
Research Article

Conservation of Information in Coevolutionary
Searches
Winston Ewert,1*Robert J. Marks II2

1Biologic Institute, Redmond, WA, USA
2Electrical and Computer Engineering Deparment, Baylor University, Waco, TX, USA

Abstract

A number of papers show that the No Free Lunch theorem does not apply to coevolutionary search. This has been interpreted
as meaning that, unlike classical full query searches, coevolutionary searches do not require extensive a priori knowledge
about the domain. Alternately, coevolutionary searches can be viewed as providing incomplete information about fitness and
differ from standard evolutionary searches where queries provide full fitness information. Knowing the full value of a fitness is
better than knowing partial subjacent fitness information. Consequently, coevolution can be viewed as a degradation of search
performance in this sense. We demonstrate this in a number of examples drawn from free lunch proofs in the literature. This
observation does not diminish the power or utility of the coevolutionary search. Coevolutionary subjacent queries are often
required due to the unavailability or expense of a full query. Nevertheless, coevolution does not allow an escape from the
necessity of exploiting prior information in search processes and remains bounded by conservation of information in general
and the No Free Lunch theorem in particular.

Cite As: Ewert W, Marks II RJ (2017) Conservation of Information in Coevolutionary Searches. Bio-Complexity 2017 (1):1-15.
doi:10.5048/BIO-C.2017.1.

Editor: Douglas D. Axe

Received: November 3, 2016; Accepted: Februrary 27, 2017; Published: August 8, 2017

Copyright: © 2017 Ewert, Marks. This open-access article is published under the terms of the Creative Commons Attribution License, which permits
free distribution and reuse in derivative works provided the original author(s) and source are credited.

Notes: A Critique of this paper, when available, will be assigned doi:10.5048/BIO-C.2017.1.c.

*Email: evoinfo@winstonewert.com

INTRODUCTION

Coevolutionary searches are searches where the fitness
of a particular solution depends not only on that solu-
tion, but also other factors. Such searches have been
used in a wide variety of situations. Examples include
sorting networks [1], the morphology and performance of
competing agents [2], backgammon [3], checkers [4] and
chess [5]. While traditional searches require the expertise
of penalty function artists to craft a fitness function that
guides the algorithm, coevolution is viewed as not requir-
ing this prior expertise. Wolpert and Macready’s seminal
No Free Lunch (NFL) theorem [6,7] was followed by their
paper Coevolutionary Free Lunches [8] where coevolution
was found in certain cases to provide a free lunch. A
free lunch is a case where one search algorithm performs
better on average than another search algorithm over all
possible search problems. The ability of coevolution to
violate the NFL theorems have been subsequently echoed.
Examples include:

� “coevolutionary algorithms require little a priori
knowledge about the domain.” [9]

� “...recent work ...[shows] that free lunches do exist
for certain solution concepts.” [10]. ”

� “[For coevolution], a free lunch does exist.” [11]

We show that the NFL theorem does apply to coevolu-
tion when illuminated from the viewpoint of subjacent
versus full queries. By subjacent query, we mean a query
which provides only part of the information provided by
a traditional query. This conclusion does not invalidate
or diminish the importance or utility of coevolutionary
search nor, in the absence of problem-specific informa-
tion, the demonstrated superiority of one subjacent query
choice over another. While coevolutionary searches are
useful, full queries are often not directly available or are
prohibitively expensive. What we show is that coevolu-
tionary search, appropriately posited, is still constrained
by the NFL theorem.

Volume 2017 | Issue 1 | Page 1

http://dx.doi.org/10.5048/BIO-C.2017.1
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5048/BIO-C.2017.1.c

Conservation of Information in Coevolutionary Searches

Conventional search algorithms, including evolution-
ary search, require prior knowledge because of the con-
servation of information (COI) principles pioneered by
Mitchell’s analysis of unbiased generalization (1980) [12],
Schaffer’s Law of Conservation of Generalization Perfor-
mance (1994) [13], and Wolpert & Macready’s No Free
Lunch theorems (1995) [6,7]. Without problem-specific
information, no specified algorithm will succeed better
on average than any other [14–16]. An algorithm must
“pay” for success on one problem with poor performance
on another problem.

Mathematical justification for the success of coevolu-
tionary algorithms has been offered in the form of free
lunches [8,17–19]. The NFL theorem is said not to apply
to the case of coevolutionary algorithms. A free lunch,
though, refers to a pair of algorithms which have differ-
ing performance even when averaged across all possible
search problems. In this sense some coevolutionary algo-
rithms appear to obtain free lunches and are better than
other algorithms even when problem-specific information
is not exploited. Coevolution thus appears to escape the
“curse” of COI and does not require the use of a priori
knowledge to solve search problems.

However, for COI results to apply in the case of con-
ventional search but not in the case of coevolution is odd.
Coevolution would appear to be at odds with COI results.
What is different about these coevolutionary searches
that allows them to not require prior information? The
answer is that coevolution queries inferior or subjacent
fitnesses that are combined into estimates of full fitness
queries. The analysis of coevolution by others demon-
strates there is the appearance of a free lunch when the
space of subjacent fitness values is analyzed in the same
way conventional NFL theorems are derived. This subja-
cent space, however, contains inferior information with
respect to full fitness values. From the viewpoint of the
space of full queries in coevolutionary searches, COI the-
orems still apply. In this sense, the NFL is applicable to
coevolution. Nevertheless, coevolution has been shown
to be effective in numerous cases and our results should
no way be construed to discredit coevolution as a viable
and useful approach to optimization. Multiple subjacent
queries, for example, can come at a cheaper cost when
compared to full queries. Full queries can be available
only through repeated subjacent queries.

1. PRIOR WORK
A number of purported free lunch results have been
presented. Many introduce some sort of assumption,
restricting the set of possible search problems. Exam-
ples include low complexity [20,21] and fitness function
smoothness [16,22]. Although authors often describe
these results as “free lunches,” lunch is in truth paid
for by the introduction of an assumption or restriction
of the set of possible functions. Furthermore, some re-

sults suggest limitations on the usefulness of such as-
sumptions [23]. Other free lunches make use of relative
performance metrics [7,24]. Yet others demonstrate free
lunches by considering algorithms which select a non-
optimal solution found despite having gathered enough
information to select the optimal solution. For exam-
ple in multiobjective optimization, memory constraints
may prevent storing enough information to choose the
best result [19]. But such constraints only decrease the
performance of the algorithm. Any of these free lunches
may be worthy of future study, but are not our concern
here.

Search on non-trivially sized problems has been shown
to be hopeless without exploiting problem-specific infor-
mation. Because a coevolutionary search is necessarily
less effective per query than a full query search, coevolu-
tionary search suffers from the same restrictions.

The existence of free lunches is independent of the
monotonicity of the solution concept [25]. A search
has a monotonic solution concept if it is well behaved:
performance does not degrade with additional queries.
However, since this is independent of the existence of
a free lunch, it suggests that free lunches do not derive
from ill-behaved solution concepts.

The terminating free lunch theorem [26] considers
a special case of coevolutionary algorithms where it is
possible to prove that a candidate solution is invalid
before having finished evaluating all the queries about
that solution. When all algorithms make use of the
same criterion for terminating, they will all have the
same performance. In effect, all strategies for deciding
which candidate solutions to investigate have the same
performance. Any difference in performance results from
differing strategies in selecting the queries related to
those candidate solutions.

2. BACKGROUND
The full query NFL framework models the search process
as one which makes a series of full queries to determine
the values of a fitness function at various candidate
solutions. Each query is a test which determines the
exact fitness or cost of a particular candidate solution.
After performing the test, all relevant details about the
search algorithm are known. In the case of coevolution,
rather than having a query provide the exact full fitness,
each query only obtains partial information about the
fitness of a candidate solution. While the full query NFL
assumes that queries are “clear,” under coevolution the
queries are “muddy.” We call the clear queries full and
the muddy ones subjacent. A subjacent query contains
less information than a full query.

