
DRAFT

DRAFT

Emergent Behaviors of Multi-Objective Multi-State Swarms in

Dynamic Underwater Scenarios

Jon H. Roach, Benjamin B. Thompson, and Robert J. Marks II

Abstract—The allocation of resources between tasks within
a swarm of agents can be difficult without a centralized
controller. Disjunctive control has been shown to be a viable
method to control the behavior of a swarm. In this project, a
disjunctive fuzzy control system is used to solve the problem
of resource management. Multi-state swarms are evolved
with an offline learning algorithm to adapt to dynamic
scenarios with multiple objectives. Some of the emergent
behaviors developed through the evolutionary algorithm
were state-switching and recruitment techniques.

Index Terms—Keywords: swarm intelligence, multi-
state, task switching, fuzzy control, emergent behavior

I. INTRODUCTION

An important component of swarm intelligence
systems is division of labor. If there are multiple, possibly
competing, objectives, how is a group of autonomous units
able to decide how many units should work on each
objective? In this paper, we will demonstrate the ability of
these swarms to adapt to dynamic conditions by
autonomously reallocating resources as necessary in order
to achieve multiple objectives. Our solution is based on
strategies found in nature, both the state-switching
methods employed in ant colonies and recruitment
techniques found in swarms of bees [1]. These methods are
tested in simulations that require the swarms to accomplish
two objectives at the same time: such as defending a
friendly unit or attacking enemy targets. Section II
provides a brief background of Swarm Intelligence. In
Section III, we describe a Point Attack & Point Defense
game played by two swarms, in which each works to both
defend its base and destroy its enemy’s base. Agents use
threshold functions to control state-switching behavior.
Section IV describes a Search & Destroy mission that a
swarm is tasked with completing. The swarm must find
and destroy an enemy target within a time limit using
recruiting techniques. These two scenarios are combined in
a Base Attack simulation, which is described in Section V.
Here, both state-switching thresholds and recruiting
methods are used by the swarm. In each case, an
evolutionary learning algorithm is used to optimize these
strategies based on fitness scores. The resulting emergent
behaviors are shown to be robust as the swarms continue
to perform well even as the population of the swarm
decreases. A portion of the following results have
previously been published [12].

II. SWARM INTELLIGENCE

In a swarm, each agent is computationally simple,
compared to the complexity of the whole. Individual
agents follow a set of simple rules which define the agent’s
behavior. However, when a large number of the agents are
allowed to work together, the result can be a unique and
sometimes surprising emergent behavior. For the following

simulations, decisions the agents make, such as “Where do
I go next?”, or “Should I begin working on a new task?”
are controlled via inputs from a group of sensors. These
inputs are fed into weighting functions which determine
the resulting decisions of the unit.

Previous research [3][6] has focused on designing
swarms with a single objective. These swarms
demonstrated the use of Combs control [6] as a viable
solution to determining the individual rules within a
swarm. Most previous simulations involved two swarms
competing in a simple game. By using an evolutionary
algorithm to optimize the fitness scores of these swarms,
each swarm was able to develop strategies and counter-
strategies to beat its opponent. Our goal throughout this
project is to expand upon the previous work to more
complex swarms that can achieve two or more objectives
in a dynamic environment.

III. POINT ATTACK & POINT DEFENSE SWARMS

A. Simulation

The first simulation that we investigate is a Point
Attack & Point Defense competition. Two swarms
compete against each other. Each swarm has two, possibly
competing objectives: to guard its own base from enemy
attacks, and to find and destroy an enemy base. The game
is played in a rectangular, two-dimensional grid, as shown
in Figure 1. The edges of the grid a rigid, so when an agent
runs into the edge, it bounces off in the opposite direction.

At the beginning of the simulation, two teams are
initialized, which we will refer to as swarm one and swarm

Figure 1. A screenshot from the Point Attack & Point Defense
simulation. Swarm one is shown by the blue and white dots, with blue
representing defending agents and white, attacking. Swarm two is
shown in green and gold for defensive and attacking agents,
respectively. Bases are shown in red. The size of the dot is an indicator
of the relative strength of the agent.

DRAFT

DRAFT

two. Swarm one is initialized on the left wall with swarm
two on the right, like many competitive team-based games.
When two agents bump into each other, a battle is
triggered. In a battle, each of the two agents involved does
a random amount of damage to its opponent, scaled by the
strength of the agent. When an agent’s strength reaches
zero after a battle with an opposing agent, it is removed
from the playing area. When an agent reaches the enemy
base, the same attack algorithm is used. In the case of
attacking an enemy base, however, the battle is one sided
as the base is not able to fight back. Each team’s base is
placed in a randomized location near its friendly wall. The
base starts with a large strength value. The simulation
continues until one of the two bases has been destroyed by
reducing its strength to zero. Since each swarm has two
objectives (aggressive and defensive), agents are allowed
to take on one of two states. Aggressive agents are tasked
with finding and attacking the enemy base, while defensive
agents repel enemy attacks on the friendly base.

