
DRAFT
Evolutionary Recovery from Sensor Failure in a Trained Multi-objective

Swarm

Jon H. Roach, Robert J. Marks II, and Benjamin B. Thompson

Abstract— One of the benefits of using Combs disjunctive

control in swarm intelligence is the ability of the swarm to
continue to operate even when one or more of its sensors are
broken. Instead of failing, the swarm continues to perform
based on the inputs of the remaining sensors. In this project, a
multi-objective scenario is designed for a swarm of agents to
complete. Once optimized, the swarm is then modified by
removing one of its sensors. Maintaining the original objective,
the evolution process is continued to allow the swarm to
compensate for the sensor failure. This paper describes the
different emergent behaviors of the swarm after the post
failure rules are optimized using an evolutionary learning
algorithm.

Index Terms—Keywords: swarm intelligence, multi-state,
task switching, fuzzy control, emergent behavior, Combs
control

I. INTRODUCTION

Swarms in nature are composed of a large number of
individual agents, such as bees or ants, that each follows a set
of basic rules [3]. Often these rules can be described as a
simple cause effect relationship between an external stimuli
and an agent’s response. Each agent’s response contributes to
the emergent behavior of the swarm, which can often be
unpredictable [2][5][8]. However, what if agents were unable
to sense a certain stimulus? For example, what if a group of
drones was unable to sense the difference between friend and
foe? Or what if they had difficulty sensing certain types of
enemy units altogether? How would that reduction in
awareness affect the emergent behavior of the swarm?

The robustness of disjunctive control, also called Combs
control [9][10][11], has the advantage of seamlessly
recovering from failed sensors by exploiting possibly
redundant information available from other sensors when
available [12][13][14]. A simple example is steering a car to
the right. This can be done by a) turning the front wheels of
the car to the right, b) turning the back wheels of the car to
the left, c) braking the two wheels on the right side of the car,
or d) accelerating the rotation of the two wheels on the left
side of the car. As long as one of these control actions exists,
the car can be steered to the right even when the remaining
three functions fail. Redundancy in the information available
in sensors is often not as obvious as in this example. In the
case of swarms, the failing of one or more sensors may
prompt the swarm to adopt a different emergent strategy in
order to meet the objective of the collective.

Our goal is to discover what new emergent behaviors
occur when certain rules are removed by disabling some of
the agent’s sensors. A previously tested simulation is used as
a baseline for this experiment [1]. In this paper, we
demonstrate the emergent behaviors that result from
individually removing four of the agents’ sensors.

Although we explain swarm behavior in detail, there is
no substitute for watching swarming in real-time. The
motivated reader is therefore encouraged to view our video

which both explains and displays the fascinating and
emergent behavior described in this paper .

II. SWARM INTELLIGENCE

In the simulation, a swarm is tasked with completing two
objectives: guarding a central base from enemy attacks while
also searching out and destroying enemy units. In order to
encourage recruitment, at least three agents are required to
successfully kill an enemy unit. The simulation ends when
the base sustains a set amount of damage: in this case, when
ten enemy projectiles hit the base. The movement of the
agents is controlled by sensors connected to weighting
functions. When an agent senses an object, the distance to
that object is fed into a function that tells the agent how to
move with respect to the object. In addition to a series of
object sensors and their corresponding weighting functions,
agents are also equipped with a center sensor that tracks how
far away the agents are away from the base and pulls them
back in if necessary. All of the sensors have limited range,
except for this center sensor.

In order to accomplish both objectives, the agents are
allowed to take on one of multiple states: defender, scout or
recruiter. For each state, there is a different set of sensor
weighting functions, including the center sensor functions.
When an object switches states, it is changing the set of rules
it follows. Since the swarm needs to dynamically adjust its
resources, the agents are able to switch between states using
threshold functions. If an object senses there are too many
agents working on the same task, or too few, the agents are
able to change states or request other agents to change states
as necessary. How the agents make this decision is
determined by a threshold value. Each weighting function
and threshold is an adjustable parameter that represents a rule
that the agents follow. These rules are optimized through the
use of an evolutionary learning algorithm. This paper
discusses what happens when one of these rules is removed
from the swarm’s decision making.

