
Phys. Med. Biol.42 (1997) 1065–1086. Printed in the UK PII: S0031-9155(97)72940-3

Conformal radiotherapy computation by the method of
alternating projections onto convex sets

Shinhak Lee†, Paul S Cho‡§, Robert J Marks II† and Seho Oh‖
† Department of Electrical Engineering, University of Washington, Seattle, WA 98195-2500,
USA
‡ Department of Radiation Oncology, University of Washington School of Medicine,
Box 356043, Seattle, WA 98195-6043, USA
‖ NeoPath Incorporated, 8271 154th Avenue NE Redmond, WA 98052, USA

Received 18 March 1996, in final form 10 February 1997

Abstract. Synthesis of beam profiles for a given dose prescription is a central problem in
radiotherapy. Care must be taken in the beam design to expose the tumour volume at a high
level, to avoid significant irradiation of critical organs, and to minimize exposure of all other
tissue. Use of the synthesis procedure known as alternating projections onto convex sets (POCS)
is shown to be a viable approach to beam design. POCS is a powerful tool for signal and
image restoration and synthesis. Convex sets of signals obeying desired constraint sets are first
specified. Then, by repeated projections onto these sets, convergence is to a signal obeying all
desired constraints if the constraint sets have a finite intersection. In this paper we apply the
method of POCS to conformal radiotherapy dose computation. The performance of the method
is shown through three representative examples.

1. Introduction

An important objective of radiotherapy is to maximize the ratio of the dose delivered to the
tumour to that which is deposited in the adjacent normal tissues. Conformal radiotherapy
attempts to accomplish this by arranging the radiation sources in a configuration to best
achieve the given dose distribution. In external beam therapy it is commonly envisioned
that the source positions and intensities are varied dynamically by means of a computer
controlled gantry and multileaf collimators. Successful implementation of conformal therapy
depends, among other things, on treatment plan optimization.

All proposed solutions of the treatment plan optimization thus far require an iterative
search. During each iteration a new estimate of beam intensity distribution is computed
and its contribution evaluated. The process is repeated until the difference between the
calculated and the desired dose distribution is minimized. The estimate of beam weights
may be computed either stochastically (Webb 1989, Morrillet al 1990, Mageras and Mohan
1993, Rosenet al 1995) or deterministically (Brahme 1988, Bortfeldet al 1990, Holmes
et al 1991). While the results appear to be similar between the two approaches, they
differ dramatically in comparative computational complexity. The stochastic algorithms
demand a number of operations that are typically several orders of magnitude greater
than the deterministic models. For reasons of computational speed and clinical feasibility,
computationally efficient algorithms are desirable.

§ Author to whom correspondence should be addressed.
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In this paper we present a deterministic technique based on the method known as
alternating projections onto convex sets (POCS). Following a general introduction to POCS
we describe how to formulate the inverse radiotherapy problem in terms of convex sets
and associated projection operators. Finally, the algorithm is applied to a number of
representative cases in conformal therapy.

2. POCS overview

Alternating projections onto convex sets (POCS)† (Stark 1987, Youla and Webb 1982) is a
powerful technique of signal recovery and synthesis. POCS was apparently first reported
by Bregman (1965) and Gubinet al (1967) and was popularized by Youla and Webb (1982)
and Stark (1987).

A set,C, is convex ifx1 ∈ C andx2 ∈ C implies thatλx1 + (1− λ)x2 ∈ C for all
0 6 λ 6 1. Geometrically, as illustrated in figure 1(a), this means that the line segment
connectingx1 andx2 is totally subsumed in the setC. The set shown in figure 1(b) is not
convex because there are two points within the set that, when connected, result in a line
segment that lies partially outside of the set. Examples of geometrical convex sets include
balls, boxes, lines, line segments, cones and planes.

Figure 1. Illustration of the definition of a convex set and convex set projections. In (a), a set
C consists of all of the points in and on the oval. No matter what two elements ofC are chosen
(herex1 andx2), the line segment connecting them lies totally within the setC. The set in (a)
is convex. The set of points in (b) is not convex since, as shown, there are elementsx1 and
x2 in the set that produce a line segment that lies partially outside the set. The projection onto
a convex set is shown in (a). For an arbitrary point,y, the projection onto the convex set,C,
(denotedPCy) is the (unique) closest point toy in the mean square sense. Ify is already in
the set, then the projection operation givesy, i.e. the point does not move.

For a giveny ∈\ C, the projection ontoC is the unique vector inC such that the mean
square distance betweeny and its projection is minimum‡. The projection ofy onto setC

† The term,alternating traditionally does not appear in the POCS acronym.
‡ The space is assumed throughout to be eitherL2 or `2. The mean square distance is the corresponding norm.
For a more thorough discussion of POCS see Youla and Webb (1982), Youla’s chapter in Stark (1987), or the
tutorial by Marks (1997).
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is denoted byPCy. If a set is convex, the projection is unique. If a point to be projected
is in the set, the projection results in the same point (i.e. ify ∈ C, thenPCy = y).