Each agent is able to sense nearby units and can

distinguish friendly agents from enemy agents. In addition,
agents are aware of the current state of other units they can
sense. The sensor readings are fed into weighting
functions, which determine the resulting movement of the
agent. A sample weighting function is shown in Figure 2.
The weighting functions come in pairs. One function
defines movement toward or away from the object being
sensed, while the second controls movement parallel to the
object. The combination of the two allows the agent a full
range of movement relative to the object in the two
dimensional playing grid. In addition to the contributions
of the series of weighting functions, each agent also takes a
random step (or twiddle, as we call it). This twiddle is a
crucial component to the simulation, since without it,
agents out of range of anything else would remain
motionless.

The swarms in the Point Attack & Point Defense

scenario are multi-state. Agents within the swarms are able
to take on one of multiple states in order to allow the
swarm as a whole to achieve multiple objectives
simultaneously. In addition to being multi-state, these
swarms also need to be dynamic for them to be able to
adapt to changing conditions within the playing field. The
first problem is choosing a method that would allow
individual agents to switch tasks, if needed, without the
use of a centralized controller. Our solution was inspired
by the behaviors of certain types of ants in nature. Within
most ant colonies, there are multiple roles the ants fulfill.
When circumstances dictate, ants are able to temporarily
switch tasks to help the rest of the anthill with a task that
needs extra work. For instance, a soldier ant that senses a
large amount of food piled up that needs to be taken into
the hill could decide to switch and function as a worker
until the transportation of the food is completed. The
decision making process can be modeled as a threshold
function with a sigmoid shape [1].

In a similar fashion, agents within the Point Attack &
Point Defense swarms switch tasks based on threshold
functions attached to sensors that count the strength of
nearby agents in different states. A sample threshold
function is shown in Figure 3. If an agent senses a large
number of agents around it working on the same task
relative to the agent’s threshold, role saturation occurs and
it is inclined to switch to the other task. Also, if an agent
senses the relative strength of enemy units with respect to
friendly agents to be too large, it may decide it’s in danger
and send out a distress signal asking nearby units of a
different state to switch to the agent’s current state. If those
other agents sense that their current task has enough agents
and are in a “safe” position, they may be inclined to switch
to help out the agent in distress. In the early stages of the
design process, agents considering switching counted the
number of nearby agents, not their strengths. This caused
some problems, as weaker agents were counted the same
as stronger agents. For instance, a group of seven weak

Figure 2. Sample weighting function. This function represents the
sensor that finds the distance between an agent and its closest friend
of a different state (within range). In this example, an agent within
28 units of the friendly agent is repelled from the agent while an
agent at a distance of greater than 28 is attracted to the other agent.
The emergent behavior of this simple rule is the agents attempting
to maintain a distance of 28 units away from all agents of a different
state.

Figure 3. Sample threshold function. This function shows how the
difference between enemy strength and allied strength is used to
determine whether or not the agent is in danger. In this case, the
threshold 70, so if an agent senses that the difference is less than 70,
the agent will most likely not consider itself to be in danger. If the
difference is sensed to be greater than 70, then odds are the agent
does think it’s in danger.

DRAFT

DRAFT

agents encountering two strong opposing agents would
think that they were in good shape, when in fact, the group
of two had a distinct advantage. By comparing the relative
strengths of nearby agents, the swarm was better able to
judge when agents were safe or in danger.

B. Coevolution

The weighting functions were optimized using an off-
line learning algorithm based on coevolution. In
coevolution, two populations are evolved against each
other. One of the drawbacks of coevolution is that it can
become difficult to tell if strategies are improving simply
by looking at the results of the fitness function. At first
glance it appears that there is not much progress being
made, but the populations are learning as the evolution
process goes on. Eventually, however, the populations will
reach a point of equilibrium, where the teams have both
maximized their fitness performance and are equally
matched.

The coevolution process is shown in Figure 4. First,

both populations (pop1 and pop2) are filled with randomly
generated teams. Then, pop2 is “frozen” and one team is
randomly selected from it to compete against pop1. In one
generation, each team in pop1 plays 30 games against the
team from pop2. Then the teams in pop1 are ranked
according to their fitness scores. After ranking, the bottom
half of the teams in pop1 are removed and the remaining
half is duplicated. These duplicates are then mutated by
adding random Gaussian noise to the weighting functions.
This allows the learning algorithm to remove poor
performing teams and search out better solutions similar to
the successful ones. After mutations, one generation of
evolution is complete and the cycle repeats. After 100
generations, the evolution switches to the other population.
Pop1 is frozen and all the teams within pop2 play 30
games each against the best team from pop1.

The fitness score for this scenario is carefully
formulated. Unlike previous swarms where a single value
could be tracked [6], such as time survived, this swarm has
multiple goals. A successful swarm should be able to
guard its own base long enough to find and destroy the
opponent’s base, while at the same time keeping as many
agents alive as possible. A swarm that attacks its
opponents base can receive up to 50 fitness points based

on how much damage it inflicts on its enemy’s base, along
with up to 50 more points based on how much strength its
own base has remaining at the end of the simulation. If a
swarm successfully destroys its opponent’s base, a bonus
of up to 50 points can be awarded depending on the
number of surviving agents in the victor’s swarm. If a team
does not attack its opponent, it receives one point if it at
least finds its opponent’s base, and zero points if it fails in
its search.

