
584 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 4, APRIL 2015

Algorithmic Specified Complexity
in the Game of Life

Winston Ewert, William Dembski, Senior Member, IEEE, and Robert J. Marks, II, Fellow, IEEE

Abstract—Algorithmic specified complexity (ASC) measures
the degree to which an object is meaningful. Neither fundamen-
tal Shannon nor Kolmogorov information models are equipped
to do so. ASC uses performance context in an information the-
oretic framework to measure the degree of specified complexity
in bits. To illustrate, we apply ASC to Conway’s Game of Life to
differentiate patterns designed by programmers from those origi-
nating by chance. A variety of machines created by Game of Life
hobbyists, as expected, exhibit high ASC thereby corroborating
ASC’s efficacy.

Index Terms—Algorithmic specified complexity, cellular
automata, Conway’s Game of Life, Kolmogorov information,
Kolmogorov-Chaitin-Solomonoff information, Shannon informa-
tion, specified complexity.

I. INTRODUCTION

BOTH Shannon et al. [1], [2] and Kolmogorov–Chaitin–
Solomonoff (KCS)1 [2]–[9] measures of information are

famous for not being able to measure meaning. A DVD con-
taining the movie Braveheart and a DVD full of correlated
random noise can both require the same Shannon information
as measured in bytes. Likewise, a maximally compressed text
file with fixed byte size can either contain a classic European
novel or can correspond to random meaningless alphanumeric
characters. The KCS measure of information is therefore also
not able to, by itself, measure informational meaning.

We propose an information theoretic method to measure
meaning [10], [11]. Fundamentally, we model meaning to be
in the context of the observer. A page filled with Kanji sym-
bols will have little meaning to someone who neither speaks
nor reads Japanese. Likewise, a machine is an arrangement
of parts that exhibit some meaningful function whose appre-
ciation requires context. The distinguishing characteristic of
machines is that the parts themselves are not responsible for
the machine’s functionality, but rather they are only func-
tional due to the particular arrangement of the parts. Almost
any other arrangement of the same parts would not produce
anything interesting. A functioning computational machine is
more meaningful than a large drawer full of computer parts.

Manuscript received September 1, 2013; revised February 6, 2014;
accepted April 21, 2014. Date of publication August 6, 2014; date of cur-
rent version March 13, 2015. This paper was recommended by Associate
Editor A. Bargiela.

W. Ewert is a Software Engineer in Kirkland, WA 98033 USA.
W. Dembski is with the Discovery Institute, Seattle, WA 98104 USA, and

also with the Evolutionary Informatics Laboratory, McGregor, TX, USA.
R. J. Marks II is with the Electrical and Computer Engineering, Baylor

University, Waco, TX 76798-7356, USA (e-mail: robert_marks@baylor.edu).
Digital Object Identifier 10.1109/TSMC.2014.2331917
1Sometimes referred to as only Kolmogorov complexity or Kolmogorov

information.

We appreciate the meaningful functionality of the machine
only because we have the contextual experience to recognize
what the machine can do or is capable of doing.

The arranging of a large collection of parts into a work-
ing machine is highly improbable. However, any arrangement
would be improbable regardless of whether the configura-
tion had any functionality whatsoever. For this reason, neither
Shannon nor KCS information models are capable of directly
measuring meaning. Functional machines are specified—they
follow some independent pattern. When something is both
improbable and specified, we say that it exhibits specified
complexity. An elaborate functional machine exemplifies high
specified complexity. We propose a model, algorithmic speci-
fied complexity (ACS), whereby specified complexity can be
measured in bits.

ASC was introduced by Dembski [12]. The topic has
been developed and illustrated with a number of elementary
examples [10], [11]. Durston et al.’s functional information
model [13] is a special case. The approach differs from
conventional signal and image detection [14]–[19] including
matched filter correlation identification of the index of one
of a number of library images [20]–[22]. Alternately, ACS
uses conditional KCS complexity to measure the minimum
information required to reproduce an image losslessly (i.e.,
exactly - pixel by pixel) in the presence of context. Use of KCS
complexity has been used elsewhere to measure meaning in
other ways. Kolmogorov sufficient statistics [2], [23] can be
used in a two-part procedure. First, the degree to which an
object deviates from random is ascertained. What remains is
algorithmically random. The algorithmically nonrandom por-
tion of the object is then said to capture the meaning of the
object [24]. The term meaning here is solely determined by the
internal structure of the object under consideration and does
not directly consider the context available to the observer as
is done in ASC.

A. Game of Life

To illustrate quantitative measurement of specified complex-
ity, we examine the well-defined universe of Conway’s Game
of Life [25]. In the Game of Life, a 2-D grid of living and
dead cells live and die based on simple rules. At each time
step a cell is determined to be alive or dead depending on the
state of its neighbors in the previous generation.

Within the Game of Life, interesting and elaborate forms
have been discovered and invented. These are particular
arrangements of living and dead cells that when left to oper-
ate by the rules of the game, exhibit meaningful functionality.

2168-2216 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

EWERT et al.: ALGORITHMIC SPECIFIED COMPLEXITY IN THE GAME OF LIFE 585

Some oscillate, some move, some produce other patterns, etc.
Some of these are simple enough that they arise from random
configurations of cell space. Others required careful construc-
tion, such as the very large Gemini [26]. Our goal is to
formulate and apply specified complexity measures to these
patterns. We would like to be able to quantify what separates a
simple glider, readily produced from almost any randomly con-
figured soup, from Gemini—a large, complex design whose
formation by chance is probabilistically minuscule. Likewise,
we would like to be able to differentiate the functionality of
Gemini from a soup of randomly chosen pixels over a similarly
sized field of grid squares.

A highly probable object can be explained by random-
ness, but it will lack complexity and thus not have specified
complexity. Conversely, any sample of random noise will be
improbable, but will lack specification and thus also lack
specified complexity. In order to have specified complexity,
both components must be present. The object must exhibit a
describable functioning pattern while being improbable.