POCS assumes that the convex constraint sets intersect. If the intersection contains
many points, the fixed point will be determined by factors such as initialization and the
order of projections. The existance of a number of solutions is simply a reflection on design
flexibility imposed by the dose prescription. If the sets do not intersect, the prescription
dose cannot be satisfied exactly. Constraint sets that are ‘close’ may satisfy the constraints
to a good approximation. Even if the sets do not intersect, the result from POCS can be
useful (Youla and Velasco 1986, Marks 1997).

Note that POCS can be used to establish whether a number of convex sets have a
common intersection. In many cases, including beam profile synthesis for prescribed dose
distribution, establishing whether or not the sets intersect prior to application of POCS is
difficult. If the sets do not intersect, the POCS iteration will eventually break into a limit
cycle. The closeness of one set to another can be determined by calculating the mean square
distance between projections when the limit cycle is reached. If the sets have a common
intersection, POCS will converge to a point contained in the intersection of the sets as
illustrated in figure 2.

Figure 2. Alternately projecting between two or more convex sets with a non-empty intersection
results in a limit point common to all sets (shown shaded here). Shown here are two convex
sets of points. The setC1 is the set of points in and on the rounded corner rectangle. Convex
setC2 is a line segment. Alternately projecting between the two sets results in convergence to
the fixed point,x, that lies in the intersection of the two convex sets. This fixed point can be
different for a different starting point,y, but will always lie on the intersection of the convex
sets.

3. Description of the beam vector synthesis algorithm

The POCS method for synthesizing pencil beam weights to produce desired dose
prescriptions consists of the following steps.

(i) Specify convex constraints the prescribed dose must satisfy. These constraints can
originate from either dose prescription, physics or mathematical concerns.

(ii) Establish the projection onto each of these convex sets.
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(iii) Alternately project among the constraint sets. Iterate until convergence is achieved.
The result is a beam profile synthesis for the dose prescription.

Design will be described and examples given for a two-dimensional cross section.
Extension to the three dimensions is straightforward. Dose synthesis, an inherently
continuous problem, is typically discretized to allow application of discrete analysis. Let
b(x, θ), the beam intensity function, correspond to the intensity discretized at angleθ

crossing the axis perpendicular toθ at the beam element positionx. Assume there areQ
linear beam arrays at fixed equal angular intervals,bk(x) = b(x; θ = 2π

Q
k) for 16 k 6 Q.

Thekth array is discretized intoN pencil beam elements that can be expressed by the vector

bk = [bk1bk2 · · · bkN ]T . (1)

The same spatial interval between adjacent pencil beam elements is assumed. The dose
domain is discretized intoM pixels. The dose contribution to the pointm from the nth
beam element in thekth beam array (bkn) is (amn)k. The corresponding dose computation
matrix, Ak ∈ RM×N , is defined forM tissue points. The dose from thekth beam array is

dk = [dk1dk2 . . . dkM ]T

= Akbk (2)

wheremth row andnth column element ofAk is (amn)k. The contributions from allQ
beam arrays must be summed to give the total dose delivered to each pixel. Physically, the
matrix Ak is the discretized kernel,A(γ, x, 2π

Q
k) that specifies the dose to pointγ from the

pencil beams in thekth linear array. The vector,γ, is discretized into theM pixels. This
geometry is illustrated in figure 3.

Figure 3. Geometry of the dose computation plane. There areQ beam positions, each beam
containingN beam elements. The dose computation matrix corresponding to thekth beam is
Ak whose dimension isM ×N , whereM is the number of tissue points.

For Q discretized beam arrays, there areQ dose vectors,{dk|1 6 k 6 Q}. TheseQ
vectors are stacked to form the parent dose vector

d = [dT1d
T
2 · · ·dTQ]T (3)

whered ∈ RMN×1. This is the space in which the dose constraint sets, all convex, are
defined. The convexity of constraints and their corresponding projections are more easily
established in this space than in the total dose space defined in equation (4) below.
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The total dose vector atM tissue points,t, is the sum of dose vectors from every
incident beam and can be computed from the parent dose vector in equation (3).

t = [t1t2 . . . tM ]T

=
Q∑
k=1

dk

=
Q∑
k=1

Akbk. (4)

To synthesize the beam elements, the following constraint sets are used. Each is convex.
The projection operation is given for each set. Proofs of convexity and projection for each
case are given in the Appendix.

