Neural Network Training for Varying Output Node
Dimension

Jae-Byung Jung

1) M.A. El-Sharkawi!, R.J. Marks II*, Robert Miyamoto?,

Warren L.J. Fox'?, G.M. Anderson?, C.J. Eggen?®

Abstract

Considered is the problem of neural network supervised
learning when the number of output nodes can vary for
differing training data. This paper proposes irregular
weight updates and learning rate adjustment to com-
pensate for this variation. In order to compensate for
. possible over training, an e posteriori probability that
shows how often the weights associated with each out-
put neuron are updated is obtained from the training
data set and is used to evenly distribute the oppor-
tunity for weight update to each output neuron. The
weight space becomes smoother and the generalization
performance is significantly improved.

Key Words: layered perceptron, training, neural net-
works, learning rate.

1 Introduction -

Multilayer perceptrons (MLP’s) typically use a fixed
network topology for all training patterns. We con-
sider the case where the dimension of the output can
vary from training pattern to training pattern. Let the
input-target output training data be {i[n],|n]|1 < n <
N}. By different output dimensionality, we mean the
dimensions of the output vector, |n], can vary as a
function of n. We assume the dlmensmn M{n], of each
output is known.

A modular neural networks structure [1][2][3] contain-
ing local experts for different dimension-specific train-
ing patterns can be applied to this problem. Here, each
component neural network is trained with the subset
of data corresponding to a fixed number of outputs. It
becomes increasingly difficult, however, to implement
a large number of neural networks for a large number
of experts in the absence of ample training data.

If a single neural network is to be used for the problem

1University of Washington, Computational Intelligence Appli-
cations Laboratory, Department of Electrical Engineering, Seat-
tle, WA. 2Applied Physics Laboratory, University of Washington,
Seattle, WA.

0-7803-7044-9/01/$10.00 ©2001 IEEE

1733

the output must be made sufficiciently large to han-
dle the longest of target vectors. Let M = max,M|[n].
We define a new output vector set of length M with
elements, 7[n], as the vector concatination

iln] }

tDC [n]

= ¢ 1)

where the vector £pc[n] (the DC is for don’t care), of
length M — M[n], corresponds to output values not in
the active region. If the nth output is partitioned into
ACTIVE, and DON’T CARE,, then (1) can equivalently
be written as

(7n)),
{ tm[n]
(2)

(tpclnl), .

One approach when using a single neural network is
filling ch[n] with arbitrary numbers and using con-
ventional training. The problem, however, is that the
vectors 7[n], may contain components {pc[n] that sig-
nificantly and undesirously affect the generalization of
the trained neural network. An alternate approach is
therefore required.

- Tm[n]
;m € ACTIVE,
;m € DON’T CARE,,

2 Don’t Care Training Data

For don’t care training, the partition of the output,
varying for each training data pair, is that in (1). The
input representation is augmented. The first compo-
nent, z[n] of the augmentation contains the conven-
tional input training data. The second component,
ipcn), dubbed the don’t care input, contains charac-
terization and statistics of those output values with a
“don’t care” status. The assignment of each output
neuron to either {p¢ [n] or ﬂn], for example, is deter-
mined by ipc[n]. The dimensions of tln] and tpcln)
vary with n as dictated by ipc[n]. The dimensions of
ipc[n] and i[n] are static. The don’t care input is not
used as conventional neural network input data but,
rather, is used in

Figure 1: The neural network training architecture.

e training to alter learning parameters as a funtion
of n, and-

e testing to specify which of the output neurons
have don’t care values and therefore should be ig-
nored. ‘

3 Step Size Modification

During error backpropagation training, the weights
‘connected to the don’t care output neurons are not up-
dated while other weights are updated with a modified
step size. An empirical a posteriori probability show-

ing how often the weights associated with each output

neuron are updated is obtained from the training data
set and is used to give even amount of opportunity for
weight update to every output neuron. The empirical
probability of weight update associated with the mth

output neuron is defined as the ratio of the frequency -

of weight update associated with the output neuron
m, denoted by f,[m], to the total number of training
patterns, N.

polm] = Lol

It is reasonable to give a large gain to the weight that
has less opportunity of correction. Thus, the step size
‘modification (SSM) is defined by

% - L~ ; for active output neurons
no, = 0 ; for don’t care output neurons
" = 9 ; for all other neurons
®3)
where 7 is a global learning rate used for the weight

update of ordinary error back propagation, 79, is the
modified learning rate for the weights of output neuron

nth training pattern vector is used to take the instan-
taneous sum of squared errors of the network.

