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ABSTRACT

A sensor array can generate interdependent readings among
the sensors. If the dependence is sufficiently strong, the
readings may contain redundancy to the degree that the
readings from one or more lost sensors may be able to be
accurately estimated from those remaining. An
autoassociative regression machine can learn the data
interrelationships through inspection of historical data. Once
trained, the autoassociative machine can be used to restore
one or more arbitrary lost sensors if the data dependency is
sufficiently strong. Recovery techniques include alternating
projection onto convex sets (POCS) and iterative search
algorithms.

Key Words: POCS, neural network, auto-encoder, sensor
restoration, autoassociative regression machine.

1. INTRODUCTION

Consider the case where a plurality of sensors produces
readings cross associated in a possibly nonlinear manner.
In certain scenarios, these readings may be related in such
a way as to allow restoration of one or more lost readings
from those remaining. In many important cases, the
sensor readings are related. Consider the simple case, for
example, when a plurality of temperature sensors are
placed in close proximity at various locations in an open
room. Let one or more of the sensors fail. If the sensor
readings are sufficiently dependant. Missing sensor data
(MISED) restoration can estimate the readings of the
failed sensors by recognition or discovery of a constraint
placed on the historical readings from the sensor bank.
Empirical discovery of such constraints from a historical
database and their use in failed sensor reading restoration
is the focus of this paper.

Constraint imposition on data sets is commonly
assigned to a human expert charged with data set
modeling. From the physics of the data generation or
other process limitations, the expert can heuristically
impose constraints. Examples of constraints imposed on a
sensor bank array include minimum phase, symmetry,
band limited, strictly increasing and non-negativity
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constraints. Model imposition of constraints allows

powerful representation of data generated by the sensor

bank. In contrast to model (or expert) constraint

declaration, we propose to let the sensor data discover its

own constraints. In many important cases, empirical

constraint discovery

1. Can be used on data bases where no modeled set
constraint is obvious,

2. May discover new subtle but important data
constraints and

3. Will generally result in more restrictive and accurate
constraints than is the case with expert constraint
imposition.

Data set constraints imposed either empirically or by

expert allow data set element representation in a lower

dimension.  Doing so, in many important cases, lets

values of failed sensors be accurately estimated from

those sensor readings remaining.

A common characteristic of a constrained data
set is the ability to represent the set using fewer degrees of
freedom. As an example, bandlimited vectors have
discrete time Fourier transforms that are identically zero
over a spectral interval. This property can be used to
reduce the degrees of freedom of a bandlimited vector’s
representation. The reduced degrees of freedom can be
used to form a constraint bottleneck wherein constraint set
members pass unaltered. The bottleneck for a bandlimited
signal, for example, is a low pass filter. This bottleneck
can, in many important instances, be used to interrelate
sensor readings and, in certain cases, restore missing
readings from those available.

2. ALTERNATE APPROACHES TO MISSING
SENSOR RESTORATION
State estimation is commonly used to identify state
variables that are not accessible for direct measurements.
The technique can be modified to the estimate missing
sensor values. These model-based approaches have been
investigated in various forms over three decades [19].
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To estimate the data of the
missing sensor, the state estimation
method is configured to identify
specified systems states using the
information from the healthy sensors
only. The known states are used to
estimate the data of the missing
sensors through direct query of the
system model. This process is not
robust and the solution can be
unfeasible for real system applications.
Often human intervention is used to

encoder [36]. This is illustrated in
Figure 1. The resulting regression
machine provides an identity
mapping for the sensor database.
Specifically, let there be P sets of
sensor training data,

{fp IISpSP}. The auto
associative regression machine is

trained to produce an identity
mapping for the training data.

Specifically, we train f () so

interpret and subsequently modify or
reject the state estimator data.

There exist related methods of
estimating readings of missing sensors
that deviate from the problem we
consider. Adapting system

Figure 1: An auto-encoder produces a
mapping G = f(§) that reduces to an

identity, § = ]‘(3“ ), when data from the

sensor database is input.

that /(7P)=7Pj1<p<P. In
doing so, the data is run through a
bottleneck wherein the degrees of
freedom are less than that of the
data dimension. If the input can be

performance in the presence of failed sensors [8,24], for
example, requires knowledge of the desired system
response.  Variations of this approach include the
Papoulis-Gerchberg, Gerchberg-Saxton, Fienup and
related algorithms [6, 16, 19, 22].

