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The Neural Network (NN) approach to the Transient Stability Analysis (TSA) has been presented as a potential tool for on-line applications, but the high
dimensionality of the power systems turns it necessary to implement feature extraction techniques to make the application feasible in practice. This
paper presents a new learning-based nonlinear classifier, the Support Vector Machines (SVMs) NNs, showing its suitability for power system TSA. It can
be seen as a different approach to cope with the problem of high dimensionality due to its fast training capability, which can be combined with existing
feature extraction techniques. SVMs' theoretical motivation is conceptually explained and they are applied to the IEEE 50 Generator system TSA prob-
lem. Aspects of model adequacy, training time and classification accuracy are discussed and compared to stability classifications obtained by Multi-Lay-

er Perceptrons (MLPs).
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1. INTRODUCTION

The Transient Stability Analysis (TSA) is a crucial opera-
tion procedure to ensure secure performance of a power
system experiencing a variety of disturbances and operat-
ing condition changes. The power system operates in a
secure manner, from the transient stability viewpoint,
when the generators maintain synchronism after the sys-
tem is subjected to severe disturbances.

In the last few decades, TSA methods of practical use
have been developed, and the transient stability schemes of
current use are mainly based on time-domain simulations
[1]. These techniques, however, require the numerical
solution of a system of nonlinear equations using time-
consuming numerical integrations for each contingency.
With the power systems expansion and the increase in their
complexity, the dynamic security analysis has become a
very crucial and complex process. The current deregula-
tion trend and the participation of many players in the

power market are contributing to the decrease in the secu-
rity margin [2]. This makes the security evaluation even
more important, and demands the investigation of fast and
accurate techniques to allow on-line TSA.

The NN approach has been introduced as an alternative
solution for the analytical TSA [3,4], and has been recently
studied with potential use for real-world, large-scale power
systems [4-6]. In such a process, the NN-based TSA
would be applied to a group of selected critical contingen-
cies. The nonlinear input/output mapping capability of a
NN can be used to produce a security index that classifies
the current operating point as secure or insecure [3, 5-7].
The NN uses training data sets that are representative of
different loading conditions and generation schedulings,
different types of contingencies and different topology
configurations.

Although successfully applied to TSA [3, 5, 8], Multi-
Layer Perceptrons (MLPs) implementations require exten-
sive training process. In general, this is the major
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drawback for NN applications in large power systems with
hundreds (even thousands) of generators, because such a
large grid will require a large number of input variables to
train a NN. This can be a prohibitive task. Therefore, a
feature extraction/selection method is needed to reduce the
dimensionality of the NN’s input space. The main objec-
tive is to use as little number of inputs as possible to
reduce the NN training time, while maintaining a high
degree of classification accuracy [9].

A new type of nonlinear learning based classifier has
been recently introduced which has very interesting theo-
retical promises, the Support Vector Machines (SVMs)
NNs [10]. They can map complex nonlinear input/output
relationships with good accuracy and they seem to be very
well suited for the TSA application [11]. SVM classifiers
rely on training points located on the boundary of separa-
tion between different classes, where the stability evalua-
tion is critical. A good theoretical development of the
SVM NN, due to its foundations on the Statistical Learn-
ing Theory (SLT) {10] made it possible to devise fast train-
ing techniques even with large training sets and high input
dimensions [12-14]. This feature can be exploited as an
approach to address the problem of high input dimension
and large training datasets in the TSA problem.

However, the SVMs capabilities cannot be explored
without a good understanding of their conceptual details.
In this paper, the SVM classifier is explained and analyzed
in terms of advantages and disadvantages. The aim is the
application to power system TSA, which is developed as
follows: three feature extraction techniques are applied to
the training/test transient stability data with the objective
of dimensionality reduction, as presented in [9]. Stability
classifications are obtained by MLP and SVM NNs, com-
paring the good generalization capacity of both models
and exploiting SVMs’ fast training. Expectations are that
input feature dimensionality reduction is of lower concern
for SVMs due to their fast training, but accuracy must be
checked for complete and reduced features sets. Results
for the IEEE 50-Generator system are presented, discussed
and compared in terms of modeling characteristics, gener-
alization performance and training time.

The structure of the paper is as follows. Section 2 pres-
ents the feature extraction/selection techniques as applied
in the TSA. In Section 3, a summarized description of
SVM classifiers is sketched with the conceptual ideas and
discussions on advantages and disadvantages. In Section
4, the TSA application and results are presented. Finally,
the conclusions are drawn in Section 5.