A commonly used variation is batch-mode learning.
The nth pattern is evaluated to obtain the deriva-
tive terms, algfun), which are summed to obtain the
total derivative, $Z >N a—ggﬁ, used in batch
mode training. For don’t care training, the sum is
gk = 2t [neActive,. %ﬁ. The step size is modified
to

{ Ao, p—o[""—l] for every output neuron m
A o= q otherwise
where 7 is a global learning rate used for the batch-

mode weight update of ordinary error back propaga-
tion, 72, is the modified learning rate for the weights
of output neuron m and A" is the step size for all other
weights.

The mean squared error (MSE) is obtained by sum-
ming E[n] over all n and then normalized with respect
to the set size N [5],(6]. Specifically

>

me ACTIVE

E(n) = (tmln] — om[n])?,

[ST

and
1 on
Ense = 37 2 E(n).
n=1
The MSE, however, is an inappropriate represention of
training error for variable output dimensionality. For
don’t care training, rather, the average mean squared

error (AMSE), representing the mean squared error per
each output element, is more appropriate.

N E(n)
i foln]’

1
EAMSE = (4)

An output neuron, even when sparsely used, is repre-
sented equally in the composite error totally.

4 Performance Contrast: A Sonar Example

Sonar data corresponding to various environmental
and sonar control parameters was generated from
an computationally intensive acousic model. The
ensonification! map is arranged in a 75 (range) x 20
(depth) pixel image.2 There are therefore (a maximum

of) 1500 = 75 x 20 values for each training data pair

m and n" is the step size for all other weights. The dif- -

ference between the target output value, t[n], and the
actual output, o[n], of neuron n included in ofn] at the

1734

1 As measured by the acoustic transmission loss. More details
about the acoustic emulation are in Jensen et.al.[7].

2The range is from zero to 75 km. The depth is from zero at
the surface to 0.5 km. Sampling is uniform.

o

output. The bathymetry (e.g. the shape of the ocean’s
floor) is one of the environmental parameters varied.
When a neural network is trained with the ensonifi-
cation map as output, neurons asigned to pixels ly-
ing below the ocean bottom cannot be ensonified and
are therefore classified as don’t care output neurons.
Twenty eight environmental and control parameters,
detailed in Table 1, were used as inputs. A total of
5000 input-output profiles were used in the training of
the neural network and 3000 were used to test.

The comparison of typical training performance with
the algorithms using fixed arbitrary numbers and
smearing method as stated earlier is shown in Figure 2.
Don’t care training invariably outperforms the other
algorithms in terms of training error as well as con-
vergence time. Figures 4 and 5 illustrate testing ex-
amples where the neural networks and their absolute
errors are compared with the desired values. Points
below the bathymetry correspond to unspecified out-
put nodes ascribed a don’t care status for this specific
pattern. The plot labeled Target is desired ensoni-
fication map, NNA is the neural network trained us-
ing arbitrary fixed numbers, NNB is the neural net-
work trained smearing, and NNC is the neural network
trained by the SSM training technique and the ASME
error in (4). The output nodes adjoining unspecified re-
gion have big errors in NNA, whereas NNB improved
this problem significantly. However, NNB still has a
big error on the rest of the region. If we take a look
at maps on the right hand side column illustrating ab-
solute differences, it is obvious that NNC, in terms of
final accuracy, outperforms the other two techniques.

5 Conclusion

A novel neural network learning algorithm for data sets
with varying output dimension is proposed in this pa-
per. The possible memorization problem caused by ir-
regular weight correction is avoided by employing step
size modification.

Acknowledgments

This work is supported by the Office of Naval Research.

References

[1] R.A. Jacob and M.I. Jordan, “Hierarchical Mix-
tures of Experts and EM Algorithm”, - Neural Com-
putaion, Vol.6 pp. 181-214, 1994.