C. Results

The fitness scores over the course of the evolution
process are shown in Figure 5. Only the fitness scores of
the “active” population being evolved are shown. The
populations take turns being evolved against the other
every 100 generations. These switches occur at the
discontinuities on the graph. Initially, pop1 is the active
population for 50 generations and achieves excellent
scores. This is not that impressive, however, considering
their opponent is a just a team with randomized weighting
functions. At generation 50, pop1 is “frozen” and pop2 is
evolved. Since pop1 is much more highly evolved than
pop2, pop2 has a difficult time competing against pop1
and receives poor fitness scores. This pattern repeats for
almost the next 1000 generations, until pop2 finally
catches up to pop1 and they both become equally matched
opponents. After approximately 1200 generations, the
algorithm is able to optimize the parameters of the swarm
to maximize its ability to both defend its base and attack
the enemy base.

For a highly evolved swarm, when the simulation
started, approximately two thirds of the swarm switches
into an aggressive mode, with the rest of the agents acting
as defenders. The defenders form a small mob around their
friendly base to fend off enemy attacks. A larger number
of agents are required for the offensive task due to the fact
that spreading out across the map to find the enemy base
takes more units to complete as opposed to the smaller
number needed to defend the base. When opposing agents
approached either other, the stronger group of agents
usually begins chasing the weaker group, since the
outcomes of battles are determined using the relative
strengths of the agents. As the simulation progresses,
defending agents slowly die off, only to be replaced by
nearby agents that determine that they are safe enough to
do so. This process allows each swarm’s defenders to

Figure 4. The Coevolution Process.

Figure 5. Evolution Results for the Point Attack & Point Defense
Swarms

DRAFT

DRAFT

guard its base until its attackers find and attack its enemy’s
base. Eventually, as both sides incur losses, the swarms
begin to break down and cease to function as swarms.

The Point Attack & Point Defense swarm simulation
demonstrates how techniques found in swarms of ants can
be applied to a battle type scenario. By allowing the agents
to switch between tasks during the simulation, the swarms
are able to perform well for a longer period of type and can
adapt to their current circumstances. The optimized rules
applied as a set of weighting functions and threshold
functions, while simple, were able to result in a flexible
and robust emergent behavior which allows the swarm to
complete two separate objectives. Coevolution is shown to
be an effective means of optimizing the parameters for the
scenario.

IV. SEARCH & DESTROY

A. Simulation

The second simulation for the swarms to learn is a
Search & Destroy mission, shown in Figure 6, wherein a
swarm is tasked with finding and eventually destroying an
enemy target. Unlike the previous example, this enemy is
allowed to fight back. In order to encourage the emergent
behavior of recruitment, the enemy is able to withstand
attacks of less than 3 units. The enemy is also able to
inflict a random amount of damage, ranging from zero to
ten, against attacking agents which are initialized with a
strength value of 100. When an agent’s strength drops to
zero, it is removed from the field of play. This process
allows for the enemy to survive attacks of less than three
agents and destroy the failing agents. The simulation
continues until either the target is destroyed, the swarm
dies out or the time limit expires.

Agents in this swarm have the ability to take on one of

three states: scouts, recruiters and soldiers. In addition to
deciding when to switch states, the agents also need the
ability to recruit units in order to form attacking groups. To
draw another comparison to ant colonies, when ants have
trouble moving large objects, their first method of
recruitment is to release a large amount of pheromone
within a local area. If that does not attract enough ants, the
ant will return to the anthill leaving a trail of pheromone
behind. Since the pheromone trail method does not work
well with all applications, we decided to implement only
the first method. In the Point Attack & Point Defense
scenario, our goal was to explore the evolution of the
agents’ state switching behavior. In this simulation,
however, our focus was les on how the agents switch as it
was on allowing the swarms to evolved recruitment
methods. In order to simplify the evolution process, the
weighting functions that define the agents’ behavior are
evolved, but the state switching itself follows a set of pre-
defined rules.

All agents are initialized as scouts. When a scout finds
the enemy, it becomes a recruiter. When a scout finds a
recruiter, it switches to the soldier task. A soldier will
remain in that state unless it gets separated from its
recruiter, in which case it reverts back to acting as a scout.
Additionally, if a recruiter finds another recruiter, the
recruiter with the lowest remaining strength becomes a
soldier and treats the other agent as its recruiter. This rule
was added to the simulation to prevent large numbers of
recruiters in the swarm searching for scouts, when instead
they could simply form up with each other in order to more
quickly accomplish their objective. Each state contains its
own set of weighting functions. So when an agent is said
to have “switched states” it is actually switching the set of
weighting functions that govern its behavior.

As with the previous example, the movement of the
agents is controlled by sensors and their corresponding
weighting functions. Sensors used include nearest agent of
the same state, nearest agent of a different state and the
enemy target. Additionally, soldiers are able to sense their
nearest recruiter and recruiters are allowed to count the
number of soldiers within sensor range. Another sensor is
introduced to this simulation: a center sensor. In the Point
Attack & Point Defense swarms and in much of the
previous swarm work with our group, most of the
interesting behavior occurs at the boundaries of the playing
grid. The rectangular grid with rigid boundaries is
normally used for simplicity, but we want to replace these
hard boundaries with a softer, circular boundary. To

Figure 6. Screenshot of the Search & Destroy swarm. White dots are
explorers. Blue dots are recruiters, and Red dots are soldiers. The
enemy target is represented by the green dot.

Figure 7. The three possible states in the Search & Destroy swarm.