DRAFT

III. EVOLUTION PROCESS

A predatory swarm’s performance can be maximized
using an evolutionary learning algorithm
[6][7][9][11][12][13]. Performance is measured by tracking
the number of enemy kills and the swarms’ fitness scores.
Each swarm is assigned a fitness score which is equal to the
time survived, multiplied by the percentage of surviving
agents within the field of play, multiplied by an efficiency
factor that represents the reduction of the distance travelled
by the swarm, as shown in (1). E is the efficiency factor and
C is a constant.

ܨ ൌ ܶ݅݉݁ ∗ ܲ௧௦ ∗ ܧ ∗ ܥ

An initial random population of teams, each represented

by a set of weighting functions and thresholds, is evolved by
simulating the scenario with each member of the population
and comparing the results. Teams with higher kill totals and
fitness scores survive and advance to the next generation of
evolution, while the poorer teams are removed. Each
surviving team is copied and mutated by adding random
Gaussian noise to the weights and thresholds. For weights
with values ranging from negative five to five, the standard
deviation of the Gaussian noise added is approximately 1.25.
This algorithm allows the population of swarms to “learn”
which rules and strategies successfully accomplished both
objectives of attacking and defending [4][10]. This process is
repeated for approximately 800 generations, resulting in a set
of weights that were optimized for the given scenario. A
brief description of the emergent behaviors is given below.

To accomplish the first objective of defense, defenders
learn to loosely circle the base and intercept enemy
projectiles by moving between them and the base. If the
number of defenders drops too low, nearby scouts switch
tasks to help defend the base. For the second objective,
scouts learn to spread out from the base and from each other
while looking for enemy units. When an agent finds an
enemy, it transforms into a recruiter and return to base. At

the base and along the way, scouts join the recruiters until
the recruiter senses that the group is strong enough to destroy
the enemy unit. The recruiter leads the group back to the
enemy in order to eliminate the enemy. Any surviving agents
in the group then go back to exploring the map for enemies.

Now that we have a solution for the multi-task scenario,
our next step is to begin disabling sensors one at a time in
order to determine how the failure of one of the sensors will
impact the emergent behavior of the swarms. The first sensor
that is removed is the projectile sensor. This sensor is used
by defending agents to see incoming enemy projectiles that
are headed towards to friendly base. Defenders are normally
able to intercept the projectiles. We want to see what would
happen if the defenders are no longer able to sense these
projectiles. The population of swarms that were evolved with
all of their sensors intact is used as the initial population for a
second round of evolution without this projectile sensor.

This process is then repeated for another scenario. The
projectile sensor is turned back on and the group sensor is
removed. The group sensor allows the agents to track how
many other agents are nearby. This is used in recruitment
since it allows the recruiting agents to know if they have
enough friendly agents around them to destroy an enemy
unit. The evolving population is reset to the initial group of
teams that were evolved with all their sensors and the
evolutionary algorithm is run again. This is repeated two
more times: once with the center sensor broken and again
without the base sensor.

IV. RESULTS

Fitness scores for each of these four evolutionary cycles
are shown in Figure 1. In each case, the fitness scores are
lower with the sensor removed. However, these scores do
improve over time as the swarms’ weights are adjusted to
maximize the use of the remaining sensors the swarms did
have. Even though it is missing one of its sensors, in some
cases a swarm is still able to achieve scores almost as high as
a swarm with all sensors available. One of the main
differences in emergent behaviors that developed is how the

Figure 1. The results of the evolution before and after breaking the four
sensors are shown here. Before generation 200, the swarm is evolving
with all of its sensors. At the discontinuity, the graph splits to represent
the fitness scores after the removal of the sensors. The swarm performs
well with its projectile and base sensors removed and okay without its
group sensor, but very poorly when the center sensor is disabled.

