
Image Compression and Recovery through
Compressive Sampling and Particle Swarm

David B. Sturgill, Benjamin Van Ruitenbeek and Robert J. Marks II
Engineering and Computer Science

Baylor University
Waco, TX USA

Abstract—We present an application of particle swarm tech-
niques to the problem of sparse signal recovery. Although a
direct application of particle swarm is straightforward, specifics
of the signal recovery problem can be incorporated into particle
behavior in a way that substantially improves the quality of the
recovered signal. With encouraging results for synthetic signals,
we apply this technique to the problem of image compression,
where typical image blocks can be expected to exhibit many
very small elements under a transformation like the DCT. In
this application, we observe that better results are obtained by
first forcing image blocks to be sparse rather than compressively
sampling blocks that are approximately sparse.

Index Terms—Particle Swarm, Compressive Sampling, Image
Compression

I. INTRODUCTION

Compressive sampling can be an effective, space-efficient
way to deal with signals that are known to have a sparse rep-
resentation. Signal recovery presents computational challenges
and several techniques have been developed to deal with this
problem.

We present a particle swarm technique for sparse signal
recovery. Particle swarm approaches are readily applicable
to search problems in high-dimensional spaces, and a direct
application of particle swarm to the signal recovery is fairly
straightforward. Furthermore, constraints of the signal recovery
problem can be incorporated into particle behavior to produce
a system that is effective at recovering synthetic signals of a
known sparsity. To evaluate performance on natural signals,
we apply this technique to the problem of image compression.

A. Compressive Sampling

Compressive sampling [1], [2] is a method of encoding
a sparse signal by taking a small number of non-adaptive
linear measurements. A signal, x ∈ R

n, can be considered
k-sparse if its frequency-domain representation, V x contains
at most k non-zero elements for k � n and some reasonable
transformation, V . Under compressive sampling, the signal
is represented by a short measurement vector Φx for some
m× n sampling matrix, Φ. The number of measurements, m,
is dependent on the sparsity, k, of the input signal.

A principal advantage of compressive sampling is that it
requires a small number of samples to represent a signal and a
small amount of storage to compute this compressed represen-
tation. However, signal recovery, the process of reconstructing
the signal given the samples, can be an NP-hard problem.

B. Sparse Signal Recovery

Many approaches to the signal recovery problem have
been developed, although they generally fall within two ma-
jor categories: L1-minimization and greedy techniques. The
first of these depends on solving a convex relaxation of
the L0-minimization problem (finding the sparsest signal
that produces the same measurements as the original). The
convex relaxation of this problem can be solved using con-
vex programming techniques; this method is known as Basis
Pursuit [3], [4]. While it offers guarantees about the quality
of the recovered signal, this technique can be computationally
expensive.

Greedy algorithms reconstruct a signal by an iterative pro-
cess that makes locally optimal decisions during each iteration.
Greedy Basis Pursuit [5] uses greedy methods to enhance L1-
minimization. Orthogonal Matching Pursuit (OMP) [6] is a
greedy algorithm which can provide a faster solution than the
convex optimization approach. Other OMP-based algorithms
such as stagewise OMP (StOMP) [7] and regularized OMP
(ROMP) [8] improve the signal recovery of OMP. Compressive
Sampling Matching Pursuit (CoSaMP) developed by Needell
and Tropp [9] provides optimal signal recovery guarantees and
efficient resource usage.

C. Particle Swarm

Particle Swarm Optimization (PSO), introduced by Eberhart
and Kennedy [10], [11], is a search algorithm using a pop-
ulation of search agents called particles. The particles move
through the search space with velocities which are dynamically
adjusted according to their historical behavior [12], [13], [14].
PSO has found diverse and useful application in a number
of disciplines [15], [16], including fractal image compression
[17], [18] and lossless data compression [19]. PSO has also
been shown to be effective in mutiobjective optimization [20],
[21], [22], [23], [24].

The equations describing PSO require only two lines.

Vi ← Vi + c1 r1()(Pi − Xi) + c2 r2()(Pg − Xi) (1)

and

Xi ← Xi + Vi, (2)

where
• c1 and c2 are positive constants,
• r1() and r2() are random variables on [0, 1],

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
1821

Authorized licensed use limited to: Baylor University. Downloaded on December 4, 2009 at 13:49 from IEEE Xplore. Restrictions apply.

