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Abstract:

The twin signal sensing method for the detection and localization of
winding shorts is reviewed. Pulses are injected into each terminal of
the device with windings. The reflected signals are subtracted to
produce a signature signal that contains information about the
device’s state. Using standard pattern recognition techniques, the
method has been shown to be effective for detecting and/or
localizing shorted windings in autotransformers and synchronous
turbine-generators. The twin signal sensing method has been shown
effective both in laboratory and field tests.
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Introduction

Devices using windings include autotransformers and synchronous
turbine-generators. Shorted turns in windings occur due to machine
stress, aging and external transients. A winding short typically
leads to deterioration of the efficiency and effective operation of the
machines. This degeneration of machine performance may bring a
high cost of repair.

Our purpose is to present an overview of twin signal sensing in the
detection and subsequent localization of winding shorts. Details in
the development can be found in earlier papers [1-5]. The
methodology requires the taking of a fingerprint signature signal,
generated from twin signals, of a healthy machine. No additional
internal probes or electromechanical devices are required. If, during
operation, the signature signal deviates significantly from that of a
healthy system, a shorted winding is suspected. If the
announcement of a short is deemed sufficiently serious, the rotor is
taken off line for repair. When off line, a second signature signal
can act as a stimulus to a trained neural network to announce the
winding short location. The short location information greatly
reduces required maintenance time. Since rotor down time can be
economically expensive to the generation process, minimizing
maintenance time is of critical importance. The procedure to find
the location of a shorted winding a rotor can also be used for
autotransformers, turbogenerators and other devices with windings.

Synopsis of Shorted Winding Detection &
Localization Technology

Early detection and subsequent localization of shorted windings has
remained elusive. Time domain reflectometry techniques do not
work due to inductive leakage of the signal into surrounding
windings making assessment of reflection of the signal from the
impedance discontinuity intractable. A variety of other methods
have been proposed for the detection of shorted windings in rotors
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of large turbine-generators. One method relies on the indirect
measurement of the impedance of the rotor field-winding during
operation [6]. This method, however, yields dubious results unless
the number of shorted-turns is significantly high. One positive
characteristic of this approach is the possible detection of a
intermittent shorted-turns that disappear at a certain speed.
Continuous monitoring of the field resistance during coast-down
operation may reveal an abrupt change in value. This most certainly
can be related to an intermittent shorted-turn. However, this method
will not provide any help when a constant short is present.

Some methods of detecting shorted turns monitor flux asymmetry
created by applying AC current to the field through the collectors
and holding a C-shaped pick-up coil across the slot [7]. This
approach is accurate but can only be performed after removing the
rotor from the bore. Doing so is an expensive exercise. In addition,
detection of all shorts that tend to disappear when the rotor is
brought to stand-still is precluded.

Other methods for shorted turn detection rely on special design of
the stator winding [7] Flux asymmetries generate circulating
currents which can be measured. Although the method has the
advantages of being applied to the machine under operation and not
being intrusive, it also presents some serious disadvantages. For
example, many machines presently in operation do not have a
winding design which lends itself to the application of this method.
Redesigning a machine for the sole purpose of detecting shorted-
turns is not practical.

One of the most reliable methods for shorted turn detection requires
direct measurement of the air-gap magnetic flux with the machine in
operation [8]. The flux is measured by a pick-up coil installed in the
gap. Unfortunately, the presence of these coils in existing machines
(and new ones) is rare and installation requires excessive down-
time.

Neural network models of machines have been proposed as a
technique to detect shorted turmns [9-13]. These methods, howevet,
require a detailed mathematical model of the machine

Twin Signal Generation of the Signature Signal

A generic description of twin signal sensing is illustrated in Figure
1. The windings are connected from both ends to a high frequency
pulse generator. Two identical signals are injected into the winding
from both sides. The reflected waveforms are received &nd '
subtracted to form the signature signal. The frequency of the
injected signal must be selected to ensure no interference between
the falling edge of the injected signal and the reflected wave.



Ideally, if the windings are symmetric and there are no shorted
windings, a signature signal identically zero is expected. Shorted
windings introduce asymmetry into the reflected waveforms and the
signature signals deviate from zero. In practice, however, the
signature signal for healthy windings, although small in amplitude,
is not identically zero. It does, however, serve as a reference to
which subsequent signature signals can be compared.

