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ABSTRACT

Wireless multicast/broadcast sessions, unlike wired net-
works, inherently reaches several nodes with a single trans-
mission. For omnidirectional wireless broadcast to a node,
all nodes closer will also be reached. An algorithm for
constructing the minimum power tree in wireless networks
was first proposed by Wieselthier et al.. The broadcast
incremental power (BIP) algorithm suggested by them is
a “node-based” minimum-cost tree algorithm for wireless
networks. We propose an alternate search based paradigm
wherein minimum-cost trees in wireless networks are found
through a search process. Two computationally efficient
procedures for checking the feasibility (viability) of a so-
lution in the search space are presented. A straightfor-
ward procedure for initializing the search using stochasti-
cally generated trees is also proposed.

1. INTRODUCTION

For a given node constellation with an identified source
node, the minimum power wireless broadcast problem is
to communicate to all remaining nodes, either directly or
hopping, such that the overall instantaneous transmission
power consumed by the network is minimized. Although
previous work in this area focuses on a “link-based solu-
tion”, Wieselthier et al. [1] note that a “node based” ap-
proach is needed for wireless environments. Recently, an
internal nodes based broadcasting procedure was suggested
by Stojmenovic et al.[5].

Our approach, dubbed optimizing using the viability
lemma (OVL), relies on optimization search among the
large number of possible node power settings for a given
node constellation. Transmitter power levels at each node
dictate the nodes to which it can communicate. Construct-
ing a minimum-power broadcast tree is equivalent to find-
ing the node power vector which minimizes the sum of the
transmitter powers, subject to the constraint that the node
power levels are sufficient to allow a viable connection tree.
A viable connection tree is one where the source is able to
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reach all intended destination nodes, either directly or using
other nodes in the network. Not all combinations of node
powers allow viable connection trees. Those that do are
called viable power cuts. We discuss two computationally
efficient methods for checking the viability of a power cut.
Establishing cut viability is essential in the search process.

We assume a fixed N-node network with a specified
source node which has to broadcast a message to all other
nodes in the network. Any node can be used as a relay
node to reach other nodes in the network. Nodes that re-
ceive a transmission but do not retransmit it are classified
as leaf nodes. Nodes that transmit, including the source
node, are called hop nodes. The remaining nodes are un-
connected. For the broadcast problem, any tree which has
unconnected nodes is not viable. All nodes in the network
are assumed to have omnidirectional antennas, so that if
node m transmits to node n, all nodes closer to m than
n will also receive the transmission. This is the “wireless
multicast advantage” [1].

For a transmission from node m to n, separated by a
distance rmn, the transmitter power at m is modeled to
be proportional to rα

mn where α is the channel loss expo-
nent (typically between 2 and 4, depending on the channel
medium). Throughout this paper, we assume α = 2. With-
out any loss of generality, we can set the proportionality
constant to one, so that the transmitter power, pT , is given
by: pT = rα

mn.
For illustrative purposes, we find useful an alphabetic

node-numbering system (e.g., nodes A, B, C, etc.). How-
ever, for computational purposes, the numeric equivalents
(i.e, ‘1’ representing node A, ‘2’ representing node B, etc)
are used for the node indices.

2. RELATED WORK

Wieselthier, Nguyen and Ephremides [1] proposed the BIP
algorithm for constructing the minimum-power tree for wire-
less networks. In this algorithm, new nodes are added to
the tree on a minimum incremental cost basis, until all in-
tended destination nodes are included. Figure 1 shows five
nodes randomly distributed in a 5× 5 square grid and the
minimum-power broadcast tree constructed using the BIP
algorithm. Node C is the source. The solid lines in the
figure represent actual transmissions and the dashed lines
represent implicit transmissions.
Assuming α = 2, the power matrix, P, of the above network

I - 2730-7803-7448-7/02/$17.00 ©2002 IEEE



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C

D

E

A

B

Fig. 1. BIP Tree: node C is the source

is:

P =




0 18.23 8.01 6.05 9.55
18.23 0 7.40 14.06 10.30
8.01 7.40 0 1.17 16.73
6.05 14.06 1.17 0 20.52
9.55 10.30 16.73 20.52 0


 (1)

In general, P[m, n], the power required for node m to trans-
mit to node n is given by:

P[m, n] =
[
(xm − xn)

2 + (ym − yn)
2
]α/2

where {(xi, yi) : 1 ≤ i ≤ N} are the coordinates of the
nodes in the network.

The total broadcast power of the tree in Figure (1) is
22.78 Watts (P [3, 5] + P [4, 1]). Clearly, this is not optimal
since the minimum power required to reach all the nodes
in the network is 16.73 Watts, involving the transmission
C → E. Since all the other nodes (B, A,D) are nearer to
C than E, these will be reached implicitly.