A generalization of the coevolutionary search is shown
in Figure 1. There are a number of candidate solutions
each of which is represented by a row of a subjacent
fitness matrix. Previous queries of the fitness populate

Volume 2017 | Issue 1 | Page 2

Conservation of Information in Coevolutionary Searches

Q
ue

ry

A
ct
io
n

Search
Algorithm

Best
Solution

Queries Solution
Concept

Fu
ll
Fi
tn
es
s
St
at
us

Se
ar
ch

St
at
us

Ca
nd

id
at
e

So
lu
ti
on

s

 Projection

Queries

Subjacent Query Matrix

Figure 1: Coevolutionary search. doi:10.5048/BIO-C.2017.1.f1

the partially filled matrix. Results of known subjacent
fitness values are projected onto the solution concept
space. Projection often consists of aggregation opera-
tions including min, average, median and max. When a
candidate solution is completely characterized, a row has
essentially been successfully characterized by a single full
fitness value.

The vector in the solution concept space on the right
in Figure 1 is itself assessed to give the best solution. If,
for example, the row projection in the subjacent fitness
matrix is a minimum and the column aggregation in
the solution concept space is a maximum, we have a
classical maximin (maximum of minimums) optimization
problem.

The coevolutionary search algorithm examines the
status of query values in the subjacent fitness matrix to
decide where the next subjacent query should be taken.
The NFL might lead us to expect that without external
knowledge about the target being sought, there would
be no difference where in the matrix the next sample is
taken. In the case of the subjacent query matrix, though,
it does matter [8].

2.1 Examples
2.1.1 Maps
We begin with a high level example of subjacent queries.
Imagine searching through a large library for a book
which contains a treasure map hidden between two pages
of a book. If you quickly flip through the pages in
the book, you may miss the map or mistakenly believe
that an old shopping list is the map. It takes multiple
queries or flips through the book to conclusively deter-
mine whether or not it contains the map. There is a
trade-off between thoroughly searching a few books and

partially searching many books. A full query NFL search
assumes that checking a book for the map consumes a
single query. A coevolutionary search assumes that it
takes several queries to conclusively determine whether
or not the map is inside a book. The difference between
full query and coevolutionary search is precisely that
coevolutionary queries only provide partial information
about a candidate solution.

2.1.2 Product Testing

A simple example using the subjacent fitness matrix in
Figure 1 is shown in Figure 2. Eight formulas of in-
secticides labeled A through H are to be tested on the
nine different bugs. An insecticide is either effective on
eradicating a pest (PASS) or not (FAIL). The insecticide
must be effective on all the pests in order to pass the
overall test. If all tests are performed, the subjacent fit-
ness matrix would be as shown. The vertical aggregation
is a logical AND so one failure disqualifies a candidate
insecticide. We test formula A on roaches where it works
and then on ants where it doesn’t. There is no need
to do any more tests on formula A so we begin to test
formula B until it also fails on ants. If all eight formulas
are to be tested sequentially from left (roaches) to right
(centipedes), inspection of the subjacent fitness matrix
reveals only 22 of the 72 available subjacent fitness values
need to be queried to determine the full query values
listed in the rightmost “Grade” column in Figure 2. As
the coevolutionary search progresses, not all remaining
subjacent queries are equally useful. There is no need to
further test an insecticide in a row where a failure has
been recorded.

Volume 2017 | Issue 1 | Page 3

http://dx.doi.org/10.5048/BIO-C.2017.1.f1

Conservation of Information in Coevolutionary Searches

 Image

 Projection

Ro

ac
he

s

A
nt
s

Sp
id
er
s

Te
rm

it
es

W
as
ps

H
or
ne

ts

Fl
ie
s

M
os
qu

it
oe

s

Ce
nt
ip
ed

es

 G
ra
de

A P F P F F F F P P F
B P F F P P F P F F F
C P F P F P P F P P F
D F F F P F F P F F F
E P P P P P P P P P P
F F F F F F F F F F F
G P F P P P P P P P F
H P P F F F P F F F F

Figure 2: A search matrix for product testing. A candidate suc-
ceeds if all the test cases for that solution passes. doi:10.5048/BIO-
C.2017.1.f2

Figure 3: An example where a problem context clearly reveals
some subjacent queries will contain more information than oth-
ers. The subjacent queries for the shaded boxes have not yet been
made. The two boxes marked X are useless. They need never be
queried because, whatever values they yield, B will never beat A. So-
lution candidate C will win, on the other hand, if box a exceeds 59,
no more queries are required to determine whether A, B or C is the
winner. doi:10.5048/BIO-C.2017.1.f3

2.1.3 Median Search
Another illustrative example is shown in Figure 3. There
are three classrooms, A, B and C and each has five stu-
dents. Which classroom has the oldest students? For
the row projection, we choose the median operation. Ev-
ery time we perform a query, we pay a fixed fee to the
student for their age information. Our study thus far is
shown in Figure 3. All five students have been queried
in Classroom A and the median age is 59. Classrooms
B and C each have three queries to the subjacent fit-
ness matrix resulting in the full query estimates of 46
and 33 respectively. There are four students remaining
to be queried. How do we best spend our money? A
simple calculation shows that the biggest median pos-
sible for Classroom B is 55. This would happen even
if the remaining two students were each 100 years old.
Thus, any additional query in Classroom B is a waste
of money because no outcomes exist that will exceed
the median age in Classroom A. Classroom C, on the
other hand, could be the winner or tied if both of the
remaining students are 59 or older. The path to finding
the best solution is now clear. We first query a student
in Classroom C. If the age is less than 59, we are done.

Classroom A wins no matter how old the fifth student
in Classroom C. However if the queried student is 59 or
older, the winner (Classroom A or Classroom C) will
be decided by the fifth and final query in Classroom C.
The two unanswered queries in the boxes marked X in
Figure 3 are useless. The queries a and possibly b, on the
other hand, will determine the winner. Not all subjacent
queries are created equal.

2.2 Observations
In the product testing Example 2.1.2, the full fitness
values can be found exactly using only a portion of the
subjacent fitness matrix. In the median search Exam-
ple 2.1.3, only a portion of available subjacent queries
are needed to exclude with certainty a candidate solution
from further consideration. Often, an estimate of the full
fitness value will be made by choosing subjacent queries
using probabilistic measures to minimize the uncertainty
of the full fitness estimate. In general, the chosen as-
sessment operations impose a structure on the subjacent
fitness matrix revealing that some future queries will be
probabilistically more useful than others.

From the perspective of full fitnesses in the solution
concept space, the NFL still applies. Given a space
of median class ages, finding the maximum is same as
finding the ace of spades in a well shuffled deck of cards.
One search algorithm will perform on average as well as
any other.

3. ANALYSIS
3.1 Foundations
A search is a process which selects a solution from a set
of potential solutions, Ω. Previous work has considered
selecting a champion from a tournament [8], or choosing a
solution configuration [18] in either case being equivalent
to selecting from the set of possible solutions. Some set
T ⊂ Ω, is consider to be the target. A search succeeds if
it selects a solution ω ∈ T . Each row in the query matrix
tables above corresponds to a potential solution. The
performance of a search algorithm relative to a baseline
search can be measured using active information [27].

I+ = − log2

p

q

where p is the probability of the baseline search being
successful and q is the probability of success for the
comparative search. Typically, the baseline search is
taken to be a single random guess made uniformly over

the search space, Ω. This means that p = |T |
|Ω .

