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Abstract—Duals of probability distributions on continuous (R)
domains exist on discrete (Z) domains. The Poisson distribution
on R, for example, manifests itself as a binomial distribution on
Z. Time scales are a domain generalization in which R and Z
are special cases. We formulate a generalized Poisson process on
an arbitrary time scale and show that the conventional Poisson
distribution on R and binomial distribution on Z are special
cases. The waiting times of the generalized Poisson process are
used to derive the Erlang distribution on a time scale and,
in particular, the exponential distribution on a time scale. The
memoryless property of the exponential distribution on R is well
known. We find conditions on the time scale which preserve the
memorylessness property in the generalized case.

I. INTRODUCTION

The theory of continuous and discrete time stochastic pro-
cesses is well developed [7], [8]. Stochastic processes on
general closed subsets of the real numbers, also known as
time scales, allow a generalization to other domains [4], [9].
The notion of a stochastic process on time scales naturally
leads to questions about probability theory on time scales,
which has been developed by Kahraman [5]. We begin by
introducing a generalized Poisson process on time scales and
show it reduces to the conventional Poisson process on R
and the binomial distribution on Z. We then use properties
of the Poisson process to motivate generalized Erlang and
exponential distributions on time scales. Finally, we show that
the generalized exponential distribution has an analogue of the
memorylessness property under periodicity conditions on the
time scale.

II. FOUNDATIONS

A time scale, T, is any closed subset of the real line. We
restrict attention to causal time scales [6] where 0 ∈ T and
t ≥ 0 for all t ∈ T. The forward jump operator [2], [10],
σ(t), is defined as the point immediately to the right of t, in
the sense that σ(t) = inf{s ∈ T ∀ s > t}. The graininess is
the distance between points defined as µ(t) := σ(t) − t. For
R, σ(t) = t and µ(t) = 0.

The time scale or Hilger derivative of a function x(t) on T
is defined as

x∆(t) :=
x(σ(t))− x(t)

µ(t)
. (II.1)

On R, this is interpreted in the limiting case and x∆(t) =
d
dtx(t). The Hilger integral can be viewed as the antiderivative
in the sense that, if y(t) = x∆(t), then for s, t ∈ T,∫ t

τ=s

y(τ)∆τ = x(t)− x(s).

The solution to the differential equation

x∆(t) = zx(t); x(0) = 1,

is x(t) = ez(t, 0) where [2], [10]

ez(t, s) := exp
(∫ t

τ=s

Log(1 + µ(τ)z)
µ(τ)

∆τ
)
.

For an introduction to time scales, there is an online tutorial
[10] or, for a more thorough treatment, see the text by Bohner
and Peterson [2].

III. THE POISSON PROCESS ON TIME SCALES

We begin by presenting the derivation for a particular
stochastic process on time scales which mirrors a derivation
for the Poisson process on R [3].

Let λ > 0. Assume the probability an event occurs in the
interval [t, σ(s))T is given by

−(	λ)(t)(σ(s)− t) + o(s− t).

where 	z := −z/(1−µ(t)z) [2], [10]. Hence the probability
that no event occurs on the interval is given by

1 + (	λ)(t)(σ(s)− t) + o(s− t).

We also assume that at t = 0 no events have occurred.
We now define a useful notation. Let X : T → N0 be

a counting process [8] where N0 denotes all nonnegative
integers. For k ∈ N0, define pk(t) = P[X(t) = k], the
probability that k events have occurred by time t ∈ T. Let
t, s ∈ T with s > t. Consider the successive intervals [0, t)T
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and [t, σ(s))T. We can therefore set up the system of equations

p0(σ(s)) = p0(t)[1 + (	λ)(t)(σ(s)− t)] + o(s− t)
p1(σ(s)) = p1(t)[1 + (	λ)(t)(σ(s)− t)]

+ p0(t)[−(	λ)(t)(σ(s)− t)] + o(s− t)
...

