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Goals

Establish a region of convergence for the the forward
transform.

Establish a unique inverse transform (and inversion
formula).

Explore algebraic properties of the transform: convolution,
identity element.

Applications to adaptive control of linear systems (time
permitting): controllability and observability for linear
systems.



Generalized
Laplace

Transform and
Control

Davis,
Gravagne,
Jackson,

Marks, Ramos

Title

Goals

Generalized
Laplace
Transforms

Inversion

Convolution

Generalized
Dirac Delta
Functional

Controllability

Observability

Goals

Establish a region of convergence for the the forward
transform.

Establish a unique inverse transform (and inversion
formula).

Explore algebraic properties of the transform: convolution,
identity element.

Applications to adaptive control of linear systems (time
permitting): controllability and observability for linear
systems.



Generalized
Laplace

Transform and
Control

Davis,
Gravagne,
Jackson,

Marks, Ramos

Title

Goals

Generalized
Laplace
Transforms

Inversion

Convolution

Generalized
Dirac Delta
Functional

Controllability

Observability

Goals

Establish a region of convergence for the the forward
transform.

Establish a unique inverse transform (and inversion
formula).

Explore algebraic properties of the transform: convolution,
identity element.

Applications to adaptive control of linear systems (time
permitting): controllability and observability for linear
systems.



Generalized
Laplace

Transform and
Control

Davis,
Gravagne,
Jackson,

Marks, Ramos

Title

Goals

Generalized
Laplace
Transforms

Inversion

Convolution

Generalized
Dirac Delta
Functional

Controllability

Observability

Goals

Establish a region of convergence for the the forward
transform.

Establish a unique inverse transform (and inversion
formula).

Explore algebraic properties of the transform: convolution,
identity element.

Applications to adaptive control of linear systems (time
permitting): controllability and observability for linear
systems.



Generalized
Laplace

Transform and
Control

Davis,
Gravagne,
Jackson,

Marks, Ramos

Title

Goals

Generalized
Laplace
Transforms

Inversion

Convolution

Generalized
Dirac Delta
Functional

Controllability

Observability

Goals

Establish a region of convergence for the the forward
transform.

Establish a unique inverse transform (and inversion
formula).

Explore algebraic properties of the transform: convolution,
identity element.

Applications to adaptive control of linear systems (time
permitting): controllability and observability for linear
systems.



Generalized
Laplace

Transform and
Control

Davis,
Gravagne,
Jackson,

Marks, Ramos

Title

Goals

Generalized
Laplace
Transforms

Inversion

Convolution

Generalized
Dirac Delta
Functional

Controllability

Observability

Generalized Laplace Transforms

Definition

For f : T → R, the Laplace transform of f , denoted by L{f } or
F (z), is given by

L{f }(z) = F (z) =

∫ ∞

0
f (t)gσ(t) ∆t, (1)

where g(t) = e	z(t, 0).

Recall...

	z = −z
1+µ(t)z ,

eλ(t, t0) is the unique solution of the dynamic IVP
x∆(t) = λx(t), x(t0) = 1.
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Hilger Complex Plane and Cylinder Transform
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Assumptions

T is a time scale with bounded graininess, that is,
µmin ≤ µ(t) ≤ µmax < ∞ for all t ∈ T.

We set µmin = µ∗ and µmax = µ∗.

Under these assumptions, if λ ∈ H, where H denotes the Hilger
circle given by

H = Ht =

{
z ∈ C :

∣∣∣∣z +
1

µ(t)

∣∣∣∣ <
1

µ(t)

}
,

then limt→∞ eλ(t, 0) = 0.

Careful: λ = 	z is time varying!
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To give an appropriate domain for the transform, which of
course is tied to the region of convergence of the integral in
(1), for any c > 0 define the set

D = {z ∈ C : z ∈ H{
max and z satisfies |1 + zµ∗| > |1 + cµ∗|}

= H{
max ∩ {Re µ∗(z) > Re µ∗(c)},

Note that if µ∗ = 0 this set is a right half plane.
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Dynamic Hilger circles and R.O.C.s

Hmax

Hmin
Ht

Time varying Hilger circles. The largest, Hmax has center µmin

while the smallest, Hmin has center µmax. In general, the Hilger
circle at time t is denoted by Ht which has center µ(t). The
exterior of each circle is shaded representing the corresponding
regions of convergence.
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Hmax