The Signature Signal

The signature signal for the healthy windings provides the template
to which subsequent signature signals are compared. For rotors, the
signature signal can be relatively insensitive to rotation rate and
load. This is illustrated in Figure 2 [1] where the signature signal is
shown for the 60 MW generator at Southern California Edison’s
Highgrove Power Station. Four steam turbine generators are
subsumed in the station. The station’s design offers ready access to
the machine. The generators are two-pole, hydrogen cooled
machines. The DC rotor field windings are fed from rotary exciters
attached to the shaft of the outboard end of the machine. Access to
the generator’s collector rings, and to the exciter’'s commutators are
readily attainable through hatches on both sides of each machine.
The four generators are almost identical units. This fact allows
comparison tests to be performed between the different machines.
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Figure 1: Generation of the signatre signal using twin signal
sensing.If the windings are totally symmetric and no winding shorts
are present, the signature signal will be identically zero. If the
signature signal deviates from zero, the presence of a shorted
winding is suggested. In certain cases, the signature signal can be
processed using a neural network to localize the short.

In several stages, the rotor of the first machine was brought up to
full speed with the excitation connected and thus providing power to
the rotor. The voltage applied to the rotor is proportional to rotation
speed. Figure 2 shows plots of the signature signal at several
different speeds. The solid line represents no rotation, the dotted
line represents a very slow rolling rate, the dashed line represents

1800 rpm, and the dash-dot line represents 3600 rpm.

Winding Short Detection Using Novelty Detection

When a rotor is operating, shorted windings detection can be
performed by a technique known as novelry derecrion. Novelty

detection is a term used for finding a signal that differs from a given
set of signals, or, equivalently, detecting change in otherwise status
quo operation. Novelty detection can be conceptually viewed as a
method of grouping a representative set of healthy signature signals
and comparing future samples with this group. The underlying
assumptions are

e the training set is statistically representative of all

healthy status quo operating conditions, and
e  the signal is not time variant..
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Figure 2: Signature signals of a rotor at different speeds [1].

A number of approaches to novelty detection have been suggested.
A linear spanning method [13] (referred to as the novelry filter) is an
approach where the orthogonal complement of the linear space
spanned by the training set is measured and compared to a
threshold. In geometrical terms, this method tries to fit a hyperplane
to the data and ignores all distances in that plane. Only the
orthogonal distance to the hyperplane is considered in making a
decision concerning novelty. Radial basis neural networks (see [14-
15] provide overviews) as a method of a non-parametric estimation
of the data’s a priori distribution have also been applied to novelty
detection [16]. A statistical semi-parametric estimation technique
defining several hyperellipsoidal clusters is described by Leonard &
.Kramer [17] and has been extended to novelty detection [18]. A
robust statistical method for finding elliptical clusters is defined by
Jolion, Meer & Bataouche, [19]. Nonlinear statistical estimation
has been applied [20] where a neural network is trained to recognize
a mapping of any given probability distribution to an uncorrelated
Gaussian distribution. This is done with an information preservation
criterion, and a simple spherical boundary detection is then applied.
Other methods exist such as ART clustering techniques (see
e.g.[15]), where new clusters are formed when novelty is observed.

Novelty detection can be geometrically visualized as illustrated in
Figure 3. A number of healthy signature signals, corresponding to
the hollow dots, are expressed as points in a signal space. There
will be variations in the point locations of healthy status quo signals
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in detection of shorted windings due to effects such as brush noise,
rotor speed and load. When a sufficient number of points are
gathered, a surface is “shrink wrapped” around the points. In figure
3, the “shrink wrap"” around the hollow points is shown as an ellipse.
After this boundary is established, a new point is deemed healthy if
it lies within this surface. If ourside, it is novel and a shorted
winding is suspect.

Figure 3: Illustration of novelty detection.

Novelty detection can be cast in terms of elementary hypothesis
testing. The binary hypothesis test considers a given hypothesis Hy
that is to be proved, versus an alternative hypothesis H,. In our case,
H, is the hypothesis that the rotor is healthy. H, is the alternative
hypothesis that the rotor has shorted winding. Inherent in all
detection theory -is the tradeoff between false alarm rate, o, and
detection rate, B. In Figure 3, the 18 hollow dots represent heaithy
signature signals and the eleven solid dots represent signature
signals. One healthy signal - the hollow dot lying outside of the
ellipse - and one signature corresponding to a shorted winding - the
solid dot lying within the ellipse - are misclassified. For this test
data, a good estimate of the detection rate is B = 10/11 and the false
alarm rate o = 1/18.

Increasing f, however, invariably increases o. Conversely,
decreasing o decreases f§. In novelty detection, the values of o and
B can be tuned by choosing how tightly we place the shrink wrap
around the healthy status quo data. As the shrink wrap grows
“tighter”, both the false alarm and detection rates decrease.
Visualize, for example, in Figure 3, the effect on B and a as the
ellipse becomes smaller and smaller.

For novelty detection, the trade-off between false alarm rate, o
and shorted winding detection rate, B, can not generally be
determined. Indeed, B cannot be measured. This is because, simply,
access to signatures corresponding to shorted windings (e.g. the
solid dots in Figure 3) are not available. Consider, for example, a
turbine-generator. To gather data corresponding to the solid dots in
Figure 3, shorts would need to be imposed in the windings and
training status quo signature signals gathered while the generator
was running. Doing so is clearly physically and economically
prohibitive.

