
Bandwidth Reduction for Controller Area Networks Using Adaptive
Sampling

Ian A. Gravagne∗, John M. Davis†, Jeffrey J. Dacunha†, Robert J. Marks∗

Abstract
This paper presents a method by which controllers oper-
ating on real-time networks such as the Controller Area
Network (CAN) can reduce their bandwidth requirements
in response to periods of high network traffic from sporadic
sources. The method derives from advances in the theory
of dynamic systems on time scales.

1 Introduction
The rising complexity of many modern engineering sys-
tems such as robots, automation systems, and automo-
biles is gradually demanding that more and more actua-
tors and sensors be available to interact with the system
environment. In the past, it was common to give each
actuator or sensor a dedicated channel to or from a main
computational node, which we refer to as the controller
or the control node. However, this situation is giving way
to the notion of decentralized control, where controllers,
actuators and sensors all communicate via one high-speed
real time network backbone. One of the most reliable and
well-understood such network protocols is the Controller
Area Network (CAN). CAN is widely used by automobile
manufacturers in Europe, and has seen application to var-
ious robotics and automation systems worldwide [6]-[11].
Though the topics in this paper are not limited to CAN
systems, we use CAN as our motivating example without
loss of generality.
A real-time network typically has the arrangement

shown in figure 1. The principle components are the net-
work itself, along with control nodes, actuator nodes and
sensor nodes that send and receive messages over the net-
work. One control node may request input from many
sensor nodes (perhaps an entire sensor array) and then
generate responses for one or more actuator nodes. Sen-
sor nodes may be polled by the controller or may generate

∗School of Engineering and Computer Science, Baylor University.
Email: Ian_Gravagne@baylor.edu; Robert_Marks@baylor.edu

†Department of Mathematics, Baylor University. Email:
John_M_Davis@baylor.edu; Jeffrey_Dacunha@baylor.edu

Figure 1: A typical CAN network contains control nodes
(CN), sensor nodes (SN) and actuator nodes (AN).

data on their own time line. Thus, there are generally
three types of messages that a CAN will need to handle:
(1) high-speed periodic messages; (2) high-speed sporadic
messages; and (3) low-speed messages. In the CAN ar-
chitecture, each message consists of 0 to 8 bytes of data,
along with an 11 or 29 bit identifier. All nodes "hear"
every message on the bus (CAN is data-selective rather
than address-selective). The identifier not only labels the
type of data contained in the message, but also specifies
the priority of the message. In a message collision, higher-
priority messages will transmit first. High-speed messages
imply that there are (possibly very tight) deadlines be-
yond which, if a message is not received, undesired effects
result.
A typical control loop is implemented on a CAN system

quite naturally: the control node periodically places a no-
data RTR (return transmit request) message on the bus.
Sensors nodes responding to the RTR identifier then trans-
mit their readings. The controller computes new actuator
values on the basis of the sensor inputs and then places
these new values on the bus. Efficiency can be increased in
special cases by changing the order of operations (depend-
ing on the particulars of the sensor/actuator nodes) but
this is the most basic method. A simple timeline appears
in figure 2.
There are two potential pitfalls that figure 2 illustrates.

First, there is always a delay between when the sensors
report their readings to when the actuators respond. This
delay (jitter) can cause instabilities but can be minimized
by careful message scheduling [1][10][11]. Second, if many

Figure 2: The CAN control loop timeline. During one
control period, Treq is the RTR request time, Trec the SN
response time, Tcomp the CN computation time, Ttrans the
time it takes the AN to receive its instructions and act,
and Tsleep the inactive time until the beginning of the next
period.

controllers with fixed control periods share the bus, lit-
tle room for high-speed sporadic messages remains. These
can be very important, signaling perhaps the depression
of a brake pedal or that the fingers of a robot hand are
making/breaking contact with an object. Thus, we next
explore how to allow for limited periods of high-speed spo-
radic traffic by adapting the control period.

