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Abstract-- The purpose of vulnerability assessment is to 

determine when a disruption of service is likely to occur and to 
take steps to reduce the associated risk. With the growth of 
power systems, increases in grid complexity, and the trend 
toward deregulation, vulnerability assessment is imperative. 
Accurate vulnerability assessment is especially vital during heavy 
loading conditions and a vulnerability index is greatly needed to 
help the operator steer the system to viable conditions. In this 
paper, two new vulnerability assessment methods are proposed. 
One is based on the distance of the current operating point from 
the vulnerability border of the system. The other is an index 
based on the anticipated loss of load. These two methods are fully 
applicable to the case of cascading events. 
 

Index Terms -- Particle swarm optimization, security 
assessment, vulnerability assessment, vulnerability index. 

I.  INTRODUCTION 
HE purpose of vulnerability assessment is to determine a 
power system’s ability to continue to provide service in 

case of an unforeseen catastrophic contingency. A power 
system can become vulnerable for various reasons, including 
component failures, communication-system failures, human 
operator errors, weather conditions, and human errors.  

An approach to power system vulnerability assessment 
begins with the analysis of system behavior for credible 
system contingencies. If analysis indicates that the system is 
vulnerable, preventive strategies should be implemented to 
steer the system to a more viable operating point, thus 
forestalling the possibility of cascading outages. A power 
system is invulnerable if it can withstand all credible 
contingencies without violating any of the system constraints. 
If there is at least one contingency which violates the system 
constraints, the system is judged to be vulnerable. 

The purpose of a vulnerability index is to reflect the level 
of system strength or weakness relative to the occurrence of 
an undesired event. The vulnerability of a power system 
increases when the operating conditions change so as to 
increase the likelihood of a blackout. 

When a system is to be judged vulnerable /invulnerable, 
quantitative measures to assess the degree of 
vulnerability/invulnerability are needed. The most common 
vulnerability/security indexes are the critical clearing time 
(CCT) and the energy margin (EM). The CCT is the 
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maximum elapsed time from the initiation of a fault until the 
fault is isolated and the power system remains transiently 
stable [1,2]. This intensive approach, however, is 
computationally prohibitive, thereby limiting its usefulness to 
limited number of off-line studies. 

To overcome this weakness, direct methods have been 
developed [3-7]. In contrast to the time-domain approach, the 
direct method determines system stability from energy 
functions by comparing the energy levels of the system to a 
pre-selected critical energy value. The difference is known as 
the energy margin (EM) and can be used as a 
vulnerability/security index. Direct methods have a long 
history of development [3-7], but, until recently, many 
researchers have thought of them as impracticable for detailed 
large-scale power system analysis because of intrinsic 
modeling limitations. Moreover, direct methods are less 
accurate than the time domain approach [7]. 

Knowledge of the vulnerability border can provide an 
operator with valuable guidance for steering the power system 
away from vulnerable operating regions. Moreover, the 
identification of the vulnerability border can provide easily 
understood visual information to the operator. The distance of 
the current operating point from the border provides a direct 
assessment of the degree of vulnerability, which is, in itself, a 
vulnerability index. The vulnerability boundary, however, 
cannot be determined analytically for a large-scale power 
system, requiring, rather, extensive computation by numerical 
methods.   

Most utility companies in North America use nomograms 
to characterize the security boundaries [8].  Fig. 1 is an 
example of a typical nomogram showing three levels of the 
security indices (SI). 
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Fig. 1. Nomogram for two parameters showing three security levels. 

 
In developing a nomogram, two critical parameters are 

chosen, denoted, respectively, by x1 and x2 in Fig. 1.  All other 
critical parameters are then set to default values. Points on the 
nomogram curve are plotted by repeated computer simulations. 
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Because this process requires intensive computer simulation, 
usually only a few points on the boundary, corner point, are 
calculated. The remaining segments of the curves are obtained 
using linear interpolations. This approximation can result in 
significant inaccuracies due to the limited number of critical 
parameters [8]. 