One method in novelty detection is to define a constant false alarm
rate (CFAR), not to be exceeded by the training set. Unlike the
detection rate, the false alarm rate of a novelty detector can be
effectively estimated. Higher detection rates are obtained at the cost
of choosing a higher false alarm rate.

The only way of controlling the outcome is to define a constant false
alarm rate, not to be exceeded by the training set (see e.g. [21]).
Other possible methods of finding the threshold from a given false
alarm rate include the usage of parametric estimators, but

assumptions about the probability distribution of the data are
required.

Laboratory Emulation and Effectiveness Test of
Twin Signal Sensing Novelty Detection

In order to allow inspection of both the false alarm and detection
rates in a novelty detector, a test rotor was built to simulate the
combined effect of applied voltage and rotation. Quick accessibility
to the windings for shorting between adjacent wires was imposed on
the design. The test rotor is a three foot long iron core, with four
wound poles connected in series. The rotor is wound with polymer
insulated stranded wires lying in 12 slots, evenly distributed around
the circumference of the core, with inner and outer windings
alternating in these slots. Rotation is provided by an external motor,
and slip-rings connect the rotor windings to the voltage supply and
the measuring circuit at one end. At the other end, the windings are
accessible for connecting two and two of the wires together to
produce shorts.

For an elliptical surface shrink wrap around the signature signal
points (we found this to work best compared to a number of other
geometries [5]), detection rates of 100% and false alarm rates of 0%
were achieved when the rotor was stationary or at turning gear
speed. (The rotor is in turning-gear when rotating very slowly, in
our case at around 30-60 rpm.) The fast rotating rotor ran at the
synchronous speed of 1800 rpm to simulate turbine-generator in full
operation. Here, the detection rate was 91% and the false alarm rate
was 0.4%. Separate novelty filters were required each speed but
were not required for varying loads. Details of the experiment are in
the paper by Guttormsson et al. [5].

Winding Short Localization

Winding shorts can also be localized using twin signal sensing.
Signature signals corresponding to shorts in each of the windings
are used to train a layered perceptron artificial neural network.
Twin signal sensing has been applied to a turbogenerator and on an
autotransformer [2-4]. Brief reviews will be given here for an
autotransformer  tested in a laboratory environment and a
turbogenerator tested in the field.

Autotransformer

The autotransformer, shown in Figure 4, has a 22 mH inductance.
During the test, the short was simulated by positioning the carbon
brush of the center tap across two windings. The windings are
divided into 4 sections. For each shorted turn, the signature signals
are captured.

By shorting adjacent turns at several locations within the field
winding, 120 training patterns were collected. A neural network
with one hidden layer, thirteen input neurons, four hidden neuron
and six output neurons was used. This architecture gave a lower test
error than other architectures. The standard back-error propagation
was used to train the neural nerwork.

After the network was trained, it was tested for several short
locations. Compared with the actual short location, the network
identified the location of the short with a great degree of accuracy.
The results of the neural network testing are shown in Figure 5. The
diagonal line represents the actual location of the short, and the
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circles represent the neural network results. The results are clearly

quite good.

Figure 4. Test system for shorted winding localization in an

autotransformer
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Figure 5: Neural network localization versus actual position of the
shorted windings in an autotransformer as predicted by the neural
network.

Turbogenerator

The twin signal sensing shorted winding localization method was
also tested on a turbogenerator at the Southern California Edison
Company [2]. The rotor is a 2-pole, 3600 rpm, 60 MVA with 7
concentric coils on each pole. Each coil has 17 turns. Thus the loss
of one turn reduces the ampere-turns of that pole by about 0.85%.

To train and test the neural network, temporary shorts were
introduced between adjacent windings when the rotor was off line.
Corresponding signature signals were obtained ata 5 MHz sampling
rate. Example signature signals for different short locations are
shown in Figure 7.
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Figure 6: Signature signals from a 60 MVA Southern California
Edison Company turbogenerator for shorts imposed in different
windings [2].

A total of 67 training patterns were collected by shorting adjacent
turns at several locations within the field winding. A neural net with
one hidden layer, thirteen input neurons, four hidden neurons and
six output neurons was trained. The network was trained by using
the standard back-error propagation method. Remarkably, in each
test case, the shorted winding was successfully localized to the
proper coil. Details are in the paper by El-Sharkawi et al. [2].

Conclusion

Twin signal sensing is an effective method for detection and
localization of shorted tumns in the windings of electric machinery,
surge coils and autotransformers. The methodology requires no
equipment design alterations such as installation of flux meters or
other sensors. It has been shown effective in both field and
laboratory tests.
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