
On the Improbability of Algorithmic Specified
Complexity

Winston Ewert & Robert J. Marks II
Dept. of Electrical & Computer Engineering

Baylor University
Waco, Texas

William A. Dembski
Discovery Institute

Seattle, WA

Abstract—An event with low probability is unlikely to happen,
but events with low probability happen all of the time. This
is because many distinct low probability events can have a
large combined probability. However, some low probability events
can be seen to follow an independent pattern. Algorithmic
specified complexity (ASC) measures the degree to which an
event is improbable and follows a pattern. We show a bound
on the probability of obtaining a particular value of algorithmic
specified complexity. Consequently we can say that high ASC
objects are improbable.

Index Terms—Keywords: specified complexity, algorithmic in-
formation theory, Kolmogorov complexity

I. INTRODUCTION

Low probability events are often claimed to not happen. But
this is fallacious because low probability events take place all
of the time. Any snowflake’s pattern is highly improbable, but
this does not prevent low probability snowflakes from existing.
The common occurrence of low probability events seems
paradoxical within the rubric of the probability paradigm. The
paradox is resolved after recognizing there are often very many
improbable events such that the total probability of such low
probability events can actually be quite large.

To illustrate, assume that there exists 101000 possible
snowflakes each of which is equally likely. This means that
any given snowflake pattern has a probability of 10−1000. Thus

Pr[Pr[X] ≤ 10−1000] = 1. (1)

where X is a random variable corresponding to a particular
snowflake pattern. The equation states that we have a high
probability (actually a certainty) of obtaining a very low
probability event.

However, it is commonly assumed that no two snowflakes
are alike. This is because such an event has dramatically
lower probability than the occurrence of of a single specified
snowflake. The probability of a second specified snowflake
being identical to the first specified snowflake, however, is

Pr[First snowflake = x, and the second snowflake = x]

= 10−100010−1000 = 10−2000.

But this is the same as the second snowflake having some
other specification.

Pr[First snowflake = x, and the second snowflake = y]

= 10−2000

where x 6= y. We revisit this example is Section III-B.
Another example is the specified arrangement of sand on a

beach. Any one particular arrangement of the sand is highly
improbable. But an arrangement of the sand to spell words
is not less probable then an arrangement without words. We
would say, however, that the forming of such words through
wind and water would be next to impossible.

How, then, do we resolve the seeming paradox that im-
probable events happen frequently? One resolution of the
paradox is through the viewpoint of specified complexity [4].
An object with specified complexity is, as the name states, both
specified and complex. For an object to be complex means
that it is improbable. Specification means the object exhibits
some independent pattern. The identical snowflakes exhibit a
particular pattern: one snowflake is an exact replica of the
other. This is what sets the pair off as distinct from all other
pairs of snowflakes. Words written in the sand also exhibit a
pattern: they form English letters.

Improbability gives us a good way to quantify the com-
plexity of an object, but methods of measuring specification
are less obvious. One method uses Kolmogorov complexity
[1, 8, 7]. Kolmogorov complexity is defined to be shortest
computer program length required to reproduce a specified
bitstring description of an object. For identical snowflakes,
the first snowflake can be described in detail followed by the
computer command DUPLICATE. In contrast, describing two
distinct snowflakes would require a longer program because
each snowflake would have to be described separately. The
program would be about twice as long as the program for
the identical snowflakes. The identical snowflakes require a
shorter program to describe them because they follow more
of a pattern. Short programs and hence smaller Kolmogorov
complexity corresponds to objects which follow a pattern.

Kolmogorov complexity suffers from the property of be-
ing unknowable [2]. There is no method to compute the
Kolmogorov complexity of an object with arbitrary length.
However, we can give upper bounds for the Kolmogorov
complexity. If a given bitstream of 1000 bits can be com-
pressed without loss to 200 bits, we are assured that the
Kolmogorov complexity of the 1000 bits on the operating
system equals or exceeds 200 bits. Consequently we can show

45th Southeastern Symposium on System Theory
Baylor University, Waco, TX, USA, March 11, 2013

978-1-4799-0038-1/$31.00 ©2013 IEEE 68

from this bound that there is a pattern to the input, but we
cannot determine whether there is a pattern we are missing.
Additionally, Kolmogorov complexity quantities contain an
unknown additive constant that allows it to be applicable
to any computer language. The constant can be thought of
as the length in bits of one computer language translating
into another. As a result of any modeling using Kolmogorov
complexity, the quantity is a useful theoretical construct [3].