(i) Beam dose constraint set. Given the dose computation matrix,Ak, and the beam
vector, bk, for the kth beam vector, the resulting dose vector is given bydk = Akbk.
Generally, the dimension of the dose vector exceeds the number of beam elements. In other
words, the dose vector has a larger number of degrees of freedom than the beam vector. The
matrix, Ak, is thus not full rank. Therefore, the beam vector cannot be obtained from direct
inversion of the matrix when the beam vector is unknown. One standard way to solve for
bk is using pseudo-inversion. The resulting dose vector lies on the column space spanned
by column vectors ofAk. Pseudo-inverse solutions thus obtained are linear combinations of
column vectors ofAk and form a convex set. The corresponding operator which gives one
of these solutions is a projection operator. Mathematically, the convex set can be expressed
as

CB = {d|dk = Akbk, 16 k 6 Q}. (5)

This operator projects thekth vector component,dk onto the column space ofAk. The
projection operator is

PBd = ([PBd]T1 [PBd]T2 . . . [PBd]TQ)
T (6)

where the projection of thekth component is

[PBd]k = Tkdk. (7)

The matrix that projects on the column space ofAk is

Tk = Ak(AT
k Ak)

−1AT
k . (8)

(ii) Target dose constraint set. This constraint set requires the delivered dose match
the prescribed dose in the target volume. LetT denote a subset of numbers from 1 toM
corresponding to indices of the target volume. Let the prescribed dose vector be

p =
{
pk k ∈ T
0 otherwise.

(9)

These values are determined by sampling the continuous prescribed dose. In our simulations,
eachpk is set to one. The target dose constraint set is then defined by

CT =
{
d

∣∣∣∣ Q∑
i=1

dij =
{
pj j ∈ T
don’t care otherwise

}
. (10)

The projection ontoCT is

PT d = ([PT d]T1 [PT d]T2 . . . [PT d]TQ)
T (11)
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where

[PT d]k = dk + 1

Q
IT

(
p−

Q∑
i=1

di

)
. (12)

The diagonal matrix,IT , serves as a spatial discriminator and is given by

(IT )jj =
{

1 j ∈ T
0 otherwise.

(13)

Thus only the projection components intersecting the target dose are affected.
(iii) Organ dose constraint set. This constraint set controls the dose in organs at

risk where the dose must be kept low. LetS denote a subset of numbers from 1 toM
corresponding to the indices of the critical organ region. The organ dose constraint set is

CO =
{
d

∣∣∣∣06 Q∑
i=1

∑
j∈S

dij 6 E1,d ∈ CB
}

(14)

whereE1 is the upper limit of allowable integrated dose in the critical region. To present
the projection, define the vectorr with elements

rk =
{

1 k ∈ S
0 otherwise.

(15)

The corresponding projection operator is

POd = ([POd]T1 [POd]T2 . . . [POd]TQ)
T (16)

where

[POd]k =



Tk

(
dk +

E1−
∑Q

j=1 r
TTjdj∑Q

j=1 r
TTjr

r

) ∑Q

j=1 r
TTjdj > E1

Tk

(
dk −

∑Q

j=1 r
TTjdj∑Q

j=1 r
TTjr

r

) ∑Q

j=1 r
TTjdj < 0

Tkdk otherwise.

(17)

(iv) Non-negative beam constraint. Physics dictates that each beam element have a
non-negative value. This set requires adherence to this property. The corresponding convex
non-negative beam constraint sets, one for each beam, are†

Ck = {d|dk = Akbk, bk > 0}; 16 k 6 Q.
The setCk can be expressed as the intersection of a number of convex component sets.

Ck =
N⋂
n=1

Ckn.

The component sets are

Ckn = {d|dk = Akbk, bkn > 0}; 16 n 6 N (18)

wherebkn is thenth element ofbk. For a givend, the sign of eachbkn can be determined
from

bk =
(
AT
k Ak

)−1
AT
k dk.

† The notationbk > 0 means each element ofbk is non-negative.
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The projection ontoCkn is

Pkndk =
{

Tkndk bkn < 0

dk otherwise
(19)

where the projection matrix is

Tkn = Akn(AT
knAkn)

−1AT
kn. (20)

and the matrixAkn ∈ RM×(N−1) is formed by removing thenth column ofAk. In lieu of
projecting onto eachCk, projection is done sequentially onto eachCkn set. These projection
operators can be concatenated into the single operator

2+ =
Q∏
k=1

N∏
n=1

Pkn.

Although2+ is composed of a string of projection operators, it, itself is not a projection
operator. It does not, for example, directly project onto the set

C+ =
Q⋂
k=1

Ck.

After a projection operator component of2+ is performed, the constraint corresponding
to the previous projection operator component may no longer be satisfied. Thus, after2+
is applied, some of the beam elements can still be negative. However, the magnitude of
negative weights will diminish as iteration progresses and become negligible as it will be
shown in section 5.