In order to overcome these drawbacks, security-border 
identification algorithm using neural network (NN) inversion 
was proposed [9,10]. The NN was trained to predict the 
security ranking, and the security border could be effectively 
identified by NN inversion. Due to the quick response of the 
NN as a power-system emulator, the process of border 
identification can be done quickly.  Moreover, there is no 
limitation on the number of critical parameters for the 
simulations. In [11], an enhanced particle swarm optimization 
(PSO) search algorithm was applied to NN inversion to 
identify the vulnerability border faster than previously 
possible.  More importantly, the border can be dynamically 
updated to reflect changes in power-system topology. 

In this paper, two new vulnerability indices are proposed. 
The first is based on the distance from the vulnerability border, 
and the other is based on the anticipated loss of load. 

II.  VULNERABILITY INDEX BASED ON DISTANCE FROM 
BORDER 

The proposed vulnerability index (VI) in this section is 
based on the distance of a given operating point from the 
border of vulnerability. The method allows straightforward 
visualization. Simultaneous display of the current operating 
state and the closest vulnerability border point enables the 
operator to see important information at a glance.  
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Fig. 2. Vulnerability border. 

 
Consider the schematic representation of the operating 

space of the power system in Fig. 2.  If a given operating point 
lies inside the border, the operating state of the system is said 
to be invulnerable and the distance from the closest point of 
the border would be the margin of safety. On the other hand, 
if an operating point lies outside the border, the operating state 
is said to be vulnerable and the shortest distance to the border 
is the degree of vulnerability. By this approach, the 

vulnerability index computed on the output space (CCT, 
energy margin, etc.) can explicitly reflect the information on 
the input space (voltages, currents, powers, etc.). 

The proposed algorithm starts by training the neural 
network off-line to predict the vulnerability status of a power 
system with the 24-hours load profiles. The NN module 
provides a VI in the output space. This process can be 
modeled by mapping )(xfVI NN

r
= , where xr  comprises the 

power system features chosen to represent the operating state, 
VI is the vulnerability index, and  fNN ( ) is the neural network 
model. The output of the neural network module is the 
vulnerability index or any other possible index such as the 
Critical Clearing Time (CCT) or the Energy Margin (EM). 
The desired VI of the border is set by the operator. The PSO 
algorithm [11] seeks to find the closest border point by 
minimizing an objective function F, of the following form: 

 

OperatingdesiredNN xxwVIxfF rvr
−×+−= )( , 

 
where 

fNN  is the neural network function, 
xr  is the current position of a given particle, 

Operatingxr  is the position of the operating point, 

 is the Euclidean distance between xr  and Operatingxr  

w  is a weighting factor. 
 

The function of the PSO is to find the border points as well 
as the minimum distance from the operating point [11].  

A.  Particle Swarm Optimization(PSO) 
The PSO algorithm is one of the evolutionary techniques 

developed by Eberhart and Kennedy [12, 13]. PSO is a 
powerful multi-agent search technique modeled on movement 
of bird flocks in flight.  Each individual (agent or bird) is 
dubbed a “particle” and represents a potential solution. Each 
particle adjusts its path according to its own experience and 
that of its companions. Through cooperation and competition 
among potential solutions, this technique can often find 
optima relatively quickly in complex optimization problems.  

The basic PSO concept consists of changing the velocity 
and the position of each particle incrementally along a time 
axis. Its movement is expressed by Equations (1) and (2): 

 
))()((())()1( 1 kxkxrandckvwkv SelflBest

rrrr
−××+×=+  

))()((()2 kxkxrandc GroupBest
rr

−××+      (1) 

)()()1( kvkxkx rrr
+=+                (2) 

 
xr  is the solution vector of a single particle and vr  is the 
velocity.  Equation (1) is used to calculate the new velocity of 
each particle and Equation (2) is used to ascertain its position. 
The acceleration constants c1 and c2 represent the weighting of 
the stochastic acceleration term.  Experiences with PSO have 
shown that, for most applications, these design parameters 
work best when both are set to 2.0 [12, 13].  
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In Equation (1), rand( ) represents a uniform random 
number between 0 and 1. The two random numbers in 
Equation (1) are independently generated. 

GroupBest is the best point found among all the particles in 
the group, which is tantamount to best experience of the 
particles as a group.  SelfBest is the best point observed by the 
current particle, representing its own best experience. 