Hmin
Ht

Reμ∗
z = c

Hmax

Hmin
Ht

Reμ∗
z = c

The region of convergence is shaded. On the left, the µ∗ = 0
case. On the right, the µ∗ 6= 0 case. In the latter, note our
proof of the inversion formula is only valid for Re z > c , i.e. the
right half plane bounded by this abscissa of convergence even
though the region of convergence is clearly a superset of this
right half plane.
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Furthermore, if z ∈ D, then 	z ∈ Hmin ⊂ Ht since for all
z ∈ D, 	z satisfies the inequality∣∣∣∣	z +

1

µ∗

∣∣∣∣ <
1

µ∗
.

Finally, if Re µ∗(z) > Re µ∗(c), then Re µ(z) > Re µ(c) for all
t ∈ T since the Hilger real part is an increasing function in µ.
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Exponential Type I and Type II Functions

Definition

The function f : T → R is said to be of exponential Type I if
there exists constants M, c > 0 such that |f (t)| ≤ Mect .
Furthermore, f is said to be of exponential Type II if there
exists constants M, c > 0 such that |f (t)| ≤ Mec(t, 0).

The time scale exponential function, eα(t, t0), is Type II.

The time scale polynomials hk(t, 0) are Type I.
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Region of Convergence for the Transform

Theorem

The integral
∫∞
0 eσ

	z(t, 0)f (t) ∆t converges absolutely for
z ∈ D if f (t) is of exponential Type II with exponential
constant c.

The same estimates used in the proof of the preceding theorem
can be used to show that if f (t) is of exponential Type II with
constant c and Re µ(z) > Re µ(c), then
limt→∞ e	z(t, 0)f (t) = 0.
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Properties of the Generalized Transform

Theorem

Let F denote the generalized Laplace transform for f : T → R.

F (z) is analytic in Re µ(z) > Re µ(c).

F (z) is bounded in Re µ(z) > Re µ(c).

lim
|z|→∞

F (z) = 0.
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Initial and Final Values Theorem

Theorem

Let f : T → R have generalized Laplace transform F (z). Then

f (0) = limz→∞ zF (z),

limt→∞ f (t) = limz→0 zF (z) when the limits exist.
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Inversion Theorem

Theorem

Suppose that F (z) is analytic in the region Re µ(z) > Re µ(c)
and lim|z|→∞ F (z) → 0 uniformly in this region. Suppose F (z)
has finitely many regressive poles of finite order {z1, z2, . . . zn}
and F̃R(z) is the transform of the function f̃ (t) on R that
corresponds to the transform F (z) = FT(z) of f (t) on T. If∫ c+i∞

c−i∞
|F̃R(z)|dz < ∞,

then

f (t) =
n∑

i=1

Resz=zi ez(t, 0)F (z),

has transform F (z) for all z with Re (z) > c.



Generalized
Laplace

Transform and
Control

Davis,
Gravagne,
Jackson,

Marks, Ramos

Title

Goals

Generalized
Laplace
Transforms

Inversion

Convolution

Generalized
Dirac Delta
Functional

Controllability

Observability

Proof. The proof follows from the commutative diagram
between the appropriate function spaces.
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Let C be the collection of Laplace transforms over R, and D
the collection of transforms over T, i.e. C = {F̃R(z)} and
D = {FT(z)}, where F̃R(z) = G̃ (z)e−zτ and
FT(z) = G (z)e	z(τ, 0) for G and G̃ rational functions in z and
for τ an appropriate constant.

Each of θ, γ, θ−1, γ−1 maps functions involving the continuous
exponential to the time scale exponential and vice versa. For
example, γ maps the function F̃ (z) = e−za

z to the function

F (z) = e	z (a,0)
z , while γ−1 maps F (z) back to F̃ (z) in the

obvious manner.