Figure 2. This figure demonstrates the emergent behavior of defending
agents evolved with different sensors disabled. (A) shows the tight ring
formed when the projectile sensor is removed. (B) shows attackers
forming groups before scouting due to the fact that the group sensor is
off. (C) shows the ring formed around a group of replacement scouting
agents when the center sensor is disabled. (D) shows a mob of defenders
surrounding the base with the base sensor broken.

(1)

DRAFT

defending agents guarded the base. These strategies are
depicted in Figure 2.

Combs control subjects each sensor to a nonlinear
actuator who shapes are determined through the evolutionary
process. Examples of actuator nonlinearities are illustrated
Figure 3. The actuator outputs are aggregated to determine
agent action [8].

A. Projectile Sensor

Removing the projectile sensor does not greatly affect the
fitness scores, which drop slightly compared to the results of
the previous evolution. This is because the swarms are able
to adapt to the loss of the sensor and still accomplish their
objectives similarly to before. With the sensor, defending
agents circling the base are attracted to projectiles and move
in for the kill. Without the sensor, defenders are unable to see
the projectiles. The swarm’s solution is to make its circling
behavior tighter and faster. By rapidly circling around the
base, agents are able to intercept most enemy projectiles
simply by running into them. The tighter circle uses a smaller
group of defenders to effectively defend the base and allows
more scouts to look for enemy units. This is an example of a
behavior that existed previously, but was adjusted in order to
compensate for the loss of a sensor. The behavior of the
scouts and recruiters remains the same, since their task does
not involve defending the base from projectiles.

B. Group Sensor

The group sensor is proven to have more of an effect on
the swarms’ behavior. This sensor is crucial for the
recruitment techniques developed previously since it allows
recruiters to count the number of nearby agents. When this
ability is taken away, the agents are no longer able to
determine if their group is large enough to destroy an enemy.
Through the evolutionary process, the swarms respond by
modifying their strategy. Instead of scouts spreading out,
over time the scouts form up in clumps and scout in groups.
This removes the need for recruiters to return to the base to
find other agents. When an enemy is found by a group,
recruitment is no longer needed. Instead, assuming a group
of at least three agents, the group can simply move in
immediately and destroy the enemy. The defensive strategy
remains the same, but with a smaller number of defenders to
allow more scouts to explore. Compared to the original
evolution, scores drop since the effectiveness of the search is
reduced when the scouts search in groups. However,
considering the previous recruitment strategy no longer
works at all, this emergent behavior is a reasonable
alternative and allows the swarm to still find and destroy
enemy units while maintaining the previous defensive
strategy of surrounding the base in a rotating ring.

Figure 3. Without the projectile sensor, the swarms adapt by tightening
the ring around the base and speeding up their rotations. In the first
graph, the old strategy is represented by the solid line and the new
function is the dotted line. Initially, the “sweet spot” that the defenders
converged to was around 50. This is lowered by evolutionary
adaptation to a radius of 40 by the new method. In graph 2, the speed
at the “sweet spot” (40) from a little under 4 to almost 5.

Figure 4. Since the group sensor is disabled, the swarms have to adapt.
Originally, scouts are repelled from each other. The value of the solid
line is positive (indicating attraction) at small distances. However, since
the agents are repelled at larger distances, the agents should never get
close enough to each other for that to matter. The new function causes
agents to be more attracted to each other. At large distances the attraction
is weak, but still positive, and increases as the agents move closer. The
second graph shows how many defenders the base is expecting. The
swarm learns to use a smaller number of defenders in order to allow
more agents to explore.

DRAFT

C. Center Sensor

When the center sensor is removed, the swarm scores
drop off drastically. The center sensor is of foundational
importance for the swarm mission. Without it, there is
nothing to prevent exploring agents from wandering off the
edge of the map. Since the swarm is unable to perform well
in its task of finding and destroying enemies, it focuses on
the second task of defending its base. The unexpected
emergent behavior that develops from evolving without this
sensor is the clumping of scouts in the base. When the
simulation begins, some of the scouts form groups and begin
searching, but most of the scouts form one large group and
converge right on top of the base. These scouts, while not
scouting, are used as reserves to replace destroyed defenders.
The defending ring is similar to before, but with a much
larger radius and a group of eight evenly spaced defenders
surrounds the base. As the defenders detonate to take out
incoming projectiles, they are replaced by scouts in the base.
The defenders are far enough away from other defenders and
the base (which is full of scouts) so that detonations do not
take out any friendly units. This strategy allows a large
portion of the swarm to stay defending the base which keeps
the base alive for as long as possible. While the swarm is
unable to properly complete both objectives, this
modification does allow the swarm to perform well in at least
one mission objective.