1735

2] R.A.Jacoband M.I. Jordan, “Learning Piecewise
Control Strategies in a Modular Neural Network ’ar-
chitecture”, IEEE Transactions on System, Man, and
Cybernetics, Vol.23, No. 2, pp. 337-345, 1993. Addison-
Wesley, 1989.

[3] Bart L.M. Happel and Jacob M.J. Murre, “De-
sign and Evolution of Modular Neural Network Archi-
tecture”, Neural Networks, Vol.7, Nos. 6/7, pp. 985-
1004, 1994.

[4] Sherif Hashem, “Optimal Linear Combinations
of Neural Networks”, Neural Networks, Vol.10, No. 4,
pp. 599-614, 1997

[5] S. Haykin, Neural Networks, IEEE Press,
1994.

[6] R.D.Reed and R.J. Marks II, Neural Smithing
: Supervised Learning in Feedforward Artificial
Neural Networks, MIT Press, 1999.

[7] C.A Jensen, R.D. Reed, R.J. Marks II, M.A. El-
Sharkawi, Jae-Byung Jung, R.T. Miyamoto, G.M. An-
derson, C.J. Eggen, “Inversion of feedforward neural
networks: algorithms and applications”, Proceedings of
the IEEE, Volume 87, Sept. 1999, Pages: 1536 -1549

Treining Comparison
0.015 T

T Fixed (o
Smearing t .
—~~ Dont Care w/o SSM
—— Dont Care with SSM
i
0.01 3} B
|
i
=2 N\
5 N
1 N - ‘_
0.005 [el J
\ -

o 1000 2000 - 3000 4000 5000 6000
Iterations

Figure 2: Training performance comparisons with other training algorithms where pixels below the bathymetry are treated
differently. The top curve corresponds to fixing the don’t care pixels to arbitrary values. The next plot, corre-
sponding to a sequence of dots, results from replacing column of pixels under the bathymetry equal to the deepest
pixel value in the column. We dub this procedure as smearing. The second plot from the bottom, shown as a
broken line, is for don’t care training without SSM. The bottom solid plot is don’t care training with SSM.

x 107 Testing Comparison

~~- Dont Care without SSM
—— Dont Care with SSM

o 1000 2000 3000 4000 5000 68000
Iterations

Figure 3: Test error for don’t care training with and without SSM. Both cases used Ep\gE in (4). The results of 5%,
shown here, are typical for this problem.

. ' . 1736

Nl

i

107

15

=20

10

5

2o

20

20

Absolute Error(NnN,)

20 40 60
Absolute ErfrortNiNg)

20
Absoluta

R AT

20

Absolute Error{NMN)

20 a0 60

o <0 60
Absolute Error(NNC)

[u—_ "m

LR
sme,

.

20 40 60

Figure 5: Neural network performance comparison using a testing pattern.

1737

Table 1: Environmental and control parameters used as inputs to train the neural network.

2
©

Input parameter
Transmitter depth [m]
Receiver depth [m]
Pulse Length {g]
Bandwidth [Hz]

Center Frequency [Hz]
Total Noise [dB]

Target echo duration s
Wind speed [m/s]

9 | Volume scattering strength [dB/m]
10 | Bottom type, grain size|mm
11 | Bathymetry 1 (bottom depth at sonar) [m)]

12 | Bathymetry 2 (bottom range in the middle) [m]
13 | Bathymetry 3 (bottom depth in the middle) [m)]
14 | Bathymetry 4 (bottom depth at 15 km) [m]

15 | Sound speed at surface [m/s] '

16 | Sound speed at 10 m [m/s
17 | Sound speed at 20 m [m/s
18 | Sound speed at 30 m {m/s
19 | Sound speed at 50 m [m/s
20 | Sound speed at 75 m {m/s
21 | Sound speed at 100 m [m/s
22 | Sound speed at 125 m [m/s
23 | Sound speed at 150 m [m/s
24 | Sound speed at 200 m [m/s
25 | Sound speed at 250 m [m/s
26 | Sound speed at 300 m [m/s
27 | Sound speed at 400 m [m/s
28 | Sound speed at 500 m [m/s

OO 3| O U] x| 2| DO =

1738

