corresponding to
a specific plane and the set corresponding to Equation 6,
however, have a nonempty intersection. POCS therefore
converges for the case of a single image.

In order to improve the image quality, the pupil con-
straint sets on the N planes will be fuzzified.* In lieu
of requiring the function to be zero outside of the pupil.
an allowance is made for leakage. As in Equation 4,
qn(z,y) = gn(x,y) inside the pupil. Outside of the pupil,

on(z5) = gnt(x,y) i lgalz w)ll < tale)
B M on(@,y) 5 llon(@ 9l > tale)
(7)
where ¢, (o) is a threshold that is a decreasing function of
« and

oot = [ [l dedy

Ezamples

In the two examples to follow, N = 3, z; = 200,000 A,
z9 = 400,000 A, and z3 = 600,000 A. Also, because it
gave good results, we used

ta(a) = —(n — 0.9)%In(e) ; n = 1,2,3. (8)

This function is increasing with n for reasons that will
soon become apparent.

2 A linear variety.
4Since it is specified by physics rather than desired synthesis con-
straints, the Helmhotz equation must, of course, be left crisp.
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Propagating Faces

In this example, in order to their closeness to the aperture,
the pupils correspond to the outlines of a frowning face,
an emotionless face and a happy face. The results for
conventional POCS is shown in Figure 8 are in the bottom
row. The noise level in the POCS solution increases with
the distance from the aperture. Therefore, one can be
more lenient with the a-cui level close to the aperture
than one farther away. For this reason, the function in
Equation 8 increases with respect to n. The conventional
POCS solution in Equation 8 corresponds to o = 1. Asthe
@ cut is increased, there is more of a sharing of the diffuse
background noise among the three images. Eventually,
the noise shifts to the image closest to the aperture.

Three Line Images

The propagating faces example was repeated for three line
drawings - a plane, a dinosaur and a tiger. The results
are shown in Figure 9 for two o cuts. Shown are two sets
of four pictures. In each set, the aperture in the upper
left is the magnitude of the transmittance. The fuzzy
POCS tuning in the bottom set of four images results in
the perception of the airplane whereas the top set of four
images does not.

I1T. ToMOGRAPHIC IMAGE SYNTHESIS

The fundamental problem in tomography is reconstruc-
tion of an object from its projections®. Illustration will
be made for the case of tomographic reconstruction using
limited angle parallel beam data [23]. Conventional POCS
has been applied to tomographic reconstruction with some
quite remarkable results [26].

Let f(z,y) denote a two dimensional object to be recon-
structed, such as the Shepp-Logan phantom [24] in Fig-
ure 10, and F(u,v) its Fourier transform.

F(u,v):// f(z,y)e_jzw(“r*'”y)dxdy
aperture

The transform of f(z,y) is known only in the shaded re-
gion pictured in Figure 11. Although any limited angle
can result in practice, after Jaffe [23], we assume an angle
of the wedge in Figure 11 is 90°. Let

Alu,v) = { (1)

The obscrved (or naive [23]) object is given by the inverse
Fourier transform

:inside the shaded region
;outside

Sops(@.y) = / / A(u,v)F(u,v)ejZ"(”*'”y)dudv

5The term ‘projection’ here differs in meaning from a projection
used in POCS. The distinction will be made clear in the context of
its use.



Figure 8: Propagating Faces: The right column is the magnitude of the diffracting aperture synthesized nsing tuzay
POCS. From left to right, the resulting diffraction is shown for z3 = 600,000 A, 22 = 400.000 A and =, = 100.000 A.
For a? = =300 In(a), the o cuts correspond to @ = 0.0 for the bottom row (conventional POCS), @ = 0.02. « = 0.03,
a = 0.04, and a = 0.05 (top row). As a increases, a decrcises, and more emphasis is given to the sharpness {lack of
diffuse background noise) of the image farthest from the aperture.
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Figure 10: The Shepp-Logan phantom.

The restoration problem is to find f(z,y) from fobs (2, y).
The unconstrained problem is ill-posed [25].

Peng and Stark [32] imposed the following convex con-
straints on the reconstruction problem.

1. Spectral constraint The desired object, f(z,y),
is known to have a transform that is equal to the
Fourier transform of fo3,(,y) in the shaded region
in Figure 11. The set of all objects satisfying this
constraint form a convex set® The naive image cor-
responding to the phantom in Figure 10 is shown in
Figure 13.

2. Image support. The desired object is known to
be zero outside of the region of support. The set of
all objects satisfying this constraint forms a convex
set”. To project an arbitrary object onto this set,
the function is set to zero outside of the region of
support which, in the case of the phantom in Fig-
ure 10, is the large oval.

3. Bounded. The restored object must lie in the in-
terval

0<flz,y) <b

where b is a chosen upper bound. The set of signals
satisfying this constraint form a convex set®. To
project onto this set, all values below zero are set
to zero and all values above b are set to b. For the
example to follow, = 1.

4. Energy constraint. The energy of a function,
9(z,y), is defined as E = ||g(z,y)|>. The set of
all signals with energy not exceeding a specified en-
ergy form a convex set®. To project onto this set, a

S A linear variety.

7 A subspace

8 A cube if b is not a function of (2,y). Otherwise, a box.
A ball.
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Figure 11: The transform of the image to be restored is
known only within the shaded region.

signal g(z,y) is multiplied by

_VE _
Hg(z, vl

if the energy of g exceeds the specified energy. The
signal is left unaltered otherwise.

5. Reference constraint. A reference object, say
f+(2,y), 1s known from a previous reconstruction of
from heuristics. For the example to follow, the ref-
erence shown in Figure 12 is used. Compared to the
phantom in Figure 10, note that the small details
have been removed and the sizes of the ovals reduced
by 20% of their linear dimension. The restored func-
tion is assumed not to deviate significantly from this
reference. The set of functions {f(x,y)} for which

(If(@,9) - fr(z, )l <

form a convex set!?. If an object, g(z,y) does not
obey this constraint, it can be projected onto the
set by merely subtracting f,(z,y) and multiplying
by

“g(z)y) - fr(zwy)”

Starting with an object that is zero, projection onto each
of these convex sets was repeated until convergence.

Crisp POCS was applied to the restoration using r =
10% of ||f(z,y)|| and E = 1998. The result, shown in
Figure 14, shows significant reconstruction artifacts. In
Figure 15, the structure internal to the reference phan-
tom has been dilated using a circular dilation kernel and
the energy increased to £ = 2472. These parameters re-
sult in a more accurate estimation of the dimensions of the
original phantom. Application of POCS to this fuzzifica
tion results in fewer artifacts and a stronger appearance
of the finer structure in the target phantom.

10A ball of radius r centered at f,(z, ).



Figure 12: The reference image used in POCS.

Figure 13: The naive image of the phantom.

Figure 14: The restoration using conventional POCS.

(1]

2]

[10]
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Figure 15: The restoration using fuzzy POCS.
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