• X1, . . .XD ∈ R
d represent the d-dimensional position of

each of D particles
• V1, . . . VD ∈ R

d represent the velocity of each particle
• P1, . . . PD ∈ R

d represents the best previous position of
each particle as determined by a fitness function

• g represents the index of the particle with the best
previous fitness.

At each iteration, particles move based on their velocity and
their velocity is updated based on the location of the best
known solutions.

II. SIGNAL RECOVERY VIA PARTICLE SWARM

It is straightforward to characterize sparse signal recovery as
a particle swarm optimization problem. The space of possible
signals can serve as a natural domain for particles to explore.
The requirements that a solution agrees with the measurement,
Φx, and that it exhibits the expected degree of sparsity can
serve as components in the fitness function.

We investigate three progressively more sophisticated tech-
niques for applying particle swarm to sparse signal recovery.
The first technique attempts to directly recover the signal
by using particles to explore the space of possible signals.
A refinement of this technique constrains particles so that
they always agree with the measurement, effectively reducing
the dimensionality of the space explored. A final refinement
extends the particle velocity update rule to pull particles toward
solutions that exhibit the required sparsity.

A. Signal Recovery as Multiobjective Optimization

Our first technique attempts to directly recover x from the
measurement by creating a population of particles distributed
within the domain of x. We call this the direct technique.
Particles begin with a random velocity and are drawn toward
the locations of their own previous best and global best solution
known. The fitness of a solution is based on two components,
the degree to which the particle matches the measurement
under Φ and the degree to which it exhibits the required level
of sparsity under V . For particle i, the first of these components
is measured as the squared Euclidean distance between ΦXi

and Φx. The second component is measured as the sum of the
squared magnitudes of the n − k elements of V Xi that are
closest to zero. The fitness function is the sum of these two
components, with the second component given 2.86 times the
weight of the first. Particles with lower values are considered
better.

We evaluate the effectiveness of this technique by mea-
suring its performance on a collection of randomly generated
signals. Each signal is drawn from R

64 and exhibits sparsity
between k = 1 and k = 16. We use the Discrete Cosine
Transform as the V matrix, and signals are generated to so
that k different random indices in V x have values uniformly
chosen from [−1, 1]. The number of samples, m is chosen
as 3k + 5 and Φ is simply the first m rows of a randomly
generated orthonormal matrix.

We attempt to recover the original signal by sampling it with
Φ and then using particle swarm to find an approximation of

the original signal that matches the resulting m real-valued
samples and exhibits the required level of sparsity under V .
We have made some effort to tune this solution for the suite
of synthetically generated signals. Particles are initialized with
locations chosen uniformly randomly, Xi ∈ [−1, 1]n. Particle
velocities are initialized with uniform random coordinates Vi ∈
[−0.5, 0.5]n. From iteration to iteration, particle velocity is
updated as in (1), with c1 = 0.1 and c2 = 0.005. In an effort
to focus particles on the interesting region of the search space,
we damp particle motion from iteration to iteration. Just before
applying (1), we reduce particle velocity by one percent. We
use a population of 20 particles and permit the swarm to run
for 10,000 iterations on each test case.

Fig 1 illustrates the performance of this approach on a
collection of 1, 600 signals, 100 each at k = 1 . . . 16. The Y
axis reports average root mean squared error at each sparsity
level.

B. Constrained Particle Swarm Search

The direct technique described in Section II-A attempts to
find a location in the search space that satisfies two require-
ments, matching the measurement of the original signal under
Φ and exhibiting the required sparsity under V . Satisfying
the former requirement without the latter is a straightforward
application of linear algebra. In fact, it is easy to describe the
space of all locations x′ such that Φx′ = Φx. This leaves
only the problem of finding points in this space that exhibit
the required sparsity, the computationally hard aspect of the
problem.

Our constrained technique represents an attempt to focus
attention to the aspect of the problem that actually requires
search. We confine particles to a space that maps to Φx under
measurement. First, by solving an underdetermined system, we
find a point S such that ΦS = Φx. The set of points that map
to Φx under measurement is simply S + r for any r in the
nullspace of Φ. Looking for an appropriate r in this space
simplifies signal recovery by reducing the dimensionality of
its search space.