2 System Model
The following arguments use results and notation common
to a branch of mathematics termed dynamic equations on
time scales. For readers not familiar with this topic, an
extremely brief introduction appears in the Appendix. We
start with the assumption that the plant to be controlled
can be approximated by a linear system of the form

ẋ = Ax+Bu, A ∈ Rn×n;B ∈ Rn×m (1)

u = Kx, K ∈ Rm×n, (2)

and, for simplicity, that full-state feedback control is avail-
able to make the system behave as desired. We next
discretize to an isolated time scale T, consisting of non-
uniformly spaced points with unknown graininess. The
discretization process is described in detail in [4], and
yields

x∆(t) = expc(µ(t)A)(A+BK)x(t) := A(µ(t))x(t),
t ∈ T. (3)

The "expc" function is defined as

expc(X) := I +
1

2
X +

1

6
X2 + ...+

1

n!
Xn−1, (4)

a convergent power series that behaves similarly to an ex-
ponential. It has several interesting and useful properties:

P1 : expc(X) = (eX − I)X−1 when X−1 exists,(5)
P2 : expc(jω) = ejω/2 sinc(ω/2) (6)

P3 : expc(X)→ I as X → 0 (7)

Property P1 and P2 give the the function its name (the
"exponent cardinal"). Property P3 shows that, in the spe-
cial case that µ ≡ 0, the expression expc(µ(t)A) reduces
to an identity matrix, giving ẋ = (A+BK)x as expected
in (3). The objective now is to generate the graininess
µ(t) — the distance from the current sampling time to the
next sampling time, or the control period — dynamically,
depending on network traffic and other factors discussed
next.
We now repeat some fundamental results regarding the

stability of linear systems on arbitrary time scales. The
authors of [5] prove that time-invariant linear systems, or
a time-varying linear systems that are Jordan reducible,
will be exponentially stable if and only if every system
eigenvalue belongs to the set of exponential stability S(T).
A subset of S(T), of interest here, is defined as
SC(T) = {λ ∈ C : α = (8)

lim sup
t→∞

1

t− t0

Z t

t0

log |1 + µ(τ)λ(τ)|
µ(τ)

∆τ < 0}.

Looking at (8), it becomes apparent that the integrand
must be negative on average. Furthermore, under the
condition that µ(t) > 0 with no limit points, as in this
paper, SC(T) reduces by a fundamental theorem of time
scale calculus [2] to

SC(T) = {λ ∈ C : (9)

α = lim
t→∞

1

t− t0

tX
τ=t0

log |1 + µ(τ)λ(τ)| < 0}.

(Note that the summation limits are really the ordinals
of the associated times. This is a convenient shorthand
notation.) To make the problem more tractable, we next
note that a sufficient condition for the infinite average in
(9) to remain negative is for the moving average over every
k points to remain negative. Setting t0 = 0, we then have
the desired stability criterion that

1

t− ρk(t)

tX
τ=ρk(t)

log |1 + µ(τ)λ(τ)| < 0 ∀t ∈ T (10)

which further simplifies to

P (t) :=
tY

τ=ρk(t)

|1 + µ(τ)λ(τ)| < 1. (11)

To complete the background, we lastly note that,
as long as all eigenvalues of (A + BK) have negative
real parts, then there exists some non-zero positive con-
stant µmax such that eigenvalues λi of A(µ(t)) will give

|1 + µ(t)λi(t)| < 1 if µ(t) < µmax [4]. The region defined
by |1 + µλ| < 1 is termed the Hilger Circle, a circle in the
left-hand complex plain that passes through the origin,
with center at − 1

µ . Note that, for systems of non-constant
graininess, the Hilger Circle changes radius dynamically,
and thus one interpretation of (8) is that system eigen-
values must reside in the circle "most" of the time, on
average. However, as with continuous-time systems, when
the system matrix is time varying, simple eigenvalue place-
ment is not sufficient to deduce any conclusions about the
overall system stability. For this reason we introduce the
following Lyapunov analysis. We choose the Lyapunov
functional