A search which performs better than the random
guess requires information sources. Something must
account for its ability to locate the target with better than
random probability. Commonly, this takes the form of
an oracle, which is queried by the search, thereby gaining
access to information about the location of the target. A

Volume 2017 | Issue 1 | Page 4

http://dx.doi.org/10.5048/BIO-C.2017.1.f2
http://dx.doi.org/10.5048/BIO-C.2017.1.f2
http://dx.doi.org/10.5048/BIO-C.2017.1.f3

Conservation of Information in Coevolutionary Searches

common case is the needle in the haystack (NIAH) oracle
which indicates only whether or not a given solution is
in the target. Using this oracle, it is possible to obtain
approximately log2 Q̂ bits of active information where Q̂
is the number of queries performed [27].

For coevolutionary search, we will consider two classes
of oracles. A coevolutionary oracle queries a single cell
in the query matrix. This is a subjacent query. A row
oracle queries an entire row. This is a full query. A full
query is equivalent to several subjacent queries. A full
oracle may be much more expensive, or even impossible
to query in practice. However, we can still use it as a
theoretical construct.

Theorem 1. Given a query matrix where each value is
drawn uniformly from any set X, and there are k values
in each row, any algorithm using full queries of the row
oracle is subject to the NFL theorem

Proof. The result of querying a row from the query ma-
trix is a tuple consisting of all the cells in the row. Since
each cell is drawn from a uniform distribution on X,
the row is drawn uniformly from a distribution on Xk.
This scenario is equivalent to performing a search on the
search space Ω where each fitness value is drawn uni-
formly from the set Xk. This fits the original formulation
of the NFL theorem, and thus it applies.

Theorem 2. For any given algorithm, A, using the
coevolutionary oracle and making Q̂ queries, there exists
an algorithm A′ also making Q̂ full queries that extracts
greater or equal active information.

Proof. Let A′ be the same as A except that whenever A
would make a query, A′ will instead:

� Check whether the row containing the query has
previously been queried

� If it has not been queried, query that row

� If it has been queried, query another random row

A′ will identify the target whenever A identifies it. Ad-
ditionally, due to having access to more cells of the table
than A, A′ may identify the target in cases where A fails
to do so. Thus, A′ will succeed with greater or equal
probability as A. Consequently, A′ will have greater or
equal active information.

Theorem 2 shows that any algorithm using a coevolu-
tionary oracle will have equal or less active information
to some algorithm using a row oracle. Theorem 1 shows
that if we assume uniform distribution over possible
search problems, that algorithm using the row oracle has
the same performance as all other algorithms using the
row oracle. That algorithm will extract approximately

log2 Q̂ bits of active information which means that for
any algorithm using a coevolutionary oracle:

I+ / log2 Q̂. (1)

This allows us to bound the performance of coevolution-
ary search. In fact, per query, coevolutionary search is
less efficient than a search using full queries. This does
not mean that coevolutionary search is less efficient in
practice. Coevolutionary queries are often much cheaper
than row queries. Furthermore, previously published free
lunch results stand, in that not all coevolutionary algo-
rithms are created equal. Some algorithms have better
performance than others.

Previous work on coevolutionary search has focused
on whether or not these algorithms have the same perfor-
mance. It has been amply demonstrated that the algo-
rithms do have varying performance. However, do these
differences in performance give coevolutionary search the
ability to solve difficult search problems without exploit-
ing problem-specific information? In some cases, cheaper
coevolutionary queries will make some problems solvable.
However, when the size of the search space dwarfs the
number of available queries, finding a solution remains
outside the grasp of coevolutionary algorithms which do
not exploit problem-specific information.

4. EXAMPLES
To further demonstrate performance of coevolutionary
subjacent queries, we consider several example problems
contrasting search performance of various algorithms
versus a NIAH algorithm using full queries. The examples
are derived from those used in various coevolutionary
free lunch proofs.

4.1 Algorithms
For each example, we select from the following menu of
search algorithms. All of the algorithms, except for the
NIAH, make use of subjacent queries.

� Needle in the Haystack (NIAH)

This algorithm uses full queries. Because of the
NFL theorem, all algorithms using full queries have
the same performance on average. As a result, we
only need to consider one such algorithm which
makes a number of random queries that evaluate
candidate solutions.

� Horizontal

As shown in Figure 4A, the horizontal algorithm
emphasizes depth over breadth. A single candidate
solution is queried exhaustively. Then it moves
onto another candidate solution. The procedure
goes through the fitness matrix row by row, ex-
haustively evaluating all of the cells in a row before

Volume 2017 | Issue 1 | Page 5

Conservation of Information in Coevolutionary Searches

(A) Horizontal (B) Vertical

(C) Depth Search (D) So‐far So‐good

Figure 4: Querying strategies for a subjacent fitness matrix. (A)
Queries are made by a horizontal algorithm. All the cells in a row are
queried before moving on. (B) Queries made by the vertical algorithm.
Only cells in a single column are queried. (C) For the depth search
algorithm, a specific number of queries are made into each row. (D)
Queries made by the so-far so-good algorithm examines a row until
it is impossible for that solution to be in the target. doi:10.5048/BIO-
C.2017.1.f4

moving to the next one. In effect, it uses the co-
evolutionary queries to simulate a full query and
thus always exhibits the performance of the NIAH
algorithm with fewer queries.

� Vertical

This algorithm emphasizes breadth over depth. See
Figure 4B. Each candidate solution is queried once,
thereby filling a single column of the subjacent
fitness matrix for as many rows as available queries.
We assume there are more candidate solutions than
queries, and thus the available queries from the first
column is never exhausted.

� Depth Search

As seen in Figure 4C, both the horizontal and
vertical algorithms can be seen as special cases of
a more general depth search algorithm. The depth
search algorithm has a parameter, the search depth,
d. For each row, it queries d of the cells. If d is
the row size then it is equivalent to the horizontal
algorithm. If d is one, then it is equivalent to the
vertical algorithm.

� So-far so-good

A so-far so-good search algorithm follows the hori-
zontal search algorithm except that it ceases query-
ing on a row when it is no longer possible for the

solution to be in the target. This is the type of
algorithm modeled by Woodward and Neil’s ter-
minating free lunch theorem [26]. The solution
concept defines the target, and depending on the
type of projection, it may be possible to prove that
a solution cannot be in the target given only par-
tial knowledge. How the so-far so-good algorithm
applies depends on the specific case, in some cases
it may not apply at all.

4.2 Methods
Each problem has a table of possible coevolutionary
queries as depicted in Figure 1. Depending on the specific
problem considered, the values will either be true/false or
a real number in the range (0, 1). Either way a uniform
distribution over the possible values of these queries will
be assumed. The difference between the problems is
primarily the definition of the solution concept; different
rules and projections for the query space to the candidate
solution space are defined. The performance of search
algorithms will be reported using active information, dis-
cussed in Section 3.1. The baseline probability is the
probability that a uniformly selected candidate solution
will be in the target, according to the rule defined for the
problem. The probability of success for the comparative
search depends on the algorithm being evaluated as well
as the number of queries being performed. For either
probability, they are determined analytically when possi-
ble with the math being found in the appendix. When
analysis of the probability proved intractable, we used
Monte Carlo methods to simulate the search algorithm
and thus estimate the probabilities.

4.3 Problems
4.3.1 Insecticides
In the example represented in Figure 2, we have a large
number of candidate insecticides and k bugs that can be
exposed to each insecticide. We want to find a candidate
solution which kills all of the bugs. In terms of the
general coevolutionary search in Figure 4, each entry in
the solution concept vector is projected using the logical
AND of the corresponding subjacent matrix row where
a P = PASS =1 and F = FAIL = 0. A single fail dooms
a candidate to lose.