If the representation of F (z) is independent of the exponential
(that is, τ = 0), then γ and its inverse will act as the identity.
For example,

γ

(
1

z2 + 1

)
= γ−1

(
1

z2 + 1

)
=

1

z2 + 1
.
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θ will send the continuous exponential function to the time
scale exponential function in the following manner: if we write
f̃ (t) ∈ C (R, R) with f̃ (t) of exponential order as

f̃ (t) =
n∑

i=1

Resz=zi e
zt F̃R(z),

then

θ(f̃ (t)) =
n∑

i=1

Resz=zi ez(t, 0)FT(z).
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To go from F̃R(z) to FT(z), we simply switch expressions
involving the continuous exponential in F̃R(z) with the time
scale exponential giving FT(z) as was done for γ and its
inverse. θ−1 will then act on

g(t) =
n∑

i=1

Resz=zi ez(t, 0)GT(z),

with g(t) of exponential Type II as

θ−1(g(t)) =
n∑

i=1

Resz=zi e
ztG̃R(z).
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For a given time scale Laplace transform FT(z), we begin by
mapping to F̃R(z) via γ−1. The hypotheses on FT(z) and
F̃R(z) are enough to guarantee the inverse of F̃R(z) exists for
all z with Re (z) > c , and is given by

f̃ (t) =
n∑

i=1

Resz=zi e
zt F̃R(z).

Apply θ to f̃ (t) to retrieve the time scale function

f (t) =
n∑

i=1

Resz=zi ez(t, 0)FT(z),

whereby (γ ◦ LR ◦ θ−1)(f (t)) = FT(z) as claimed. �
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Remarks

Does there exist a contour in the complex plane around
which it is possible to integrate to obtain the same results
through a more operational approach?

For T = R or T = Z—yes!
If T is completely discrete, then if we choose any circle in
the region of convergence which encloses all of the
singularities of F (z), the inversion formula holds.
In general? Sorry, just don’t know... (Want a problem to
work on?)
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We can use these techniques to generate generalized (and
unified) versions for any canonical transforms (e.g.
Fourier, Mellin, Hankel, etc.).

For any transformable function f (t) on T, there is a
shadow function f̃ (t) defined on R. That is, to determine
the appropriate time scale analogue of the function f̃ (t) in
terms of the transform, we use the diagram to map its
Laplace transform on R to its Laplace transform on T.
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Example. Suppose F (z) = 1
z2 . The hypotheses of the Inversion

Theorem are readily verified, so that

L−1{F} = f (t) = Resz=0
ez(t, 0)

z2
= t.

For F (z) = 1
z3 , we have

L−1{F} = f (t) = Resz=0
ez(t, 0)

z3
=

t2 −
∫ t
0 µ(τ)∆τ

2
= h2(t, 0).

The last equality is justified since the function

f (t) =
t2 −

∫ t
0 µ(τ)∆τ

2
,

is the unique solution to the initial value problem

f ∆(t) = h1(t, 0), f (0) = 0.
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In a similar manner, we can use an induction argument coupled
with the Inversion Theorem to show that the inverse of
F (z) = 1

zk+1 , for k a positive integer, is hk(t, 0).

In fact, it easy to show that the inversion formula gives the
claimed inverses for any of the elementary functions that
Bohner and Peterson have in their table. These elementary
functions become the proper time scale analogues or shadows
of their continuous counterparts.
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zk+1 , for k a positive integer, is hk(t, 0).

In fact, it easy to show that the inversion formula gives the
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Bohner and Peterson have in their table. These elementary
functions become the proper time scale analogues or shadows
of their continuous counterparts.



Generalized
Laplace

Transform and
Control

Davis,
Gravagne,
Jackson,

Marks, Ramos

Title

Goals

Generalized
Laplace
Transforms

Inversion

Convolution

Generalized
Dirac Delta
Functional

Controllability

Observability

A very important inverse...

Consider the function F (z) = e	z(σ(a), 0). The Inversion
Theorem cannot be applied. However, if a is right scattered,
one can show that the Hilger Delta function which has
representation

δH
a (t) =

{
1

µ(a) , t = a,

0, t 6= a,

has F (z) as a transform, while if a is right dense, the Dirac
delta functional has F (z) as a transform.
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Consider the function F (z) = e	z(σ(a), 0). The Inversion
Theorem cannot be applied. However, if a is right scattered,
one can show that the Hilger Delta function which has
representation

δH
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1

µ(a) , t = a,
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Uniqueness of the Inverse

If two functions f and g have the same transform, then are f
and g necessarily the same function? As on R, the answer to
this question is affirmative if we define our equality in an
almost everywhere (a.e.) sense.