In our second technique, instead of searching for the signal
directly, we search for a vector r in the nullspace of Φ
such that V (S + r) is sufficiently sparse. Let the columns of
matrix NΦ be an an orthonormal basis for the nullspace of Φ.
Particles explore the space of feasible solutions by looking for
coefficients for these columns. Particle fitness is assessed by
measuring how close the particle is to the required sparsity.
We measure the fitness of particle i as the sum of the squared
magnitudes of the n− k smallest elements of V S + V NΦXi.

Fig 1 plots the average root mean squared error for con-
strained particle swarm recovery in comparison to the direct
technique described in Section II-A. The influence of the local
and global best solutions is the same as before, and the particle
initialization is analogous. We initialize particle i by first
generating a random location in X ′

i ∈ [−1, 1]n and a velocity
in V ′

i ∈ [−0.5, 0.5]n. We then project this to the particle’s
n − m dimensional domain by solving the overdetermined
systems:

1822

Authorized licensed use limited to: Baylor University. Downloaded on December 4, 2009 at 13:49 from IEEE Xplore. Restrictions apply.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14 16

direct
constrained

Fig. 1. Comparison of root mean squared error for direct and constrained
particle swarm techniques. The X axis indicates the sparsity, k, and the Y
axis gives average error across 100 signals at each sparsity level.

V S + V NΦXi = X ′
i

V NΦVi = V ′
i

From Fig 1, we see that the constrained technique performs
slightly better than the direct technique for small values of
k. As k becomes larger, the difference becomes much more
pronounced. This is to be expected, since more measurement
values further constrain the search. For k = 16, the direct
technique is still searching in R

64, while the constrained
technique is searching in R

11.

C. Guided Particle Swarm Search

Under the direct and constrained techniques, the fitness
function serves as an indication of where the most promising
regions of the search space are. As approximate solutions are
found, particles are pulled toward them when their velocities
are updated via (1). Instead of relying on previous discoveries
as the only guide to particles, it’s possible to use the linear
mapping between the particle and its image under V to help
steer particles to the required sparsity. Our guided technique
is an attempt to exploit this.

Let Ui be the image of particle i under V .

Ui = V S + V NΦXi

Vector Ui describes particle i in the frequency domain. In
this representation, it’s easy to capture the smallest change
to particle i sufficient to achieve the required sparsity. We just
need zero out the n− k smallest magnitudes. We define U ′

i as
follows, so that so that Ui + U ′

i is k-sparse:

U ′
ij =

{
0 if Uij is among the largest k magnitudes in Ui

−Uij otherwise

The vector U ′
i is used to pull particles toward a nearby

k-sparse location. During search, particle velocity is updated
based on three contributions, two that are typical of parti-
cle swarm approaches and one that is computed from U ′

i

and is specific to sparse signal recovery. Of course, the n-
dimensional, frequency-domain U ′

i can’t be applied to the
lower-dimensional particle velocity directly. Instead, we use
least-squared techniques to compute a corresponding vector

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0 2 4 6 8 10 12 14 16

guided

Fig. 2. Root mean squared error for the guided swarm technique. This graph
plots average error against k for the same 1, 600 signals described in Fig 1.

Zi that helps to move the particle in a direction that promotes
sparsity in its frequency-domain representation. At each itera-
tion, particle velocity is updated as follows:

Vi = Vi +
c1 r1()(pi − xi) +
c2 r2()(pg − xi) −
c3 r3()Zi

where c3 is a positive constant, r3() is a random variable on
[0, 1] and Zi is a least-squares solution to the overdetermined
system:

V NΦZi = U ′
i

Fig 2 presents the root mean squared error for the guided
technique on the same 1, 600 signals used in Fig 1. This
system does a much better job of recovering the original signal,
reproducing it almost exactly for all test cases with k larger
than 6. Even for the test cases with smaller values of k,
average error is much better than for the direct or constrained
techniques. For these cases, the deviation from zero represents
the contribution of small number of signals where the particle
swarm does not find the correct pattern of non-zero elements
in the signal’s sparse representation.

