
On the Contractive Nature of Autoencoders: Application to Missing Sensor
Restoration

Benjamin B. Thompson, Robert J. Marks II, and Mohamed A. El-Sharkawi

Computational Intelligence Applications (CIA) Laboratory, Department of Electrical Engineering, University of Washington, Seattle, WA 98195

Abstract

 The neural network autoencoder is a useful
tool for the restoration of missing sensors when enough
known sensors with some relation to those missing are
available. Through the idea of a contraction mapping,
this paper provides some insight into the convergence
of several iterative methods of sensor restoration using
the autoencoder to some unique answer given a specific
operating point (i.e., the known sensor values),
regardless of how the missing sensor values are
initialized

I. Introduction

Previous work has established the ability of the
autoassociative neural network encoder (or simply
“autoencoder”) to aid in the restoration of sensor data
which may be missing or corrupt, given some sort of
correlation between the numeric outputs of the various
sensors in a system. [1], [2] Narayanan et al. [1] describe a
method by which the missing sensor data may be
reconstructed using an iterative approach; in this paper we
show that, under a set of conditions relating to the specific
parameters of the neural network, we can provide a
sufficient condition for the convergence of the iterative
approach to sensor restoration. We approach this through
the idea of a contraction mapping. Moreover, we will
show compelling evidence that there exists a unique point
of convergence for a fully trained autoencoder given an
“operating point” defined by the set of known sensors, and
that this convergence point should be reached regardless of
how the missing sensors are initialized.

II. Contraction

 A contractive mapping is defined [3],[4] as a
mapping O:X→X on a complete metric space (X, d) in
which, for any x and y in that space:

() ()

10
,,

<≤
⋅≤

k
yxdkOyOxd

 (1)

or, more clearly, a contraction mapping is one in which the
output distance between two points is less than the input
distance. Now let us look at this property in ℜ1, where our
metric is simply the Euclidean norm, and O is simply some
functional mapping f(x):

() () yxkyfxf −⋅≤− (2)

Now, suppose we replace y with x+dx, yielding, with some
minor rearrangement:

() ()
k

dx
dxxfxf

≤
+−

 (3)

the limit of which as dx→0 gives us, as a less strict
requirement for contraction

() 1<
dx

xdf
 (4)

This idea is demonstrated clearly in Figure 1. It would
then be sufficient to show that, for some function f:
ℜ1→ℜ1, the derivative of f is less than unity for all x.

Consider the Banach Fixed-Point Theorem: If f
is a contractive mapping, then there exists a unique fixed
point x0 for which f(x0) = x0. Moreover, the sequence {xn},
for which any element xn+1 = f(xn), converges, and that
convergent point is xo. With this theorem, it becomes
much clearer how any contractive tendency of the
autoencoder can help us show whether or not the sensor
restoration process will converge to some unique value.

III. Missing Sensor Restoration with
Autoencoders

There are three methods that we will examine for

the restoration of missing sensors. The first is a simple
application of alternating projections onto convex sets
(POCS). The second and the third both employ search

0-7803-7898-9/03/$17.00 ©2003 IEEE 3011

techniques; the first involves simply minimizing the error
between the missing sensor inputs and outputs on the
autoencoder, while the second looks at the error between
the entire input pattern and output pattern (both missing
and known sensors) to achieve a final answer. The merits
of each are discussed below. First, however, a few
definitions are in order.
The input to the neural network is comprised of two
concatenated vectors whose total dimension is N, the input
dimension (and necessarily the output dimension as well).
The first vector, xk, can be thought of as the operating
point of the restoration process, and is defined as the set of
known sensor values for a given input pattern. The second
vector is then xm, the set of missing sensor values. Without
loss of generality, let us formulate the input as some vector
x:

{ }T
kKkkmMmm xxxxxxx ,...,,,,...,, 2121≡

r
 (5)

where M is the number of missing sensors, K is the
number of known sensors, and of course K+M = N.
Likewise, on the outputs, we have:

{ }T
kKkkmMmm xxxxxxx ˆ,...,ˆ,ˆ,ˆ,...,ˆ,ˆˆ 2121≡

r
 (6)

Figure 2 shows a single-hidden-layer autoencoder
with the appropriate labels. Given that the encoder
is trained as a feedforward multilayered perceptron
(MLP) [3] we also have the following elements:
W1,k is the matrix of weights whose (i, j)th element is
the weight connecting the ith known sensor value to
the jth neuron in the first hidden layer; W1,m is the
corresponding matrix for the missing sensors, bl is

the vector of bias weights for the lth layer; W2 is the
weight matrix connecting the first hidden layer to the
second; and finally, W3,k and W3,m are the counterparts
to W1,k and W1,m on the output. Note that these can
easily be extended for an encoder with more than a
single hidden layer.