D. Base Sensor

Without the base sensor, the swarms are able to still
achieve fitness scores on par with previous results. Since the
defenders are unable to sense the base, the previous rotating
ring strategy is impossible. To compensate for this loss, the
defenders forms a mob and surrounded the base. The
defenders also learn to spread out from each other instead of
linking up in the circling method. Previously, defenders used
the attraction from the base sensor to stay close to the base.
After evolution, the swarm learns to use the center sensor to
accomplish the same objective by pulling in defenders that
wander off more than 50 units away. This group of randomly
moving defenders makes it difficult for enemy projectiles to
reach the base, even though it is not as efficient as the ring
strategy. The scouting and recruiting methods are not

affected by the loss of the base sensor, so overall fitness
scores remain high.

V. CONCLUSION

We have shown that while decreasing a trained swarm’s
abilities will negatively affect its performance, an
evolutionary algorithm can allow the swarm to learn a new
strategy that utilizes its remaining strengths. In four separate
cases, a swarm is evolved to complete a multi-objective
scenario, each time with the loss of one sensor. Sometimes
an emergent behavior is refined to maintain swarm
performance. An example of this is when the rotating
defenders form a smaller, tighter circle around the base to
better defend it when their projectile sensors were removed.
Other times, a completely different strategy emerges, such
as when scouts began exploring in groups to remove any
need for recruitment. Also, if a swarm is unable to
accomplish one objective due to sensor loss, then it would
put more of its focus into the other objective. For instance,
disabling the center sensor greatly reduces the swarm’s
ability to search for enemies so instead the swarm began to
keep a large percentage of its agents near the base in order
to survive for as long as possible. In each case, even though
the fitness scores drop initially, the swarms are able to use
other sensors in order to at least partially compensate for the
sensor reduction.

ACKNOWLEDGMENT

Special thanks to Baylor University, the Applied
Research Laboratory at the Pennsylvania State University
and especially the Office of Naval Research’s University
Laboratory Initiative for funding for this project.

REFERENCES

[1] Jon Roach, R.J. Marks II & Benjamin B. Thompson, “Tactical Task

Allocation and Resource Management in Nonstationary Swarm
Dynamics,” to be published

[2] Jon Roach, Winston Ewert, Robert J. Marks II and Benjamin B.
Thompson, "Unexpected Emergent Behaviors From Elementary
Swarms,'' Proceedings of the 2013 IEEE 45th Southeastern

Figure 5. These graphs look similar to those in Figure 4. However, there
are some significant differences. On the left, the new strategy developed
without the center sensor is represented by the dotted line. Scouting
agents are always attracted to each other since the function is positive for
all distances, including an attraction of 1.5 at the maximum distance of
40. This is a much stronger attraction than that in Figure 4. Also, the
second graph shows how the swarms have learned to use fewer
defenders, even less than when the group sensor is removed.

Figure 6. These graphs represent some of the changes in rules that
develop when the base sensor is turned off. The first weighting
function shows how defenders react with respect to other agents.
Initially, defenders are attracted to the “sweet spot” at the zero-
crossing of the graph: around 30 units away. After evolving without
the base sensor, the defenders learn to spread out and are always
repelled based on the negative value of the function. The second graph
shows the changes in the center sensor. Initially the sensor pulls back
defenders that get more the 250 units away from the base. After
evolution, the defenders are kept in a tighter radius of closer to 50.

DRAFT

Symposium on Systems Theory (SSST), Baylor University, March
11, 2013

[3] E. Bonabeau et al, Swarm Intelligence: From Natural to Artificial
Systems. Oxford, NY: Oxford University Press, 1999.