III. APPLICATION TO IMAGE COMPRESSION

The results presented in Fig 2 are encouraging, but they de-
scribe performance on synthetic data. To evaluate performance
on real-world signals, we have adapted the guided technique
to an image compression application. In fact, many of the
parameters used in previous experiments were chosen with this
application in mind.

A. Image Block Encoding

We use compressive sampling to encode 8-bit grayscale
images. The image is partitioned into 8 × 8 blocks of pixels,
and each block is encoded independently as a signal in R

64

occurring in row-major order in the block. Pixel intensity is
mapped from the typical [0, 255] range given in the input to
the [−1, 1] range common to our previous experiments.

Transformation V is a two-dimensional DCT. For natural
images, we can expect typical blocks to be approximately

1823

Authorized licensed use limited to: Baylor University. Downloaded on December 4, 2009 at 13:49 from IEEE Xplore. Restrictions apply.

sparse under this transformation; a DCT-transformed block is
likely to have many values that are very close to zero. We
measure the sparsity of an image block as the number of values
with magnitude greater than 10−1. We expect this measure of
sparsity to vary considerably across the image, so we deal
with sparsity adaptively. We compressively sample each block
just as in previous experiments, setting k based on the block’s
measured sparsity under the DCT and setting the number of
samples, m, to be 3k + 5.

To measure the actual storage cost for the compressively
sampled image, we encode the measurement for each block
using a linear quantization. Intensity values in the [−1, 1]
range are transformed via a Φ matrix with a number of rows
determined by block sparsity. The resulting values are scaled
by a factor of 64 and then rounded to the nearest integer.
During image recovery, midpoints of the quantization intervals
are used for each measurement value.

With an 8 × 8 block size and a scaling factor of 64, a
measurement value could require up to 10 bits of storage.
However, we have observed that most blocks don’t actually
exhibit the extremes in the range of possible measurements. In
an effort to reduce storage cost, we encode the measurement
for each block using the fewest bits sufficient to represent all
values that actually occur. We prefix the encoding of each
block with a four-bit field indicating how many bits the block’s
measurement values require.

In an effort to further reduce encoding size, the DC
component of the transformed image block is given special
treatment. We encode this value as a separate 8-bit quantity for
each block. Before compressive sampling, the DC component
is set to zero and the image block is reconstructed via the
inverse DCT. This has the effect of centering the average block
intensity on zero, helping to reduce the magnitudes in the
measurement and often reducing the number of bits required
to encode a measurement value.

B. Image Block Sparsity

Since an image can only be expected to be approximately
sparse, there is some uncertainty about how image blocks
should be compressively sampled and recovered. The most
straightforward approach might be to compressively sample
the approximately sparse blocks from the original image.
Alternatively, we could force approximately k-sparse image
blocks to be exactly k-sparse by zeroing out elements of
the DCT-transformed image block with magnitude less than
10−1. We could then apply the inverse DCT to reconstruct an
image block similar to the original one and then compressively
sample that. We say the former approach is sampling an image
block with approximate sparsity and the latter is sampling one
with exact sparsity. During signal recovery, we might expect
approximate sparsity to produce a better match for the original
image because samples are taken directly from the original.
Under exact sparsity, some information is discarded before the
measurement matrix is applied. Of course, if we sample blocks
with exact sparsity, it is at least possible to find a k-sparse
signal that matches the block’s measurement.

TABLE I
IMAGE COMPRESSION PERFORMANCE ON 512 × 521 GRAYSCALE IMAGES.

Image Sparsity Encoding Recovery RMS
Size (bits) Time (sec) Error

4.2.04 Approx 566068 5933.9 5.50
4.2.04 Exact 554231 5824.8 3.87
4.2.07 Approx 579512 6150.4 6.24
4.2.07 Exact 564591 6035.5 4.25
5.2.08 Approx 740736 6547.8 5.46
5.2.08 Exact 729794 6462.9 3.82
5.2.10 Approx 1485349 3468.7 5.17
5.2.10 Exact 1472737 3381.7 4.79
boat.512 Approx 830779 5960.9 6.21
boat.512 Exact 816821 5838.4 4.27
elaine.512 Approx 632381 7627.3 7.78
elaine.512 Exact 606386 7519.7 4.89

C. Experimental Evaluation

We have applied this compression technique to six images
taken from the USC-SIPI Image Database [25]. All images
are 512 × 512 pixels, with some converted to grayscale for
processing here.