Using these four convex constraint sets and corresponding projections, the dose can be
synthesized using POCS. Letl be the POCS iteration counter. Letbi [l] be theith beam and
di [l] be theith vector ind[l] at thelth iteration. Thend[l+1] is obtained by the recursion

d[l + 1] = 2+PBPT POd[l]. (21)

POCS will also converge if some projections are used more than others (Stark 1987).
Less computationally intensive projections may thus be evaluated more frequently. For
example, we found faster convergence occurred using

d[l + 1] = 2+(PBPT )LPOd[l]. (22)

where(PBPT )L indicatesL repeated projections between two sets,CA andCD in each of
the entire projection. We usedL = 8.

The POCS iterative process is terminated when the difference between the prescribed
dose and the obtained total dose is sufficiently small.

The corresponding beam vector,bi [l + 1], can be uniquely determined using minimum
mean square error solution

bi [l + 1] = (AT
i Ai )

−1AT
i d[l + 1], 16 i 6 Q. (23)

If there are any residual negative beam weights due to constraint set non-intersection or
early iteration truncation, they are set to zero. We found that if there were any negative
beam weights, they were relatively small in magnitude.
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Figure 4. (a) Brahme’s concave butterfly shaped tumour volume. The matrix size of the dose
distribution plane is 35× 63. (b) and (c) Results of POCS dose synthesis applied to Brahme’s
butterfly shaped tumour after 15 iterations. 31 beams, each containing 55 beam elements were
used. (b) The isodose contours in full curves and the tumour contour in broken curves. (c) A
3D plot of the relative dose versus the transaxial coordinates.

4. Application in conformal therapy

POCS is now applied to three representative conformal radiotherapy optimization cases:
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Figure 5. Dose–volume histograms illustrating the trade-off between tumour dose conformation
and normal tissue sparing within the concave regions. The number of beams and the number
of POCS iterations were kept constant at 31 and 15, respectively, while the dose constraint
parameter was varied from 30% to 50%.

Figure 6. Same as figure 5 except, in this case, the dose constraint was fixed at 50% while the
number of iteration was varied from 1 to 40.

(i) A target with concave regions,
(ii) A target that surrounds a sensitive organ, and
(iii) A target adjacent to large volumes of organs at risk.

Dose at a sample point from a pencil beam element is calculated using the approximate
formula

D(l) = TPR(l, w)× ISC(l) (24)

where l is the depth of calculation. TPR is the tissue–phantom ratio at depth,l, for the
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Figure 7. Beam intensity profiles synthesized for Brahme’s geometry. The upper left profile
corresponds to the beam which is incident horizontally from the right side of figure 4(a). The
gantry rotates in a counterclockwise direction. Each beam consists of 55 elements spanning the
width of the external contour.

equivalent square field size,w, and ISC is the inverse square correction of the primary
fluence due to beam divergence. The external and internal organ contours are assumed to
be constant in the axial direction. The height of the target volume is equated to the maximum
target width. To increase the computational efficiency, the dose contributions from each
pencil beam having a unit weight are pre-computed and stored in a file. The value of
dose computation matrix elements is simply the value ofD(l) with corresponding depth,l.
The x-ray photon energy of the beam is set at 18 MV. Beam synthesis is performed for a
two-dimensional slice through the tumour volume. The POCS beam optimization technique
can easily be extended to three dimensions at a cost of additional computation.

4.1. Target with concave regions

The first example is Brahme’s butterfly shaped tumour volume (Brahme 1988). This target
shape, illustrated in figure 4(a), presents a potential challenge for treatment planning. The
difficulty arises because of the concave normal tissue regions above and below the tumour.
Without intensity modulation, uniform delivery of the prescribed dose to the target can be
achieved only at the expense of undesirable escalation of dose to the concave regions. The
maximum width and height of the external contour are 40 cm and 22 cm, respectively,
and corresponds to 63 by 35 tissue elements. Thirty-one equiangularly spaced beams, each
containing 55 elements, are used.

The results of inverse planning after 15 iterations using the POCS algorithm are shown
in figures 4(b) and 4(c). Sharp dose gradients around the target border are observed. The
organ dose constraint specified in terms of integrated limiting dose,E1, to the concave
regions was set to 50% of the maximum value. As shown here and in the third example,
the organ dose constraint parameter can be used to control the trade-off between the tumour
dose and the dose in concave region. For example, if the dose to the target needs to be
maximized more uniformly, then a larger value should be set for the constraint parameter,
as shown in figure 5.