A. POCS

As described by Narayanan et al. [1], a
straightforward method for missing sensor restoration
using a trained autoencoder is the use of POCS [5] to
achieve a convergent value. Under the assumption of
convexity, our two sets are then a) the space defined as
the output of the autoencoder, and b) the set of all input
patterns to the neural network containing xk, the known
sensors, and an arbitrary xm. While the second set is
definitely convex, the first requires the assumption of
convexity. By choosing some initial xm to create an
input vector x, we then obtain x̂ , the output of the
autoencoder. This corresponds to a projection onto the

first set, the operator for which we will denote P1. We
then change the outputs

kx̂ to xk to perform the projection
onto the first set, denoted as P2. If we alternate between
these projections, under the assumption of convexity, the
series will converge to an answer representing the
intersection of the two sets. Thus, a single iteration of this
process is defined as the successive application of P1 and
then P2.

B. Unconstrained Search

 Because of the potential lack of convexity and
other performance issues, we are motivated to find a better
method for discovering the true point of convergence. In
this case, our iterative operator Ou is simply a single
iteration of any search algorithm which seeks to minimize
the error between the missing sensor values and the

x

f(x)

Figure 1 - For a function whose derivative is less than unity, the input distance of
two points will always be greater than the output distance (the distances projected
onto the horizontal and vertical axes, respectively). For a derivative greater than
one, we achieve expansion rather than contraction. Note that points v and y exist
where |df(x)/dx|<1, and w and z exist where |df(x)/dx|>1.

v y w z

d(v,y) d(w,z)

d(
Ov

,O
y)

d(
O

w,
O

z)

 xm

 xk

W1,m

W2

W1,k W3,k

W3,m

b1
b2 b3

Figure 2 - a diagram of a generic 2-layer autoencoder, with
appropriate labels, as described in the text.

3012

outputs of the autoencoder corresponding to those missing
sensor values, or:

mm
x

xx
m

ˆminarg − (7)

This method allows for greater refinement of the missing
sensor values over the POCS method described above;
moreover, it should be noted that, if the assumption of
convexity were true, Ou and Op would converge to the
same value, assuming the two sets intersect.

C. Constrained Search

 A notable shortcoming of both POCS and the
unconstrained search is that neither one uses the
information contained in

kx
r
ˆ to better refine the final

answer. Thus, we define a third operator, Oc, which is
similar to Ou except that it corresponds to a search
algorithm which seeks to minimize the entire output error
of the autoencoder; namely:

 xx

mx
ˆminarg − (8)

recalling that x is a vector composed of xm and xk. This
way, we actually ensure a smoother match between the
input and the output, which can help eliminate spurious
answers that, while minimizing the error between
consecutive iterations on xm, tend not to make sense in the
context of the known sensors.

IV. Analysis Results

x be contractive. Recall that, by definition, a perfectly
trained autoencoder is one for which we have the
following relationship:

()

Cx
xxONN

∈
=
rr

 (9)

where ONN is the neural network treated as an operator, and
C is the set of all training data. Thus, except in the case of
an autoencoder trained on a single pattern, a perfectly
trained autoencoder guarantees that the Banach Fixed-
Point Theorem cannot hold, and thus the operator is not
contractive.

An operator is nonexpansive in (10) when, instead
of k<1, we allow k≤1. A convex set orthogonal projection
operator is nonexpansive [6] so this is a result to be
expected from the autoencoder. If O is nonexpansive, the
operation xn+1 = O(xn) will converge to a fixed point. This
point, however, is not unique and is dependent on
initialization .

A. Contraction of the Entire Autoencoder

 While we have shown that the autoencoder itself
is neither strictly contractive nor nonexpansive, it is
informative to see how closely it approaches these
conditions. As described in (3), there is a k-value
associated with a set of two inputs and their corresponding
outputs. If, for a very large set of input pairs, we can show
that that k-value is less than or equal to one, then we have
justification for treating the operator as nearly
nonexpansive We examine the k-values from a specific
example of a trained autoencoder. For the purposes of this

Figure 3 - a histogram of the k-values associated
with our autoencoder as a whole, for a randomly
generated data set. The scale of the x-axis is from
0.2 to 1. Note that the largest tail value is actually
less than unity.

Figure 4 - a histogram of the k-values based on
the training data. Note the dynamic range of the
plot is [0.966, 1.015].