Our paper differs from the study of emergence in cellu-
lar automata first proposed by von Neumann [27], [28] for
investigating self-reproduction. The study of dynamic cellu-
lar automata properties, popularized by Wolfram [29], deals
largely with investigation of the temporal development of
emergent behavior [30]. As an example, the set of all initial-
izations that lead to the same emergent behavior, dubbed the
basin of attraction, has been studied as a model for evolution of
artificial life with application to the modeling of memory and
neural networks [30]–[33]. Akin to biological swarms obey-
ing simple nonlinear rules [34]–[36], emergence is difficult to
predict thereby necessitating largely experimental analysis.

Our paper, in contrast, deals with measuring meaning in
existing objects. In assessing the specified complexity of
Braveheart versus the DVD of noise, we are not interested
in finding the dynamics of where each DVD came from but,
rather, how we assess what has meaning and what does not.
It is in this context that we deal with assessment of specified
complexity of the Game of Life.

II. ALGORITHMIC SPECIFIED COMPLEXITY

How does one measure specification? One possibility is
to use KCS complexity [4], [5], [9]. An introduction to
the topic is in the widely used information theory text by
Cover and Thomas [2]. A more advanced presentation is
given by Li and Vitâanyi [23]. KCS complexity or variations
thereof have been previously proposed as a way to measure
specification [12], [37], [38].

KCS complexity is defined as the length of the shortest com-
puter program, p, in the set of all programs, P, that produces
a specified output X using a universal Turing machine, U

K(X) = min
U(p,)=X|p∈P

|p|.

Such programs are said to be elite [8]. Conditional KCS com-
plexity [3] allows programs to have input, Y , which is not
considered a part of the elite program

K(X|Y) = min
U(p,Y)=X|p∈P

|p|.

For our purposes, Y can be considered as context.
An example is Shakespeare’s Hamlet compressed with two

different resources: 1) Yalpha = the English alphabet, includ-
ing numbers and punctuation and 2) Ycon = an exhaustive
concordance of the words used in all of Shakespeare’s writ-
ings [39]. Both resources can be viewed as a code book in
which the entries are lexicographically listed and numbered.
Hamlet, corresponding to the output X, can then either be
expressed as a sequence of integers each corresponding to
an entry in the alphabet list, or indexed as an entry in the
concordance. Shakespeare used 31 534 different words [40].
Although both the alphabet and concordance characterizations
bound the conditional KCS complexity, we would expect

K (X|Ycon) < K
(
X|Yalpha

)
< K(X).

The more specific the context, the smaller the elite pro-
gram. Either the frequency of occurrence of the words used by
Shakespeare or a concordance of words used only in Hamlet
can be used to reduce the conditional KCS complexity even
further. Small conditional KCS complexity can be caused by
the following.

1) Placing X in the context of Y and/or
2) A small (unconditional) KCS complexity, K(X).

A small value of K(X|Y) can therefore arise from the small
complexity of X and/or from the available context, Y .

A. ASC: Actual and Observed

Algorithmic specified complexity [41] is defined as

ASC(X, C, P) = I(X)− K(X|C) (1)

where
1) X is the object or event under consideration;
2) C is the context (given information) which can be used

to describe the object;
3) K(X|C) is the KCS complexity of object X given context

C;
4) P(X) is the probability of X under the given stochastic

model;
5) I(X) = − log2 (P(X)) is the corresponding self informa-

tion.
The ASC measure bears a resemblance to both
Shannon [1], [2] and KCS [23] mutual information.

ASC is probabilistically rare in the sense that [42]

Pr [ASC(X, C, P) ≥ α] ≤ 2−α. (2)

For example, the chance of observing ten or more bits of
ASC does not exceed 2−10 ≈ one chance in a thousand. ASC
provides evidence that a stochastic outcome modeled by the
distribution, P(X), does not explain a given object. ASC is
incomputable because KCS complexity is incomputable [2].
However, the true KCS complexity is always equal to or less
than any achieved lossless compression. This means that the
true ASC is always equal to or more than an estimate. We
will refer to the known estimate as the observed observed
algorithmic specified complexity (OASC). We know that

ASC(X, C, P) ≥ OASC(X, C, P). (3)

586 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 4, APRIL 2015

The inequality in (2) applies to OASC. From (3), we
conclude there is a k ≥ 0 such that2

OASC = ASC − k.

Thus

Pr [OASC ≥ α] = Pr [ASC − k ≥ α]

= Pr [ASC ≥ α + k]

≤ 2−α−k

≤ 2−α. (4)

OASC therefore obeys the same bound as does ASC in (2).
ASC can be nicely illustrated using various functional pat-

terns in Conway’s Game of Life. The Game of Life and
similar systems allow a variety of fascinating behaviors [29].
In the game, determining the probability of a pattern arising
from a random configuration of cells is difficult. The complex
interactions of patterns arising from such a random configu-
ration makes it difficult to predict what types of patterns will
eventually arise. It would be straightforward to calculate the
probability of a pattern arising directly from some sort of ran-
dom pattern generator. However, once the Game of Life rules
are applied, determining what patterns would arise from the
initial random patterns is nontrivial. In order to approximate
the probabilities, we will assume that the probability of a pat-
tern arising is about the same whether or not the rules of the
Game of Life are applied, i.e., the rules of the Game of Life do
not make interesting patterns much more probable then they
would otherwise be.

Objects with high ASC defy explanation by the stochastic
process model. Thus, we expect objects with large ASC are
designed rather than arising spontaneously. Note, however, we
are only approximating the complexity of patterns and the
result is only probabilistic. We expect that patterns requiring
more design will have higher values of ASC. Smaller designed
patterns exist, but it is not possible to conclude that they were
not produced by random configurations.