DRAFT

DRAFT

accomplish this, we remove the boundary and replace it
with a center sensor. Agents are allowed to travel “off the
map” as far as they want, but agents that are too far away
at the end of the simulation are considered lost. The center
sensor allows the swarm to keep agents from wandering
off by pulling them back in. The sensor is similar to the
other weighting functions, but is defined by only two
values: the distance from the center at which the sensor is
turned on and the strength of the agent’s attraction back to
the center. While the initial reason for this sensor was to
contain a swarm in a continuous field of play, the sensor
ended up being used by the swarms to improve the
effectiveness of their search, which will be explained later.

It is important to mention that, while this scenario is
designed with the goal in mind to develop recruitment
techniques, the swarm is still given flexibility to find an
optimal solution. Instead of hard-coding the behaviors into
the program, the framework for the behavior is provided,
and the swarm is allowed to adjust various weighting
functions and thresholds to refine this behavior. In
studying swarm intelligence, we are often searching for
both interesting behavior and useful behavior. The “bullies
v dweebs” scenario [13] is an example of some very
interesting work, where the emergent behavior was
unexpected. However, the simulation does not directly
translate to an application, which is the focus of this
research. While the simulations described in this paper are
designed with the goal of providing useful techniques, the
flexibility of the swarm was maintained by allowing the
weighting functions to be evolved.

B. Evolution

To evolve this swarm, coevolution cannot be used
since there is only one swarm involved. Instead, a single
population of teams is generated and optimized by
removing poor performing teams and replacing them with
mutated copies of the remaining teams. In formulating the
fitness function for this simulation, we need to think about
how to steer the evolution towards our goal, while at the
same time allowing the swarm to find unexpected results.
For the fitness function, if the swarm at least found the
target, it receives one point. A swarm can also receive up
to 100 points depending on how much damage it inflicted
on the target. The total distance travelled by the swarm is
tracked through each simulation. If the target is
successfully destroyed, up to 50 points are awarded based
on how much distance the total swarm travels compared to
the maximum possible distance travelled. Less movement
was awarded more points to promote efficiency and
conservation of movement translating into real-world
energy and fuel savings. Finally, the total fitness score is
adjusted by multiplying by the percentage of swarm
remaining.

During one generation of evolution, each team is
simulated twenty five times and the program records the
percentage of games in which the swarm successfully
destroys the target, the percentage of games in which the
swarm at least finds the target and the average fitness
score. The teams are compared against each other in pairs
in order to rank the teams. Each team is matched up with
ten other, randomly selected teams. For each match up, the
teams are first compared using the percentage of
successful simulations. The team with the higher

percentage “wins” and is awarded one point. If the teams
tie in this test, the next criteria is the percentage of games
with a successful search. A point is again awarded to the
team with the higher percentage. In the case of another tie,
the average fitness score is used to determine who received
the point. Teams are then ranked according to their point
totals. At this point, the lower half of the teams are
removed from consideration and replaced with mutated
copies of the better half. The point system allows the
“natural selection” process to be more forgiving. A team
that achieves worse scores temporarily is able to survive
longer and possibly discover a better strategy later on in
the process as opposed to being removed immediately after
they fall into the bottom half of teams in the population.

C. Results

After evolution, the swarm learns to successfully find
and destroy the enemy target within the time limit. Scouts
are repelled from each other, which causes them to spread
out across the map. When a scout wanders off too far from
the center, it is kept alive by gently being pulled back in.
After a scout finds the enemy target and becomes a
recruiter, it stays away from the target until it senses it has
a large enough group of soldiers around it (at least two, for
a total group of three). At this point, the recruiter returns to
the target, attacks it and usually destroys it. An interesting
result is that when a scout switches to a recruiter, it begins
searching for soldiers within a circle of a smaller radius
than before the switch. Recruitment occurs when a
recruiter comes within range of either a scout or another
recruiter, so by staying in a smaller search area, the
recruiters are able to increase their chances of finding other
recruiters who are also staying in the same area. This
behavior emerges from the use of the center sensor, which
is “turned on” at a smaller radius when an agent is in the
recruiter state. The use of the center sensor for recruitment
was unexpected and is another example of why it was
important in these simulations to allow room for the
evolution process to discover the optimum solution.

During this process, occasionally the swarm would find
a “trivial” solution, that while not what we were looking
for, did provide some interesting and unexpected behavior.
For instance, originally this simulation was designed to
initialize the target at a random distance from the center,
ranging from 400-480 units away. The emergent behavior
after that variation of the scenario was evolved was the
formation of a large group. Instead of spreading out to
search for the target, most of the agents formed one big
mob, traveled to a distance of roughly 440 units away from
center, and simply went in a circle around the center,
eventually running into the target and destroying it almost
instantly. Since the sensor ranges in this case were 30
units, agents traveling in a circle of radius 440 (with some
twiddle added in) were able to find virtually any target
hiding within the 400-480 circle. This meant that the
search problem was actually a trivial one. With the search
task solved by travelling in a circle, the need for
recruitment was removed by performing “recruitment” in
the beginning. When attacking the target, it makes no
difference whether a scout or soldier is attacking, so the
evolution converged to a solution where instead of a single
recruiter and a handful of soldiers attacking, a large group
of scouts formed up and took out the target themselves.
This unexpected (and unwanted) behavior is a perfect

DRAFT

DRAFT

example of how we need to be careful in how we design
the problem the swarm will be solving. In this case, the
search problem was too easy, which made the entire result
trivial. Any simulation we design will have an implicit
maximum fitness, ranging from trivial to impossible. The
search for an interesting, yet solvable problem is one of the
more difficult challenges in swarm intelligence.