B.  Case Study 
The proposed method is tested using the WSCC (Western 

Systems Coordinating Council) 179-bus system. The WSCC 
179-bus test system has 29 generators, 203 transmission lines, 
and 179 buses. This system is an equivalent representation of 
the interconnections in the western United States. 

The data set for a cascading event was generated. One of 
the three parallel 500kV transmission lines between John Day 
and Grizzly substations was used as a trigger for the events. 
Fig. 3 shows a zoomed section of the system where the events 
occurred. 

The first event was assumed to be a three-phase fault at one 
of the triple lines between bus #82 and bus #76. After 10 ms, 
one of the parallel lines between bus #76 and bus #78 was 
opened, simulating a second event. Finally, one of the parallel 
lines between bus #78 and bus #80 was opened 10 ms after 
the second event. For each of these events, the CCT was used 
as a vulnerability index. Any other measure for vulnerability 
could be used.  In order to vary the operating conditions, all 
generator outputs and loads were randomly changed between 
70%- 140 %. 
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Fig. 3.  One-line diagram of the studied section. 

 
A total of 1000 possible operating points were used. Figs. 4, 

5, and 6 present the histogram of the error in the CCT after 
each event.  The CCT error is the difference between the CCT 
of the border point as computed by the model, and that of the 
point subsequently found by the PSO. This can be taken as a 
measure of the accuracy of the PSO algorithm in finding 
border points.  As seen in these figures, the PSO is very 
effective in finding the border points. 
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Fig. 4.  Distribution of CCT error after the first event. 
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Fig. 5.  Distribution of CCT error after the second event. 
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Fig. 6.  Distribution of CCT error after the third event. 

 

C.  Visualization of System Vulnerability 
A visualization tool can be developed to provide the 

operator with an illustration of system vulnerability. To have 
an effective illustration, the visualization is developed for the 
input space, where the variables are explicit (voltages, powers, 
etc.).  The VI, in this case, is the Euclidean distance between 
the current operating point and the nearest border point as 
described by the explicit variables.  
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Fig. 7.  Arbitrarily selected load curve. 

 
For the test system and fault scenarios described above, the 

system load is assumed to be the 24-hr load curve shown in 
Fig. 7.  The system is described by 30 variables of real and 
reactive powers.  These variables are chosen by using a 
feature extraction technique [14].  An operating point is a 
single vector that includes all the 30 variables. 

Figs. 8 and 9 show the visualization of the system 
vulnerability at 10 a.m. when the system demand is about 62 
GW as shown in Fig. 7. The superimposed bars in the figures 
represent the magnitude of the variables in the operating space 
(dark shading), and the value of the variables at the nearest 
feasible border point (light shading).  The vulnerability index 
as defined by the Euclidean distance is also shown at the far 
right in the figures. A negative vulnerability index represents 
an invulnerable operation.  Its magnitude is the vulnerability 
margin.  A positive magnitude represents a vulnerable 
operation, and its magnitude is an indication for the degree of 
system vulnerability.  As seen in Fig. 8, all variables are less 
or equal to these at the nearest border point.  This is 
invulnerable operation and the vulnerability index is about 
20%. 

0 0.5 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Qg 77  

Qg 65  

T PL   

Pg 77  

Pg 65  

Qg 103 

Qg 36  

Pg 70  

Pg 45  

Pg 9   

T QL   

Pg 162 

Qg 140 

Pg 15  

Pg 149 

0 0.5 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Qg 116 

Qg 118 

Pg 118 

Qg 6   

Qg 18  

Qg 9   

Pg 144 

Pg 140 

Qg 15  

Qg 148 

Qg 162 

Qg 159 

Pg 18  

Qg 112 

Qg 138 

-1 0 1

1

Vulnerability Index

VI =  -0.20057

 
Fig. 8.  Current operating points and border after the first event. 

 
After the second event, the system vulnerability is shown in 

Fig. 9.  As seen in the figure, most variables clearly exceed 
the border point, and the system is vulnerable. The 
vulnerability index is positive and its numerical value (50%) 
indicates how far the system is from the border. 
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Fig. 9.  Current operating points and border after the second event. 

 
The above visualization can be performed on-line.  The 

execution time is in milliseconds on Pentium PCs.   