The dose–volume histogram, shown in figure 6, illustrates the effect of iteration number
on dose distributions. As it can be seen, the dose level converges quickly to the specified
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Figure 8. (a) Bortfeld’s horseshoe-shaped target with an organ at risk. Matrix size of the
dose distribution plane is 39× 39. (b) and (c) Results of the POCS dose synthesis applied to
Bortfeld’s geometry after 15 iterations. Thirty one beams, each containing 55 beam elements
were used. The value of 20% dose constraint was imposed on the critical structure. (b) The
isodose contours in full curve and the tumour-organ contours in broken curve. (c) A 3D plot of
the relative dose versus the transaxial coordinates.

level in the concave regions. For the target volume, the convergence is more gradual. No
appreciable improvement is observed for number of iterations beyond 40. The intensity
profiles of the incident beams after 15 iterations are shown in figure 7.

4.2. Target with a sensitive organ at risk

The second example is adopted from Bortfeldet al (1990). As shown in figure 8(a), the
irradiation volume consists of a horseshoe-shaped target and a dose limiting organ within
the concave region. The computation results after 15 iterations using 31 beams with 55
elements each and a 20% organ dose constraint are shown in figures 8(b) and 8(c). The dose
falls off sharply outside the target and dips further near the critical organ. The corresponding
beam intensity modulation profiles are shown in figure 9.

Next, we vary the number of beams in steps from 3 to 72 while limiting the integrated
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Figure 9. Beam intensity profiles obtained for Bortfeld’s geometry. The upper left profile
corresponds to the beam which is incident horizontally from the right side of figure 8(a). The
gantry rotates in a counterclockwise direction. Each beam consists of 55 elements spanning the
width of the square external contour.

Figure 10. Dose–volume histograms showing the effect of increasing the number of beams
from 3 to 72 in Bortfeld’s problem. The number of iterations was kept constant at 15.

organ dose to 20%. The results after 15 iterations are plotted in figure 10. As expected, the
target dose conformation improves with an increase in the number of beams. The degree of
improvement is, however, nonlinearly related to the number of added beams and eventually
reaches a point of diminishing return.

4.3. Target adjacent to large volumes of sensitive organs

Our final example contains two organs that are large relative to the target, as shown in
figure 11(a). The external contour width, height, dose matrix size, and the number of
beam elements are the same as those used in section 4.1. The results after 30 iterations
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Figure 11. (a) Tumour that is adjacent to two relatively large organs at risk. The matrix size of
the dose distribution plane is 35×63. (b) and (c) Results of the POCS dose synthesis applied to
the geometry described in (a). 31 beams and 30 iterations were used. (b) The isodose contours
in full curve and the tumour–organ contours in broken curve. (c) A 3D plot of the relative dose
versus the transaxial coordinates.

using 31 beams with a 30% organ dose constraint are shown in figures 11(b) and 11(c). The
complex target–organ geometry demonstrates the difficulty in achieving acceptable treatment
planning. Although we have applied a 30% value to both organ A and B, these values can
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Figure 12. Beam intensity profiles obtained after 30 iterations for the geometry described in
figure 11(a). The upper left profile corresponds to the beam which is incident horizontally from
the right side of the figure 11(a). The gantry rotates in a counterclockwise direction. Each beam
consists of 55 elements spanning the width of the external contour.

be varied independently according to the clinical requirement. The corresponding intensity
profiles of the incident beams are shown in figure 12. In figure 13, the dose constraint of
the critical organ was varied while keeping other parameters constant. The dose–volume
histograms indicate that a low critical organ dose is achievable at the price of reduced dose
conformation for the target.

5. Discussion

We have investigated the feasibility of applying the method of alternating projections
onto convex sets (POCS) to solve the problem of inverse dose computation in conformal
therapy. The results are very promising. The constraints commonly used in inverse
treatment planning were successfully expressed as convex sets which, in turn, were used
to synthesize the beam weights to a solution. The proposed method is applicable to many-
variable problems such as intensity modulation. Computation of large matrices is simplified
through a decomposition technique. For instance, assume we are given a 1000× 1000 dose
computation matrix(A) and 10 beams. As illustrated in figure 14, the matrix decomposition
yields submatrices (A1A2 . . .A10). This allows for 10 inversions of a 100× 100 matrix
((AT

k Ak)
−1, 16 k 6 10).

In this study the organ dose constraint was formulated to reduce the integrated dose to
the organ. This is suitable for the parallel organ model. For the serial organ model, it is
desirable to reduce the maximum dose rather than the overall dose. In this case, the convex
constraint set is given by

COj =
{
d

∣∣∣∣06 Q∑
i=1

dij 6 E2, j ∈ S
}

(25)

whereE2 is the maximum allowable organ dose. The corresponding projection forith pixel
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Figure 13. Dose–volume histograms demonstrating the effect of varying the critical organ dose
constraint parameters. The number of beams and the number of iterations were held constant at
31 and 30, respectively.