At one point, we attempted to introduce the concept of
memory into the system, with the hopes of improving the
effectiveness of the search. Units would be able to
remember their previous three locations and, theoretically,
would learn to not search the same space twice. Our result,
however, was that the agents lost their cohesion, and the
final swarm result suffered. Each agent, now having
information on its previous locations, did learn to move
away and look for new areas, but in the process the agent
would effectively ignore all other units nearby. The agents
were each searching the space independently instead of
cooperating with each other by spreading out. While the
fitness scores were lowered by the addition of memory,
they could have been improved by evolving a zero weight
on the trails. Zeroing out the trail weights, however, did
not occur in our evolution due to the fact that the odds of
all of the necessary weights reaching zero simultaneously
was extremely low. In effect, the evolution would always
converge to a local maximum of the fitness function that
was too far away from the global maximum. Based on
these results, we decided to refrain from implementing a
temporary memory for each agent.

The Search & Destroy simulation, while simpler than
the Point Attack & Point Defense swarms, demonstrated
the use of both state-switching and recruitment. The
techniques discovered in these scenarios lays the
groundwork for more complex swarms later on. Also, the
evolutionary algorithm using a points system comparison
between teams was shown to be a useful method to invert
the swarms.

V. BASE ATTACK

A. Simulation

Concepts from the first two simulations are combined
into a more complex, Base Attack scenario, pictured in
Figure 8. The Base Attack swarm has two objectives. First,
the swarm needs to defend a central base from incoming
projectiles. Agents can detonate themselves to destroy the
enemy projectiles. However, these explosions also take out
friendly units nearby. Second, the swarm needs to seek out
enemy units that are spawned at the edges of the playing
area. These enemy units periodically fire projectiles
towards the central base. Enemy units are again stronger
and require three agents to detonate nearby within a short
period of time. This requirement is added to force the
swarms to form groups which would involve learning
recruiting techniques. When the friendly base takes too
much damage and is destroyed, the simulation ends. A
effective swarm in this simulation would be able to defend
its base while simultaneously searching for and destroying
enemy units. Swarms are scored on how long they survive
and how many agents stay within bounds. The solution
requires the swarm to allocate its resources between the
two tasks and find efficient methods to complete its
objectives.

The movement of the agents is again controlled using
the input from a variety of sensors. The agents are able to
sense their distance from friendly units, enemy units,
enemy projectiles, and the base. These distances are fed
into weighting functions to determine the resulting
movement. The weighting functions are adjustable
parameters that represent the rules that the swarm follows.
After a solution is found, we can look at the resulting
weighting functions to determine which strategies were
learned by the swarm. All of the sensors have a limited
range, so that agents are only aware of what is happening
within a localized area.

Since there are two main objectives the swarm is trying
to accomplish, there are two states the agents are allowed
to take: attackers and defenders. Defenders are equipped to
defend the base by destroying incoming projectiles, while
the attackers are capable of searching for the enemy units,
forming groups and attacking the enemies in force. Within
the attacker task, there are two sub-states: scouts and
recruiters.

Similar to the Point Attack & Point Defense swarms,
the switching behaviors of the agents is modeled as a
threshold function. The threshold functions determine the
percent chance that an agent will decide to switch based on
the input of an environmental variable. In this case,
switching is partially determined by the number of units in
the same state versus the units in a different state. Again,
the agents are only aware of local information, so the
switching sensors have a limited range as well. Each
function is defined by a single variable, the threshold. At
the threshold value, the output of the function is 50%. If
the input is less than that value, then the agent will most
likely not take any action. As the value increases above the
threshold, the agent will be more inclined to switch states,
if the conditions are right. To prevent the swarm from
making the mistake of ignoring enemy units, agents are
only allowed to switch when there are no enemy units or
projectiles nearby. This behavior could be evolved by the

Figure 8. Base Attack. The base is shown in the middle by a black dot.
A yellow agent has appeared in the upper left and fired a green
projectile toward the base. Agents are colored as follows: red scouts,
blue defenders, and maroon recruiters.

DRAFT

DRAFT

learning algorithm, but would require a more complex
switching algorithm, involving the number of both friendly
units and enemy units. To simplify the simulation, this rule
is hard-coded into the agents’ decision making process.
While there is a chance that an agent can oscillate between
states, that chance is minimal enough to ignore in this
simulation.

In addition to sensing the number and state of nearby
units, we utilize a “smart” base. While the central base is
not a part of the swarm, we allow the base to interact to a
small extent with the nearby agents. The base counts up
the number of nearby defenders and broadcasts that
number to nearby agents. Agents within range are then
able to make decisions on whether or not to switch based
on the information given by the base. This was necessary
because, in some cases, agents would think the base was
unguarded when, in fact, it was, but the defenders were out
of range on the other side of the base. Agents are able to
decide for themselves when the number of defenders is
either too large or too small. The base is not actually
making any decisions by itself. Instead, it is passively
sending the information for the agents to process.