Using conditional Kolmogorov complexity [6] we define
algorithmic specified complexity (ASC) [5] as

ASC(X,C, P) = − log2 P (X)−K(X|C)

where

• X is the object or event or under consideration
• C is the context– the presumed information which can

be used to describe the object
• K(X|C) is the Kolmogorov complexity of X given C.

This quantity can not be computed exactly but can be
bounded.

• P (X) is the probability of the occurrence of X .

By taking into account both the probability and the Kol-
mogorov complexity of an object, the ASC measures the
degree to which an event fits the presumed probability dis-
tribution. The log2 P (x) term measures the complexity of the
object, whereas −K(X|C) measures the specification. If an
event happens which has a high ASC, we should conclude
that since it has a low probability and the rare property of
compressibility, it gives us strong indication to believe that
the assumed probability distribution is incorrect.

The usefulness of this definition depends on the wide
variety of constructs that are compressible. This includes for
example simple pattern, such as “01” repeated 32 times. It
also includes valid English text, which given a knowledge
of the English language can be compressed. Its also include
complex functioning systems because they can be described
by their functionality rather then the system that produces that
functionality. Thus Kolmogorov complexity captures a wide
variety of objects that we deem “special.” Thus we can usefully
apply this metric to a wide variety of objects.

II. A BOUND ON THE PROBABILITY OF ASC

The following theorem quantifies the unlikelihood of ob-
taining a high ASC event.

Theorem 1. The probability of obtaining an object exhibiting
α bits of ASC is less then or equal to 2−α.

Pr[ASC(X,C, P) ≥ α] ≤ 2−α (2)

Proof:
Pr[ASC(X,C, P) ≥ α]

= Pr[− log2 P (X)−K(X|C) ≥ α]

= Pr[P (X) ≤ 2−α−K(X|C)]

Let β be the set of all events in the domain of X such that
P (X) ≤ 2−α−K(X|C).

Pr[ASC(X,C, P) ≥ α] =
∑
x∈β

P (x).

The definition of β is such that we have an upper bound on
P (x). Thus

Pr[ASC(X,C, P) ≥ α] ≤
∑
x∈β 2

−α−K(x|C)

= 2−α
∑
x∈β 2

−K(x|C).

Since Kolmogorov complexity can assume prefix free code
[3], a distribution over all programs is defined by

Pr[X = x] = 2−K(x|C).∑
x∈β 2

−K(x|C) is a summation over this distribution for some
subset of the values, thus it less then or equal to one as dictated
by the Kraft inequality [3].

Pr[ASC(X,C, P) ≥ α] ≤ 2−α (3)

This proves the theorem.
From the main result of Theorem 1 in (2),

− log2 Pr[ASC(X,C, P) ≥ α] ≥ α

It is therefore unlikely to obtain a high value of ASC. Low
probability events commonly occur, but high ASC events do
not.

III. EXAMPLES

The definition of ASC uses both complexity and specifica-
tion. We can look at various cases of these parameters to see
how ASC is affected.

A. Uniform Specification and Complexity

1) Compressible Sequences: Suppose that we have 256
items each with equal probability of occurring and each of
the same compressed length. The only way for 256 items to
all have the same minimum length is to use 8 bit codes for
all of them. For any item in the collection we then have

ASC(X,C, P) = − log2 P (X)−K(X|C)

= − log2
1

256
− 8

= 8− 8

= 0 bits of ASC

And the bound on 0 bits of ASC is

Pr[ASC(X,C, P) > 0] ≤ 2−0 = 1

The probability in this case is clearly 1 because all objects
will have the same ASC.