Section III documents the methodology of the paper. We
define a mathematical formulation to capture the functionality
of various patterns. This can be encoded as a bitstring and
a program written to generate the original pattern from this
functional description. Section IV uses this methodology to
calculate ASC for a variety of patterns found in the Game of
Life.

III. METHODS

A. Specification

The Game of Life is played on grid of square cells. A cell
is either alive (a one) or dead (a zero). A cell’s status is deter-
mined by the status of other cells around it. Only four rules
are followed.

1) Under-Population: A living cell with fewer than two live
neighbors dies.

2) Family: A living cell with two or three live neighbors
lives on to the next generation.

2The arguments of ASC and OASC are always the same so we will
henceforth drop them from the notation.

Fig. 1. Block, a simple still life.

3) Overcrowding: A living cell with more than three living
neighbors dies.

4) Reproduction: A dead cell with exactly three living
neighbors becomes a living cell.

As witnessed by videos on YouTube, astonishing function-
ality can be achieved with these few simple rules [43]–[45]. If
the reader is unfamiliar with the diversity achievable with these
operations, we encourage them to view these and other short
videos demonstrating the Game of Life. The static pictures
in this paper do not do justice to the remarkable underlying
dynamics. There is also an active users group [46].

The rules for the Game of Life are deterministic.
Performance is therefore dictated only by the initially chosen
pattern. In order to demonstrate the compression of functional
Game of Life patterns, we first devise a contextual mathemat-
ical formulation for describing functionality. A method for
interpreting this formulation is considered to be part of the
context. Let X be some arbitrary pattern corresponding to a
configuration of living and dead pixels. Let X⊕ be the result
of one iteration of the Game of Life applied to X. Suppose
that the following equality holds:

X = X ⊕.

This says that a pattern does not change from one iteration
to the next. This is known as a still-life [25], and an exam-
ple is presented in Fig. 1. A more interesting pattern can be
described as

X = X ⊕⊕
which can be a pattern that returns to its original state after
two iterations. The relationship is also valid for two iterations
of a still-life. In order to differentiate a two-iteration flip-flop
from a still life form, two equations are required

X �= X ⊕
X = X ⊕2 . (5)

We often need to specify that a rule holds only for some
parameter and not for any smaller version of that. We therefore
adopt the notation

X = X⊕i (6)

to mean a pattern that repeats in i iterations, but not in less
than i iterations. An example for i = 2, shown in Fig. 2, is a
period-2 oscillator [46] or a flip-flop [25].

One of the more famous Game of Life patterns is the glider.
This is a pattern which moves as it iterates. A depiction is
shown in Fig. 3. In order to represent movements we introduce
arrows, so X ↑ is the pattern X shifted up one row. Since four

EWERT et al.: ALGORITHMIC SPECIFIED COMPLEXITY IN THE GAME OF LIFE 587

TABLE I
LIBRARY OF AVAILABLE OPERATIONS

Fig. 2. Blinker, a simple period-2 oscillator.

Fig. 3. Glider, a simple spaceship.

iterations regenerate the glider shifted one unit to the right and
one unit down, we can write

X ↓→= X ⊕4 . (7)

This defines the functionality of moving in the direction and
speed of the glider.

We can also simply insert a pattern into the mathematical
formulation. For the simplest case, we can say that the pattern
is equal to a particular pattern. For example

X = .

Note that to the right of the equals sign here is a small picture
of the glider in Fig. 3. We can also combine patterns, for
example taking the union

= ∪
or the intersection

= ∩ .

We can also describe a pattern as the set-difference of two
other patterns. Since A � B denote elements in A not in B, we
have for example

= � . (8)

At times, it may be useful to define variables. For example

Y := X ⊕32 (9)

Y = Y⊕32 (10)

where : = denotes “equal to by definition.” This reduces to

X⊕32 = X ⊕64 .

Table I provides a listing of operations. The selected set of
operation was chosen in attempt to cover all bases which might
be useful, but is still arbitrary. Another set of operations with
more or less power could be chosen. By using a consistent set
of operations between the various examples explored in this
paper, we obtain comparable OASC values.

More that one X will display two step oscillation in accordance
to X = X⊕2. In fact, this and other equations will admit an
infinite set of patterns that satisfy the description. In order to
make an equation description apply to a unique pattern, we can
lexicographically order all patterns obeying a description. This
can be done by defining a box that bounds the initial pattern.
To do so, we will constrain initialization to a finite number of
living cells to avoid an infinite number of living cells.

The full ordering can be defined by the following priority
set of rules with lower-numbered rules listed first.

1) Smaller number of living cells.
2) Smaller bounding box area.
3) Smaller bounding box width.
4) Lexicographically ordering according to the encoding

of cells within a box bounding the living cells. For
example, bounding the living cells in the upper left con-
figuration in Fig. 3 and reading left to right then down
gives 010001111 = (143)10.

The first rule could be removed, leaving a consistent sys-
tem. However, among Game of Life hobbyists, patterns with
fewer living cells are considered smaller and maintain this for

588 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 4, APRIL 2015

TABLE II
BINARY ENCODING

consistency. This does add some complications to the model
which is discussed in the Appendix.

We will append each equation with a number, in the form
#i indicating that we are interested in the ith pattern to fit the
equation. Thus, the glider becomes

X ↓→= X⊕4, #0

as the smallest pattern which fits the description.
In our discussions of ASC, establishing rules for lexicograph-

ical ordering is important whereas assessing the computational
resources needed to explicitly populate the list is not.

B. Binary Representation

In order to use the ASC results, we need to encode the
mathematical representation as a binary sequence. Each symbol
is assigned a 5-bit binary code as specified in Table II. Any valid
formula will be encoded as a binary string using those codes.
All such formulas will be encoded as prefix-free codes.

Firstly, a number of the operations have zero arguments,
known as nullary operators. These are listed first in Table II.
Such operations are simply encoded using their 5-bit sequence.
Since they have no arguments, their sequence is completed
directly after the five bits. As noted, a different set of opera-
tions could be chosen that would require a different number of
bits to specify. Thus, X will be encoded as 00000 and W will

be encoded as 00011. All the nullary operations are trivially
prefix free since all have exactly five bits.