4. DATA DEPENDANCY

Data dependency can be exploited to restore failed sensor
readings. In the example of the closely spaced sensors,
temperature readings will vary smoothly and readings
from adjacent sensors can be used to restore those from
failed systems. When the sensors outputs are related,
missing values can possibly be restored as a function of
those that remain operational as, for example, missing
signal samples from a bandlimited signal [10, 18, 20, 21]
or an image [5, 22]. Armitage & Lo [2], building on the
work of Ahmad & Tresp [1], recognized the robustness of
neural network performance is potentially due to the
interrelationship among the training data. They propose
use of missing value indicators to estimate missing
sensors rather than placing the missing sensor values
directly to zero. Conventional Bayesian analysis [1,28]
and clustering [27] can also be applied.

Let the bank sensor values be {s,| 1< n < N} and
be represented in the vector . We propose
determination of the relationship among sensor outputs
using a sensor database applied to an autoassociative
regression machine with input/output relation, & = f(5),
trained using supervised learning. Rather than provide
values only sufficient to maintain proper plant control, we
propose to estimate the actual failed sensor data reading.
The approach is applicable when target control
performance is unknown or otherwise not available.
Motivated by the similar representation in vector
quantization, the unity mapping is dubbed arn auto-

0-7803-7278-6/02/$10.00 ©2002 IEEE

reconstructed from the reduced
data set, an empirical constraint of the data set has been
discovered. Doing so is the first step in MISED
restoration.

A commonly used method of discovering
constraints is singular value decomposition. The well-
known auto-encoder neural network [3, 36] illustrated in
Figure 2 can perform a commensurate operation. A
neural network is trained to reproduce the input training
data at the output. Since the process is run through a
bottleneck in the hidden layer containing fewer than the
number of inputs, the numbers of degrees of freedom has
been decreased.

Although the encoder in Figure 2 uses sigmoid
nonlinearties, the results are often commensurate with
those obtained using a totally linear processor [15]. Ina
strictly linear model, the encoder in Figure 2 learns to
perform a projection operation onto a subspace spanned
by the training data.

As is illustrated in Figure 3, multiplying an
arbitrary vector by the projection matrix results in a vector
on the linear manifold (a.k.a. subspace) formed by the
span of the data in the training data set [14]. The trained
encoder in Figure 2 is more robust than results from direct
computation of the projection matrix'. If, for example,
one of the points in Figure 3 is moved slightly off the
manifold (line), the data matrix becomes full rank and the
projection matrix becomes a useless identity matrix. The
encoder in Figure 2, on the other hand, identifies the best

lDenote the library of training data by the N x P data library matrix as a
concatenation of all of the training data vectors as
T= Fl :;2 :?3 et P ;P . The projection matrix onto the
linear subspace spanned by the data is P=T(T  T)'T" {17).
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manifold when training vectors lie slightly off the
defining manifold.

Use of the projection theorem is a standard
approach to estimate a set of values known to lie on a
specified manifold [14]. Kohonen [12] proposes
projection as an approach to associative memories. In
Figure 2, the training data represents noiseless data.
Given noisy data, 5, the best solution is the projection of
the noisy data onto the manifold. This results in P 5 .

6. MISED RESTORATION: THE LINEAR CASE
When sensor values are restricted to a linear manifold,
values of one
or more

~

Ui
-~

w

missing sensor readings can be reconstructed from those
remaining.

6.1 POCS. One approach to restoration of the missing
sensor reading is through the method of alternation
projection onto convex sets (POCS). POCS has been
applied to tomography [19], biomagnetic field
reconstruction [25], signal analysis [26], image
processing, radiography [13], holography [16], neural
networks [38], and signal restoration [32].
For the failed sensor restoration problem, a two
dimensional illustration of POCS is shown in Figure 4.
The discussion to follow, however, is applicable in any
dimension. There exists more complete developments and
generalizations of POCS elsewhere [19]. Our purpose

here is to provide a basic understanding
of the performance of POCS and
illustrate its potential usefulness in the
MISED restoration.

The linear manifold in Figure
4 on which the training data lie is
dubbed 3. The vector containing sensor
data to be restored is denoted by the

Gy

s, vector f (for find). Clearly, the

Figure 2: The auto-encoder neural
network with a single hidden layer
performs feature reduction in a manner

similar to principal component analysis. training data set.