3. TERMINOLOGY

Prior to presentation of OVL, we offer the following defini-
tions.
1. Rank Matrix : The rank matrix R is defined as the
sorted power matrix. Each row of the power matrix (P)
is sorted in ascending order to give the matrix R. For the
power matrix in (1), the rank matrix is given by:

R =




0 6.05 8.01 9.55 18.23
0 7.4 10.30 14.06 18.23
0 1.17 7.40 8.01 16.73
0 1.17 6.05 14.06 20.52
0 9.55 10.30 16.73 20.52


 (2)

2. Cut Vector : A cut vector, �χR, referenced to the rank
matrix, is an N-element vector (where N is the number of
nodes in the network) with integers between 1 and N . It in-
dicates the location of an element on each row of the rank
matrix. For example, if we want to reference the high-
lighted elements in (2), the corresponding cut vector is:
�χR = [3 4 5 1 2]T , where the superscript ‘T ’ stands for
transpose.

Alternately, we can use the power matrix P and define
an equivalent cut vector, �χP , referenced to P. Mapping the
highlighted elements in (2) to the power matrix (1), we have
the equivalent cut vector �χP = [3 4 5 4 1]T . Since all diago-
nal elements in P are zero, the condition �χP [n] = n implies
that node n is a non-transmitting node; i.e., it is either an
unconnected node or a leaf node in the tree.

3. Threshold Vector : A threshold vector, �t, of length N , is
a vector of the elements of R specified by the cut vector �χP .
For the cut vectors in Item 2 above, the threshold vector is
given by:

�t = [8.01 14.06 16.73 0 9.55]T

If the nth element of the threshold vector is zero, it im-
plies that node n is non-transmitting. We thus have the
equivalence condition:

�t[n] = 0 ⇐⇒ �χP [n] = n

4. The cost of a cut: The cost of a cut is defined as the
sum of the elements of the corresponding threshold vector.

s[�χP ] =

N∑
n=1

�t[n] (3)

5. Viability of a cut : A cut is said to be viable if it allows
all intended destination nodes to be reached. Otherwise, it
is nonviable. For example, if the source node (C) in Figure
(1) wants to broadcast to all other nodes, the cut vector
�χP = [1 2 5 4 5]T is viable but �χP = [1 2 4 1 5]T is not. In
the first case, all nodes are reached by a single transmission
from C, whereas only D and A are reached in the latter case.

6. The Transfer Matrix : For a given network, the transfer
matrix, H, is a function of the threshold vector. The trans-
fer matrix is computed by thresholding the power matrix
as follows:

H [m, n] =

{
1, if P [m, n] ≤ t[m]
0, otherwise

The set of nodes which can be reached from node m, trans-
mitting at a power level �t[m], is given by the column indices
of the mth row of H for which H [m, n] = 1.

4. THE TRANSFER MATRIX POWER FORM
OF THE VIABILITY LEMMA

Randomly generated cut vectors do not necessarily corre-
spond to viable connection trees. The viability lemma pro-
vides a straightforward way of determining whether a cut
is viable or not.

For a given node constellation and cut vector �χP , with
a corresponding threshold vector �t, we apply the iteration

�γ(k+1) = HT ⊗ �γ(k) (4)

where k is the iteration index and ⊗ denotes a matrix prod-
uct with additions replaced by logical OR operations and
multiplications replaced by logical AND’s. �γ(k) is a binary
coverage vector which keeps track of the nodes reached till
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the kth iteration. (A reached node is either a hop node or a

leaf). If the nth element of �γ(k) is ‘1’, it indicates that node
n has been reached, in the kth iteration or a previous itera-
tion. Nodes that have not been reached till the kth iteration
are tagged by a ‘0’ in the coverage vector. The iteration pro-
ceeds with the initialization �γ(0) = [0 · · · 0 1 0 · · · 0]T which
is a zero vector of length N with a ‘1’ at the source node. 1

The transfer matrix power form of the viability lemma
states that a necessary and sufficient condition for a cut to
be viable is:

�γ(N−1) = �1 (5)

where �1 is a vector of 1’s of length N . Equation (5) recog-
nizes that, for a network with N nodes and one source node,
the iteration (4) will converge in, at most, N-1 iterations. If
the cut is viable, all nodes will be reached resulting in a vec-
tor of all ones. Using equation (4), (5) can be equivalently
expressed as:

HN−1 ⊗ �γ(0) = �1 (6)

where

HN =
[
H⊗N

]T

Determination of cut viability using the viability lemma
does not immediately present a connection tree. Viability
simply says that total coverage is possible and such a tree
exists. Section 6 explains how to grow a routing tree from
the transfer matrix for a viable cut.