This swarm takes advantage of recruitment techniques
developed in the Search & Destroy swarm. Within the
attackers’ task, there are two sub-states: recruiters and
scouts. All attackers are initially scouts. For simplicity, the
state switching within the attacker objective is controlled
via some preset rules. When a scout finds an enemy, it
becomes a recruiter. When defenders or other recruiters
find a recruiter and determine that they are in a safe
position, they become scouts. The goal is for recruiters to
search for other agents until a large enough group
surrounds the recruiter so that the enemy unit can be
destroyed by the group. Another rule was introduced that
allowed units that returned to the enemy’s location but
could not see the enemy to switch back to scouts and
continue searching. In this scenario the enemy may have
either drifted away or been destroyed by another group of
agents. In either case, the agents should move on instead of
getting stuck in a location that may not be important.
While the recruitment itself is not an adjustable parameter,
the movement of the units within the recruitment sub-
states is adjustable. Scouts need to learn to follow
recruiters and recruiters need to learn the optimal size of
groups needed. In this simulation, three agents are needed
to destroy the enemies.

B. Evolution

For the evolution of the swarms’ parameters, we
looked at a variety of evolutionary strategies
[4][5][7][9][10][11]. After some experimentation, we
selected a method similar to that used in David Fogel’s
Blondie24 program. Fogel’s program was successful in
evolving neural networks that could play checkers [2] or
chess [14]. At the beginning of the evolutionary process, a
population of teams is generated. Each team contains a set
of weighting functions and threshold functions that define
the rules followed by the team’s swarm. For this
experiment, a population of 50 teams was used.

During each round, each team plays a set number of
games. After the simulations are completed, each team
receives a fitness score that represents how well the swarm

performed during the simulations. It is often difficult to
determine a fitness function that rewards both good
defensive and offensive strategies. In order to encourage
the swarms to learn to defend the base as long as possible,
points are awarded to the teams based on how long the
base survived. This point total is then modified by
multiplying the percentage of active units that remain in
the playing area at the end of the simulation. This
encourages swarms to learn to stay within the playing area
without actually setting a hard boundary. The fitness
scores are also adjusted by adding bonuses for
conservation of movement.

Then, using a lexicographical sorting method, the

teams are selected based on the number of games in which
they accomplished certain objectives. After the teams are
sorted by fitness, they are sorted based on the number of
games where they find at least one enemy. This rewards
teams that successfully complete the search objective of
the attackers. Finally, the teams are sorted based on
successfully destroying enemies, which indicates a
completion of the second attacker objective, destroy. At
this point, the worst 25 teams (half of the overall
population) are removed from the evolution process and
the best 25 teams are duplicated.

The new 25 teams are mutated by adding random
Gaussian noise to the weights that control the swarms’
behavior. This process allows the evolutionary algorithm
to remove poor solutions and keep successful solutions,
while constantly searching for new and improved
strategies that are both similar to previous good solutions
and different enough that the search is considering new
strategies. The mutation step size is an important
parameter in the evolutionary program. If the step size is
too small, then the program will not be able to effectively
search through the entire search space. On the other hand,
if the step size is too large, then the search will not be able
to converge to a solution. In order to prevent the search
from converging too quickly, a minimum step size was
used. The minimum step size was calculated by first
calculating the average step size for each weight over all of

Figure 9. This figure represents the learning process of the
evolutionary algorithm by showing how the fitness scores improved
over time. The solid line indicates the average fitness score of the
population for each generation. The X’s represent the maximum and
minimum scores in the population. After 300 generations, the
algorithm converges to what appears to be a locally optimal solution.

DRAFT

DRAFT

the teams tested. After a list of the average step sizes was
calculated, the minimum step size was found by selecting
the median of the average step sizes using the method
described by Liang et al. [8].

C. Results

After the evolutionary algorithm was run for several
hundred generations of teams, the resulting strategies
allowed the swarms to perform well in both the defense of
the base and the search for and destruction of enemy units.
The improvement of the fitness scores over the course of
the evolution process is shown in Figure 9. The learning
algorithm allows the swarms’ fitness scores to increase
over time, before leveling out at a maximum value given
the parameters of the simulation.

One of the basic behaviors learned was the division of
labor. A swarm was able to divide itself up into two
groups, with roughly two thirds going into attack mode
and the remaining acting as defenders. This emergent
behavior was intuitive given that attackers had more of a
search area to cover, while only a small amount of
defenders were needed to guard the base. After the initial
division of labor, the swarm was able to dynamically shift
its resources autonomously. As defenders are depleted
through either enemy projectiles or recruitment, they are
replenished by nearby attackers that switch states when
they determine the number of defenders is too small.
Figures 10 and 11 demonstrate the dynamic state switching
behaviors learned by the swarms.

The attackers learned to spread out both from the base

and from each other. The scouts also learned an optimal
distance at which to turn on their center sensor to allow
them to both remain in the playing area and search as
much of the map as possible. This attacker behavior is
shown in Figures 12 and 13.