An operation that takes a single argument, known as a unary
operation, can be encoded with its 5-bit code followed by rep-
resentation of the subexpression. Thus, X ↑ can be represented
as 0100100000. Since the subexpression can be represented in
a prefix free code, we can determine the end of it, and adding
five bits to the beginning maintains the prefix-free property.

Operations with two arguments, or binary operations,
are encoded using the 5-bit sequence followed by the
sequence for the two subexpressions. So X = X⊕ can be
recorded as 10101000000100000000. ⊕i can be recorded
as 101110100000100. Note that ⊕ usually takes an argu-
ment, but this is not needed when it is used as the target
of a repeat. As with the unary case, the prefix free nature
of the subexpressions allows the construction of the large
formula.

The literals in Table II are denoted by the 5-bit code along
with an encoding of the integer or pattern. Any positive integer
n can be encoded using �log2(n+1)+log2 n�+1 bits, hereafter
l(n) bits in a prefix free code using the Levenstein code [47].
See Section III-C for a discussion of binary encodings for
arbitrary patterns.

To declare there are no more operations to be had, we will
use the five bit sequence, 11111. Simply concatenating all the
equations would not be a prefix-free code since the binary
encoding would be a valid prefix to other codes. After the
last equation, 11111 is appended as a suffix preventing any
longer codes from being valid and making the system prefix
free.

To calculate the length of the encoding we add up the
following.

1) Five bits for every symbol.
2) l(n) bits for each number n in the equation.
3) The length of the bit encoding of any pattern literals.
4) Five bits for the stop symbol.
5) l(n) bits for the parameters and sequence numbers.

C. Binary Encoding for Patterns

In order to use OASC we need to define the complexity or
probability of the patterns. We would like to define the prob-
ability based on the actual probability of the pattern arising
from a random configuration. We will model the patterns as
being generated by a random sequence of bits.

In order to use a random encoding of bits, we need to define
the bit encoding for a Game of Life pattern. Section III-B
contains a definition of an encoding, but it is based on func-
tionality. The probability of a pattern arising is clearly not
related to its functionality, and thus this measure is not a useful
encoding for this purpose.

There are different ways to define this encoding. We can
encode the width and height of the encoding using Levenstein
encoding and each cell encoded as a single bit indicating
whether it is living or not. This gives a total length of

α(p) = l(pw)+ l(ph)+ pwph

where pw is the width of the pattern p and ph is the height of
the pattern. We will call this the standard encoding.

EWERT et al.: ALGORITHMIC SPECIFIED COMPLEXITY IN THE GAME OF LIFE 589

Fig. 4. Gosper gliding gun.

However, in many cases patterns consist of mostly dead
cells. A lot of bits are spent indicating that a cell is empty.
We can improve this situation by recording the number of live
bits and then we can encode the actual pattern using less bits

β(p) = l(pw)+ l(ph)+ l(pa)+
⌈

log2

(
pwph

pa

)⌉

where pa is the number of alive cells. We will call this
compressed encoding.

To demonstrate these methods, consider the Gosper gliding
gun in Fig. 4. Using the standard encoding this requires

α(p) = l(pw)+ l(ph)+ pwph

= l(36)+ l(9)+ 36× 9

= 12+ 8+ 324

= 344 bits.

Using the compressed encoding requires

β(p) = l(pw)+ l(ph)+ l(pa)+
⌈

log2

(
pwph

pa

)⌉

= l(36)+ l(9)+ l(36)+
⌈

log2

(
324

36

)⌉

= 12+ 8+ 12+ 160 = 192 bits.

The compressed method will not always produce smaller
descriptions as it does here. However, we can use both meth-
ods, and simply add an initial bit to specify which method was
being used. Thus, the length of the encoding for a pattern, p is
then

P(p) = 1+min(α(p), β(p)) (11)

where the 1 is to account for the extra bit used to determine
which of the two methods was used for encoding.

However, we need to determine the Shannon information
for a pattern, p. There are two ways to encode each pattern
and both need to be considered

Pr [X = p] = Pr [X = p|C] Pr [C]+ Pr [X = p|C] Pr [C]

where X is the random variable of the chosen pattern, and C is
the random event which is true when the compressed encoding
is used. Since either method is chosen with 50% probability

Pr [X = p] = 2−α(p)

2
+ 2−β(p)

2

= 2−α(p) + 2−β(p)

2
.

Our primary purpose in this paper is to demonstrate OASC
for functional machines in the Game of Life. However, the

process also serves as a test of the hypothesis that the approx-
imation to the probability of a pattern and its corresponding
information in (11) arising is reasonably close. Are there fea-
tures of random Game of Life patterns that tend to produce
additional functionality? If so, we expect that we will obtain
larger than expected values of ASC.

D. Computability

The contextual mathematical formulation thus far developed
here for the Game of Life is less powerful than a Turing com-
plete language. For example, there is no conditional looping
mechanism. The Game of Life itself is Turing complete [48];
however, our equations using the components in Table II
describing the Game of Life are not. There are concepts that
cannot be described using the operations we have defined. A
large array of a billion closely spaced albeit noninteracting
blinkers has low KCS complexity akin to the celebrated low
KCS complexity of a repetitive crystalline structure. A loop-
ing or a REPEAT command is required to capture low KCS
complexity bound in such cases. The list in Table II of course,
can be expanded to include these and other cases. However,
the proof on the bound of ASC only requires that the lan-
guage used to describe the pattern is prefix-free. Thus, the
ASC bounds using the context in Table II still apply to the
language defined here.