A number of other search problems can be viewed as
equivalent to this problem. It is common for a candidate
solution to have to pass a number of tests such as cor-
rectly deciding whether a position in a string of DNA
is a binding site [28] or an expression that produces the
correct output for certain inputs [29] or the correct letter
in a phrase [30]. In each of these cases the problem can
be clearly divided into a series of tests, all of which must
be passed for a complete solution.

A less obviously equivalent problem is a variation on
min-max coevolutionary search [8]. This is a coevolu-
tionary search where the fitness of a candidate is the

Volume 2017 | Issue 1 | Page 6

http://dx.doi.org/10.5048/BIO-C.2017.1.f4
http://dx.doi.org/10.5048/BIO-C.2017.1.f4

Conservation of Information in Coevolutionary Searches

0 20 40 60 80 100
queries

0

1

2

3

4

5

6

7
a
ct

iv
e
 i
n
fo

rm
a
ti

o
n

NIAH

so-far so-good

horizontal

vertical

Figure 5: Active information in bits for varying queries across
the three algorithms for passing test cases. Data is analytically
derived, details are in the Appendix (Section 6.1). There are 10 test
cases to pass each with 50% probability. doi:10.5048/BIO-C.2017.1.f5

minimum of the values in the row in the subjacent fitness
matrix. Rather than looking for the absolute candidate
maximum, we define the target as all solutions with fit-
ness above a certain acceptable threshold. As long as a
row contains only values above that threshold, then it
can be in the target. Effectively, each row element in the
subjacent matrix can be viewed as a link in a chain. We
are looking for a chain whose weakest link is sufficiently
strong. Each cell in the subjacent query matrix is a
test for whether the link’s strength is above or below
an acceptable threshold. Each individual link must be
strong enough, or the chain as a whole will be too weak.
Thus each coevolutionary query can be considered as
a test which must be passed, just as in the insecticide
problem.

In order to apply the so-far so-good algorithm to this
problem, we must determine when it is mathematically
impossible for a partially queried candidate solution to
be in the target. A single failure of an insecticide on
a pest demonstrates that it does not pass the criterion.
We can stop querying a row as soon as a single test has
failed. That is, the algorithm should cease querying a
row after a single failing query.

Figure 5 shows plots of active information for the
four algorithms using varying numbers of queries. We
see that there is a performance difference between the
three coevolutionary algorithms. However, they are all
easily beaten by the full query NIAH algorithm.

Figure 6 shows the number of full queries required in
order to obtain the same active information as a varying
number of coevolutionary queries. It gives an idea of
how many coevolutionary queries are equivalent to a
full query. We can view this as a query exchange rate,
how many coevolutionary queries it takes to get the

0 20 40 60 80 100
coevolutionary queries

0

10

20

30

40

50

60

fu
ll

q
u
e
ri

e
s so

-fa
r s

o-good

horizontal

vertical

Figure 6: The number of full queries required to gain same per-
formance as coevolutionary queries for the passing tests prob-
lem. Data is analytically derived, details are in the Appendix (Sec-
tion 6.1). There are 10 test cases to pass each with 50% probability.
doi:10.5048/BIO-C.2017.1.f6

same performance as a full query. For example, 100
coevolutionary queries is equivalent to approximately 51
full queries.

The so-far so-good algorithm consistently takes about
twice as many queries as the full query search in Figure 6.
Each test is a Bernoulli trial with expected time 1

p where

p is the probability of failure [31]. In this case p = 1
2 ,

so the expected time is 2. The so-far so-good algorithm
thus spends an average of about 2 queries in a row, which
is why it takes approximately twice as many queries.

Figure 7 shows the active information for 100 queries
for varying values of k, the number of test cases to be
passed.1 The probability of success is set so that the
probability of any candidate solution being in the target
is 10−4. The graph contrasts having to pass a few hard
tests with many easy tests. For small values of k the
algorithms have similar performance because at k = 1
a coevolutionary query is a full query. However, the
performance of the coevolutionary algorithm degrades as
k increases. This is intuitive, because when more tests
have to be passed each test is less informative.

Figure 8 shows the active information for varying
values of k where the number of queries is varied. The
coevolutionary algorithms have been given 100k queries,
whereas the NIAH algorithm’s query count is fixed at 100
queries. By performing more queries, the coevolutionary
algorithms have better performance than the 100 query
NIAH. However, they are are still inferior to the 100k
query NIAH.

Volume 2017 | Issue 1 | Page 7

http://dx.doi.org/10.5048/BIO-C.2017.1.f5
http://dx.doi.org/10.5048/BIO-C.2017.1.f6

Conservation of Information in Coevolutionary Searches

0 20 40 60 80 100
k

0

1

2

3

4

5

6

7
a
ct

iv
e
 i
n
fo

rm
a
ti

o
n

NIAH

so-far so-good

horizontal

vertical

Figure 7: Active information for varying numbers of tests (k).
Data is analytically derived. Details are in the Appendix (Sec-
tion 6.1). Probability of success = 10−4/k. 100 queries are performed.
doi:10.5048/BIO-C.2017.1.f7

0 20 40 60 80 100
k

0

2

4

6

8

10

12

14

a
ct

iv
e
 i
n
fo

rm
a
ti

o
n so-far so-good

NIAH / horizontal

vertical

NIAH (query parity)

Figure 8: Active information for varying numbers of tests (k) with
100k queries for all but NIAH, which has 100 queries. Data is
analytically derived, details in the Appendix (Section 6.1). Probability
of success = 10−4/k. doi:10.5048/BIO-C.2017.1.f8

Table 1: A fitness matrix for average showing the averages and
the target in bold

Features Average
0.60 0.11 0.53 0.14 0.34
0.26 0.10 0.62 0.71 0.42
0.50 0.61 0.36 0.10 0.39
0.38 0.63 0.30 0.48 0.45
0.69 0.51 0.73 0.29 0.55
0.37 0.84 0.28 0.60 0.52
0.44 0.06 0.73 0.74 0.49
0.22 0.48 0.56 0.20 0.36
0.37 0.50 0.69 0.40 0.49
0.34 0.49 0.22 0.23 0.32

0 20 40 60 80 100
queries

1

0

1

2

3

4

5

6

a
ct

iv
e
 i
n
fo

rm
a
ti

o
n

NIAH

horizontal

vertical

so-far so-good

Figure 9: Active information for finding an average above
0.7 comparing the different algorithms and varying numbers
of queries. Row size is 10. Data is obtained by Monte Carlo.
doi:10.5048/BIO-C.2017.1.f9

4.3.2 Average
In this scenario, each candidate solution has ten different
features, each represented by a number between 0 and
1. The goal is to maximize the average or sum of these
scores in the selected candidate solution. This is depicted
in Table 1. We deem a search to have succeeded if it
selects a candidate solution with an average score above
some threshold. In Table 1 this is 0.5.

The vertical and horizontal algorithms obviously ap-
ply. The so-far so-good algorithm can be implemented
by observing whether or not the current average is suffi-
ciently low that no possible values in the rest of the row
could bring it above the threshold. Suppose that after
querying j of k subjacent queries for a given candidate
solution we have an average of m. The highest possible
average is if the remaining queries are all 1. Thus the
maximum achievable average is:

jm + (k − j)

k
.

Queries to a given row will be terminated if the maximum
achievable average falls below the desired threshold.

The NIAH algorithm was analyzed as described in
the Appendix (Section 6.2), but the horizontal, vertical,
and so-far so-good algorithms were evaluated by Monte
Carlo simulations. One millions iterations were run for
each value.