V = xTQx (12)

where Q solves the equation

A∗TQ+QA∗ + µ∗A∗TQA = −I (13)

with A∗ := A(µ∗) as per the definition in (3). That such
a solution Q exists is proved by Dacunha [3] with the only
prerequisite being that A∗ has eigenvalues in the Hilger
Circle (which requires µ(t) < µmax as per the discussion
above). Clearly, when the fixed µ∗ is replaced by the time-
varying µ(t), the equation above then becomes

A(µ(t))TQ+QA(µ(t)) + µ(t)A(µ(t))TQA(µ(t))
= −I +Σ(µ(t))

where Σ(µ∗) = 0. Differentiating V gives

V ∆ = x∆(t)TQx(σ(t)) + x(t)TQx∆(t)

= xT [A(µ)TQ+QA(µ) + µA(µ)TQA(µ)]x
= xT [−I +Σ(µ)]x
≤ −1 + λmax(Σ(µ))

λmin(Q)
V := η(µ)V. (14)

Examining the definition of η(µ), it is clear that η < 0
in a neighborhood of µ∗, suggesting that the system will
remain stable over any range of sampling periods within
that neighborhood. However, it is actually not necessary
to restrict µ to the η(µ) < 0 region all of the time. To
see this, we reference a theorem in [4] showing that, if
η ∈ SC(T), then there exists a positive constant K such
that

V ≤ Ke−αt, (15)

and therefore that the state x(t) is exponentially bounded
as well. Herein lies the power of the time scale analysis
introduced in this paper: the set SC(T) clearly allows for
η > 0 as long as η does not remain positive for too long. In
particular, if the control node can keep P (t) < 1, then one
or even a string of "long" sample periods will not affect the
overall system stability, even sample periods µ(t) ≥ µmax
that make the system instantaneously unstable!

3 Adaptive Sampling

One consequence of the preceding analysis is that the con-
trol system will not lose stability if the eigenvalues fall
outside of the Hilger Circle for limited periods of time.
One way this might happen is to (intentionally) permit
the sampling period to occasionally rise above µmax, thus
rendering |1 + µ(t)η(t)| ≥ 1 during that period. If the
window for P (t) is large enough, then a number of such in-
fractions can be tolerated while still maintaining P (t) < 1.
In fact, the number of tolerable unstable periods can be
maximized if the controller is nominally operating with a
period that minimizes |1 + µ(t)η(t)|, which we denoted µ∗
above. This minimizes P (t) and gives the system more
head room to allow for unstable periods while still main-
taining overall stability. If, however, P (t) rises too much
(i.e. approaches 1 too closely) it is conversely possible to
monitor P and reduce the nominal sampling period below
µ∗ until P falls below some threshold.
Naturally, the presence of dense network traffic is one

obvious condition sufficient to trigger a rise in the control
period. There are conceivably many ways in which net-
work traffic metrics could be used to raise µ(t), but if the
network is a CAN, one particularly simple way is to set
Tsleep to a constant (refer to figure 2), rather than setting
µ (or ti+1−ti) constant as is usually done. Tsleep would be
determined so that, in the absence of high-priority traffic,
the nominal desired period is equal to the optimal period,
µ∗. This value is called T ∗sleep. When network traffic be-
comes dense, the durations of Treq, Trec and Ttrans rise,
and then the actual period rises above the desired period,
µ(t) ≥ µ∗. This is tolerable for a time — and may be tol-
erable indefinitely — unless P (t) gets too close to unity,
in which case the controller can switch to a lower desired
period (by lowering Tsleep to some predetermined T̂sleep),
below the optimal one. This yields a particularly simple
update rule for µd(t) that can be implemented even on
small embedded CAN controllers:

1. Measure the actual time duration Treq+Trec+Tcomp+
Ttrans.

2. If P (t) < P̄ (some threshold < 1) then sleep for
Tsleep = T ∗sleep. Otherwise Tsleep = T̂sleep.

3. Calculate µ = Treq + Trec + Tcomp + Ttrans + Tsleep.

4. Calculate maxi |1 + µ(t)η(t)| and then update P (t).
5. Sleep. Upon wake, repeat at step 1.

Note that step 4 appears computationally intensive, but
in fact a range of values for |1 + µη| versus µ(t) can be

computed ahead of time and stored in a lookup table for
fast reference. Step 1 is possible because CAN is a real-
time network: once the controller knows that the actuator
messages have left the transmit queue, it automatically
follows that they have been received by the actuator nodes,
after which the timing becomes strictly deterministic. The
overall effect of the algorithm is to specify a desired period
of

µd(t) = min(Treq + Trec + Ttrans) + Tcomp + Tsleep, (16)

which only occurs if there is no competing network traffic.
Since Tcomp is fixed and Tsleep takes on one of two values,
µd(t) takes on one of two values as well.

4 Simulation

For an example, we choose the (inherently unstable) sys-
tem

A =

·
0 1
−4 1

¸
, B =

·
0
1

¸
,K =

£
0 −2 ¤ . (17)

The closed loop continuous system has poles at λi =
−0.5 ± 1.94j, which are stable although obviously not
"optimal". (We want to preserve some interesting dy-
namics.) Off-line computation finds that the minimum
of maxi |1 + µ(t)η(t)| occurs at µ∗ = 0.581, and that
µmax = 0.837. Without loss of generality, we set Tcomp =
0, and assume that, with no competing network traffic,
Treq +Trec+Ttrans = 0. This implies that T ∗sleep = 0.581,
and we choose T̂sleep = 0.2. (It should also be noted that,
with this choice of µ∗, η < 0 holds for all µ(t) down to
practically zero.)
Figures 3 and 4 illustrate scenarios where a burst of net-

work traffic occurs between 15 < t < 45. In both figures,
the first 3 seconds show µ = µd = 0.2 because, while there
is theoretically no traffic in this interval, P is initialized
to 1 which exceeds the programmed threshold P̄ = 0.25.
The averaging window for P (t) is 25 samples. During
the high-traffic interval, figure 3 shows that P < P̄ at all
times, and therefore the controller tolerates the additional
delays even though 14 periods exceed the instantaneous
stability limit, µ > µmax. Thus, in this interval, only 42
control periods are necessary versus 52 if the controller
operated on a fixed period basis at the optimal period, a
bandwidth reduction of 19.2%, leaving additional band-
width available to the sporadic messages on the bus. In
figure 4, traffic becomes dense enough that P > P̄ briefly,
and the controller switches to µd = 0.2. This has the ef-
fect of quickly reducing the magnitude of P , and during

0 10 20 30 40 50 60 70
-0.5

0

0.5

1

0 10 20 30 40 50 60 70
0

0.5

1
µ(t)
µ

d
(t)

µmax(t)

0 10 20 30 40 50 60 70
0

0.5

1

x
1
(t)

P(t)

Figure 3: The system response to a burst of traffic.

the high-traffic interval only 45 control periods are neces-
sary, a 13.5% reduction in bandwidth. Again, the control
period exceeds the instantaneous stability limit of µmax
for 14 periods. Significantly higher bandwidth reductions
would be possible under this algorithm compared against
a system using the "rule of 10" (i.e. that the controller
should sample at least 10 times faster than the smallest
time constant in the system).

5 Conclusion

The paper presents a simple algorithm to permit con-
trollers on real-time distributed control networks such as
CAN to adapt their sample periods in response to bursts
of high-priority sporadic traffic. Using recent results from
the mathematical field of dynamical equations on time
scales, the analysis shows that the algorithm can main-
tain stability on average even when the delays are so large
that the system is instantaneously unstable. As robotics
and automation systems grow ever more complex and re-
quire more sensors and actuators, algorithms such as this
may help to stave off the inevitable bandwidth crunch.
More analysis is necessary to characterize the behavior

of this algorithm under various conditions. The analysis
here does not take into account the problem of jitter, and
it is not clear that any of the commonly used message
priority scheduling schemes will work well in an adaptive
sampling situation: such algorithms have always been de-
signed to maximize synchronicity rather than allowing for
the purposeful introduction of asynchronicity, as was done