Upshot (after some measure theoretic hoops to jump thru): To
show that a property holds almost everywhere on a time scale,
it is necessary to show that the property holds for every right
scattered point in the time scale, and that the set of right dense
points for which the property fails has Lebesgue measure zero.

Theorem

If the functions f : T → R and g : T → R have the same
Laplace transform, then f = g a.e.
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If the functions f : T → R and g : T → R have the same
Laplace transform, then f = g a.e.
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Upshot (after some measure theoretic hoops to jump thru): To
show that a property holds almost everywhere on a time scale,
it is necessary to show that the property holds for every right
scattered point in the time scale, and that the set of right dense
points for which the property fails has Lebesgue measure zero.

Theorem

If the functions f : T → R and g : T → R have the same
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Setting the table for convolution

Definition

The delay of the function x : T → R by σ(τ) ∈ T, denoted by
x(t, σ(τ)), is given by

uσ(τ)(t)x(t, σ(τ)) =
n∑

i=1

Resz=zi X (z)ez(t, σ(τ)).

Here, uξ(t) : T → R is the time scale unit step function
activated at time t = ξ ∈ T.
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Shifts

Notice that uσ(τ)(t)x(t, σ(τ)) has transform X (z)eσ
	z(τ, 0).

Indeed,

uσ(τ)(t)x(t, σ(τ)) =
n∑

i=1

Resz=zi X (z)ez(t, σ(τ))

=
n∑

i=1

Resz=zi

[
X (z)eσ

	z(τ, 0)
]
ez(t, 0)

= L−1{X (z)eσ
	z(τ, 0)}.

This allows us to use the term delay to describe x(t, σ(τ)),
since on T = R, the transformed function X (z)e−zτ

corresponds to the function uτ (t)x(t − τ). With the delay
operator defined, we define the convolution of two arbitrary
transformable time scale functions.
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The Convolution Product

Definition

The convolution of the functions f : T → R and g : T → R,
denoted f ? g , is given by

(f ? g)(t) =

∫ t

0
f (τ)g(t, σ(τ))∆τ.
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The Convolution Theorem

Theorem

The transform of a convolution product is the product of the
transforms.
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Proof. Assuming absolute integrability of all functions involved,
then by the delay property and inversion we obtain

L{f ? g} =

∫ ∞

0
eσ
	z(t, 0) [(f ? g)(t)] ∆t

=

∫ ∞

0

[∫ t

0
f (τ)g(t, σ(τ))∆τ

]
eσ
	z(t, 0) ∆t

=

∫ ∞

0
f (τ)

[∫ ∞

σ(τ)
g(t, σ(τ))eσ

	z(t, 0) ∆t

]
∆τ

=

∫ ∞

0
f (τ)L{uσ(τ)(t)g(t, σ(τ))}∆τ

=

∫ ∞

0
f (τ)

[
G (z)eσ

	z(τ, 0)
]
∆τ

=

∫ ∞

0
f (τ)eσ

	z(τ, 0)∆τ · G (z)

= F (z)G (z).

�
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Example. Suppose g(t, σ(τ)) = 1. In this instance, we see that
for any transformable function f (t), the transform of
h(t) =

∫ t
0 f (τ)∆τ is given by

L{h} = L{f ? 1} = F (z)L{1} =
F (z)

z
,

another result obtained by direct calculation in Bohner and
Peterson.
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The convolution product is both commutative and associative.
Indeed, the products f ? g and g ? f have the same transform
as do the products f ? (g ? h) and (f ? g) ? h, and since the
inverse is unique, the functions defined by these products must
agree almost everywhere.

Identity element?

At first glance, one may think that the identity is vested in the
Hilger Delta. Unfortunately, this is not the case. It can be
easily shown that any identity for the convolution will of
necessity have transform 1 by the convolution theorem. But
the the Hilger Delta does not have transform 1 since its
transform is just the exponential.
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The Generalized Dirac Delta Functional

Let f , g : T → R be given functions with f (x) having unit area.
To define the time scale delta functional, we construct the
following functional. Let C∞c (T) denote the C∞(T) functions
with compact support. For gσ ∈ C∞c (T) and for all ε > 0,
define the functional F : C∞c (T, R)× T → R by

F (gσ, a) =

{∫∞
0 δH

a (x)gρ(σ(x))∆x , a is right scattered,

limε→0

∫∞
0

1
ε f ( x

ε )g(σ(x))∆x , a is right dense.