In order to use ASC, we must algorithmically derive the
machine from the equations describing it. A program would
systematically test all pattern in order of increasing size while
checking whether they pass the test. We term this program
the interpreter. Since the pattern specified whether it is the
first, second, third, etc., pattern to pass the test, the process
can stop and output the pattern once it is reached. Thus, a
constant length interpreter program can derive the pattern from
the equations, and ASC using a standard Turing machine is a
constant longer than the OASC results presented here. If an
alternate formulation is used to describe the pattern, then a
different constant would apply as a different interpreter would
be required.

The language used here is motivated in part for simplicity
in understanding. It allows the comparison of the complexity
of various specifications without constants which is difficult
in standard KCS complexity.

Essentially, we have included the interpreter for our formu-
lation as part of the context. The interpreter has details on
the Game of Life, but not on the nature of patterns in it. This
allows the description of the pattern in the Game of Life with-
out any undue bias toward the patterns found in the Game of
Life.

IV. RESULTS

A. Oscillators

The simplest oscillator is one which does not actually
change, i.e., a still life. An example is depicted in Fig. 1.
This object can be described as

X = X⊕, #0 (12)

590 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 4, APRIL 2015

TABLE III
ASC FOR THE SMALLEST KNOWN OSCILLATORS IN EACH CATEGORY

Fig. 5. Smallest known oscillators for each category. (a) Block. (b) Blinker.
(c) Caterer. (d) Mazing. (e) Pseudo-barberpole. (f) Unix. (g) Burloaferimeter.
(h) Figure eight. (i) 29p9.

as this is the smallest pattern that can fit the test. There are four
symbols taking 20 bits to describe. There are five bits for the
stop symbol and one bit to describe the sequence number. This
gives a total of 26 bits to describe this pattern. Using standard
encoding will require l(2)+ l(2)+2×2+1 = 4+4+4 = 13.
Thus, the ASC is at least 13− 26 = −14 bits of ASC. Since
ASC is negative, the pattern is well explained by the stochastic
process.

A flip-flop or period two oscillator as depicted in Fig. 2 can
be described as

X = X⊕i, i = 2, #0. (13)

This takes six symbols (the repeat counts as a symbol) plus
the stop symbol the parameter and the sequence number. That
is a total of 35+l(2)+l(0) = 35+4+1 = 40 bits. The blinker
encoded using standard encoding will take l(1)+l(3)+3+1 =
2+5+3+1 = 11 bits. The OASC is then 11−40 = −29 bits.
Again, this pattern fits the modeled stochastic process well.

However, the same pattern could be described as

X = , #0 (14)

which has three symbols, and will require 11 bits for the
pattern. The #0 is required, despite there being only one
pattern which fits the equation, for consistency with the
search process described in Section III-D. Thus, the length
is 3 × 5 + 5 + l(0) + 11 = 20 + 1 + 11 = 32 giving at least
11−32 = −21 bits of ASC. In fact any pattern can be said to
have at least −21 bits of ASC, because that is the overhead
required to simply embed the pattern in its own description.

Simply by changing the value of i this same construct can
describe an oscillator of any period. It will describe the smallest

known oscillator of that period. Fig. 53 shows the smallest
known oscillators for periods up to nine. Smaller oscillators
than these may exist, but for now we believe these to be the ones
described by the formulation. Table III shows the calculated
values of OASC for the various oscillators. The Pr [X] column
derives from experiments on random soups [50]. The missing
entries do not appear to have been observed in random trials.

The K(X|C) for the smallest known oscillator increases
slowly as the period increases. The complexity generally
increases, but not always. Caterer is the first oscillator with
a positive amount of ASC. It does appear out of random con-
figurations but at a rate much lower than the ASC bound. The
ASC bound is violated in only one case, that of the unix oscil-
lator. This oscillator shows up more often than our assumption
regarding the probabilities would suggest. The pattern has a
certain simplicity to it which is not captured by our metric.

Any pattern in the Game of Life can be constructed by
colliding gliders [46]. The unix pattern can be constructed
by the collision of six gliders. The psuedo-barberpole, the
smallest known period five oscillator, requires 28 gliders. The
burloaferimeter, the smallest known period seven oscillator,
requires 27 gliders. The unix pattern requires fewer gliders to
construct than either of the two most similar oscillators con-
sidered here. For its size, the unix pattern is easier to construct
than might be expected.

B. Spaceships

A spaceship is a pattern in life which travels across the
grid. It continually returns back to its original state but in a
different position. The first discovered spaceship was the glider
depicted in Fig. 3. We previously showed in (7) that it could
be described as

X ↓→= X⊕4, #0.

This has eight symbols so the length will be 5 × 8 + 5 +
l(4)+ l(0) = 45+ 6+ 1 = 52. The complexity is 20 and the
ASC is at least 20− 52 = −32 bits. As previously noted, any
pattern can be described such that it has at least −21. This
matches the observation that glider often arise from random
configurations.

As with oscillators we can readily describe the smallest ver-
sion of a spaceship. In addition to varying with respect to the

3David Buckingham found the strangely named burloaferimeter in
1972 [49].

EWERT et al.: ALGORITHMIC SPECIFIED COMPLEXITY IN THE GAME OF LIFE 591

Fig. 6. Smallest known spaceships for each speed moving diagonally.
(a) Glider. (b) 58P5H1V1. (c) 77P6H1V1. (d) 83P7H1V1. (e) Four engine
cordership.

period, spaceships vary with respect to the speed and direc-
tion. Speeds are rendered as fractions of c, where c is one
cell per iteration. First we will consider spaceships that travel
diagonally like the glider. In general to travel with a speed of
c/s with period p can be described as

X ↓ p
s→ p

s= X⊕p, #0. (15)

This describes a spaceship moving down and the right. Due
to the symmetry of the rules of the Game of Life, the
same spaceships could all be reoriented to point in differ-
ent directions. That would change the direction of the arrows,
but not the length of the description. The length of this is
5× 12+ 5+ l(p

s)+ l(p)+ l(0) = 66+ l(p
s)+ l(p).