2. FEATURE EXTRACTION/
SELECTION

The feature extraction problem can be explained by
assuming the classification task in 2 disjoint classes with a
training set T of ordered pairs (x, y), T = {x, y,.}:.i ;» Where
x;is a real-valued n dimensional vector (i.e. x; € R") and y,
e {+1, -1} is a label that represents the class to which it
belongs. The feature extraction goal is to determine a
transformation f = F(A, x) from the original space R"to a
subspace R4 (for dimensionality reduction, d < n), where A
is a matrix of transformation parameters and f € RY. If the

feature extraction/selection is successful, a point in RYcan
be assigned to one of the 2 classes with a minimum error.
Hence, the expected number of misclassifications for a test
set should be as low as possible.

A linear feature extraction is performed when f=4 - x,
as given in the Principal Components Analysis (PCA)
technique. Another case is when A is a d X n matrix made
of ‘zeros’ and ‘ones’, with only a single ‘one’ in each row.
In this case, feature extraction becomes feature selection.
In other words, feature vector candidates, f € RY, are gen-
erated by selecting d components (or input features) from
the original n-dimensional input vector, x € R". In this
case, an exhaustive search to find the best feature vector
would require examining all possible d-subsets. with
respect to some evaluation function, C(A). The number of
possibilities grows exponentially with the size of d, mak-
ing exhaustive search impractical. Therefore, a heuristic
search method is required to search through the space of
possibilities while minimizing C(A).

In this paper, the feature selection techniques use a dis-
tance measure evaluation function based on the Fisher’s
Discriminant function (FD) [16]. It takes a particular fea-
ture vector candidate, f € RY made of d selected compo-
nents, and determines the vector v that maximizes the
Fisher’s linear discriminant function:

S,y m = m,l
FD(v) = = (1
S, v 5;+ 53

Sy is the between-class scatter matrix and S is the
within-class scatter matrix. After the data points are pro-
jected onto v, the mean pomts of each class, m and m
and the variances, Si and .5'2, can be calculated. By domg
so, the separation of the data between the two classes can
be assessed by (1), as shown in Figure 1. In Figure 1(a), a
representation of the data provided by the bidimensional
feature set has smaller separation with respect to the vari-
ances than in Figure 1(b), i.e. FD(v) is greater in Figure
1(b), where the same data is represented by different fea-
tures (x,, x,), with better classification probability.

In this section, three techniques are presented as alter-
natives to feature extraction applied to the TSA problem:
Sequential Search, Genetic Algorithm and Principal Com-
ponents Analysis.

2.1 Sequential search

This is a very simple feature selection procedure that pro-
duces subsets of input features by evaluating each one sep-
arately using the FD and ranking them in descending
order. The first such d input features are taken as the d-
best out of a total number of n features. Despite of being
very fast and simple to implement, this technique is sub-
optimal and the features thus selected are not guaranteed
to be the best choice for the NN classifier. The 4 best fea-
tures are not necessarily the best d features, that is,
although the features may be good individually according
to the chosen criterion, they may not necessarily form the
best combination. This is because the joint effect of fea-
tures on the discrimination capability is not taken into



Figure 1 Data Separation as Assessed by Fisher Discriminant

account, i.e. the features are assumed independent.

2.2 Genetic algorithm

When the combination of features is considered, and the
dimension of the original input vector, x € R”, is high, the
feature selection becomes computationally demanding.
The GA technique can be used to solve this problem. It is
an optimization procedure to search for the best possible
subset in the features vector [15].

Mimicking the natural evolution concept, the GA uses a
bit string representation for each individual chromosome
of a population of candidate solutions [17,18]. An individ-
ual here is a feature vector. A bit string of zeros and ones
represents a candidate feature vector. Bits ‘1’ represent
which components of the input vector, x € R", are selected
to be part of the feature vector, and bits ‘0’ represent which
ones are eliminated. With the FD as evaluation function
the number of desired features 4 has to be chosen before-
hand, because its monotonicity property determines that
larger sets of features will always have better evaluations
than smaller ones. As a result, the final solution would
always be the complete feature vector, without reduction.
Therefore, in order to evaluate a given feature vector
(selected from the original input features vector), g € R,
k < n, the following fitness function is used:

fitness(g) = FD(g, v) + auk) (2)

FD(g, v) is the same as in (1) and c(k) is a non-negative
scale factor that represents a praise for candidate solutions
with the desired number of features, d (o0 = 0, for k= d).