pk(σ(s)) = pk(t)[1 + (	λ)(t)(σ(s)− t)]
+ pk−1(t)[−(	λ)(t)(σ(s)− t)] + o(s− t)

...

with initial conditions p0(0) = 1 and pk(0) = 0 for k > 0. We
will let s→ t and solve these equations recursively. Consider
the p0 equation. By the definition of the derivative on time
scales, we have

p∆
0 (t) = lim

s→t

p0(σ(s))− p0(t)
σ(s)− t

= (	λ)(t)p0(t),

which, using the initial value p0(0) = 1, has a solution

p0(t) = e	λ(t, 0). (III.1)

Now consider the p1 equation. Substituting the solution of
the p0 equation yields

p1(σ(s)) = p1(t)[1 + (	λ)(t)(σ(s)− t)]
+ e	λ(t, 0)[−(	λ)(t)(σ(s)− t)] + o(s− t),

which, using (II.1), yields

p∆
1 (t) = (	λ)(t)p1(t)− (	λ)(t)e	λ(t, 0). (III.2)

Using the variation of constants formula on time scales [2],
we arrive at the solution

p1(t) = −
∫ t

0

e	λ(t, σ(τ))(	λ)(τ)e	λ(τ, 0)∆τ

= −
∫ t

0

eλ(τ, t)(1 + µ(τ)λ)(	λ)(τ)e	λ(τ, 0)∆τ

= λ

∫ t

0

eλ(τ, 0)eλ(0, t)e	λ(τ, 0)∆τ

= λ

∫ t

0

e	λ(t, 0)∆τ

= λte	λ(t, 0)

=
λ

1 + µ(0)λ
te	λ(t, σ(0))

= −(	λ)(0)te	λ(t, σ(0)).

Now consider the p2 equation. Substituting the solution of the
p1 equation yields

p2(σ(s)) = p2(t)[1 + (	λ)(t)(σ(s)− t)]
− (	λ)(0)te	λ(t, σ(0))[−(	λ)(t)(σ(s)− t)]
+ o(s− t),

which, using (II.1) yields

p∆
2 (t) = (	λ)(t)p2(t) + (	λ)(0)(	λ)(t)te	λ(t, σ(0)).

Again, using the variation of constants formula on time scales,
we arrive at the solution

p2(t) = (	λ)(0)

×
∫ t

0

e	λ(t, σ(τ))(	λ)(τ)τe	λ(τ, σ(0))∆τ

= (	λ)(0)

×
∫ t

0

eλ(τ, t)(1 + µ(τ)λ)(	λ)(τ)τe	λ(τ, σ(0))∆τ

= −λ(	λ)(0)

×
∫ t

0

τeλ(τ, σ(0))eλ(σ(0), t)e	λ(τ, σ(0))∆τ

= −λ(	λ)(0)e	λ(t, σ(0))
∫ t

0

τ∆τ

= −λ(	λ)(0)e	λ(t, σ(0))h2(t, 0)

=
−λ

1 + µ(σ(0))λ
(	λ)(0)e	λ(t, σ2(0))h2(t, 0)

= (	λ)(σ(0))(	λ)(0)h2(t, 0)e	λ(t, σ2(0)).

In general, it can be shown via induction that

pk(t) = (−1)khk(t, 0)e	λ(t, σk(0))
k−1∏
i=0

(	λ)(σi(0)),

where hk(t, 0) is the kth generalized Taylor monomial [2].
The above derivation motivates the following definition:

Definition III.1. Let T be a time scale. We say S : T→ N0 is
a T–Poisson process with rate λ > 0 if for t ∈ T and k ∈ N0,

P[S(t;λ) = k] = (−1)khk(t, 0)e	λ(t, σk(0))
k−1∏
i=0

(	λ)(σi(0)).

(III.3)

Each fixed t ∈ T generates a discrete distribution of the
number of arrivals at t. We now examine the specific examples
of R, Z and the harmonic time scale [2].