Fig. 6 shows the smallest known diagonally moving space-
ships for different speeds. If we assume that these are the
smallest spaceships for these speeds, then (15) describes them.

TABLE IV
ASC FOR THE SMALLEST KNOWN DIAGONAL

SPACESHIPS FOR EACH SPEED

Fig. 7. Smallest known spaceships for each speed moving orthog-
onally. (a) Light weight space-ship. (b) 25P3HV1V0.2. (c) 37P4H1V0.
(d) 30P5H2V0. (e) Spider. (f) 56P6H1V0. (g) Weekender.

TABLE V
ASC FOR THE SMALLEST KNOWN ORTHOGONAL

SPACESHIPS FOR EACH SPEED

Table IV shows the ASC for these various spaceships. The
glider has negative ASC, it is simple enough to be readily
explained by a random configuration. The remaining diagonal
spaceships exhibit a large amount of ASC, fitting the fact that
they are all complex designs. This is expected from look at
Fig. 6 where the remaining patterns are much larger than the
glider.

In addition to the diagonally moving spaceships we can also
consider orthogonally moving spaceships. These move in only
one direction, and so can be described as

X ↑ p
s= X⊕p, #0. (16)

The length of this is 5 × 9 + 5 + l(p
s) + l(p) + l(0) =

51 + l(p
s) + l(p) + l(0). As with the diagonal spaceships, the

same designs can be reoriented to move in any direction. The
equation can be updated by simply changing the arrow. Fig. 7
shows the smallest known spaceship for a number of different
speeds. Table V shows the ASC for the various spaceships.
The simplest orthogonal spaceship, the lightweight spaceship,
has negative bits of ASC. This matches the observation that
these spaceships do arise out of random configurations [51].
The remaining spaceships exhibit significant amounts of ASC,
although not as much as the diagonal spaceships, and are not
reported to have been observed arising at random.

592 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 4, APRIL 2015

Fig. 8. Thirty-one iterations of the Gosper gun.

C. Guns

Fig. 8 shows the Gosper gun running through 31 iterations.
The 30th iteration is the same as the original configuration
except that it also includes a glider. The glider will escape
and the gun will continue to produce gliders indefinitely. This

Fig. 9. Glider being eaten by the eater.

is known as a gun. We can describe this gun as

X⊕30 = X ∪ →24↓10, #0. (17)

That is, the configuration after 30 iterations is equal to the
original configuration with a glider added at a particular posi-
tion. There are 60 bits for the symbols and it will require
20 bits to describe the glider, so 60 + 20 + l(30) + l(24)+
l(10) + l(0) which is 60 + 20 + 11+ 11 + 8 + 1 = 111 bits.
The complexity is 196 bits. This gives us 196−111 = 85 bits
of OASC. At a probability of 2−85, we conclude the Gosper
gun is unlikely to be produced by a random configuration.

D. Eaters

Most of time when a glider hits a still life, the still life
will react with the glider and end up being changed into some
other pattern. However, with patterns known as eaters, such
as that displayed in Fig. 9, the pattern “eats” the incoming
glider resulting it returning to its original state. There are two
aspects that make it an eater. Firstly, it must be a still life

X = X ⊕. (18)

Secondly, it must recover from eating the glider
(

X ∪ ↑3←4
)
⊕4 = X. (19)

The two equation have a total of 18 symbols, and the glider
will require 20 bits to encode. Thus, the total length will be
5 × 18 + 5 + 20 + l(3) + l(4) + l(4) + l(0) = 5 × 18 + 5 +
20+ 4+ 7+ 7+ 1 = 134 bits. The complexity of the eater is
29 bits. The OASC is thus 29−134 = −105 bits. The eater is
thus simple enough to be explain by a random configuration.

E. Ash Objects

Within the Game of Life, it is possible to create a random
soup of cells and observe what types of objects arise from the
soup. The resulting stable objects, still-lifes and oscillators,
are known as ash [46]. Experiments have been performed to
measure the frequencies of various objects arising from this
soup [50]. Fig. 10 shows the ten most common ash objects,
together comprising 99.6% of all ash objects. We observe that
these objects are fairly small, and thus will not exhibit much
complexity. The largest bounding box is 4 × 4 which will
require at most 1 + l(4) + l(4) + 16 = 1 + 7 + 7 + 16 = 31

EWERT et al.: ALGORITHMIC SPECIFIED COMPLEXITY IN THE GAME OF LIFE 593

Fig. 10. Ten most common Game of Life ash objects. (a) Blinker. (b) Block.
(c) Bee-hive. (d) Loaf. (e) Boat. (f) Tub. (g) Pond. (h) Ship. (i) Long-boat.
(j) Toad.

bits. Describing the simplest still life required 26 bits, leaving
at most 4 bits of ASC. Consequently, none of these exhibit a
large amount of ASC.

V. CONCLUSION

We have demonstrated the ability to describe functional
Game of Life pattern using a mathematical formulation. This
allows us in principle to compress Game of Life patterns
which exhibit some functionality. Thus, ASC has the ability
to measure meaningful functionality.

We made a simplified assumption about the probabilities of
various pattern arising. We have merely calculated the proba-
bility of generating the pattern through some simply random
process not through the actual Game of Life process. We
hypothesized that it was close enough to differentiate ran-
domly achievable patterns from one that were deliberately
created. This appears to work, with the exception of the unix
pattern. However, even that pattern was less than an order of
magnitude more probable than the bound suggested. This sug-
gests the approximation was reasonable, but there is room for
improvement.

We conclude that many of the machines built in the Game
of Life do exhibit significant ASC. ASC was able to largely
distinguish constructed patterns from those which were pro-
duced by random configurations. They do not appear to have
been generated by a stochastic process approximated by the
probability model we presented.

There are many more patterns in the Game of Life which
have been invented or discovered. We have only investigated
a sampling of the most basic patterns. Further investigation
of specification in Game of Life pattern is certainly possible.
Our work here demonstrates the applicability of ASC to the
measure of functional meaning.