2.3  Principal Component Analysis

The feature extraction performed by PCA uses the training
set T= {x, ¥}, to find an n by n covariance matrix [19].

The input vectors, x, are linearly transformed to the fea-
tures vectors, f, as

f=0x 3)

where the columns of O are the eigenvectors of the covari-
ance matrix associated with the largest eigenvalues. The
feature vector, in the sense of the minimum square error,
optimally approximates the original input vector, thus min-
imizing the loss of information.

When PCA is used for the classification problem, the
mapping transforms the original input space into a lower
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dimensional space based on the directions of the greatest
variances. This is optimal in terms of representation when
it is desired to have the lowest error when reconstructing
the original data from the reduced space. However, for
classification purposes, the most interesting mapping is the
one for which the difference in the class means is large rel-
ative to the standard deviations, not the ones for which the
standard deviations are large [16].

3. SUPPORT VECTOR MACHINES
CLASSIFICATION

SVMs are nonlinear models based on theoretical results
from the Statistical Learning Theory [10]. This theory for-
mally generalizes the empirical risk minimization principle
that is usually applied for NN training when the classifier
is determined by minimizing the number of training errors.
In NN training, a number of heuristics is traditionally used
in order to avoid overfitting and to estimate a NN classifier
with adequate complexity for the problem at hand. ]
An SVM classifier minimizes the generalization error:
by optimizing the relation between the number of training
errors and the so-called Vapnik-Chervonenkis (VC) dimen-
sion. This is a new concept of complexity measure that can
be used for different types of functions. '
A formal theoretical bound exists for the generalization
ability of an SVM, which depends on the number of train-
ing errors (1), the size of the training set (/), the VC dimen-
sion associated to the resulting classifier (4), and a.chosen
confidence measure for the bound itself (1)) [20]:

R;inf A(In(211 k) + 1) — In(n / 4) -

] ] 4

The risk R represents the classification error expectation
over all the population of input/output pairs, even though
the population is only partially known. This Risk is a
measure of the actual generalization error and does not
require prior knowledge of the probability distribution of
the data. Statistical Learning Theory derives inequality (4)
to mean that the generalization ability of an SVM is meas-
ured by an upper limit of the actual error given by the right
hand side of (4), and this upper limit is valid with proba-
bility 1 = m (0 < N < 1). As A increases, the first summand
of the upper bound (4) decreases and the second summand
increases, so that there is a balanced compromise between
the two terms (complexity and training error).

The SVMs used for two-class problems are based on
linear hyperplanes to separate the data, as shown in Figure
2. The hyperplane is determined by an orthogonal vector w
and a bias b, which identify the points that satisfy w- x + b
= (. By finding a hyperplane that maximizes the margin of
separation, p, it is intuitively expected that the classifier
will have a better generalization ability (Figure 2). The
hyperplane with the largest margin-on the training set can
be completely determined by points that are closest to the
hyperplane. Two of such points are x| and x, in Figure
2(b), and they are called Support Vectors (SVs) because
the hyperplane (i.e. the classifier) depends entirely on
them.

Therefore, in their simplest form, SVMs learn linear
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Figure 2 Maximum Margin Classifier

decision rules

fix)=sign(w x + b) &)
so that (w, b) are determined as to correctly classify the
training examples and maximize p.

For linearly separable data, as shown in Figure 2, a lin-
ear classifier can be found such that the first summand of
~ bound (4) is zero. It is always possible to scale w and b so
that

wrx+b==1 (6)
for the SVs, with

wx+b>+landwx+b<—1 )

for non-SVs. Using the SVs x, and x, of Figure 2 and
Equation (6), the margin can be calculated as

w! 2
P-‘-ﬂ?ﬂ'(-ﬁ- x1)=m (8)

For linearly separable data the VC dimension of SVM
classifiers can be assessed by [10]

2 .
h<min{n, 4‘2 }+1=min{n,D2 lwll2) +1 9
p

where 7 is the dimension of the training vectors and D is
the minimum radius of a ball which contains the training
points. Therefore the risk (4) can be decreased by decreas-
ing the complexity of the SVM, that is, by increasing the
margin- of separation p, which is equivalent to decreasing

w

As practical problems are not likely to be separable by a
linear classifier, the linear SVM can be extended to a non-
linear version by mapping the training data to an expanded
feature space with a nonlinear transformation:
D) = (9,®), .y 0, (x)) € R (10)
where m > n. Then, the maximum margin classifier of the
data on the new space can be determined. With this proce-
dure, the data which are non-separable in the original
space may become separable in the expanded feature
space. The next step is to estimate the SVM by minimizing