The number of Boolean matrix multiplies in (6) is on
the order of log2(N − 1). H4 is the square of H2, H8 is
the square of H4, etc. The transfer matrix parsing form
of the viability lemma, described next, requires no matrix
multiplies.

5. THE TRANSFER MATRIX PARSING FORM
OF THE VIABILITY LEMMA

An alternate procedure for determining the viability of a cut
vector uses parsing of the transfer matrix. For broadcast
applications in an N-node network with one source node,
the procedure converges in at most N − 1 iterations. We
begin by defining the following sets:

S = destination nodes
k = iteration number

NR(k) = new nodes reached in iteration k

NR(0:k) = nodes reached till iteration k =
⋃k

m=0
NR(m)

NNR(k) = nodes not reached at the end of iteration k

Note that NNR(k) = S \NR(0:k) where ‘\’ denotes the set
difference operation. Also, it follows from the definition of
NR(k) that NNR(k−1) ⊇ NR(k). The sets defined above
can be expressed equivalently in terms of the coverage vec-
tor �γ(k).

1Note that
HT ⊗ �γ(k) = u

(
HT�γ(k)

)
where the unit step, u(·), equals zero for a negative argument
and is otherwise one.

NR(0:k) ≡ {n : �γ(k)[n] = 1}
NNR(k) ≡ {n : �γ(k)[n] = 0}
NR(k) ≡ {n : �γ(k)[n]− �γ(k−1)[n] = 1}
The viability checking procedure is as follows:

1. For k = 0, initialize NR(0) = {source node}.
2. For each subsequent iteration, 1 ≤ k ≤ N − 2, check
whether any of the node(s) reached for the first time in

the previous iteration (the entries in the set NR(k−1)) con-
nect to a new destination node(s) (the entries in the set

NNR(k−1)). This is easily done by examining the corre-
sponding rows of the transfer matrix as mentioned in item
(F), Section 3.2 If none of the nodes in NR(k−1) connect

to a new node from the set NNR(k−1), the connection tree
“breaks” at the kth iteration and the cut is nonviable. Con-
versely, if all nodes in NNR(k−1) are jointly reached by the
nodes in NR(k−1) (⇒ NNR(k) = ∅, where ∅ is the null
set), the connection tree is complete and the cut is viable.
In both these cases, the iteration process terminates after
iteration k. If only some of the nodes in the set NNR(k−1)

are reached by the nodes in NR(k−1) during iteration k,
update the sets NR(0:k) and NNR(k) and continue with
the next iteration.
3. If the iteration process continues till k = N − 1, check
whether NNR(N−1) = ∅. If so, the cut vector is viable.
Otherwise, it is nonviable.

6. FINDING ROUTING FROM A VIABLE CUT

All connections in a routing tree can be expressed as an N×
N binary connection matrix, Φ = {φ[m, n] : 1 ≤ m, n ≤ N}.
The matrix can be constructed from a tree or vice versa. If
φ[m, n] = 1, the node responsible for communicating to
node n is m. For a fully connected tree, each column of
Φ should therefore contain a single one and the rest of the
elements should be zeros. The connection matrix is built
iteratively, using equation (4). Let Φ(k) be the connection
matrix corresponding to the kth iteration, the initialization
being:

Φ(0)[n, m] =

{
1, if n = m = source node index
0, otherwise

(7)

Let �β(k) be a difference vector as defined below:

�β(k) = �γ(k) − �γ(k−1), �β(0) = �γ(0) (8)

The vector �β(k) has 1’s corresponding to the nodes reached

during the kth iteration.3 If an element in �β(k) is 1, it must

have originated from a node corresponding to a 1 in �β(k−1).

For example, let �β(k)[n] and �β(k−1)[m] be equal to 1. If
H [m, n] = 0 (⇒ �t[m] < P[m, n]), node m cannot connect

2For example, if NR(k−1) = {m, n}, check the mth and
nth rows of the transfer matrix in iteration k. If H[m, p] = 1,

H[m, q] = 1, H[n, r] = 1, H[n, s] = 1, {p, s} ∈ NR(0:k−1) and

{q, r} �∈ NR(0:k−1), the set of new nodes jointly reached in iter-

ation k (NR(k)) is {q, r}.
3If �β(k) = �0, the iteration has converged.
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to node n. If, however, H [m,n] = 1 (⇒ �t[m] ≥ P[m, n]),

node m can connect to node n and we set Φ(k)[m, n] = 1.
If there is more than one node (say m1 and m2) which

can connect to a destination node (say node n) in iteration
k, the node which is closest to n (least cost involved) is cho-
sen as the transmitting node. For example, if m1 is closer to
n than m2, we set Φ(k)[m1, n] = 1. If more than one node
(say n1 and n2) is reached in the kth iteration from a single

transmitting node (say node m), we set Φ(k)[m, n1] = 1 and

Φ(k)[m, n2] = 1. Transmitting to multiple nodes should be
interpreted as a single transmission from the source to the
farthest node, with the other nodes being reached implic-
itly.