APPENDIX

LIMITING THE NUMBER OF PATTERNS FOR

A GIVEN NUMBER OF LIVE CELLS

There are an infinite number of patterns for any given num-
ber of living cells. For example, two living cells could be
separated by any amount of space. A systematic process work-
ing through all patterns would never get beyond two living
cells because of the infinite number of such patterns. However,
because a cell is only affected by its immediate neighbors, cells
cannot affect the state of other cells which are sufficiently far
away. We can thus ignore any pattern containing cells too far
away to interact with one another. How far away is sufficient?
We can inspect the equations we are testing against to see the
number of ⊕ operations, after taking repetition into account.
This gives us the number of iterations that could be checked,

and thus the size of the observable universe for any given cell.
We are not interested in any pattern where there is a gap larger
than the size of the observable universe. Let U = L + T + 1
where L is the number of living cells in a pattern, and T
is the number of ⊕ operations. Given a bounding-box larger
than U×U, there must exist a gap larger than the size of the
observable universe. Consequently there is a finite number of
interesting patterns for a given number of living cells, and we
can number them.

ACKNOWLEDGMENT

The authors would like to thank the reviewers’ suggestion
of contrasting our paper with the study of temporal emergence
properties of cellular automata.

REFERENCES

[1] C. E. Shannon, W. Weaver, and N. Wiener, “The mathematical theory
of communication,” Phys. Today, vol. 3, no. 9, p. 31, 1950.

[2] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Hoboken, NJ, USA: Wiley-Interscience, 2006.

[3] A. N. Kolmogorov, “Logical basis for information theory and probability
theory,” IEEE Trans. Inf. Theory, vol. 14, no. 5, pp. 662–664, Sep. 1968.

[4] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” Int. J. Comput. Math., vol. 2, nos. 1–4, pp. 157–168, 1968.

[5] G. J. Chaitin, “On the length of programs for computing finite binary
sequences,” J. ACM, vol. 13, no. 4, pp. 547–569, 1966.

[6] G. J. Chaitin, “A theory of program size formally identical to informa-
tion theory,” J. ACM, vol. 22, no. 3, pp. 329–340, Jul. 1975.

[7] G. J. Chaitin, The Unknowable. New York, NY, USA: Springer, 1999.
[8] G. J. Chaitin, Meta Math!: The Quest for Omega. New York, NY, USA:

Vintage, 2006.
[9] R. J. Solomonoff, “A preliminary report on a general theory of inductive

inference,” Zator Co. and Air Force Office Sci. Res., Cambridge, MA,
USA, Tech. Rep. V-131, 1960.

[10] W. Ewert, W. A. Dembski, and R. J. Marks, II, “On the improbability
of algorithmic specified complexity,” in Proc. IEEE 45th Southeastern
Symp. Syst. Theory (SSST), Waco, TX, USA, Mar. 2013, pp. 68–70.

[11] W. Ewert, W. A. Dembski, and R. J. Marks, II, “Algorithmic speci-
fied complexity,” in Engineering and the Ultimate: An Interdisciplinary
Investigation of Order and Design in Nature and Craft, J. Bartlett,
D. Halsmer, and M. Hall, Eds. Tulsa, OK, USA: Blyth Institute Press,
2014, pp. 131–149.

[12] W. A. Dembski, The Design Inference: Eliminating Chance Through
Small Probabilities (Cambridge Studies in Probability, Induction, and
Decision Theory). New York, NY, USA: Cambridge Univ. Press, 1998.

[13] K. K. Durston, D. K. Y. Chiu, D. L. Abel, and J. T. Trevors, “Measuring
the functional sequence complexity of proteins,” Theor. Biol. Med.
Model., vol. 4, p. 47, Jan. 2007.

[14] B. Cyganek, Object Detection and Recognition in Digital Images:
Theory and Practice. Hoboken, NJ, USA: Wiley, 2013.

[15] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
New York, NY, USA: Springer, 1994.

[16] J. Thomas, An Introduction to Statistical Communication Theory.
Hoboken, NJ, USA: Wiley, 1969.

[17] J. Miller and J. Thomas,“Detectors for discrete-time signals in non-
Gaussian noise,” IEEE Trans. Inf. Theory, vol. 18, no. 2, pp. 241–250,
Mar. 1972.

[18] R. J. Marks, II, G. Wise, D. Haldeman, and J. Whited, “Detection in
Laplace noise,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-14, no. 6,
pp. 866–872, Nov. 1978.

[19] M. Dadi and R. J. Marks, II, “Detector relative efficiencies in the
presence of Laplace noise,” IEEE Trans. Aerosp. Electron. Syst.,
vol. AES-23, no. 4, pp. 568–582, Jul. 1987.

[20] K. Cheung, L. Atlas, J. Ritcey, C. Green, and R. J. Marks, II,
“Conventional and composite matched filters with error correction:
A comparison,” Appl. Opt., vol. 26, no. 19, pp. 4235–4239, 1987.

[21] R. J. Marks, II and L. Atlas, “Composite matched filtering with error
correction,” Opt. Lett., vol. 12, no. 2, pp. 135–137, 1987.

[22] R. J. Marks, II, J. Ritcey, L. Atlas, and K. Cheung, “Composite matched
filter output partitioning,” Appl. Opt., vol. 26, no. 11, pp. 2274–2278,
1987.

594 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 45, NO. 4, APRIL 2015

[23] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and
its Applications. New York, NY, USA: Springer, 2008.

[24] P. M. Vitányi, “Meaningful information,” IEEE Trans. Inf. Theory,
vol. 52, no. 10, pp. 4617–4626, Oct. 2006.

[25] M. Gardner, “Mathematical Games: The fantastic combinations of
John Conway’s new solitaire game life,” Sci. Amer., vol. 223, no. 4,
pp. 120–123, 1970.