Viwy=12w'w (11.1)
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subject to the condition that all training patterns are cor-
rectly classified, that is,
ywd)+b)21, i=1...1 (11.2)
However, depending on the type of nonlinear mapping
(10), the training points may happen to be not linearly sep-
arable, even in the feature space. That means, it will be
impossible to find an SVM classifier that fulfills all the

conditions (11.2). Therefore, instead of solving (11), a new
cost function is used to minimize (4) [10]:

V(w, E)——lw’w+CZ€ (12)

i=1

where [ slack variables ¢, are introduced to allow for train-
ing errors, that is, training patterns for which y, (w‘d)(x) +
b)21-¢, and ¢,> 1. By minimizing the first summand of
(12), the complexrty of the SVM is decreased and by mini-
mizing the second summand of (12), the number of train-
ing errors is decreased. C is a positive penalty constant
that must be chosen to act as a tradeoff between the two
terms.

The minimization of the cost function (12) leads to the
SVM training as a quadratic optimization problem with
unique solution. In practice, the nonlinear mapping (10) is
indirectly obtained by the so called Mercer Kernel Func-
tions, which correspond to’ inner products of data vectors
in the feature space, K(a, b) = ®(a) ®(b),a,b € R"[14]. In
order for this equivalence to be valid, a Kernel function
must satisfy some requirements called Mercer Conditions.
These conditions have limited the number of Kernel Func-
tions applied in practice so far, and the most commonly
used are the Gaussian RBF Kernel

bl
K@, b)y=e °° (13)

and the Polynomial Kernel
K@, b)y=(@ab+ 1)y (14)

where the parameters ¢ and p in (13) and (14) must be pre-
set. Details on the solution of (11} and the final SVM
architecture are shown in the Appendix.

In summary, some nonlinear mapping (10} can be indi-
rectly defined by a Kernel Function (i.e. there is no need
for specifying (10)), for example (13) or (14). The parame-
ters ¢ and p affect how sparse and easily separable the
data are in feature space, and consequently, affect the com--
plexity of the resulting SVM classifier and the number of
training errors. The parameter C also affects the model
complexity. Currently, there are no clues on how to set C,
how to choose the best Kernel Function (the nonlinear
map P) and how to set the Kernel parameters. In practice,
a range of values has to be tried for C and for the Kernel
parameters, and then the performance of the SVM classifi-
er is assessed on each of these values. .

An example of the calculation of the bounds (4) and (9)
is shown in Figure 3, where training and test sets obtained
from transient stability simulations are used. An SVM with
Gaussian RBF Kernel and a very large value of C has been
used so that it could achieve zero training error. For each

engineering intelligent systems
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Figure 3 SVM Risk Bound Evaluation

value of ¢? varying from 0 to 1, the training set has been
randomly split in 10 subsets of the same size. One subset
has been held-out for testing and the others have been used
for SVM training. The procedure is repeated for each sub-
set so that 10 independent values of classification error
could be obtained. The mean and the standard deviation of
these test errors have been calculated and shown as points
of the lower curve in Figure 3. The upper curve is the risk
bound (4) as a function of (9). In this example, it can be
seen that although the risk bound have loose values, it pre-
dicts well the behavior of the SVM classification error, in
relative terms, since the curves are strongly correlated.

In practice, inequality (9), as an estimation of 4, is only
valid when the data are separable (when no training errors
are obtained). For values of C and of the Kernel parame-
ters that result in an SVM with training errors, the estima-
tion of a reliable risk bound (4) becomes practically
impossible.

However, by following the principles outlined in this
section, minimizing (12) and using an independent test set
to evaluate the SVM model, it is expected that a classifier
with good generalization and fast training time can be
found. With all these aspects in mind, a better idea about
advantages and disadvantages of SVMs can be acquired
from their application on the TSA problem.

4. TRANSIENT STABILITY ANALYSIS
TESTS AND RESULTS

This section explains how the feature extraction tech-
niques, connected with MLP and SVM NNs’ training, are
actually applied to obtain power system transient stability
evaluations,

The IEEE 50-Generator system has been used [21] to
generate training and test examples. Different operating
conditions have been created by changing the generation
and load patterns of the system. Each case has been vali-
dated by a load flow execution. For each operating condi-
tion, the same contingency has been simulated in the time
domain using the ETMSP software [22] and the correspon-
ding critical clearing time (CCT) has been determined. The
complete input features set is composed of the active and
reactive powers of each generator and the total active and
reactive loads of the system at the moment of the fault,
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with a total of 102 inputs and 1 output indicating the secu-
rity class.