A. On R and Z

Let S : R→ N0 be an R–Poisson process. Then σi(0) = 0
for all i ∈ N, (	λ)(t) = −λ for all t ∈ R and hk(t) = tk

k! .
Thus we have

P[S(t;λ) = k] =
(λt)k

k!
e−λt,

which we recognize as the Poisson distribution.
Now let S : Z → N0 be an N0–Poisson process. We have

σi(0) = i for all i ∈ N, (	λ)(t) = −λ
1+λ := −p, and hk(t) =(

t
k

)
. Thus we have

P[S(t;λ) = k] =
(
t

k

)
pk(1− p)t−k,

which we recognize as the binomial distribution.
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Fig. 1. Probability against Number of Events and Time for the Hn–Poisson
Process with rate 1.

Fig. 2. A comparison of probability versus number of events near t = 2 for
the Hn–Poisson process with rate 1, the R–Poisson process with rate 1 and
the Z–Poisson process with rate 1. Note that the Hn–Poisson process behaves
more like the Z–Poisson process than the R–Poisson process.

B. On the Harmonic Time Scale

Now let S : Hn → N0 be an Hn–Poisson process with rate
λ, where

t ∈ Hn if and only if t =
n∑
k=1

1
k

for some n ∈ N,

which we call the harmonic time scale. To help understand
later figures and emphasize that S yields a distinct discrete
distribution for each value of t, we show the probability against
the number of events and time in Figure 1. The choice of
Hn as the time scale shows very informative behavior. Near
t = 0, when the graininess is large, we find behavior that is
more like the integers. In contrast, away from t = 0, where
the graininess is small, we find behavior that is more like the
real numbers. This behavior is demonstrated in Figures 2–4.

Fig. 3. A comparison of probability versus number of events near t = 4 for
the Hn–Poisson process with rate 1, the R–Poisson process with rate 1 and
the Z–Poisson process with rate 1. Note that the Hn–Poisson process behaves
more like the R–Poisson process than the Z–Poisson process.

Fig. 4. A comparison of probability versus time when we fix the number of
events at 2 for the Hn–Poisson process with rate 1, the R–Poisson process
with rate 1 and the Z–Poisson process with rate 1. Note that the Hn–Poisson
process behaves more like the Z–Poisson process near t = 0 and more like
the R–Poisson process away from t = 0.

IV. THE ERLANG DISTRIBUTION ON TIME SCALES

A time scales generalization of the Erlang distribution can
be generated by examining the waiting times between any
number of events in the T–Poisson process. To that end, let T
be a time scale. Let S : T→ N be a T–Poisson process with
rate λ. Let Tn be a random variable which denotes the time
until the nth event. We have

P[S(t;λ) < n] = P[Tn > t]
= 1− P[Tn ≤ t].

which implies

1−
n−1∑
k=0

P[S(t;λ) = k] = P[Tn ≤ t],

which motivates the following definition.

Definition IV.1. Let T be a time scale, S : T → N0 be a T-
Poisson Process with rate λ > 0. We say F (t;n, λ) is the T–
Erlang cumulative distribution function with shape parameter
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n and rate λ provided

F (t;n, λ) = 1−
n−1∑
k=0

P[S(t;λ) = k].

From our derivation, it is clear that the T–Erlang distribution
models the time until the nth event in the T–Poisson process.
We would like to know the probability that the nth event is
in any subset of T. To this end, we introduce the T–Erlang
probability density function in the next definition.

Definition IV.2. Let T be a time scale, S : T → N0 be a
T-Poisson Process with rate λ > 0. We say f(t;n, λ) is the
T–Erlang probability density function with shape parameter n
and rate λ provided

f(t;n, λ) = −
n−1∑
k=0

[P[S(t;λ) = k]]∆.

where the ∆–differentiation is with respect to t.

We want to show that f(t;n, λ) can rightly be called a
probability density with respect to some accumulation func-
tion. Thus, we have the following theorem.