Table I reports the encoding size in bits, the total time
to recover the entire image and the root mean squared error
across the entire image. These values are reported for sampling
of the original, approximately sparse image and the exactly
sparse image with small Discrete Cosine Transformed elements
discarded. In both cases, the reported RMS error compares the
recovered image with the original image, with intensity values
in the [0, 255] range.

Results reported here uniformly favor recovery via exact
sparsity. It exhibits a slight advantage in encoding size and pro-
cessing time to recover the image. These results are, perhaps,
to be expected since information was discarded to create the
exactly sparse image, and it is possible for the particle swarm
technique to settle in on a k-sparse solution that agrees with
the measurement. The advantage in error is more surprising
since the exact sparsity technique recovers a better match for
the original image with less information from the image.

Fig 3 and 4 compare the original image with the image
recovered via compressive sampling. The detail shown in Fig 5
helps to illustrate where this technique fails in reconstructing
the image. Often, image block recovery is able to find the
correct pattern of non-zero elements in the block’s sparse
representation. These blocks closely match the original. For
a few blocks, the system does not succeed in finding the right
pattern and the recovered block exhibits artifacts typical of
DCT-encoded signals. This can help to explain the apparent
advantage of recovery via exact sparsity. For the exact sparsity
technique, some information is discarded at the outset, but it
is at least possible to find a pattern of k non-zero elements
that matches the measurement. Under approximate sparsity, it
is not possible to find such a pattern. With sparsity as the only
indicator of solution quality available to the guided system,
there may not be enough to distinguish the neighborhood of

1824

Authorized licensed use limited to: Baylor University. Downloaded on December 4, 2009 at 13:49 from IEEE Xplore. Restrictions apply.

Original Recovered via Approximate Sparsity

Fig. 3. Comparison of the original 4.2.04 image and an image recovered via compressively sampled, approximately k-sparse blocks

Original Recovered via Exact Sparsity

Fig. 4. Comparison of the original 4.2.04 image and an image recovered from via compressively sampled, exactly k-sparse blocks

the best approximately sparse solution from inferior ones.
The results reported here do not compare well with stan-

dard, lossy image compression techniques. At quality setting
80, JPEG produces both smaller encoding sizes and lower
error than virtually all the the results reported in Table I. For
example, while we achieve an error of 4.89 using 606386 bits
to encode the elaine.512 image, at quality 80, JPEG exhibits
an error of 4.71 using only 343104 bits.

IV. CONCLUSIONS

We demonstrate that particle swarm techniques can be
effectively employed in recovering compressively sampled
signals. Although naı̈ve approaches do not readily converge
to a close approximation of the original signal, constraining
and guiding particle behavior based on specifics of the signal
recovery problem can improve performance considerably. On

a collection of 1,600 synthetic signals from R
n, we are able to

recover all signals with sparsity k = 6 or greater with 3k + 5
floating point measurement values.

An application of our best technique to natural images helps
to demonstrate some practical difficulties. Even with some
effort to encode images parsimoniously, compressed image size
and the quality of the recovered image are not competitive with
common compression techniques like JPEG. Likewise, the
computational overhead associated with image recovery makes
this particular technique impractical as an image compression
scheme.

As an example of a sparse signal, the Discrete Cosine
Transform of an image block may feature many elements that
are very small but not exactly zero. The right way to deal
with this approximate sparsity presents another challenge. For
our particle swarm approach, we find that discarding some

1825

Authorized licensed use limited to: Baylor University. Downloaded on December 4, 2009 at 13:49 from IEEE Xplore. Restrictions apply.

Original

Exact Sparsity

Approximate Sparsity

Fig. 5. Detail from the left edge of the 4.2.04 image, comparing the original
and images recovered via approximate and exact sparsity

information at the outset by forcing very small elements of
the transformed image block to zero yields an overall better
reproduction of the original image.

REFERENCES

[1] D. Donoho, “Compressed sensing,” Information Theory, IEEE Transac-
tions on, vol. 52, no. 4, pp. 1289–1306, April 2006.

[2] E. Candes and M. Wakin, “An introduction to compressive sampling,”
Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 21–30, March
2008.