The feature extraction techniques presented in Section 2
have been run on the training set to reduce the input space
dimension. Besides the complete set of features, reduced
sets have been obtained with d = 50, 30, 20 and 10.

Multi-Layer Perceptrons have been trained with the
Levenberg-Marquardt backpropagation training algorithm
to give security estimations based on binary outputs corre-
sponding to the stable/unstable classes. The classification
of the system as stable/unstable is determined based on a
given security threshold, which represents the realized
clearing time of the contingency. If a given sample output,
i.e. the simulated CCT, is above the threshold, the input
state is considered stable, otherwise it is unstable.

SVMs have also been trained on the examples with
binary outputs to indicate the stable and unstable classes.
A Gaussian RBF Kernel has been used and the values of

o?and C have been sought in a heuristic manner. The soft-
ware SVMUEM has been used [13].

Figure 4 presents Receiver Operating Characteristic
(ROC) curves of the SVM performance on the test, set after
it has been trained with the complete set of 102 input fea-~
tures. The false dismissal rate on the x-axis is the ratio of test
points that have been incorrectly classified as stable. The
detection rate on the y-axis is the ratio of stable test points
that have been correctly classified. Several SVMs have been
trained with increasing values of 6% and the corresponding
values of the detection and false dismissal rates are shown in
Figure 4. These are two conflicting values that increase
together for a fixed value of C and increasing o2, Values of C
=0.1, 1, 10, 100, 1000 and 10000 have been tried. The solid
line in Figure 4 corresponds to the SVM with C = 1. The
dashed line corresponds to the SVM with C = 10, 100, 1000
and 10000, which show the same results. The curve for the
SVM with C = 0.1 is not shown in Figure 4 due to the differ-
ence in scales. It presents much higher values of false dis-
missal rates, going as far as 0.08 and lower values of
detection rate than the curves shown in Figure 4. In a cross-
validation procedure, ROC curves like these can be drawn
for performances of held-out test errors, and values of C and
o can be identified according to a desired value of false dis-
missal rate to choose the best SVM, which is something criti-
cal in the TSA application. For any classifier it is desirable
that the detection rate is maximized and the false dismissal

Detection Rate
e
n

0 0.005 0. 0.01% 0.02 0.025
False Dismissal Rate

Figured SVM ROC Curve



rate is minimized for complete or reduced features sets.

An MLP has also been trained on the complete set of
102 features, but an ROC curve like the one of Figure 4
cannot be drawn to show the performance on the test set.
The number of factors affecting its performance is large
and interelated.

The SVM training time with 1400 training examples
ranged from 27 seconds to 63 seconds in a Pentium 233
MHz, depending on ¢2. The value of C has not affected the
training time significantly. The MLP training time with
1400 training examples and 5 neurons in the hidden layer
was 40min42sec.

Next, SVM and MLP classifiers have been trained on
reduced features sets. For the MLP, a cross-validation
training has been performed until the test error started
increasing or stopped decreasing.

The results of transient stability classifications using both
models of NNs are shown in Table 1. It shows specifications
of the input features, the detection rate, false dismissal rate,
error rate (ratio of test points which have been incorrectly
classified), training time and number of SVs. For SVMs
trained with different features sets, ROC curves have been
drawn for different values of C. Then, for the values of C
that resulted in the best ROC curves, fixed values of false
dismissal rates have been set: 0.01, 0.02 and 0.03: The cor-
responding: values of o resulted in the models SVM-0.01,
SVM-0.02 and SVM-0.03, shown in Table 1. These three
models have shown the best results with C= 1. SVM-102 is
the SVM classifier with 102 inputs and the lowest error rate.
For the MLPs, MLP-102 is the model with 102 inputs,
MLP-1 is the model with the lowest error rate and MLP-2 is
the mode] with the smallest training time.

Table 1 shows. that the adequacy of feature extraction
techniques depends on the classifier, as expected. SVM-
0.01 has performed better with the 50 features obtained by
the d-best technique. SVM-0.02 and SVM-0.03 performed
better with the 30 best features. MLP-1 has had the lowest
error rate with the 50 best features, and MLP-2 has had the
smallest training time with 10 features. Among the three
feature extraction techniques, the GA has resulted in the
10 feaures with the best performance.