In Pseudocode:
for i in number of generations:
 Simulate each team 50 times
 Rank by fitness scores
 Rank by # of times enemy found
 Rank by # of enemies killed
 Remove bottom 25 teams
 Duplicate top 25 teams
 Mutate duplicates

Figure 10. The threshold function shown here demonstrates role
saturation, which occurs when agents switch states after deciding
there are too many units working on their task. First, the agent
counts up the number of nearby agents working on its task and those
working on a different task. This is fed into the threshold function,
which determines the chance that the agent will switch. In this case,
if the difference between nearby defenders and attackers is 3, then
the agent has a 50% chance of switching to offense. If the number of
defenders compared to attackers is large, the agent will most likely
switch, and vice versa. In this image, a blue defending agent has
decided that there are too many defenders around it and chooses to
switch states to become a red scout.

Figure 11. This function represents the way the agents process the
information broadcast from the base. The base will broadcast the
number of defenders around it and the agent has the option of
switching to a defensive mode if it decides there are not enough
defenders around it. In this case, the swarm will attempt to keep at
least 8 or so defenders around the base. If the number of defenders
is less than that, then there is a role deficiency and nearby
attackers will most likely switch to a defensive mode. Here, the
base has broadcast that there are 6 defenders around it. A red
scout has heard the message and decided that 6 defenders is not
enough, so it chooses to switch states to become a blue defender.

Figure 12. This weighting function shows how the swarm has
learned to stay within the boundaries without being explicitly told
how to. Any units that are greater than approximately 850 units
away from the base are considered lost. Teams can achieve higher
scores by keeping a large percentage of their agents within bounds.
Also, the playing area is 1200 by 1200 units and the enemies are
spawned at a radius of 600 units from the base. This team has
learned that if the agents turn back to the base after they are a
distance of 620 units away, they will remain within bounds while
still being able to find all enemy units. This graph shows how
scouts react to seeing other units. When a scout sees another agent,
it will be repelled from it. This allows the scouts to spread out and
cover as much area as possible. Additionally, the graph is positive
for small values. While the scouts are initially repelled from other
agents, they will also be attracted to recruiters through the use of a
separate weighting function. When the scout is pulled in to a close
distance from the recruiter, the positive value from this weighting
function allows the scouts to follow the recruiters more closely.

DRAFT

DRAFT

The defenders also learned to surround the base while

maintaining a set distance from each other. They learned to
keep their distance because detonations to destroy enemy
projectiles could destroy friendly units if they were too
close. Figures 14 and 15 show the defensive strategies
used by the swarms.

One of the more unexpected results came from the
optimization of the center sensor. The goal was for the
swarm to learn to stay within the boundaries of the playing
area. An interesting emergent behavior was that the
recruiters’ center sensor turned on at a very small value.
This caused all recruiters to be drawn back to a tight radius
around the base, which resulted in an effective recruitment
strategy as there is always a group of agents close to the
base. These recruiting techniques are shown in Figures 16
and 17.

Figure 13. In this screenshot, a red scout approaches a maroon
recruiter. While the scouts are inclined to stay away from other
agents when they are relatively far apart, their attraction to
recruiter overwhelms the initial repelling force. When the
recruitment sensor brings the red scout close enough to the
recruiter, the scout’s attraction to other units at close distances
kicks in and the scout will tightly follow the recruiter until the
enemy is eventually destroyed. A green projectile fired from the
enemy is also pictured.

Figure 14. This weighting function shows how defensive agents will
stay approximately 31 units away from each other. The zero
crossing with a positive slope creates a “sweet spot” that the agent is
inclined to stay in. Note, the function does become positive for
small distances, but since the function is negative for values from 6
to 31, the agents should never get close enough to each other for that
to matter. This function represents the rule that tells the defensive
agents how far to stay away from the base. The agents will attempt
to remain about 45 units away from the base.

Figure 15. The defending agents learned to surround the base and
travel in a circular pattern in order to intercept as many enemy
projectiles as possible. They are also keeping a set distance away
from each other so that is one detonates, it doesn’t take out
friendly units.

Figure 16. The first function shows the center sensor for
recruiters. Note the scale for the x-axis. Any recruiters that are
more than 1 unit away from the base will be inclined to return to
the base. In other words, all recruiters return to the base. It is easy
to understand why this unexpected strategy developed because
there are (or should always be) agents acting as defenders near the
base that can be recruited to join recruiters’ groups. This second
graph demonstrates another part of the recruitment method
learned. It represents how the agent moves with respect to the
found enemy based on the number of friendly agents around it. If
there are no friendly units around, the agent is repelled from the
enemy; it is not strong enough. If there is one unit around the
recruiter, then it still does not return to the enemy. Only when
there are at least two friendly agents nearby does the recruiter
return to the enemy. At this point, the group is at least three
agents strong and able to destroy an enemy unit.

Figure 17. Here, a red scout has found an enemy unit and switched
states to become a maroon recruiter. The recruiter is headed back
toward the base in order to recruit other agents to form a group large
enough to take out the enemy. This image shows the recruiter being
joined by a third agent, which was formerly a blue defender. Since
the recruiter senses that its group is at least three agents and is big
enough to destroy the enemy, the recruiter turns and begins leading
the group to the enemy unit to attack it. After the enemy is
destroyed, any remaining agents from the group will continue
searching in a scout mode.