[4] D. Fogel, Blondie24. San Francisco, CA: Morgan Kaufmann
Publishers, 2002.

[5] I. Gravagne and R. Marks II, “Emergent Behaviors of Protector,
Refugee, and Aggressor Swarms,”IEEE Transactions on Systems,
Man, and Cybernetics – Part B: Cybernetics, vol. 37, no. 2, pp.471-
476, Apr, 2007.

[6] Z. Yuan, “Continuous Optimization algorithms for tuning real and
integer parameters of swarm intelligence algorithms,” ANTS 2010,
pp. 203-214, 2010.

[7] M. Clerc and J. Kennedy, “The Particle Swarm – Explosion, Stability,
and Convergence in a Multidimensional Complex Space,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58-73,
Feb, 2002.

[8] W. Ewert, R.J. Marks II, B.B. Thompson & Albert Yu, “Evolutionary
Inversion of Swarm Emergence Using Disjunctive Combs Control,”
IEEE Transactions on Systems, Man & Cybernetics, (prepint
available at IEEE Xplore February 1, 2013.)

[9] William E. Combs. Reconfiguring the fuzzy rule matrix for large
time-critical applications. in 3rd Annu. Int. Conf. Fuzzy-Neural
Applicat.,Syst., Tools, Nashua, NH, Nov. 1995, pp. 18:118:7.1

[10] William E. Combs and J. E. Andrews. Combinatorial rule explosion
eliminated by a fuzzy rule configuration. IEEE Transactions on Fuzzy
Systems, vol. 6, no. 1, pp. 1-11, Feb. 1998.

[11] Jeffrey J. Weinschenk, William E. Combs, Robert J. Marks II, "On
the avoidance of rule explosion in fuzzy inference engines,"
International Journal of Information Technology and Intelligent
Computing, vol.1, #4 (2007).

[12] Sreeram Narayanan, R.J. Marks II , John L. Vian, J.J. Choi, M.A. El-
Sharkawi & Benjamin B. Thompson, "Set Constraint Discovery:
Missing Sensor Data Restoration Using Auto-Associative Regression
Machines," Proceedings of the 2002 International Joint Conference on
Neural Networks, 2002 IEEE World Congress on Computational
Intelligence, May12-17, 2002, Honolulu, pp. 2872-2877.

[13] Benjamin B. Thompson, Robert J. Marks II, and Mohamed A. El-
Sharkawi "On the Contractive Nature of Autoencoders: Application
to Missing Sensor Restoration," 2003 International Joint Conference
on Neural Networks, July 20-24, 2003 , Portland , Oregon (pp. 3011-
3016)

[14] M.A. El-Sharkawi and R.J. Marks II, "Missing sensor restoration for
system control and diagnosis," Sympoium on Dyagnostics for Electric
Machines, Power Electronics and Drives, Atlanta, GA 24-26 August
2003, pp. 338-341.

[15] D. Cvetkovic and I. Parmee, “Evolutionary Design and Multi-
ojbective Optimisation,” Plymouth Engineering Design Centre,
University of Plymouth. Drake Circus, Plymouth PL4 8AA, U.K.

[16] K. Liang et al, “Dynamic Control of Adaptive Parameters in
Evolutionary Programming,” Computational Intelligence Group,
School of Computer Science. University College, The University of
New South Wales. Australian Defence Force Academy, Canberra.
ACT, Australia 2600.

[17] C. Fonseca and P. Fleming, “An Overview of Evolutionary
Algorithms in Multiobjective Optimization,” Dept. Automatic
Control and Systems Eng. University of Sheffield, Sheffield S1 4DU.
U.K. July, 1994.

[18] F. Kursawe, “A Variant of Evolution Strategies for Vector
Optimization,” University of Dortmund, Department of Computer
Science XI, D 44221 Dortmund, Germany.

[19] S. Carlson, “A General Method for Handling Constraints in Genetic
Algorithms,” University of Virginia, Charlottesville, VA.