7. STOCHASTIC TREE GENERATION

The stochastic tree generation method is used to generate a
set of viable cut vectors, which can then be used to initialize
a search for the optimum tree. It is an iterative procedure
which starts with a transmission from the source node to
a randomly chosen destination node and continues till all
the intended destination nodes are reached. This implies
that for a broadcasting session in an N-node network with
a source node, the iteration must converge in at most N −1
iterations. If the transmitting node in iteration k is m and
the destination node is n, the kth update of the cut vector

is: �χ
(k)
P [m] = n. Choice of transmitting and destination

nodes for each iteration is dictated by the following heuris-
tics.

1. For k = 0, initialize �χ
(0)
P [m] = m, 1 ≤ m ≤ N ; i.e.,

all nodes are initially set as non-transmitting nodes in the
tree.
2. For k = 1, the source node is the transmitting node.
For k ≥ 2, the node chosen for transmission in iteration k
should be a leaf node in the tree by iteration k− 1. If there
are more than one leaves in the tree at the end of iteration
k − 1, the transmitting node for the kth iteration is chosen
randomly from this set.
3. Generally, the transmitting node in the kth iteration
can either choose to be a leaf in the tree or transmit to
a node drawn randomly from the set of nodes which have
not been reached by the end of iteration k − 1. This can
be implemented by augmenting the set of unreached nodes
with the index of the transmitting node and then choosing
an element from the augmented set at random. The option
to stay in the tree as a leaf is withdrawn if (1) k = 1, since
the source node cannot be a leaf, or, (2) if there is only
one possible choice of the transmitting node for iteration k
(k ≥ 2) and not all destination nodes have been reached by
iteration k − 1.
4. If there are multiple unreached nodes at the start of the
final iteration, the transmitting node must transmit at a
power level sufficient to reach the farthest unreached node.
This would ensure that all remaining nodes are covered and
the cut vector is viable.

Since no matrix operations of the type H⊗N are in-
volved, this method can be particularly useful for generat-
ing random viable cuts in large networks. Also, since the
transmitting node always chooses its destination node from
the set of nodes not reached by the end of the previous iter-

ation, connection trees developed from cuts generated using
this method will be inherently loop-free.

8. OPTIMIZATION

The foundation for OVL is now established. Stochastic tree
generation is used to initiate the search. The search seeks
to minimize the cost of a cut subject to the cut being viable.

Numerous search algorithms exist which can be applied
to find the optimal cut. The performance of different evolu-
tionary search techniques, in terms of improvement in tree
power and convergence speed, is currently under investi-
gation and will be discussed in a subsequent paper. Pre-
liminary simulation tests on 50 randomly generated 25-node
networks in a 5×5 grid using a genetic search algorithm with
no mutation show an average improvement in tree power of
approximately 10.4% over the BIP algorithm. The search
was done using 100 initial viable solutions and 50 evolu-
tions.

9. CONCLUSION

We have proposed a paradigm to search for minimum power
broadcast trees in wireless networks. Preliminary experi-
mental results indicate that such techniques can generate
better solutions than that provided by the BIP algorithm,
albeit at a higher computational cost. The procedure can
be straightforwardly generalized to multicast sessions and
points-to-points communication.

10. REFERENCES

[1] J.E.Wieselthier, G.D. Nguyen and A. Ephremides,
“On the construction of energy-efficient broadcast and
multicast trees in wireless networks”, IEEE INFO-
COM 2000, pp. 585- 594.

[2] D. Bertsekas and R. Gallager, Data Networks, Engle-
wood Cliffs: Prentice Hall, 1992.

[3] T.M. Cover, “The best two independent measure-
ments are not the two best”, IEEE Transactions on
Systems, Man and Cybernetics, vol. SMC-4, pp.116-
117, January 1974.

[4] Russell D. Reed and R.J. Marks II, Neural Smithing:
Supervised Learning in Feedforward Artificial Neural
Networks, MIT Press, Cambridge, MA, 1999.

[5] Ivan Stojmenovic, Mahtab Seddigh and Jovisa Zunic,
“Internal Nodes Based Broadcasting in Wireless Net-
works”, Proceedings of the 34th Hawaii International
Conference on System Sciences, 2001.

I - 276