3013

paper, we have trained an autoencoder on Mackey-Glass
chaos, defined by the nonlinear difference equation [7]:

[] []
[] () []txB
tx
txAtx nn

n

⋅−+
−+
−⋅⋅

= 1
τθ
τθ

 (10)

where A, B, n, θ, and τ are defined parameters, along with
some x[0] value. We generate a data set using this
function, and train a 40-20-40 autoencoder using input
patterns taken as consecutive 40-point “windows” of the
data set. All data is normalized to the interval [0,1] before
training.
 The autoencoder thus trained, we then generate a
large (on the order of 105 patterns) set of randomly
generated input vectors (from a uniform distribution on
[0,1]). We then select, at random, two different vectors
from this set as vectors x and y as per equation (3). From
this, we can calculate a corresponding k-value. With a
sufficiently large number of these k-values, we can create
estimate the probability density function of k, to examine
how it behaves, particularly around the value of 1.
 Figure 3 shows the result of this experiment.
Clearly we have that, for a randomly generated data set,
we never even approach the limits of being contractive;
that is, our autoencoder behaves statistically as though it
were in fact contractive. The largest k-value it achieves in
this simulation, in fact, is 0.9206, well below the threshold
beyond which it would no longer be contractive.
 While this demonstrates the behavior of the
autoencoder towards randomly generated data, we next
perform a more interesting experiment. Given that the
autoencoder is trained such that the output mirrors the
input as closely as possible, we would expect the k-values
for the actual training data to be very near 1 for each
training pattern (recall that, for a perfectly trained

autoencoder, k would be exactly unity for every single
one). Thus, we have motivation to repeat the above
experiment, replacing the randomly-generated data with
the training data itself.
 We see the result of this experiment in Figure 4.
From this histogram, we have proof that our initial
conjecture holds true even for this “imperfect” autoencoder
– due to the k-values above 1, the operator is not strictly
nonexpansive. However, it would clearly be fair to say
that, from the evidence presented in this figure, our
operator is nearly nonexpansive, since k never deviates
from unity by more than 0.01.

B. Contraction of Subsets of the Autoencoder

At this point, we then want to show that, while
the autoencoder as a whole is neither strictly contractive
nor nonexapnsive, the autoencoder at some operating point
may be contractive as it operates on a subset of the input
vector; namely, xm. At this point, it is useful to write out
the functional form of the neural network as an operator.
Let us formulate this for a two-hidden layer neural network
as described in Figure 2, although it can easily be
generalized for greater or fewer dimensions:

() (((mmm
k

m
km x

x
xxxf ⋅⋅⋅=

= ,12,3ˆ

ˆ
, WσWσWσr

r
rrr

)))321,1 bbbxkk +++⋅+ W (11)

where σ is a vector operator that imposes a sigmoid
nonlinearity on each element of the applied vector, and all
other parameters are as described above. This function

Figure 5 - average derivative of our overall restoration
operator for a single missing sensor using randomly-
initialized operating points xk

Figure 6 - same as Fig. 5 with training data used instead of randomly-
initialized xk

3014

represents the functional form of our operator O1, as
described above. Likewise, we can define out operator O2
as:

() k
k

m
k xx

x
xxxg ⋅+⋅=

= BT ˆˆ,ˆr

 (12)

where T is an N×N matrix in which:

 ≤=

=
else

Mji
ji 0

1
,T (13)

and B is an N×K matrix defined as:

= ×

K

KM

I
0

B (14)

Thus, combining equations (11) and (12) yields our
operator Op:

() () kkmkmp xxxfxxO ⋅+⋅= BT ,,
r

 (15)

With this, we have a framework for which we can examine
the contractiveness of the entire process. Specifically, we
can look at the case in which only one sensor is missing.