[26] A. P. Goucher. (2014, Jul. 10). “Oblique Life spaceship created,”
Game of Life News [Online]. Available: http://pentadecathlon.com/
lifenews/2010/05/oblique_life_spaceship_created.html

[27] J. von Neumann, Theory of Self Reproducing Automata, A. W. Burks,
Ed. Champaign, IL, USA: Univ. Illinois Press, 1966.

[28] J. von Neumann, “The general and logical theory of automata,” in
Cerebral Mechanisms in Behavior the Hixon Symposium, L. Jeffress,
Ed. New York, NY, USA: Wiley, 1966.

[29] S. Wolfram, A New Kind of Science. Champaign, IL, USA: Wolfram
Media, 2002.

[30] S. A. Kauffman, “Antichaos and adaptation,” Sci. Amer., vol. 265, no. 2,
pp. 78–84, Sep. 1991.

[31] A. Wuensche and M. Lesser, The Global Dynamics of Cellular
Automata: An Atlas of Basin of Attraction Fields of One-Dimensional
Cellular Automata. Reading, MA, USA: Wokingham, 1992.

[32] A. Wuensche, “The emergence of memory: Categorisation far from
equilibrium,” in Towards a Science of Consciousness: The First Tucson
Discussions and Debates, S. Hameroff, A. Kaszniak, and A. Scott, Eds.
Cambridge, MA, USA: MIT Press, 1996, pp. 383–392.

[33] A. Wuensche, “Complex and chaotic dynamics, basins of attraction,
and memory in discrete networks,” Acta Phys. Pol., vol. 3, no. 2,
pp. 463–478, 2010.

[34] E. Bonabeau and C. Meyer, “Swarm intelligence, a whole new way to
think about business,” Harvard Bus. Rev., vol. 79, no. 5, pp. 106–114,
May 2001.

[35] W. Ewert, R. J. Marks, B. B. Thompson, and A. Yu, “Evolutionary inver-
sion of swarm emergence using disjunctive combs control,” IEEE Trans.
Syst., Man, Cybern. Syst., vol. 43, no. 5, pp. 1063–1076, Sep. 2013.

[36] J. Roach, W. Ewert, R. J. Marks, and B. B. Thompson, “Unexpected
emergent behaviors from elementary swarms,” in Proc. IEEE 45th
Southeastern Symp. Syst. Theory (SSST), Waco, TX, USA, Mar. 2013.
pp. 41–50.

[37] W. A. Dembski, No Free Lunch: Why Specified Complexity Cannot
be Purchased Without Intelligence. Lanham, MD, USA: Rowman &
Littlefield, 2002.

[38] W. A. Dembski, “Specification: The pattern that signifies intelligence,”
Philos. Christi, vol. 7, no. 2, pp. 299–343, 2005.

[39] Open Source Shakespeare. (2014, Jul. 10). Concordance
of Shakespeare’s Complete Works [Online]. Available:
www.opensourceshakespeare.org

[40] J. Bennett, W. Briggs, and M. Triola, Statistical Reasoning for Everyday
Life, 2nd ed. Addison-Wesley, 2003.

[41] W. Ewert et al., “Algorithmic specified complexity,” in Engineering and
Metaphysics. Tulsa, OK, USA: Blythe Inst. Press, 2012.

[42] (2014, Jul. 10). Amazing Game of Life Demo [Online]. Available:
http://youtu.be/ XcuBvj0pw-E

[43] (2014, Jul. 10). Epic Conway’s Game of Life [Online]. Available:
http://youtu.be/ C2vgICfQawE

[44] (2014, Jul. 10). Life In Life [Online]. Available: http://youtu.be/
xP5-iIeKXE8

[45] (2014, Jul. 10). LifeWiki [Online]. Available: http://
www.conwaylife.com/wiki/Main_Page

[46] D. Salomon, Variable-Length Codes for Data Compression. London,
U.K.: Springer, 2007.

[47] A. Adamatzky, Ed., Collision Based Computing. London, U.K.: Springer
Verlag, 2002.

[48] (2014, Jul. 10). Burloaferimeter. [Online]. Available: http://
www.conwaylife.com/wiki/Burloaferimeter

[49] A. Flammenkamp. (2004). Top 100 of Game-of-Life Ash Objects
[Online]. Available: http://wwwhomes.uni-bielefeld.de/achim/
freq_top_life.html

[50] (2014, Jul. 10). A. Flammenkamp. (1995). Spontaneous appeared
Spaceships out of Random Dust [Online]. Available: http://
www.homes.uni-bielefeld.de/achim/moving.html

Winston Ewert received the Ph.D. degree from
Baylor University, Waco, TX, USA.

He has written a number of papers relating to
search, information, and complexity. He was a
Research Assistant at the Evolutionary Informatics
Laboratory. He is currently a Software Engineer in
Kirkland, WA, USA.

William Dembski (M’07–SM’07) received the
Ph.D. degrees in mathematics with the University
of Chicago, Chicago, IL, USA, in 1988, and in phi-
losophy with the University of Illinois at Chicago,
Chicago, IL, in 1996.

He is a mathematician and a philosopher. He has
authored over 20 books, and is a Senior Fellow
with Discovery Institute, Seattle, WA, USA, and
a Senior Research Scientist with the Evolutionary
Informatics Laboratory. His current research inter-
ests include information-theoretic underpinnings of

the natural sciences. His newest book is Being as Communion: A Metaphysics
of Information (Ashgate Pub. Co., August, 2014).

Robert J. Marks, II (S’71–M’72–SM’83–F’94) is
a Distinguished Professor of electrical and computer
engineering at Baylor University, Waco, TX, USA.

His most recent books are Handbook of Fourier
Analysis and Its Applications (Oxford University
Press, 2009), and Biological Information—New
Perspectives (Singapore: World Scientific, 2013), co-
edited by M. J. Behe, W. A. Dembski, B. L. Gordon,
and J. C. Sanford. He has an Erdős-Bacon number
of five.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