Figure 14. Illustration of how a large dose computation matrix (A) is decomposed into
submatrices (A1 . . .A10) and inversion performed on small square matrices (AT1 A1, . . . ,AT10A10).

in the organ region is

[POid]ki =



sTi Tk

(
sTi dk +

E2−
∑Q

j=1 s
T
i Tjdj∑Q

j=1 s
T
i Tjsi

si

) ∑Q

j=1 s
T
i Tjdj > E2

sTi Tk

(
dk −

∑Q

j=1 s
T
i Tjdj∑Q

j=1 s
T
i Tjsi

si

) ∑Q

j=1 s
T
i Tjdj < 0

sTi Tkdk otherwise

(26)

where the elements of the vector,si ∈ RM×1, are zero except atith pixel of the organ
region. Depending on the type of organ, one can impose either of these constraint types,
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serial or parallel. The computation time will be longer for the serial organ model because
the constraint set must be imposed for each sample point within the organ. For instance,
the calculation time increased by 72% for the second example using 31 beams after 15
iterations.

The model of dose deposition considered only primary fluence. Incorporation of
scattered radiation should not affect the ability of the POCS algorithm to provide an inverse
solution, although the degree of conformation and beam modulation is likely to be different.
It is reported that improved dose conformation of the target can be achieved when scatter
is included in synthesis of beam intensity modulations (Chenet al 1995). It is expected
that inclusion of scatter will increase the computation time per iteration. Without scattered
radiation, dose to a sample point is interpolated from two nearest primary beam elements,
thus requiring onlyM × 2×Q operations. On the other hand, if the scatter contributions
are considered, the number of operations will increase toM ×N ×Q.

A question arises: to what point does POCS converge? The simple answer is: to a
point satisfying all the constraints (assuming the constraint sets intersect). Quantitatively
the point of convergence can be determined by calculating the mean square distance between
projections. Application of the distance analysis on the three test cases reveals that although
the constraint sets do not intersect they lie very close to one another. This is shown
in figure 15. As the iteration progresses the distances between the sets decrease until
convergence is achieved. The final convergence point relative to each set is illustrated in
the rectangular box within the figure. It is apparent that the final convergence point depends
on not only iteration number but also complexity of target–organ structure. All three cases
exhibit similar convergence characteristics except for the distance to the non-negativity
constraint set. Note that the second case satisfies the non-negativity constraint much better
than the other two. This may be attributed to the presence of a transition area between the
target and the organ at risk. In the other two cases, the target volumes are connected to
the critical region demanding a sharp dose gradient at the structure boundary and therefore
making it more difficult to satisfy the prescription. The distance to the non-negativity
constraint set can be reduced at the expense of increasing the distance elsewhere.

All previously proposed beam optimization methods used objective function. In these
methods, the nature of objective function determines the type of optimization technique
that is suitable. If an objective function is known to have only a single minimum,
a deterministic technique can be implemented. Otherwise, computationally expensive
stochastic method such as simulated annealing capable of local minima detrapping must
be used. In POCS, which does not use objective function, its applicability is determined
by whether convex formalism of necessary constraints and associated projections exist.
This alternative approach to the objective function minimization presents a new opportunity
to explore the nature of the conformal therapy optimization problem. We are currently
investigating the possibility of using POCS to solve optimization problems involving dose–
volume constraints and biological response parameters, some of which are considered to
have local minima solutions. Even in these cases, it may be possible to reformulate the
problem in terms of convex expressions (Choet al submitted).

6. Conclusion

We have demonstrated that the concept of alternating projections onto convex sets (POCS)
can be successfully applied to the problem of intensity modulated conformal radiotherapy.
The results indicate that the beam intensity profiles can be synthesized in 15 to 30
iterations, depending on the complexity of the tumour–organ geometry. Unlike other beam
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Figure 15. The point of POCS convergence can be determined by calculating the mean square
distance between projections. The distance between two consecutive projections was calculated
for each iteration. The distance alalysis for three test cases is shown in figures (a), (b) and
(c). (a) The total energy (the sum of squares) of the synthesized dose in this example is 18.76.
POCS was truncated after 15 iterations onCB , the column space of the dose computation matrix.
The distance from this point to the setCO is 0.01. The distance to setCT is 0.04. The distance
to C+ is 0.15. (b) In this example, the total synthesized dose energy is 11.91. The distances
to CO , CT , andC+ are 0.002, 0.026 and 0.005 respectively. (c) The total energy here is 7.42.
The distances toCO , CT andC+ are 0.002, 0.02 and 0.029 respectively.

optimization techniques, POCS does not rely on objective function minimization. As such,
it provides a unique tool for conformal beam optimization research.
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Appendix A. Proof of convexity and projection ofCB

Proof of convexity

CB is a set of all vectors whose component vector,di , can be represented as a linear
combination of the columns of matrix,Ai . Let f , g ∈ CB and fi = Aibi , gi = Aihi ,
respectively, for beam vectors,bi andhi . We examineαfi + (1− α)gi .