0 10 20 30 40 50 60 70
-0.5

0

0.5

1

0 10 20 30 40 50 60 70
0

0.5

1
µ(t)
µ

d
(t)

µmax(t)

0 10 20 30 40 50 60 70
0

0.5

1

x
1
(t)

P(t)

Figure 4: System response to another burst of traffic. Note
that P (t) > 0.25 for a brief time.

here. Further subjects of study are improved adaptation
laws that can vary µd(t) continuously, and examination of
the effects of the present technique on nonlinear plants.

6 Appendix

A thorough introduction to dynamic equations on time
scales is beyond the scope of this appendix; how-
ever, Bohner and Peterson [2] have written an excellent
overview of the subject. In short, the theory springs from
the doctoral dissertation of S. Hilger in 1988. Starting
the early 1990’s, the theory began to grow until in 2001 a
complete treatise on the subject appeared [2].
A time scale T in this context is defined as an arbi-

trary non-empty closed subset of the real numbers. Thus
time scales can be any of the usual integer subsets (e.g. Z
or N), the entire real line (R) or any combination of dis-
crete points unioned with continuous intervals. The bulk
of engineering systems theory to date rests on two time
scales, R and Z (or more generally hZ, meaning discrete
points separated by distance h). However, as this paper
illustrates, there are occasional instances when necessity
or convenience dictates the use of an alternate time scale.
The question of how to how to approach the study of dy-
namic systems on time scales then becomes relevant, and
in fact the majority of research on time scales so far has
focused on expanding and generalizing the vast suite of
tools available to the differential and difference equation
theorist.

The paper makes use of a few essential definitions and
theorems from this body of work, which we discuss now.

Definition 1 The forward jump operator σ(t) :
T→ T and the backward jump operator ρ(t) : T→ T
are given by

σ(t) = inf
s∈T
{s > t}, ρ(t) = sup

s∈T
{s < t}. (18)

The graininess function µ(t) : T→ [0,∞) is given by
µ(t) = σ(t)− t. (19)

Evidently, since the forward jump operator returns the
next point in the time scale, the graininess can be visu-
alized as the step size. Note that, for a closed interval of
R, σ(t) = 0 except at the right-most point, and therefore
µ(t) = 0 except at the right-most point. Thus it becomes
clear that time scales consist of collections of two types
of elements, scattered points (i.e. points where ρ(t) 6= t
and σ(t) 6= t) and dense points (i.e. points where ρ(t) = t
or σ(t) = t.) At the endpoints of continuous intervals, we
have left- and right-dense points as well. Points that are
right- and left-scattered are termed isolated.

Definition 2 For some function f : T → R, the delta
derivative of f(t), designated f∆(t) , is the number
(when it exists) with the property that there is some neigh-
borhood U of t where¯̄
[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]

¯̄ ≤ � |σ(t)− s| ∀s ∈ U,

and � > 0.

We say that f is delta differentiable provided the delta
derivative f∆ exists for all t ∈ T − {max(T)} := Tκ, i.e.
the timescale minus its right-most point if that point ex-
ists. For simplicity in this paper we omit the Tκ notation
because of the convention that, if the time scale does not
have a maximum, Tκ = T. Not surprisingly, the condition
for existence of the delta derivative is simply that f be
continuous over all closed, continuous intervals, if there
are any (i.e. all subsets of R). If this is the case, the delta
derivative is well defined by the equality

f∆ =
f(σ(t))− f(t)

µ(t)
. (20)

Needless to say, the generalizations of the usual rules of
differentiation are not always as simple as their continuous
cousins (e.g. [x3(t)]∆ 6= 3x2(t)).
Of course, along with differentiation one would like to

have integration. For this, we require some mild technical
conditions [2], including that f be regulated, meaning that
its right- and left-sided limits exist at any right- and left-
dense points in T.