Theorem IV.1. Let T be a time scale. Let F (t;n, λ) be a T–
Erlang cumulative distribution function with shape parameter
n and rate λ and let f(t;n, λ) be a T–Erlang probability
density function with shape parameter n and rate λ. Then

∫ t

0

f(τ ;n, λ)∆τ = F (t;n, λ) (IV.1)

and in particular

∫
T
f(τ ;n, λ)∆τ = 1. (IV.2)

Proof: Implicit in the definition of the T–Erlang proba-
bility distribution is a T-Poisson process S : T→ N0. By the
assumption that

P[S(0;λ) = k] =

{
1 k = 0
0 k > 0,

we have,∫ t

0

f(τ ;n, λ)∆τ =
∫ t

0

−
n−1∑
k=0

P[S(τ ;λ) = k]∆∆τ

= −
n−1∑
k=0

∫ t

0

P[S(τ ;λ) = k]∆∆τ

= −
n−1∑
k=0

P[S(τ ;λ) = k]|t0

= −
n−1∑
k=0

P[S(t;λ) = k]

+
n−1∑
k=0

P[S(0;λ) = k]

= 1−
n−1∑
k=0

P[S(t;λ) = k]

= F (t;n, λ),

which proves (IV.1). To prove (IV.2), we note for all k < n,

lim
t→∞

P[S(t;λ) = k] = 0,

by repeated application of L’Hôpital’s rule for time scales on
III.3 [1]. This fact proves (IV.2) by the same argument as the
proof of (IV.1).

We note that the moments of the T–Erlang distribution can-
not in general be calculated explicitly without some knowledge
of the time scale.

V. THE EXPONENTIAL DISTRIBUTION ON TIME SCALES

Of particular interest to us is the T–Erlang distribution with
shape parameter 1. By the above discussion and equation
(III.1), the probability density function of this distribution is
given by

f(t; 1, λ) = −P[S∆(t;λ) = 0] = −(	λ)(t)e	λ(t, 0).

Definition V.1. Let T be a time scale and let T be a T–Erlang
random variable with shape parameter 1 and rate λ. Then we
say T is a T–exponential random variable with rate λ.

A. The Expected Value

The T–exponential distribution gives us the rare opportunity
to calculate a moment without any knowledge of the time
scale.

Lemma V.1. Let T be a time scale and let T be a T–
exponential random variable with rate λ > 0. Then

E(T ) =
1
λ
.
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Proof: Using integration by parts on time scales, we find

E(T ) =
∫ ∞

0

t[−(	λ)(t)e	λ(t, 0)]∆t

= −te	λ(t, 0)|∞0 +
∫ ∞

0

e	λ(σ(t), 0)∆t

= 0 +
∫ ∞

0

(1 + µ(t)(	λ)(t))e	λ(t, 0)∆t

=
∫ ∞

0

1
1 + µ(t)λ

e	λ(t, 0)∆t

= − 1
λ

∫ ∞
0

−λ
1 + µ(t)λ

e	λ(t, 0)∆t

= − 1
λ

∫ ∞
0

(	λ)(t)e	λ(t, 0)∆t

= − 1
λ
e	λ(t, 0)|∞0

= − 1
λ

[0− 1]

=
1
λ
,

which proves our claim.

B. On R and Z
We note that if T = R, then we have

f(t; 1, λ) = λe−λt,

which we recognize as the exponential distribution. By Lemma
V.1, we find the mean of the exponential distribution is 1/λ,
which is well known.

Now if T = Z, then we have

f(t; 1, λ) =
λ

1 + λ

(
1− λ

1 + λ

)t
= p(1− p)t,

where p := λ
1+λ . We recognize the above as the geometric

distribution. By Lemma V.1, we find the mean of the geometric
distribution is 1/λ = (1− p)/p.