αfi + (1− α)gi = αAibi + (1− α)Aihi (27)

= Ai [αbi + (1− α)hi ]. (28)

The resulting vector is simply another linear combination of columns of matrix,Ai .
Therefore, the set,CB is convex. Q.E.D.

Figure A1. The subspace,Akn, divides the column space ofAk , one for negative beam element
(bkn) and the other (shaded area) for the positive beam element. If the dose vector (d) does not
lie in the positive half space, it is projected through the projection matrix,Tkn.

Proof of projection

Let J = J1+ J2+ · · · + JQ where

Jk = ‖dk − Akbk‖2. (29)

J is minimum when eachJk is minimum. DifferentiatingJk w.r.t. bk and setting it to zero
gives minimum.

∂J

∂bk
= AT

k (dk − Ak)bk (30)

= 0. (31)

Thusbk = (AT
k Ak)

−1AT
k dk. Therefore, the projection ofd is

PBd = ([PBd]T1 [PBd]T2 . . . [PBd]TQ)
T

where [PBd]k = Ak(AT
k Ak)

−1AT
k dk. Q.E.D.
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Appendix B. Proof of convexity and projection ofCT

Proof of convexity

Let f , g ∈ CT . Next, we examines =∑Q

i=1(αfi + (1− α)gi ).

s = α
Q∑
i=1

fi + (1− α)
Q∑
i=1

gi . (32)

Since [
∑Q

i=1 fi ]k = [
∑Q

i=1 gi ]k = pk for k ∈ T ,

sk = αpk + (1− α)pk = pk for k ∈ T . (33)

Therefore,CT is convex. Q.E.D.

Proof of projection

To find the minimum of1
2

∑Q

i=1 ‖(zi − di )‖2 subject toIT (
∑Q

j=1 zj ) = IT p, we need to
minimize

J = 1

2

Q∑
i=1

‖zi − di‖2+ λT IT

( Q∑
j=1

zj − p
)

(34)

whereλ is aM × 1 vector whose element isλ. DifferentiatingJ gives

∂J

∂zk
= (zk − dk)+ IT λ (35)

= 0. (36)

This yields tozk = dk − ITλ. Sincez ∈ CD,

IT
Q∑
j=1

zj = IT
Q∑
j=1

dj −QITλ (37)

= IT p. (38)

Solving this forITλ gives ITλ = − 1
Q

IT (p−
∑Q

j=1dj ). Thus

zk = dk + 1

Q
IT

(
p−

Q∑
j=1

dj

)
. (39)

This means, for the outside treatment region, the dose vector does not change. Therefore,
the projection ofd is

PT d = ([PT d]T1 [PT d]T2 · · · [PT d]TQ)
T

where

[PT d]k = dk + 1

Q
IT

(
p−

Q∑
i=1

di

)
.

Q.E.D.
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Appendix C. Proof of convexity and projection ofCO

Proof of convexity

Let f , g ∈ CO . Then from the definition of the set,CO ,

06 α
Q∑
i=1

cT fi 6 αE1 (40)

and

06 (1− α)
Q∑
i=1

cT gi 6 (1− α)E1. (41)

Thus

06 α
Q∑
i=1

∑
j∈S

fij + (1− α)
Q∑
i=1

∑
j∈S

gij 6 αE1+ (1− α)E1 (42)

which simplifies to

06 α
Q∑
i=1

cfi + (1− α)
Q∑
i=1

gi 6 E1. (43)

Since convexity ofCB is already proved, the set,CO is convex. Q.E.D.

Proof of projection

The projection operator forCO is obtained by minimizing1
2

∑Q

i=1 ‖zi − di‖2 subject to∑Q

i=1 r
T zi = E1. The problem becomes finding the minimum of the following:

J = 1

2

Q∑
i=1

‖zi − di‖2+ λ
( Q∑
i=1

rT zi − E1

)
(44)

= 1

2

Q∑
i=1

‖Aibi − di‖2+ λ
( Q∑
i=1

rTAibi − E1

)
. (45)

Differentiating it w.r.t.bk gives

∂J

∂bk
= AT

k (Akbk − dk)+ λAT
k r (46)

= 0. (47)

Thusbk = (AT
k Ak)

−1(AT
k dk − λAT

k r). The corresponding dose vector is

zk = Akbk (48)

= Ak(AT
k Ak)

−1(AT
k dk − λAT

i r) (49)