If this is the case, then xm is a scalar, and equation (4) can
be applied.
 Explicitly calculating the derivative of Op is a
cumbersome task, particularly if xm is not scalar. For the
purposes of this paper, we again apply a randomly
initialized simulation to show that the derivative tends to
be less than one for various xk operating points. We
perform this experiment using the same Mackey-Glass
autoencoder as used above. First, we examine all forty
“sensor” values by randomly generating xk (as a vector of
uniform random variables on [0,1]) and calculating the
corresponding derivatives. Figure 5 shows the overlaid
plot of the derivatives for each of the forty sensors. Each
curve represents an average over multiple realizations of
xk. The maximum standard deviation at any point for any
of the sets of curves was as small as 0.0042, giving us a
great deal of confidence that, for random xk, and a single
missing sensor, we will always converge to a unique
answer, since the less-than-unity derivative implies
contractiveness of the sub-operator as it acts around a
fixed point.
 Next, we perform the same experiment, again
replacing the randomly initialized portion (in this case, the
value of the fixed point xk) with the actual training data.
Figure 6 displays the results clearly, in a form identical to
Figure 5. In this case, the maximum standard deviation for
any value of xm over any set of the curves was 0.0036,
which gives us even greater confidence of our conclusion.
Comparing Fig. 5 to Fig. 6, we see that they are almost
completely indistinguishable. No difference is graphically
discernable. This gives us substantial reason to believe
that the derivative is largely insensitive to the actual value
of the operating point (as long as the operating point is
within the unit-cube in K dimensions – which is reasonable
since it is possible to define the valid range of sensors to be
within that limit).
 Finally, we perform an experiment to demonstrate
the contractive characteristics of situations in which more
than a single sensor are missing. For this, we calculate a
series of k-values as above, the exception being that some
fixed-point xk is chosen, and the remaining sensors xm are
randomly initialized as above. We then perform this for a
variety of missing-sensor configurations (obviously, all the
possible permutations would take a prohibitive amount of
time to calculate even for a relatively small autoencoder,
and even more so for our situation using the Mackey-Glass
autoencoder).
 Figure 7 displays these results, for 10 different
cases corresponding to 1, 5, 9, 13, 17, 21, 25, 29, 33, and
37 missing sensors. The specific sensors in each case were
selected at random from the 40 possible sensors. We note
that, in every single plot, we are well below the unity
threshold required for contraction. Moreover, it is
interesting to note that the upper limit of the k-value seems
to approach unity gradually as the number of missing

Figure 7 - histograms of k-values various combinations of missing
sensors. Figs. (a)-(j) correspond to 1, 5, 9, 13, 17, 21, 25, 29, 33, and 37
missing sensors, respectively. The specific missing sensors were chosen
at raondom, and the operating point, selected from the training data, was
the same for each case.

(a)

(c)

(e)

(g)

(i)

(b)

(h)

(j)

(d)

(f)

3015

sensors increases (implying that the operation is “more
contractive” for fewer missing sensors).
.
V. Conclusions

 By demonstrating the contractive nature of the
autoencoder as a method for restoring missing sensors, we
have given compelling evidence that such iterative
procedures will, for the case examined, converge to a
unique answer dependent only on the neural network
autoencoder itself, and the operating point (the known
sensor values) about which the process is implemented.
We have shown that the autoencoder itself is nearly
nonexpansive to most types of data, the marginal exception
being the training data itself. Finally, we have provided
reason to believe that, the fewer sensors that are missing,
the more likely the autoencoder-method of restoring
missing sensors is to have such a unique value of
convergence.

VI. References

[1] Narayanan, S., R.J. Marks II , J. L. Vian, J.J. Choi,

M.A. El-Sharkawi & B. B. Thompson, "Set Constraint
Discovery: Missing Sensor Data Restoration Using
Auto-Associative Regression Machines", Proceedings
of the 2002 International Joint Conference on Neural
Networks, 2002 IEEE World Congress on
Computational Intelligence, May12-17, 2002,
Honolulu, pp. 2872-2877.

[2] Reed, R. D. and R.J. Marks II, Neural Smithing:
Supervised Learning in Feedforward Artificial Neural
Networks, MIT Press, Cambridge, MA, 1999.

[3] Naylor, A. W., and G. R. Sell Linear Operator Theory

in Engineering and Science, Springer, New York City,
NY, 1982.

[4] Luenberger, D. G., Optimization by Vector Space

Methods, John Wiley & Sons, April 1997

[5] Marks, R.J. II, "Alternating Projections onto Convex

Sets", in Deconvolution of Images and Spectra, edited
by Peter A. Jansson, (Academic Press, San Diego,
1997), pp.476-501.

[6] Goldburg, M.H. and R.J. Marks II, "Signal synthesis in

the presence of an inconsistent set of constraints",
IEEE Transactions on Circuits and Systems, vol.
CAS-32 pp. 647-663 (1985).

[7] Glass, L. and M. C. Mackey, From Clocks to Chaos,
The Rhythms of Life, Princeton University Press,
Princeton, NJ, 1988.

3016

	MAIN MENU
	CONFERENCE PROGRAM
	AUTHOR INDEX

	Search CD-ROM
	Search Results
	Print

	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document

	IJCNN CD-ROM Help