III.  VULNERABILITY INDEX BASED ON ANTICIPATED LOSS OF 
LOAD 

In section II, a vulnerability index based on the distance 
from a defined border is proposed.  This border can be 
ascertained on the basis of any one of a number of different 
indices. In the previous section, however, the CCT was used 
for this purpose. 

Since the purpose of vulnerability assessments is to allow 
avoidance of catastrophic power outages in the case of 
cascaded events, the index should reflect how much load 
might be lost at such times.  Hence, we are proposing to use 
the anticipated loss of load as an alterative index. This concept 
is simple but requires a great deal of off-line computation. In 
the case of small systems, one can examine all possible 
combinations of load reductions to find an appropriate 
minimum. However, for systems of the size normally 
encountered, an exhaustive search is impracticable. Suppose 
that we shed each load from 0% to 100% in increments of 1%. 
If a system has N loads, there are 100N possible combinations 
of load reductions. Such a number is well beyond the limits of 
current computation. To address this issue, we propose using 
PSO to find the best possible combination of load reductions 
while maintaining stability. This is a sub-optimal process. The 
amount of load shed in this case is the vulnerability index. 

A.  Under Frequency Load shedding 
Normally, power systems are operated under quasi-

equilibrium conditions where the total load consumption and 
system losses equal the total generation. System frequency is 
governed by this equilibrium and consequently, any unbalance 
in loads can result in frequency excursions that may lead to 
loss of synchronism. An excess of load results in a system 
frequency drop and load shedding has to be employed in order 
to rapidly balance demand and generation. 

Load shedding is accomplished using frequency sensitive 
relays that detect the onset of decay in power system 
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frequency where both frequency and rate of frequency decline 
are measured. Load shedding is usually implemented in stages 
each of which is triggered at a different frequency level or at 
specified rate of frequency decline [15-17]. 

In [18], a load shedding scheme is developed based on 
frequency decline and on the rate of frequency decline. Table 
1 shows the step size and time delay for a typical scenario. 
The notation “C” represents the time delay in cycle. A more 
detailed explanation of Table I is provided in [18]. This 
scheme is used for comparison of the procedure we propose. 

 
TABLE I 

STEP SIZE AND DELAY TIME OF THE TWO LAYERS AS PERCENTAGE OF THE 
TOTAL LOAD 

 
 59.5 

Hz 
59.3 
Hz 

58.8 
Hz 

58.6 
Hz 

58.3 
Hz 

Activated by frequency 
decline rate 

20 % 
(0C) 

 5 % 
(6C) 

4 % 
(12C) 

4 % 
(18C) 

Activated by frequency 
decline 

 10 % 
(28C) 

15 % 
(18C) 

  

 

B.  Optimal Load Shedding by Particle Swarm Optimization 
Load shedding is a combinatorial optimization problem 

that lends itself to the particle swarm optimization (PSO) 
technique. The overall procedure of this method is shown in 
Fig. 10. The starting point of this procedure is to determine 
the dimension of the search space. We can search all possible 
combination of load reduction, but it may lead to unacceptable 
computational time. Extended Transient-Midterm Stability 
Program (ETMSP) is used in this analysis.  However, since 
ETMSP doesn’t monitor the frequency of load buses, under 
frequency load shedding relays are installed at all load buses 
to detect which loads are to be shed due to the frequency 
decline.  

Decide how many loads should be shed 

Initial Values 

Search personal best, global best 

New Load Shedding Value 

Run ETMSP simulation 

Compute Fitness Value 

Satisfy Stopping Criteria? 

Total amount of Load shed  VI 

Yes 
No 

 
Fig. 10.  The overall procedure of PSO method. 

 
After determining the buses for load shedding, each PSO 

agent (particle) traverses the search space looking for the 

global minimum combination of load shedding using the 
initial values obtained in the previous step. These best points 
are verified using ETMSP simulation. 

Equations (3) and (4) show the fitness values that PSO is to 
maximize. It is the inverse of the summation of all load 
reductions.  This fitness function will have a maximum value 
when all loads are maintained.  If the system is unstable, the 
fitness function has a negative sign. 