In this application, MLPs and SVMs have had the best. -

performances with 4 = 30 and d = 50. With this reduction
rate, the sequential search feature extraction performs bet-
ter than the others. It is very difficult for genetic algo-
rithms to explore the large number of features
combinations when the reduction is from 102 features to
30 or 50. However, when the reduction is from 102 to 10
or 20, the number of feature combinations is smaller so
that the GA feature extraction provides better performance
classifiers. For larger power systems, the final choice will
depend on the trade-off between classification accuracy

Table 1 IEEE 50-Generator System Transient Stability Classifications

and training time. .

MLP-102 and SVM-102 have aimost the same perform-
ance, but the second model’s training time is extraordinari-
ly lower. MLP-1, with 50 input features, has slightly better
performance than SVM-0.03, with 30 features, but the sec-
ond model’s training time is also much lower. It could be
noticed that the MLP training time has dramatically
increased with the number of input features and the num-
ber of hidden neurons. .

When o? approaches the value of best generalization for
the SVM classifier, the number of SVs decreases. It could
be noticed that the SVM training time depends on the
number of input features, on the value of 62 - and on the
number of SVs of the resulting classifier. From Table 1,
SVM-0.03 is the SVM model with the lowest test classifi-
cation error, lowest training time and lowest number of
SVs. SVM-0.02 and SVM-0.03 have the same number of
inputs but different training times because different values
of 62 have been used.

5. CONCLUSIONS

This paper shows that the SVMs are a new NN model that fits
the TSA application. It provides a different strategy to tackle
the curse of dimensionality, regarding computational effort,
because of very low training times compared to MLPs.

In this application, the reduction on the number of fea-
tures from 102 to 30 and 50 resulted in classifiers with the
best performances. The accompanying reduction in the
sparsity of the data has turned the training process into an
easier task. On the other hand, larger training sets could be
used for SVMs to improve the performance, while the
training time would not be considerably increased.

The SVM model allows a good understanding of its the-
oretical details, as shown in Section 3, and this can be used
to identify the important parameters for the classifier. In
particular, improved search strategies for 62 and C (in the
case of RBF Kernel), and different types of Kernel func-
tions should be tried. Future research will focus on adi-
tional feature extraction techniques for MLP and SVM
NNs, which consider nonlinear relations included in the
data, feature extraction techniques customized for SVMs,
and will explore different Kemnel functions for SVM train-
ing, applied to TSA of large power systems.

APPENDIX

The computation of the decision boundary of an SVM, f(x)
= sign(w'®(x) + b), for the non-separable case consists in
solving the following optimization problem [10]:

MLP-1

SVM-102 SVM-0.01 SVM-0.02 SVM-0.03 MLP-102 MLP-2
Input Features 102 50-BEST 30-BEST 30-BEST 102 50-BEST 10-GA
Detection Rate 0.82 0.74 0.85 0.85 0.91 0.95 0.92
False Dismissal Rate 0.026 0.01 0.02 - 0.03 0.021 0.023 0.024
Error Rate 0.047 0.08 . 0.086 0.043 0.047 0.036 0.046
‘Training Time 37 seconds 57 seconds 34 seconds 12 seconds 40mind42sec  11min24sec 1min42sec
No. of SVs 433 1308 1065 298 - - -
210 engineering intelligent systems



1 1
minimize: V(w, €)= > wiw+C X g
i=1
subject to: y (w'd(x) +b) 2 1 - €,

i=1,..,! (15)

£>0, i=1,..,1

Instead of solving (15) directly, it is much easier to solve
the dual problem (16), in terms of the Lagrange multipli-
ers, oci[loj:

i 1 [
minimize: Wa)=— X o, +5 X X ¥ 00D Y Dl )

L

[\

1 i=l j=1

i 1Lt
=-3 o+ I Y yyeoKix, x)

i
i=1 i=l j=1 !

{
subjectto: 2 you=0and 0o, £C, i=1,..1(16)

i=1

which is a quadratic optimization problem. From the solu-
tion, o, i = 1, ..., [ of (16) the decision rule fix) can be
computed as [10]

flx) =w'd(x) + b= i oy, O(x Y P(x) + b
=1
(I

IM-.

oyKx,x)+b
1

The training points with o, > 0 are the SVs, and (17)
depends entirely on them. The threshold & can be calculat-
ed using (6), which is valid for any SV:

b=yg5 — wd(xg) (18)
An SVM can be represented as in Figure 5, where the num-
ber of units K(x, x,) is determined by the number of SVs.
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