= Tkdk − λTkr (50)

whereTk = Ak(AT
k Ak)

−1AT
k . Sincez ∈ CB ,

Q∑
i=1

rT zi =
Q∑
i=1

(rTTidi − λrTTir) (51)

= E1. (52)



Conformal radiotherapy computation by POCS 1085

Solving for λ gives

λ =
∑Q

i=1 r
TTidi − E1∑Q

i=1 r
TTir

. (53)

Thus

zk = Tkdk −
∑Q

i=1 r
TTidi − E1∑Q

i=1 r
TTir

Tkr. (54)

Therefore, the projection ofd ontoCB becomes

POd = ([POd]T1 [POd]T2 . . . [POd]TQ)
T

where

[POd]k =



Tk

(
dk +

E1−
∑Q

j=1 r
TTjdj∑Q

j=1 r
TTjr

r

) ∑Q

j=1 r
TTjdj > E1

Tk

(
dk −

∑Q

j=1 r
TTjdj∑Q

j=1 r
TTjr

r

) ∑Q

j=1 r
TTjdj < 0

Tkdk otherwise.

Q.E.D.

Appendix D. Proof of convexity and projection of non-negativity beam constraint

For a specifiedakn, the convexity of the setCkn in equation (18) follows immediately from
the convexity of the set of non-negative numbers.

Consider, then, the projection ontoCkn. Let Akn be the column space ofAkn and
Ak the column space ofAk. As is illustrated in figure A1, the subspaceAkn divides the
column spaceAk into two halves through the origin. The side on whichakn lies is that
half corresponding to positivebkn’s. This half of the space, including the boundary, is the
setCkn. If a vector does not lie in this half space, the projection onto the half space is
equivalent to projection ontoAkn which, of course, is accomplished through the projection
matrix Tkn. The composite projection in equation (19) results.

Computationally, the projection matrix in equation (20) can be written

Tkn = Tk − uknuTkn
where the unit vector is

ukn = (I− Tkn)akn
||(I− Tkn)akn|| .

The identity follows immediately from the Gram–Schmidt orthogonalization procedure.

References

Bortfeld T, Burkelbach J, Boesecks R and Schlegal W 1990 Methods of image reconstruction from projections
applied to conformation radiotherapyPhys. Med. Biol.35 1423–34

Brahme A 1988 Optimization of stationary and moving beam radiation therapy techniquesRadiother. Oncol.12
129–40

Bregman L M 1965 Finding the common point of convex sets by the method of successive projectionsDoki. Akad.
Nauk. USSR162 487–90



1086 S Lee et al

Chen Z, Wang X, Bortfeld T, Mohan R and Reinstein L 1995 The influence of scatter on the design of optimized
intensity modulationsMed. Phys.22 1727–33

Cho P S, Lee S, Marks R J II, Oh S, Sutlief S G and Phillips M H Optimization of intensity modulated beams
with volume constraints using two methods: cost function minimization and projections onto convex sets
Med. Phys.(submitted)

Gubin L G, Polyak B T and Raik E V 1967 The method of projections for finding the common point if convex
setsUSSR Comput. Math. Phys.7 1–24

Holmes T W and Mackie T R 1994 A comparison of three inverse treatment planning algorithmsPhys. Med. Biol.
39 91–106

Holmes T W, Mackie T R, Simpkin D and Reckwerdt P 1991 A unified approach to the optimization of
brachytherapy and external beam dosimetryInt. J. Radiation Oncology Biol. Phys.20 859–73

Mageras G S and Mohan R 1993 Application of fast simulated annealing to optimization of conformal radiation
treatmentsMed. Phys.20 639–47

Marks R J II 1997 Alternating projection onto convex setsDeconvolution of Images and Spectraed P Jansson
(San Diego, CA: Academic) pp 476–501

Morrill S M, Lane R G and Rosen I I 1990 Constrained simulated annealing for optimized radiation therapy
treatment planningComput. Methods Prog. Biomed33 135–44

Rosen I I, Lam K S, Lane R G, Langer M and Morrill S M 1995 Comparison of simulated annealing algorithms
for conformal therapy treatment planningInt. J. Radiat. Oncol. Biol. Phys.33 1091–9

Stark H (ed) 1987Image Recovery: Theory and Application(Orlando, FL: Academic)
Webb S 1989 Optimization of conformal radiotheraphy dose distributions by simulated annealingPhys. Med. Biol.

34 1349–70
Youla D C and Velasco V 1986 Extensions of a result on the synthesis of signals in the presence of inconsistent

constraintsIEEE Trans. Circuits Systems33 465–8
Youla D C and Webb H 1982 Image restoration by method of convex set projections: Part I-TheoryIEEE Trans.

Med. Imaging1 81–94