DRAFT

DRAFT

One of the benefits of swarm intelligence is graceful
degradation of the swarm’s performance. As the
simulation progresses, the swarm will incur losses.
However, by dynamically shifting its resources, the swarm
is able to maintain both tasks, defending the base while
still searching for enemy units. It is only when the swarm
loses a large percentage of its population that the swarm
begins to break down and is no longer able to successfully
work on both objectives. The swarms in this project were
evolved with an initial population size of 40 units. This
number allowed the group of units to be large enough to be
considered a swarm while still being small enough to
encourage unique, emergent behavior. The concept of how
large a swarm needs to be in order to be considered a
swarm is a fuzzy one and often depends on the application.
The question of how size affects a swarm’s performance
will be explored further in future work.

VI. CONCLUSION

One of the advantages of swarm intelligence is a
swarm’s ability to autonomously reorganize itself in a
dynamic environment. In our work, we have used
techniques found in nature to allow swarms to manifest
this behavior in simulations where the swarm is required to
perform well in two objectives. In the Point Attack & Point
Defense swarms, agents have to balance themselves
between both defending their base and finding and
attacking their enemy’s base. Swarms in the Search &
Destroy simulation have to use recruitment methods to
form groups to destroy a large opponent. And finally, these
scenarios are combined in the Base Attack swarm, in
which a single swarm has to complete defensive and
offensive objectives, using both threshold functions and
recruitment techniques. By using an evolutionary learning
algorithm, the weighting functions that defined the
swarms’ behavior in each of the three simulations are
optimized to maximize the swarms’ fitness scores.

We believe that these concepts can be expanded upon
in future work. One topic to consider is the effect of size
on a swarm’s performance. For the purposes of these
simulations, a population size of 40 was chosen because it
is small enough to be feasible in a real-world application
but also large enough to demonstrate swarm
characteristics. A more in depth exploration of the effects
of population size could provide more insight as to when a
large group of agents begins functioning as a swarm.

This paper has demonstrated the application of a multi-
state swarm that was able to use state-switching
capabilities to adapt to a dynamically changing
environment. While previous work has shown swarm
intelligence as a viable solution to single objective
missions, we have expanded these swarm techniques to
accomplish multiple objectives using threshold functions
to control the switching between states. The emergent
behaviors of the swarms are robust and allow the swarm to
continue achieving its objectives until a large percentage of
its population is lost.

ACKNOWLEDGMENT

Special thanks to Baylor University, the Pennsylvania
State University Applied Research Laboratory, and
especially the Office of Naval Research’s University
Laboratory Initiative for funding for this effort.

REFERENCES

[1] E. Bonabeau et al, Swarm Intelligence: From Natural to Artificial

Systems. Oxford, NY: Oxford University Press, 1999.

[2] D. Fogel, Blondie24. San Francisco, CA: Morgan Kaufmann
Publishers, 2002.

[3] I. Gravagne and R. Marks II, “Emergent Behaviors of Protector,
Refugee, and Aggressor Swarms,”IEEE Transactions on Systems,
Man, and Cybernetics – Part B: Cybernetics, vol. 37, no. 2,
pp.471-476, Apr, 2007.

[4] Z. Yuan, “Continuous Optimization algorithms for tuning real and
integer parameters of swarm intelligence algorithms,” ANTS 2010,
pp. 203-214, 2010.

[5] M. Clerc and J. Kennedy, “The Particle Swarm – Explosion,
Stability, and Convergence in a Multidimensional Complex
Space,” IEEE Transactions on Evolutionary Computation, vol. 6,
no. 1, pp. 58-73, Feb, 2002.

[6] W. Ewert, R.J. Marks II, B.B. Thompson & Albert Yu,
“Evolutionary Inversion of Swarm Emergence Using Disjunctive
Combs Control,” IEEE Transactions on Systems, Man &
Cybernetics, (prepint available at IEEE Xplore February 1, 2013.)

[7] D. Cvetkovic and I. Parmee, “Evolutionary Design and Multi-
ojbective Optimisation,” Plymouth Engineering Design Centre,
University of Plymouth. Drake Circus, Plymouth PL4 8AA, U.K.

[8] K. Liang et al, “Dynamic Control of Adaptive Parameters in
Evolutionary Programming,” Computational Intelligence Group,
School of Computer Science. University College, The University
of New South Wales. Australian Defence Force Academy,
Canberra. ACT, Australia 2600.

[9] C. Fonseca and P. Fleming, “An Overview of Evolutionary
Algorithms in Multiobjective Optimization,” Dept. Automatic
Control and Systems Eng. University of Sheffield, Sheffield S1
4DU. U.K. July, 1994.

[10] F. Kursawe, “A Variant of Evolution Strategies for Vector
Optimization,” University of Dortmund, Department of Computer
Science XI, D 44221 Dortmund, Germany.

[11] S. Carlson, “A General Method for Handling Constraints in
Genetic Algorithms,” University of Virginia, Charlottesville, VA.

[12] Jon Roach, R.J. Marks II & Benjamin B. Thompson, “Tactical
Task Allocation and Resource Management in Non-stationary
Swarm Dynamics,” IJCNN 2013

[13] Jon Roach, Winston Ewert, Robert J. Marks II and Benjamin B.
Thompson, "Unexpected Emergent Behaviors From Elementary
Swarms,'' Proceedings of the 2013 IEEE 45th Southeastern
Symposium on Systems Theory (SSST), Baylor University, March
11, 2013

[14] D. Fogel, et al., “A self-learning evolutionary chess program,”
Proceedings of the IEEE, vol. 92, no. 12, pp.1947,1954, Dec 2004