The (time scale or generalized) Dirac delta functional is then
given by

〈δa(x), gσ〉 = F (gσ, a).
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Action of delta functional on C∞c (T)?

In a nutshell...
〈gσ, δa〉 = g(a),

independently of the time scale involved.

Also, if g(t) = e	z(t, 0), then 〈δa, g
σ〉 = e	z(a, 0), so that for

a = 0, the Dirac delta functional δ0(t) has Laplace transform
of 1, thereby giving us an identity element for the convolution.
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However, our definition of the delay operator will only hold for
functions. It will be necessary to extend this definition for the
delta functional. To maintain consistency with the delta
function’s action on g(t) = eσ

	z(t, 0), it follows that for any
t ∈ T, the shift of δa(τ) is given by δa(t, σ(τ)) = δt(σ(τ)).

Just as before, the algebraic properties hold in this setting, e.g.

(δ0 ? g)(t0) = (g ? δ0)(t0).
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When we perform the convolution 〈g , δσ〉, we must give
meaning to this symbol and do so by defining δσ(t) to be the
Kronecker delta when t is right scattered and the Dirac delta if
t is right dense. While this ad hoc approach does not address
convolution with an arbitrary (shifted) distribution on the right,
this will suffice (at least for now) since our eye is on solving
generalizations of canonical partial dynamic equations which
will involve the Dirac delta distribution.
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Uniqueness of the inverse of the Dirac delta?

Yes, just need a new commutative diagram betwixt the dual
spaces.



Generalized
Laplace

Transform and
Control

Davis,
Gravagne,
Jackson,

Marks, Ramos

Title

Goals

Generalized
Laplace
Transforms

Inversion

Convolution

Generalized
Dirac Delta
Functional

Controllability

Observability

Uniqueness of the inverse of the Dirac delta?

Yes, just need a new commutative diagram betwixt the dual
spaces.



Generalized
Laplace

Transform and
Control

Davis,
Gravagne,
Jackson,

Marks, Ramos

Title

Goals

Generalized
Laplace
Transforms

Inversion

Convolution

Generalized
Dirac Delta
Functional

Controllability

Observability

Controllability

Definition

The regressive linear state equation

x∆(t) = A(t)x(t) + B(t)u(t), x(t0) = x0,

y(t) = C (t)x(t) + D(t)u(t),
(2)

is called controllable on [t0, tf ] if given any initial state x0 there
exists a rd-continuous input signal u(t) such that the
corresponding solution of the system satisfies x(tf ) = xf .
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Controllability Gramian Condition

Theorem

The regressive linear state equation (2) is controllable on
[t0, tf ] if and only if the n × n controllability Gramian matrix

W (t0, tf ) =

∫ tf

t0

ΦA(t0, σ(t))B(t)BT (t)ΦT
A (t0, σ(t)) ∆t

is invertible.

ΦA(t, t0) is the transition matrix for the (time varying!)
problem X∆ = A(t)X (t), X (t0) = I .
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Controllability Rank Theorem for LTI Systems

Theorem

The regressive linear time invariant system

x∆(t) = Ax(t) + Bu(t), x(t0) = x0

y(t) = Cx(t) + Du(t)

is controllable on [t0, tf ] if and only if the n× nm controllability
matrix [

B AB . . . An−1B
]

satisfies
rank

[
B AB . . . An−1B

]
= n.
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Observability

Definition

The linear state equation

x∆(t) = A(t)x(t), x(t0) = x0,

y(t) = C (t)x(t)

is called observable on [t0, tf ] if any initial state x(t0) = x0 is
uniquely determined by the corresponding response y(t) for
t ∈ [t0, tf ).
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Observability Gramian Condition

Theorem

The regressive linear system given above is observable on
[t0, tf ] if and only if the n × n observability Gramian matrix

M(t0, tf ) =

∫ tf

t0

ΦT
A (t, t0)C

T (t)C (t)ΦA(t, t0) ∆t

is invertible.
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Observability Rank Theorem for LTI Systems

Theorem

The autonomous linear regressive system

x∆(t) = Ax(t), x(t0) = x0,

y(t) = Cx(t)

is observable on [t0, tf ] if and only if the nm × n observability
matrix satisfies

rank


C
CA
...

CAn−1

 = n.
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