69

2) A Rare Compressible Sequence: Suppose we have a
single sequence that can be compressed into 2 bits but has
a probability of 2−256. Then we calculate the ASC

ASC(X,C, P) = − log2 P (X)−K(X|C)
= − log2 2

−256 − 2

= 256− 2

= 254 bits of ASC.

The bound on this is

Pr[ASC(X,C, P) > 254] ≤ 2−254

which is 4 times as probable as the actual value because there
can be only up to 4 bit sequences of 2 bits in length.

3) A Common Compressible Sequence: Suppose that we
have a single sequence that can be compressed into 2 bits and
this happens half of the time. We calculate the ASC

ASC(X,C, P) = − log2 P (X)−K(X|C)

= − log2
1

2
− 1

= 1− 2

= −1 bits of ASC.

This gives the bound

Pr[ASC(X,C, P) > −1] ≤ 21 = 2.

While the sequence is highly compressible, the high probabil-
ity prevents it from having a large measure of ASC.

B. Snowflakes

Consider again the case of the snowflakes. There are, by
our assumption, 101000 possible snowflakes. We’ll assume that
we can describe each snowflake using a compact bit pattern
taking log2 10

1000 = 1000 log2 10 ≈ 3322 bits. If we have to
describe two distinct snowflakes, it will take

K(X|C) = 3322 bits + 3322 bits + c (4)
= 6644 bits + c

where c is some constant number of bits. The log-probability
is

− log2 P (X) = − log2 10
−2000 = 2000 log2 10 (5)

= 6644 bits.

So the ASC is

− log2 P (X)−K(X|C) = 6644 bits− 6644 bits− c (6)
= −c.

Using Theorem 1 we obtain a bound of 2c which, since c > 0,
produces a bound above 1 for the probability of obtaining this
pair of snowflakes. There is nothing unusual about an arbitrary
pair of snowflakes.

However, if the two snowflakes are identical, we can de-
scribe them by a shorter program.

K(X|C) = 3322 bits + c.

where c is some constant number of bits. The probability is
the same, so the ASC is

− logP (X)−K(X|C) = 6644 bits− 3322 bits− c
= 3322 bits− c.

Using the theorem, we bound the probability at 2−3322+c.
Assuming that the constant c is sufficiently small, this is
a vanishingly small probability and thus we can conclude
that obtaining two identical snowflakes would be absurdly
improbable. If we did find two identical snowflakes, we
would have to conclude that our original assumed probability
distribution was incorrect.

IV. CONCLUSION

The algorithmic specified complexity is a theoretical quan-
tification measuring how well a probability distribution ex-
plains a given event. By using the bound in Theorem 1, we
can establish the probability of obtaining particular amounts
of ASC. We conclude that an object exhibiting high ASC is
unlikely to arise. Given a high ASC object, we have evidence
that the assumed probability distribution was incorrect.

Additional examples of ASC are available [5]. We are
currently exploring the capabilities and limitations of the ASC
measure.

REFERENCES

[1] Gregory J. Chaitin. On the length of programs for
computing finite binary sequences. Journal of the ACM
(JACM), 13, 1966.

[2] Gregory J. Chaitin. The Unknowable. Springer, New York,
New York, USA, 1999.

[3] Thomas M Cover and Joy A Thomas. Elements Of
Information Theory. Wiley-Interscience, Hoboken, NJ,
second edi edition, 2006.

[4] William A. Dembski. The Design Inference: Eliminating
Chance through Small Probabilities, volume 112. Cam-
bridge University Press, 1998.

[5] Winston Ewert, William A. Dembski, and Robert J. Marks
II. Algorithmic Specified Complexity. In Engineering and
Metaphysics, Tulsa, OK, 2012.

[6] AN Kolmogorov. Logical basis for information theory and
probability theory. Information Theory, IEEE Transactions
on, 14(5):662–664, September 1968.

[7] AN Kolmogorov. Three approaches to the quantitative def-
inition of information. International Journal of Computer
Mathematics, 1968.

[8] RJ Solomonoff. A preliminary report on a general theory
of inductive inference. Technical report, Zator Co. and
Air Force Office of Scientific Research, Cambridge, Mass,
1960.

70