Figure 9 shows the active information produced by
the various algorithms. The needle in the haystack oracle
has the best performance. The so-far so-good algorithm
is the best coevolutionary algorithm for more than a few
queries. The vertical algorithm performs well for a few

1In this and subsequent plots, active information is measured
in bits.

Volume 2017 | Issue 1 | Page 8

http://dx.doi.org/10.5048/BIO-C.2017.1.f7
http://dx.doi.org/10.5048/BIO-C.2017.1.f8
http://dx.doi.org/10.5048/BIO-C.2017.1.f9

Conservation of Information in Coevolutionary Searches

1 2 3 4 5 6 7 8 9 10
search depth

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

a
ct

iv
e
 i
n
fo

rm
a
ti

o
n

NIAH

coevolution

so-far so-good

Figure 10: Active information for finding an average above 0.7
for varying search depths and 100 queries. Data is obtained by
Monte Carlo. doi:10.5048/BIO-C.2017.1.f10

queries, but its performance plateaus as more queries are
made available. The horizontal algorithms consistently
trails the so-far so-good algorithm by about one bit of
active information.

Both the horizontal and vertical algorithms can be
viewed a special case of a more general algorithm. The
algorithm has a parameter, the search depth, which de-
termines how many cells from each row are queried. The
horizontal algorithm in the above examples queries 10,
whereas the vertical algorithm queries 1. Figure 10 shows
the active information for varying search depths. While
small search depths have poor performance, all other
search depths have similar performance, significantly less
then the performance of a NIAH search, and still less
than the so-far so-good search.

Figure 11 shows the active information for different
row sizes. For small row sizes, both algorithms have
the same performance, because for a row size of one a
coevolutionary query is a full query. As the row size
increases, the active information extracted by the algo-
rithm decreases.

4.3.3 Pareto Coevolution
Another possible scenario is Pareto coevolution. In this
case each column is a criterion on which the various
candidate solutions are judged. For example when pur-
chasing a vehicle, the criterion might be gas mileage,
cost, cool factor, etc. A depiction of this scenario is seen
in Figure 12.

When evaluating multiple criteria, deciding which
candidate solution is best can be a problem. For example,
one car might have very good gas mileage, but be very
expensive, while another car has terrible gas mileage
but is cheap. There is no obvious way to break this tie.
However, some solutions are clearly worse than others.

0 5 10 15 20
row size

1

2

3

4

5

6

7

a
ct

iv
e
 i
n
fo

rm
a
ti

o
n

NIAH

horizontal

vertical

so-far so-good

Figure 11: Active information for finding an average above the
threshold given varying row sizes and 100 queries. Threshold
set so that the probability of a randomly selected row being in the
target is 10−4. The data is obtained by Monte Carlo simulation.
doi:10.5048/BIO-C.2017.1.f11

A car which costs more, gets worse gas mileage and is
less cool than another car cannot be the right choice.
This is referred to as one solution dominating another.
Figure 12 shows this in the case of the car examples.
Several possible cars are dominated because another car
is better in both categories.

A Pareto search algorithm keeps track of all of the
points which are have not been dominated by another
point. This is known as the Pareto front. For the cars in
the Pareto front, no car is better in all categories. For
the purposes of evaluating algorithm performance, we
want to measure the algorithm’s success at finding the
Pareto front. We can do this by measuring success at
finding a dominated point.

The Pareto search algorithm works not by locating
the points in the Pareto front but by determining which
points are not in the Pareto front. Before any queries are
made, based on the available information, no candidate
solution dominates any other solution. That is, the initial
approximation to the Pareto front includes the entire
search space. As queries are made, some points are found
to be dominated by other points and are thus removed
from the approximation to the Pareto front. Thus we
define a search as successful if it finds a dominated point.

We have to change the definition of the baseline search
because a single guess no longer makes sense. Instead,
the search must guess two points: the dominated point
and the point it is dominated by. The search succeeds if
the point is so dominated.

To illustrate the so-far so-good algorithm, we make
use of the insight of Service et al. [17], who observed
that we can prove that two points do not dominate one
another without querying all of the cells. If the first car

Volume 2017 | Issue 1 | Page 9

http://dx.doi.org/10.5048/BIO-C.2017.1.f10
http://dx.doi.org/10.5048/BIO-C.2017.1.f11

Conservation of Information in Coevolutionary Searches

Mileage

Co
st

Pareto Front
Dominated Points

Figure 12: Depiction of Pareto optimization for car example.
doi:10.5048/BIO-C.2017.1.f12

beats the second car on price, but the second car beats
the first car on mileage, there is no reason to look at
the relative cool factor of either car. It is impossible
for either car to dominate the other, so the query can
be saved. The algorithm proceeds as the horizontal
algorithm does except that a solution is only queried
enough to demonstrate that it neither dominates nor is
dominated by any other solution.

Figure 13 shows the performance of the algorithms for
varying numbers of queries. The needle in the haystack
oracle clearly significantly outperforms either of the co-
evolutionary algorithms. The vertical algorithm first
succeeds with 20 queries, because it is able to to query
the two rows completely and thus succeeds if one of them
dominates the others. It proceeds in jumps every 10
queries because partially queried rows do not help the
algorithm.

The so-far so-good algorithm proceeds better than the
vertical algorithm. It first succeeds at 20 queries because
it must fully query the dominated and dominating rows
to show they are dominated. This requires 20 queries.
But because complete rows need not be queried, there
are no jumps in performance.

Figure 14 shows the query exchange rate for coevolu-
tionary and full queries. 100 coevolutionary queries used
by the so-far so-good algorithm only equates to 16 full
queries.

4.3.4 Best in all Categories
A related scenario would be to find the candidate solution
which is the best in every category. This is related to
the scenario considered by Service et al. [18]. Such a
solution will not always exist, but we can still view it as
the target of a search. As in other search scenarios, the
target set can end up being empty.

Figure 15 shows the performance of the algorithms

0 20 40 60 80 100
queries

0

2

4

6

8

10

ac
tiv

e
in

fo
rm

at
io

n

NIAH

so-far so-good

horizontal

Figure 13: Active information for finding a dominated point
given different algorithms and varying numbers of queries. Row
size is 10. Data is obtained by Monte Carlo. doi:10.5048/BIO-
C.2017.1.f13

for various numbers of queries. The vertical and NIAH
searches have exactly the same performance. Figure 16
shows the query exchange rate, and there is 1 for 1
exchange rate between full queries and coevolutionary
queries.

Why is this the case? The solution concept requires
the candidate solution to be the best in every category.
Much of the time, no solution will fit the requirements.
However, if a solution does fit the requirements, it can
be identified by choosing the maximum score for a single
criterion.

Figure 17 shows the active information as it varies for
different row sizes. The horizontal algorithm is strongly
affected by the row size, but NIAH and vertical algo-
rithms maintain the same performance throughout.

As argued, the performance of the coevolutionary
algorithms is bounded by the full algorithm. In this case
the nature of the solution concept makes it possible for
the performance to be equal.

5. CONCLUSIONS
For the same number of queries, an algorithm using
full queries provides a superset of the information of
the coevolution algorithm and as such cannot be infe-
rior. In fact, by demonstrating a number of examples
drawn from free lunch proofs in the literature, we see
that the coevolutionary algorithms often perform notice-
ably worse than the full query algorithms. However, we
have also shown that this is not necessarily the case as
one of the examples shows a coevolutionary algorithm
with the same performance as the full query algorithm.
Nevertheless, the examples suggest that coevolutionary
algorithms perform worse or equal to the classical full
query algorithm.