Theorem 3 Let f be regulated. Then there exists a func-
tion F and region of differentiation D such that

F∆(t) = f(t), t ∈ D (21)

Definition 4 A function F : T→ R is called an anti-
derivative of f provided

F∆(t) = f(t) ∀t ∈ Tκ. (22)

Theorem 5 Every right-dense continuous function has
an antiderivative. If t0 ∈ T, then

F (t) =

Z t

t0

f(τ)∆τ t ∈ T. (23)

As one would hope, the theorems above reveal that, in
the continuous case T = R, delta antiderivatives and in-
tegrals are the usual antiderivatives and definite integrals
from standard calculus. When T = R, these quantities
correspond to indefinite and definite sums often seen in the
study of difference equations. Without further exposition,
the usual properties of integrals hold as well, including
linearity and homogeneity. However, as with derivatives,
the usual integration "rules of thumb" do not hold. These
definitions lead to a foundational theorem of time scale
calculus, which states:

Theorem 6 If f is right-dense continuous, thenZ σ(t)

t

f(τ) = µ(t)f(t). (24)

This theorem, along with linearity of the time scale in-
tegral, is what equates the integral to a sum in the case
that T consists only of isolated points.
From the definitions above, the next obvious step is to

investigate linear and the non-linear time scale differential
equations, e.g. systems of the form x∆∆ + ax∆ + bx = f
and beyond. Since the time scale itself is often allowed to
be arbitrary (or occasionally must adhere to mild assump-
tions), the theoretical foundations that underpin the study
of dynamic equations on time scales are extremely broad.
The types of time scales in this paper are relatively "tame"
in comparison to the variety that are possible, but never-
theless, time scale theory provides a rigorous and holistic
technique by which we can study non-uniform sampling
problems with relative ease.

References
[1] Audsley, N.; et. al; "Applying new scheduling theory

to static priority pre-emptive scheduling," J. Software
Engineering, Sept. 1993, pp. 284-292.

[2] Bohner, Martin; Peterson, Allan; Dynamic Equations
on Time Scales, Birkhauser Boston, 2001.

[3] Dacunha, Jeffrey; "Stability for time-varying linear
dynamical systems on time scales," internal report,
department of Mathematics, Baylor University, Oc-
tober 2003.

[4] Gravagne, Ian; Davis, John; Dacunha, Jeffrey; "A
unified approach to discrete and continuous high-gain
adaptive controllers using time scales," submitted,
SIAM J. Control and Optimization.

[5] Potzsche, C.; Siegmund, S.; Wirth, F.; "A spec-
tral characterization of exponential stability for linear
time-invariant systems on time scales," J. Discrete
and Continuous Dynamical Systems, v.9(5), Sept.
2003, pp. 1223-1241.

[6] Tindell, Ken; Burns, Alan; "Guaranteeing message
latencies on control area network (CAN)," Proc. 1st
International CAN Conference, 1994.

[7] Wargui, M.; Tadjine, M.; Rachid, A.; "A scheduling
approach for decentralized mobile robot control sys-
tem," IEEE Int’l Conf. Intelligent Robots and Sys-
tems, v.2, 1997, pp. 1138-1143.

[8] Wargui, M.; Rachid, A.; "Application of controller
area network to mobile robots," Proc. Mediterranean
Electromechanical Conf., v.1, 1996, pp. 205-207.

[9] Wiesspeiner, W.; Windischbacher, E.; "Distributed
intelligence to control a stair-climbing wheelchair,"
Proc. IEEE Int. Conf. Engineering in Medicine and
Biology, v.17(2), 1995, pp. 1173-1174.

[10] Zuberi, Khawar; Shin, Kang; "Non-preemtive
scheduling of messages on controller area network
for real-time control applications," Proc. Real-Time
Technology and Applications, 1995, pp. 240-249.

[11] Zuberi, Khawar; Shin, Kang; "Scheduling messages
on controller area network for real-time CIM ap-
plications," IEEE Trans. Robotics and Automation,
v.13(2), April 1997, pp. 310-314.