C. The ω–Memorylessness Property

Both the geometric and exponential distributions are com-
pletely classified by the fact that they have the memorylessness
property [8]. We recall the the memoryless property on R is
the property that if T is a continuous random variable, then
for all t, τ ∈ R,

P[T > t+ τ |T > t] = P[T > τ ]

and that the memoryless property on Z is the property that if
T is a discrete random variable, then for all t, τ ∈ Z,

P[T > t+ τ |T > t] = P[T > τ ].

We would like to find conditions on the time scale T such that
the T–exponential distribution on time scales has this property.
Let T is ω-periodic, that is, if t ∈ T then t+ω ∈ T. Then we
can define a property much like the memorylessness property.

Definition V.2. Let T be an ω–periodic time scale. We say
a probability distribution on T has the ω–memorylessness
property provided for all t ∈ T,

P (T > t+ ω|T > t) = P (T > ω),

We note that this definition generalizes the memorylessness
property on R and Z since R and Z are ω–periodic for any ω
in R and Z, respectively.

Let T be ω–periodic and let T be a T–exponential random
variable. Then we claim the T–exponential distribution has
the ω–memorylessness property. To show this claim, we first
prove two lemmas.

Lemma V.2. Let T be an ω-periodic time scale and let λ > 0.
Then for t, t0 ∈ T, e	λ(t+ ω, t0) = e	λ(t, t0 − ω).

Proof: By the definition of the time scales exponential
function,

e	λ(t+ ω, t0) = exp
(∫ t+ω

t0

Log(1 + (	λ)(s)µ(s))∆s
µ(s)

)

= exp

∫ t+ω

t0

Log
(

1 + −λµ(s)
1+λµ(s)

)
∆s

µ(s)


= exp

∫ t

t0−ω

Log
(

1 + −λµ(τ+ω)
1+λµ(τ+ω)

)
∆τ

µ(τ + ω)


= exp

∫ t

t0−ω

Log
(

1 + −λµ(τ)
1+λµ(τ)

)
∆τ

µ(τ)


= exp

(∫ t

t0−ω

Log(1 + (	λ)(τ)µ(τ))∆τ
µ(τ)

)
= e	λ(t, t0 − ω),

where we use the fact that for ω-periodic time scales µ(t +
ω) = µ(t) for all t ∈ T and the change of variables τ = s−ω.

Lemma V.3. Let T be an ω-periodic time scale and λ > 0.
Then for all t ∈ T, e∆

	λ(t+ ω, t) = 0.

Proof: By the product rule on time scales and Lemma
V.2,

e∆
	λ(t+ ω, t) = (e	λ(t+ ω, t0)e	λ(t0, t))∆

= (e	λ(t, t0 − ω)e	λ(t0, t))∆

= (e	λ(t, t0 − ω)eλ(t, t0))∆

= e	λ(σ(t), t0 − ω)λeλ(t, t0)
+ (	λ)(t)e	λ(t, t0 − ω)eλ(t, t0)
= λ(1 + (	λ)(t)µ(t))e	λ(t, t0 − ω)eλ(t, t0)
+ (	λ)(t)e	λ(t, t0 − ω)eλ(t, t0)
= [−(	λ)(t) + (	λ)(t)]

e	λ(t, t0 − ω)eλ(t, t0)
= 0.
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The above lemmas allow us to prove the following result.

Theorem V.4. Let T be an ω–periodic time scale and let
λ > 0. Then the T–exponential distribution with rate λ has
the ω–memorylessness property.

Proof: Let T be a T–exponential random variable with
rate λ > 0. By Lemma V.2 and Lemma V.3,

P (T > t+ ω|T > t) =
P (T > t+ ω)
P (T > t)

=

∫∞
t+ω
−(	λ)(τ)e	λ(τ, 0)∆τ∫∞

t
−(	λ)(τ)e	λ(τ, 0)∆τ

=
e	λ(t+ ω, 0)
e	λ(t, 0)

= e	λ(t+ ω, t)
= e	λ(ω, 0)
= P (T > ω),

since e	λ(ω, 0) is a constant independent of t by Lemma
V.3. Thus the T–exponential distribution has the ω–
memorylessness property
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