Volume 2017 | Issue 1 | Page 10

http://dx.doi.org/10.5048/BIO-C.2017.1.f12
http://dx.doi.org/10.5048/BIO-C.2017.1.f13
http://dx.doi.org/10.5048/BIO-C.2017.1.f13

Conservation of Information in Coevolutionary Searches

0 20 40 60 80 100
coevolutionary queries

0

2

4

6

8

10

12

14

16
fu

ll
qu

er
ie

s

so
-fa

r s
o-g

oo
d

horizontal

Figure 14: Query exchange rate for coevolutionary and full
queries for finding Pareto dominated points. Row size is 10. Data
is obtained by Monte Carlo. doi:10.5048/BIO-C.2017.1.f14

We conclude that there is nothing special in a coevo-
lutionary algorithm that absolves it from the necessity
of making use of prior information to solve non-trivial
searches. If the full query algorithm requires prior knowl-
edge, so do the coevolutionary algorithms because they
perform worse than the full query algorithm. None of
the free lunch proofs provide evidence that less prior
knowledge is required for coevolutionary algorithms. If
these apparent free lunches do not provide a mathemat-
ical justification for success, what does? The success
of coevolutionary algorithms like any other algorithms
depends on the use of prior knowledge. The algorithms
are designed to exploit the characteristics of the problem
being solved.

For example, we have the evolution of sorting net-
works [1], one of the early examples of applying coevolu-
tionary search. But the sorting network was not evolved
from scratch, rather

“because most of the known minimal 16-input
networks begin with the same pattern of 32
exchanges, the gene pool is initialized to be
homozygous for these exchanges.”

This constitutes an initialization of just over half of the
genome. Additionally, the genome was structured taking
into account the properties of sorting networks:

“It may be easier, for example, to produce a
short correct network by optimizing a slightly
longer correct network than by fixing a bug in
a short incorrect network. For this reason, we
have taken advantage of the diploid represen-
tation of a genotype to allow longer networks
to be generated as intermediate solutions.”

Another example is that of checkers [4]. The title

0 20 40 60 80 100
queries

0

1

2

3

4

5

6

7

a
ct

iv
e
 i
n
fo

rm
a
ti

o
n

NIAH/vertical

horizontal

Figure 15: Algorithm performance for finding a candidate solu-
tion which is the best in all categories given differing numbers
of queries. Row size is 10 and total search space size is 1000.
Data is obtained analytically, details in the Appendix (Section 6.4)
doi:10.5048/BIO-C.2017.1.f15

of the paper indicates that no human expertise was
used in the construction of the strategy. However, the
human programmers used a min-max search algorithm
as well as adjusting the structure of the neural network
to include a piece differential. Both of these are uses of
prior knowledge about checkers that human experts have
inserted into the search algorithm.

The success of coevolutionary algorithms is not due
to escaping the “curse” of the NFL theorem. Rather, the
coevolutionary algorithms perform worse than the NFL
would predict. Of course, when coevolutionary queries
are cheaper or obtaining full queries is not practical,
subjacent queries will continue to be worthwhile. Never-
theless, from the perspective of the full query algorithm,
the NFL theorem still bounds the performance of the
algorithm. Coevolutionary algorithms, like other search
algorithms, require the exploitation of problem-specific
information.

The principle of conservation of information, in the
sense described, still stands strong.

6. APPENDIX
6.1 Test Cases

� Let k be the number of test cases that must be
passed.

� Let p be the probability of passing a test case.

� Let Q be the number of queries performed.

The probability of a candidate solution being in the
target is pk. The probability of set of x randomly selected
candidate solutions including at least one solution in the
target is 1− (1− pk)x.

Volume 2017 | Issue 1 | Page 11

http://dx.doi.org/10.5048/BIO-C.2017.1.f14
http://dx.doi.org/10.5048/BIO-C.2017.1.f15

Conservation of Information in Coevolutionary Searches

0 20 40 60 80 100
coevolutionary queries

0

20

40

60

80

100

fu
ll

q
u
e
ri

e
s ve

rti
ca

l

horizontal

Figure 16: Query exchange rate for best in all categories
comparing coevolutionary and full queries. Row size is 15.
doi:10.5048/BIO-C.2017.1.f16

6.1.1 NIAH Algorithm
Let F be the event that one of the candidate solutions
queried is in the target. The probability of success is by
the law of total probability

Pr[S] = Pr[F] Pr[S|F] + Pr[F] Pr[S|F]

� Pr[F] = 1− (1− pk)Q, the probability of set of Q
randomly selected candidate solutions containing
the target.

� Pr[S|F] = 1, if an acceptable solution is found, this
search algorithm will select it.

� Pr[F] = (1− pk)Q

� Pr[S|F] = pk, if no queried candidates show an
acceptable solution, a random candidate solution
is chosen, which will pass if all its tests pass.

Thus

Pr[S] = 1− (1− pk)Q + (1− pk)Qpk

= 1− (1− pk)(1− pk)Q

= 1− (1− pk)Q+1

and

I+ = − log2

1− (1− pk)Q+1

pk
. (2)

This is used for the plots of the NIAH algorithm in
Figures 5, 6, 7, and 8.

6.1.2 Horizontal Algorithms
Given Q queries, the horizontal coevolution algorithm
queries bQk c complete rows. Let F be the event that
an acceptable candidate solution is found in those com-
plete rows. Let x = Q mod k, the number of queries

0 20 40 60 80 100
row size

0

1

2

3

4

5

6

7

a
ct

iv
e
 i
n
fo

rm
a
ti

o
n

NIAH/vertical

horizontal

Figure 17: Active information for finding the best in all cat-
egories comparing various algorithms and varying row sizes.
Number of queries is 100 and size of search space is 1000.
doi:10.5048/BIO-C.2017.1.f17

performed on the last row before running out of queries.
Let G be the event that none of the x test cases on the
last row were failures.

Pr[S] = Pr[F] Pr[S|F] + Pr[F] Pr[S|F] (3)

� Pr[F] = 1− (1− pk)b
Q
k c, the probability of set of

bQk c randomly selected candidate solutions contain-
ing the target.

� Pr[S|F] = 1, if an acceptable solution is in the
completely queried rows, this search algorithm will
select it.

� Pr[F] = (1− pk)b
Q
k c.

� Pr[S|F] = Pr[G|F] Pr[S|G,F]+Pr[G|F] Pr[S|G,F]
by the law of total probability.

� Pr[G|F] = px, the probability of the x queries on
the partially queried row passing.

� Pr[S|G,F] = pk−x, the probability the remaining
tests pass.

� Pr[G|F] = 1− px.

� Pr[S|G,F] = pk if none of the completely queried
rows are in the target, and the partially queried
row contains a failure, a random row is chosen and
success is the probability of all of that row’s tests
passing.

Volume 2017 | Issue 1 | Page 12

http://dx.doi.org/10.5048/BIO-C.2017.1.f16
http://dx.doi.org/10.5048/BIO-C.2017.1.f17

Conservation of Information in Coevolutionary Searches

Pr[S] = 1− (1− pk)b
Q
k c

+ (1− pk)b
Q
k c(pxpk−x + (1− px)pk)

= 1− (1− pk)b
Q
k c

+ (1− pk)b
Q
k c(pxpk−x + (1− px)pk)

= 1− (1− pk)b
Q
k c(1− 2pk + pxpk) (4)

As a sanity check, if Q mod k = 0 then

Pr[S] = 1− (1− pk)b
Q
k c(1− 2pk + p0pk)

= 1− (1− pk)
Q
k (1− pk)

= 1− (1− pk)
Q
k +1.

When there are no partially queried rows, the perfor-
mance is the same as a haystack search with less queries.
This is used for the plots of the horizontal algorithm in
Figures 5, 6, 7, and 8.

6.1.3 Vertical Algorithm
Let F be the event that at least one of the Q queries
reveals a passing test.

Pr[S] = Pr[F] Pr[S|F] + Pr[F] Pr[S|F] (5)

� Pr[F] = 1− (1− p)Q

The probability of at least one passing is one minus
the probability of all tests failing.