Figure 3: The projection matrix
projects the arbitrary vector, § , onto
the linear manifold defined by the

unknown f €3. The vector of sensor

readings, with the failed sensor readings
set to zero, is denoted by g (for given).

The first step is to project the given

vector onto the linear manifold defined

by the training data. The result after
step @, illustrated in Figure 4, is P g .
This vector, however, cannot be the
restoration because the vector entries
corresponding to working sensors do
not contain the correct readings.
Step @, then, is to replace these
vector components with the known
correct values. The operation of
replacing these vector components
with the measured values while

2 3 f
N
- €) o
PRP & RPRP | &
€)
- 2 -
Ps ) RP3
@ perform the POCS operation illustrated in Figure 5.

S

Figure 4: Alternating projections onto
convex sets (POCS) illustrated for two
intersecting planes. By alternatingly
projecting between the subspace labeled
3 and the plane labeled R, convergence
is to a point common to the intersection

of both.

Figure 5: Using a trained autoassociative encoder to

The two top input nodes, on the left, correspond to
two missing sensor values. The remainder of the
g input nodes are fed the values of the operational

sensors recorded in the g vector. The output of the

top two nodes are fed back to the input with unit
gain. The known inputs continue to supply the
values obtained from the working sensors. Through
POCS theory, the top two nodes will converge, under
general conditions, to the values that would have
been recorded by the failed sensors.

retaining whatever values are in the
failed sensor location is denoted by
R. The set of all vectors containing
the measured values of the working
sensors with arbitrary entries
corresponding to the failed sensors
forms a linear variety (plane), ¥,
illustrated in Figure 4 by a vertical
line. The operator, R, projects onto
the set &¥. The result of step @,
after replacing the appropriate
vector components to the correct
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values is, as shown in Figure 4,
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RP g . The projection is repeated in step @ followed by

insertion of the readings from the working sensors in step
@, The iteration is repeated. The final destination of the
iteration is the intersection of ® and I which is, of course,
the vector containing correct values for the failed sensors,

/-

Reconstruction criteria can

failed
sensor
readings

generalization approach or alternate search technique is
more appropriate. The linear algorithm for restoration of
readings of failed sensors can be extended to the nonlinear
case. The steps are as follows.
1. Using training data, discover constraints among the
readings of the sensors.
2. When sensors fails, restore them by requiring the
restored vector of sensor values
(2) adhere to the discovered constraint,
and '
(b) agree with the readings from the
operational sensors.
In many important cases, the solution is
unique.

3.10uUd]

There are two  general
methodologies we propose for restoring
the readings of failed sensors. The first is a
generalization of the POCS approach proposed for
the linear case. The second is based on application
of known optimization procedures.

7.1. Generalized POCS Approach: A procedure

based on a generalization of POCS is illustrated in

Figure 6. The encoder of Figure 1, trained from

to increase the convergence rate.

Figure 6: Illustration of restoring readings of failed sensors using a generalization of
POCS. For an arbitrary set of failed sensors, the iteration will converge to the unique

solution if the operation, [ (§ ), is contractive. The feedback iteration can be regularized

sensor data using supervised learning,
performs the operation f(s). The

readings from the operational sensors
serve as a continuous input to the system.

be established for two or more nonlinear convex sets’.
Alternatingly projecting among two or more sets with
nonzero intersection will result in convergence to a fixed
point lying in the intersection of the sets’. Methods to
accelerate convergence are available. For the problem
illustrated in Figure 5, for example, three or more working
sensors will generally suffice to restore the values that
would be read from failed sensors. Convergence of
POCS, as described in this example, is linear. For
elaboration and details POCS properties, see Marks [19].

7. GENERALIZED RESTORATION OF LOST
SENSOR READINGS FROM DISCOVERED
CONSTRAINTS

There will be data sets where the discovered constraints
do not correspond to convex sets. In such cases, a POCS

2 A set, @, is said to be convex if X € P and
je®sai+(l-a)ye® forall 0<a <1.

3 The linear solution of POCS outlined in the previous
section can be couched as simultaneous solution of a set

of linear equations [Shum et al.]. This is not the case for
more general cases of POCS.
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Values of the input corresponding to the
failed sensors are initially given values of zero. The
outputs corresponding to the lost sensor readings are fed
to the input.