[3] S. Chen and D. Donoho, “Basis pursuit,” vol. 1, Oct-2 Nov 1994, pp.
41–44 vol.1.

[4] S. S. B. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decompo-
sition by basis pursuit,” SIAM Journal of Scientific Computing, vol. 20,
no. 1, pp. 33–61, 1999.

[5] P. Huggins and S. Zucker, “Greedy basis pursuit,” Signal Processing,
IEEE Transactions on, vol. 55, no. 7, pp. 3760–3772, July 2007.

[6] J. Tropp and A. Gilbert, “Signal recovery from random measurements via
orthogonal matching pursuit,” Information Theory, IEEE Transactions
on, vol. 53, no. 12, pp. 4655–4666, Dec. 2007.

[7] D. L. Donoho, Y. Tsaig, I. Drori, and J. luc Starck, “Sparse solution
of underdetermined linear equations by stagewise orthogonal matching
pursuit,” Tech. Rep., 2006.

[8] D. Needell and R. Vershynin, “Uniform uncertainty principle and signal
recovery via regularized orthogonal matching pursuit,” Mar. 15 2007,
comment: This is the final version of the paper, including referee
suggestions.

[9] J. A. Tropp and D. Needell, “CosaMP: Iterative signal recovery from
incomplete and inaccurate samples,” CoRR, vol. abs/0803.2392, 2008,
informal publication.

[10] R. Eberhart and J. Kennedy, “Particle swarm optimization: developments,
applications and resources,” in A new optimizer using particle swarm
theory, 1995, pp. 39–43.

[11] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of
IEEE International Conference on Neural Networks, vol. 4, 1995, pp.
1942–1948.

[12] R. Eberhart, P. Simpson, and R. Dobbins, Computational intelligence PC
tools. San Diego, CA, USA: Academic Press Professional, Inc., 1996.

[13] R. C. Eberhart and Y. Shi, “Particle swarm optimization: developments,
applications and resources,” in Proceedings of the Congress on Evolu-
tionary Computation, 2001.

[14] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, ser. The
Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann,
March 2001.

[15] R. Eberhart and Y. Shi, Computational Intelligence: Concepts to Imple-
mentations. Morgan Kaufmann, 2007.

[16] R. Poli, J. Kennedy, T. Blackwell, and A. Freitas, Particle Swarms: The
Second Decade. Hindawi Publishing Corp, 2008.

[17] H.-M. Feng, C.-Y. Chen, and F. Ye, “Evolutionary fuzzy particle swarm
optimization vector quantization learning scheme in image compression,”
Expert Syst. Appl., vol. 32, no. 1, pp. 213–222, 2007.

[18] J.-G. Hsieh, J.-H. Jeng, and C.-C. Tseng, “Study on huber fractal image
compression,” IEEE Transactions on Image Processing, in press.

[19] D. Shuai, P. Zhang, and B. Zhang, “Particle algorithm for lossless data
compression,” in IEEE International Conference on Systems, Man and
Cybernetics, Oct 2006, pp. 3766–3771.

[20] C. Coello, G. Pulido, and M. Lechuga, “Handling multiple objectives
with particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 256–279, June 2004.

[21] S. Ho, S. Yang, G. Ni, E. Lo, and H. Wong, “A particle swarm
optimization-based method for multiobjective design optimizations,”
IEEE Transactions on Magnetics, vol. 41, no. 5, pp. 1756–1759, May
2005.

[22] D. Liu, K. Tan, C. Goh, and W. Ho, “A multiobjective memetic algorithm
based on particle swarm optimization,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 37, no. 1, pp. 42–50, Feb 2007.

[23] E. Ochlak and B. Forouraghi, “A particle swarm algorithm for multi-
objective design optimization,” Tools with Artificial Intelligence, IEEE
International Conference on, vol. 0, pp. 765–772, 2006.

[24] C. Tan, C. Goh, K. Tan, and A. Tay, “A cooperative coevolutionary
algorithm for multiobjective particle swarm optimization,” in IEEE
Congress on Evolutionary Computation, 2007, pp. 3180–3186.

[25] A. Weber, “The usc-sipi image database,” http://sipi.usc.edu/database/.

1826

Authorized licensed use limited to: Baylor University. Downloaded on December 4, 2009 at 13:49 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