� Pr[F] = (1− p)Q

� Pr[S|F] = pk−1

If choosing a row with one passing test, the proba-
bility of the rest passing is one minus the probabil-
ity of the remaining k − 1 elements failing.

� Pr[S|F] = pk

If choosing a row without any queries, the proba-
bility is that of a random test case passing.

Pr[S] = (1− (1− p)q)(1− p)k−1 + (1− p)Qpk (6)

This is used for the plots of the vertical algorithm in
Figures 5, 6, 7, and 8.

6.1.4 So-Far So-Good
Let f(p, k, x,Q) be the probability of the so-far so-good
algorithm being on a row with x uncovered passing tests
after Q queries, given the probability of a successful test
p and number of tests per solution k.

Before any queries, the probability of being in the
initial state is 1.

f(p, k, 0, 0) = 1 (7)

Whenever a failing test is found, the algorithm moves to
a new row with 0 uncovered values.

f(p, k, 0, Q) =

k−1∑
i=0

(1− p)f(p, k, i,Q− 1) (8)

= (1− p)(1− f(p, k, k,Q− 1)) (9)

Whenever a passing test is found, the algorithm stays on
the same row

f(p, k, x,Q) = pf(p, k, x− 1, Q− 1). (10)

If a complete acceptable solution is found, the algorithm
remains on that row.

f(p, k, k,Q) = pf(p, k, k − 1, Q− 1) + f(p, k, k,Q− 1)
(11)

As a sanity check we can sum the probability of
being in any row after Q queries. This should be one:
the algorithm will always be in exactly one row.

(1− p)(1− f(p, k, k,Q− 1))

+

k−1∑
i=1

pf(p, k, x− 1, Q− 1)

+ pf(p, k, k − 1, Q− 1) + f(p, k, k,Q− 1)

= 1− f(p, k, k,Q− 1)− p + pf(p, k, k,Q− 1)

+

k−1∑
i=1

pf(p, k, x− 1, Q− 1)

+ pf(p, k, k − 1, Q− 1) + f(p, k, k,Q− 1)

= 1− p +

k+1∑
i=1

pf(p, k, x− 1, Q− 1)

= 1− p + p

= 1

The search succeeds if all of the tests on the current
row, including those not yet uncovered pass.

Pr[S] =

k∑
x=0

f(p, k, x,Q)pk−x (12)

This is used for the plots of the so-far so-good algo-
rithm in Figures 5, 6, 7, and 8.

6.2 Averages
The Irwin-Hall distribution gives the distribution of the
sum of n uniform random variables in the range (0, 1)[32,
33]. The cumulative density function is

FX(x) =
1

n!

bxc∑
k=0

(−1)k
(
n

k

)
(x− k)n (13)

Volume 2017 | Issue 1 | Page 13

Conservation of Information in Coevolutionary Searches

where n is the number of variables. Let Vi be the ith
value in a row, and T the threshold that must be passed:

Pr[S] = Pr[Average(V0, V1, . . . Vn−1, Vn) > T] (14)

= Pr[Sum(V0, V1, . . . Vn−1, Vn) > nT] (15)

= 1− Pr[Sum(V0, V1, . . . Vn−1, Vn) < nT] (16)

= 1− FX(nT) (17)

Consider the probability of success for performing Q
random queries. This is one minus the probability of
failing all Q random queries

Pr[S] = 1− (1− FX(n ∗ t))Q (18)

The performance of the other algorithms proved
intractable by analysis. Instead, one million Monte
Carlo trials were run to approximate the average. Fig-
ures 9, 10, 11 were created using this math and Monte
Carlo.

6.3 Pareto
The probability of success for the baseline search is the
probability that given two randomly selected rows, the
first is dominated by the second. Let k be the number
of variables they are compared upon,

Pr[S] = Pr[B ≺k A] (19)

where B ≺k A is that B dominates A over the first k
criteria.

Given two iid random numbers, the probability of the
first being higher, assuming that probability of equality
is negligible, is one half.

Pr[B ≺1 A] =
1

2

Pr[B ≺n A] = Pr[B ≺n−1 A] Pr[B ≺n A|B ≺n−1 A]

+ Pr[B ≺n−1 A] Pr[B ≺n A|B ≺n−1 A]

=
1

2
Pr[B ≺n−1 A] + 0 Pr[B ≺n−1 A]

=
1

2
Pr[B ≺n−1 A]

which trivially produces

Pr[S] = Pr[B ≺k A] =

(
1

2

)k

. (20)

This equation is used to compute the baseline for active
information in Figures 13, 14. All other data in those
figures was computed by Monte Carlo.

6.4 Best in all Categories
Let n be the size of Ω, the search space. Let k be the
size of the rows. Let Q be the number of queries.

Let E be the event that there exists a candidate
solution which dominates in all categories. For this to
occur, the candidate solution with the largest score in
the first category must also have the largest score in the
other categories. Given n i.i.d random variables, the
probability of any particular one being the largest is 1

n .
Thus

Pr[E] =

(
1

n

)k−1

(21)

6.4.1 NIAH

Pr[S] = Pr[S|E] Pr[E] + Pr[S|E] Pr[E] (22)

= Pr[S|E] Pr[E]. (23)

It is impossible for multiple solutions to dominate all
other solutions, so the probability of selecting the solution
after Q attempts is

Pr[S|E] =
Q

n
. (24)

This gives

Pr[S] =
Q

n

(
1

n

)k−1

=
Q

nk
(25)

which is the basis of the NIAH performance in Fig-
ures 15, 16, and 17.

6.4.2 Vertical Algorithm
This algorithm will succeed if it queries the row contain-
ing the target. This is exactly the same as for the NIAH
algorithm. Thus the performance NIAH and the Vertical
algorithm is the same in in Figures 15, 16, and 17.

6.4.3 Horizontal Algorithm
This algorithm will query dQk e values in the first column.
The value with the highest probability of being in the
target will be selected, and if one of those rows is the
target it will succeed. This gives

Pr[S] =
dQk e
n

(
1

n

)k−1

=
dQk e
nk

(26)

which is the basis of the horizontal algorithm performance
in Figures 15, 16, and 17.

1. Hillis WD (1990) Co-evolving Parasites Improve Simu-
lated Evolution as an Optimization Procedure. Phys-
ica D: Nonlinear Phenomena 42:228–234. doi:10.1016/0167-
2789(90)90076-2

2. Sims K (1994) Evolving 3D Morphology and Be-
havior by Competition. Artificial Life 1:353–372.
doi:10.1162/artl.1994.1.353

3. Darwen PJ (2001) Why Co-Evolution beats Temporal

Volume 2017 | Issue 1 | Page 14

http://dx.doi.org/10.1016/0167-2789(90)90076-2
http://dx.doi.org/10.1016/0167-2789(90)90076-2
http://dx.doi.org/10.1162/artl.1994.1.353

Conservation of Information in Coevolutionary Searches

Difference learning at Backgammon for a linear archi-
tecture, but not a non-linear architecture. In Proceed-
ings of the 2001 Congress on Evolutionary Computation
(IEEE Cat. No.01TH8546), volume 2, 1003–1010. IEEE.
doi:10.1109/CEC.2001.934300

4. Chellapilla K, Fogel DB (2001) Evolving an Expert
Checkers Playing Program without Using Human Exper-
tise. IEEE Transactions on Evolutionary Computation
5:422–428. doi:10.1109/4235.942536

5. Fogel DB, Hays TJ, Hahn SL, Quon J (2004) A Self-
Learning Evolutionary Chess Program. Proceedings of
the IEEE 92:1947–1954. doi:10.1109/JPROC.2004.837633