A useful criterion for unique and stable
convergence of the iteration in Figure 6 rests on the
concept of contractive and nonexpansive operators [1].
An operator, ®, mapping RY—>R", is contractive if, for
all vectors X and y , it follows that || @% - @y ||<| X - ¥ ||,

where ||-|| denotes the ¢, norm. In other words, the vectors
X and ¥ are farther apart than the vectors @X and ©y .
The operator is nonexpansive if || @% ~ @y ||<|| ¥ - 7 ||. The
vectors X and J are thus at least as close as @X and
©y. For

Xp4 =OX,, ¢y
let the fixed point of convergence, if it exists, be denoted
by X, = lim X, . When © is contractive, there is a

n—>0
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unique fixed point that is independent of the
initialization.*
This is the unique solution to [14]

¥ = OX, 2
For nonexpansive operations, on the other hand, the
iteration in Equation (1) depends on the point of
initialization of the iteration and can converge to a
plurality of fixed points. Equation (2) thus has
numerous solutions.

The projection operators O=P
and O=R illustrated in Figure 4 are
examples of nonexpansive operators. The
composite operator, ©=RP, is likewise
nonexpansive. POCS, as illustrated in
Figure 4, corresponds to application of
Equation (1) for @=RP.
Figure 4 meet at a single point, convergence will be
unique despite the fact that the composite operation
is nonexpansive.

In Figure 6, the operator of one iteration is

X =Rf(F). (3)

Since the encoder has been trained to generate
an identity operation for all sensor training data,

(2) does not have a unique solution.
Therefore, f(x)cannot generally be
contractive. It can, however, be

nonexpansive. Since R is nonexpansive,

the composite operation, ®, defined il

G

used, the operator, S, is nonexpansive. The eigenvalues
of the weight matrices will reveal them as nonexpansive.
Imposition of a nonexpansive disposition through weight
control in training [36] is a viable goal towards
establishing the ability of this network to perform MISED
restoration.

7.2. Finding Missing Readings Using Search
Techniques: Missing readings from failed
sensors can also be achieved through
application of search techniques. A
generalized approach is illustrated in Figure

8. Using known sensor readings as a subset
of the input, the input and output of the

encoder are examined. The difference is

for the missing inputs commences with the goal of
assuring the input and output match to a prespecified
degree of precision.
There are several search algorithms
applicable to this problem [36]. Of greater interest
is the manner that the training of the encoder can
be related to this search. In POCS, for example,
encoder training resulting in a nonexpansive
apping is important for the subsequent POCS
restoration phase. = We anticipate similar
relationships between the encoder training
and the missing sample search will be
important in the approach illustrated in
Figure 8. Care must be taken, for example,

by Equation (3), is nonexpansive
if f(¥) is a nonexpansive
operator. Once trained,
determination of the status of

Figure 7: A multiplayer perceptron with a plurality of

hidden layers is trained to form the & = f(5)
mapping- an identity mapping for the training data.

to train the encoder so that false
minima are avoided.

8. CONCLUSIONS

f(X) as being nonexpansive is important to the stability of

iterative restoration of the failed sensors readings.
We here give an outline on determining whether

f(¥) might be contractive or nonexpansive in the case
where the constraint relationship is learned in a neural
network of the type illustrated in Figure 7. If there are L
layers (the input is not counted as a layer), the mapping
can be written as

G =fE)=8SW,. SW, S;W,$W,s 4

where W, denotes the matrix of weights to the /th layer
and S, is a vector operator that subjects each element of
an input vector to a sigmoid nonlinearity. If either of the
conventional nonlinearities, tanh(-) or [1+exp(-(-))]", are

* A simple contractive operator example for positive
argument in R' is ©®x=e*. For all initializations, the
iteration in (1) converges to x,,=0.5671439...
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Sensor readings in a restricted environment can have
readings relating to each other in such a matter that
missing readings from a set of failed sensors can be

restored from the readings of those remaining. When
supplied as in input to a process or other control system,
operation will still be possible. Overall performance will
degrade gracefully.

Discovery of data constraints can be achieved by
training an auto-encoder. The trained encoder can then be
used to restore lost readings from failed sensors. This is
achieved through either application of a POCS type
algorithm or a more conventional search.

Our preliminary study suggests that solid theory
exists for the case where data are linearly related. More
powerful performance may exist for nonlinear relations.
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