 

∑
=

MVA
F 1 , if system is stable        

 (3) 

∑
−=

MVA
F 1 ,  if system is unstable        (4) 

 
After each iteration, the fitness value of the global best 

point is compared with the fitness at the previous iteration. If 
the difference is smaller than a set value, and is maintained 
small for several iterations, a solution is achieved and the 
amount of load shedding is the vulnerability index. 

C.  Test Scenario 1 
The scenario used in test case 1 is a sequence of events that 

leads to simultaneous loss of the lines between the following 
buses.   

 
Bus 83 - Bus 172 
Bus 83 - Bus 168 
Bus 83 - Bus 170 
 
To save the system from an impending blackout, the 

system was split into two island 0.2 seconds after the 
contingency. In order to create the islands, the following lines 
are opened: 

 
Bus 133-Bus 108 
Bus 133-Bus 104 
Bus 29 - Bus 14 
 
This scenario was used in [18]. 
The ETMSP is used to simulate the system assuming the 

load buses are equipped with under frequency relays. The 
relay settings are shown in Table I. To stabilize the system, a 
total of nine loads were shed. The PSO method was also used 
to search for the minimum amount of load shedding. The PSO 
technique searched among the same load buses identified by 
the under frequency relay method. 

The results of both methods are shown in Fig. 11. The x-
axis shows the bus numbers and the y-axis represents the 
amount of load shed by each method.  The unit of y-axis is 
MVA.  As seen in the figure, the PSO method achieves a 
smaller amount of load shedding as compared with the under 
frequency relay method.  The total system load shed by the 
PSO method is less than 60 % of that computed by the under 
frequency relay method. 
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Fig. 11.  The amount of load shedding. 

 

D.  Test Scenario 2 
A second example is used to test the proposed technique.  

In this example, a three phase permanent fault on line 83-86 
near bus 83 is assumed as shown in Fig. 12. 
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Fig. 12.  One-line diagram of the studied section. 

 
Allowing for the breakers actuation delays and normal 

relay actions, the line was cleared within 50 ms. One type of 
hidden failure identified in the literature [19] occurs in 
transfer trip systems involving directional-comparison 
blocking.  If such a system were employed here, the relays in 
the unfaulted parallel 83-114 lines would see the fault but 
would be inhibited from tripping by the blocking signal. The 
loss of both of these lines results in an unstable condition and 
under frequency relay couldn’t stabilize the system. However 
with PSO, we can find a combination of load shedding that 
would render the system stable.  Under these conditions, it 
was found that shedding a system load of only 98 MVA 
would stabilize the system. 

E.  Example of Vulnerability Index Based on Anticipated Loss 
of Load 

Test cases show the feasibility of the proposed technique. 
The anticipated loss of load, as obtained by the PSO technique, 

can be used as a vulnerability index. This index is applicable 
in the case of cascading events. Moreover, any control actions 
can be considered in the course of the relevant calculations.  

Fig. 13 is a histogram for the minimum amount of load 
shedding for Test Scenarios 2. The figure shows the frequency 
distribution of the total magnitude of load shedding for 
different loading configurations. In this test, 1500 different 
operating conditions were considered. 
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Fig. 13.  Distribution of the total magnitude of load shedding. 

 
The amount of load shedding in MVA can be used directly 

as a VI, which provides the operator with a measure that can 
be immediately understood. This amount could be normalized 
between 0 and 1. Another choice is to take the percentage with 
respect to the total load demand. In this example, the highest 
load shedding required is 3.15 GVA. The corresponding load 
demand is 68.4 GVA. The load shedding percentage (4.6 %) 
can be taken as an alternative expression for the vulnerability 
index VI. 

IV.  CONCLUSION 
In this paper, we propose two new vulnerability indices. 

The first is a vulnerability index based on distance from the 
vulnerability border as identified by Particle Swarm 
Optimization. This procedure is highly amenable as a 
visualization tool. Simultaneous display of the current 
operating state and the closest vulnerability border point 
enables the operator to see important information at a glance. 
The other is an index based on anticipated loss of load. This 
index is fully applicable in the case of cascading events. 
Moreover, any relevant control actions can be incorporated 
into the ongoing calculations. The PSO algorithm was used to 
handle the extensive computation required for finding the best 
combination of load reductions. Test results show this 
technique can ascertain the minimum amount of load shedding 
required within a reasonable time. 
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