6. Wolpert DH, Macready WG (1995) No free lunch the-
orems for search. Technical report, Technical Report
SFI-TR-95-02-010, Santa Fe Institute

7. Wolpert DH, Macready WG (1997) No Free Lunch The-
orems for Optimization. IEEE Transactions on Evolu-
tionary Computation 1:67–82. doi:10.1109/4235.585893

8. Wolpert DH, Macready WG (2005) Coevolutionary Free
Lunches. IEEE Transactions on Evolutionary Computa-
tion 9:721–735. doi:10.1109/TEVC.2005.856205

9. Ficici SG (2004) Solution Concepts in Coevolutionary
Algorithms. Dissertation, Brandeis University

10. Popovici E, Bucci A, Wiegand RP, De Jong ED (2012)
Coevolutionary principles. In Handbook of Natural Com-
puting, 987–1033. Springer

11. Yang XS (2012) Free lunch or no free lunch: that is
not just a question? International Journal on Artificial
Intelligence Tools 21

12. Mitchell TM (1990) The Need for Biases in Learning
Generalizations. In J Shavlik, T Dietterich, editors,
Readings in Machine Learning, Morgan Kauffmann Se-
ries in Machine Learning, 184–190 (Originally published
as a Rutgers Technical Report, May 1980)

13. Schaffer C (1994) A Conservation Law for Generaliza-
tion Performance. In W Cohen, H Willian, editors, Pro-
ceedings of the Eleventh International Machine Learning
Conference, 259 – 265

14. Duda RO, Hart PE, Stork DG (2000) Pattern Classifica-
tion. Wiley-Interscience, second edition

15. Pepyne DL, Ho YC (2001) Simple Explanation of the
No Free Lunch Theorem of Optimization. In Proceed-
ings of the 40th IEEE Conference on Decision and Con-
trol (Cat. No.01CH37228), volume 5, 4409–4414. IEEE.
doi:10.1109/.2001.980896

16. Christensen S, Oppacher F (2001) What can we learn
from No Free Lunch? A First Attempt to Characterize
the Concept of a SearchableFunction. In Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO)

17. Service TC, Tauritz DR (2009) Free Lunches in Pareto
Coevolution. Proceedings of the 11th Annual conference
on Genetic and evolutionary computation - GECCO ’09
1721–1727. doi:10.1145/1569901.1570132

18. Service TC, Tauritz DR (2008) A No-Free-Lunch Frame-
work for Coevolution. In Proceedings of the 10th annual
conference on Genetic and evolutionary computation -
GECCO ’08, 371–378. ACM Press, New York, New York,
USA. doi:10.1145/1389095.1389163

19. Corne DW, Knowles JD (2003) Some multiobjective op-
timizers are better than others. In The 2003 Congress
on Evolutionary Computation, 2003. CEC ’03., volume 4,
2506–2512. IEEE. doi:10.1109/CEC.2003.1299403

20. Droste S, Jansen T, Wegener I (1998) Perhaps Not A
Free Lunch But At Least A Free Appetizer. Technical

Report September, University of Dortmund, Dortmund,
Germany

21. Streeter MJ (2003) Two Broad Classes of Functions for
which a No Free Lunch Result Does Not Hold. In Ge-
netic and Evolution Computation, 210–210. Springer.
doi:10.1007/3-540-45110-2 15

22. Whitley D (1999) A Free Lunch Proof for Gray versus
Binary Encodings. In W Banzhaf, J Daida, AE Eiben,
MH Garzon, V Honavar, M Jakiela, RE Smith, editors,
Proceedings of the Genetic and Evolutionary Computa-
tion Conference, volume 1, 726–733. Morgan Kaufmann

23. Droste S, Jansen T, Wegener I (2002) Optimization
with Randomized Search Heuristics—The (A)NFL the-
orem, Realistic Scenarios, and Difficult Functions. The-
oretical Computer Science 287:131–144. doi:10.1016/S0304-
3975(02)00094-4

24. Corne DW, Knowles JD (2003) No Free Lunch and
Free Leftovers Theorems for Multiobjective Optimisa-
tion Problems. In Evolutionary Multi-Criterion Opti-
mization (EMO 2003) Second International Conference,
327–341. Springer LNCS

25. Service TC (2009) Unbiased Coevolutionary Solution
Concepts. Proceedings of the tenth ACM SIGEVO work-
shop on Foundations of genetic algorithms - FOGA ’09
121. doi:10.1145/1527125.1527142

26. Woodward JR, Neil JR (2003) No Free Lunch, Pro-
gram Induction and Combinatorial Problems. Ge-
netic Programming Proceedings of Euro 2610:475–484.
doi:10.1007/3-540-36599-0 45

27. Dembski WA, Marks II RJ (2009) Conservation of
Information in Search: Measuring the Cost of Suc-
cess. IEEE Transactions on Systems, Man, and Cy-
bernetics - Part A: Systems and Humans 39:1051–1061.
doi:10.1109/TSMCA.2009.2025027

28. Schneider TD (2000) Evolution of Biological In-
formation. Nucleic Acids Research 28:2794–2799.
doi:10.1093/nar/28.14.2794

29. Spector L, Clark DM, Lindsay I, Barr B, Klein J (2008)
Genetic Programming for Finite Algebras. In Proceed-
ings of the 10th annual conference on Genetic and evo-
lutionary computation - GECCO ’08. ACM Press, New
York, New York, USA. doi:10.1145/1389095.1389343

30. Dawkins R (1996) The Blind Watchmaker: Why The Ev-
idence Of Evolution Reveals A Universe Without Design.
Norton, New York

31. Marks II RJ (2009) Handbook of Fourier Analysis &
Its Applications. Oxford University Press, Oxford; New
York

32. Hall P (1927) The Distribution of Means for Samples of
Size N Drawn From a Population in which the Variate
Takes Values Between 0 and 1, All Such Values Being
Equally Probable. Biometrika 19:240–245

33. Irwin JO (1927) On the Frequency Distribution of the
Means of Samples from a Population Having any Law of
Frequency with Finite Moments, with Special Reference
to Pearson’s Type II. Biometrika 19:225–239

Volume 2017 | Issue 1 | Page 15

http://dx.doi.org/10.1109/CEC.2001.934300
http://dx.doi.org/10.1109/4235.942536
http://dx.doi.org/10.1109/JPROC.2004.837633
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/TEVC.2005.856205
http://dx.doi.org/10.1109/.2001.980896
http://dx.doi.org/10.1145/1569901.1570132
http://dx.doi.org/10.1145/1389095.1389163
http://dx.doi.org/10.1109/CEC.2003.1299403
http://dx.doi.org/10.1007/3-540-45110-2_15
http://dx.doi.org/10.1016/S0304-3975(02)00094-4
http://dx.doi.org/10.1016/S0304-3975(02)00094-4
http://dx.doi.org/10.1145/1527125.1527142
http://dx.doi.org/10.1007/3-540-36599-0_45
http://dx.doi.org/10.1109/TSMCA.2009.2025027
http://dx.doi.org/10.1093/nar/28.14.2794
http://dx.doi.org/10.1145/1389095.1389343

	Prior Work
	Background
	Examples
	Maps
	Product Testing
	Median Search

	Observations

	Analysis
	Foundations

	Examples
	Algorithms
	Methods
	Problems
	Insecticides
	Average
	Pareto Coevolution
	Best in all Categories

	Conclusions
	Appendix
	Test Cases
	NIAH Algorithm
	Horizontal Algorithms
	Vertical Algorithm
	So-Far So-Good

	Averages
	Pareto
	Best in all Categories
	NIAH
	Vertical Algorithm
	Horizontal Algorithm

