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Abstract. Open ended evolution seeks computational structures
whereby creation of unbounded diversity and novelty are possible. How-
ever, research has run into a problem known as the “novelty plateau”
where further creation of novelty is not observed. Using standard algo-
rithmic information theory and Chaitin’s Incompleteness Theorem, we
prove no algorithm can detect unlimited novelty. Therefore observation
of unbounded novelty in computer evolutionary programs is nonalgorith-
mic and, in this sense, unknowable.

1 Artificial Life and Endless Novelty

Evolutionary emergence is inspirational in two fields of computer science: arti-
ficial life and evolutionary computing [1]. The goal of the more theoretical field
of artificial life is creation of conditions that lead to unbounded novelty explo-
sion seemingly apparent in biology [2–4]. Evolutionary computing attempts to
harness these innovative powers to solve engineering problems.

But conditions for unbounded novelty have yet to be discovered. All
approaches hit a point where novelty ceases to be produced [5]. Many think
the root cause of the “novelty plateau” is the reliance on an objective fitness
function which causes evolution to become stuck on local minima [6] or hit the
fitness upper bound [7]. Open ended evolution seeks to bypass the plateau by
removing the fitness function [8–10]. The fitness function is replaced with a type
of swarm intelligence [11–13] where each individual in the swarm makes its own
decisions which may or may not cause it to survive. The environment is infused
with rich information so the swarm can both grow in novelty and complexity
and then contribute its own information to future generations [14,15].

Finding the necessary and sufficient conditions to produce boundless novelty
is a goal of current artificial life research [6,16,17]. It is impossible to observe
an artificial life simulation forever to know whether it can produce boundless
novelty. To claim a simulation produces boundless novelty, the claim must be
proven from initial conditions. Establishing such “conditions” is equivalent to
foundational “axioms” in the development of mathematical disciplines [18,19].
These unbounded evolutionary axioms are then considered to be the basis for a
proof or demonstration of ever increasing unbounded novelty.
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Insofar as the conditions are the same as axioms, we prove axioms for
unbounded open evolution do not exist in the sense that ever increasing novelty
cannot be observed. The proof assumes there are no inconsistencies, such as false
positives and false negatives, in the observation process. Even in the absence of
inconsistencies, the bound on novelty for a set of axioms can still be very high.
The observable novelty plateau for a set of conditions can thus be highly elevated
– but not unbounded.

1.1 Identifying Unlimited Novelty

Computational open ended evolution assumes that bitstrings of ever increasing
novelty are computable. Indeed, bitstrings of increasing novelty will be contained
in the trivial enumeration:

Listing 1.1. An algorithm that generates an endless amount of novel bitstrings, to
illustrate endless novelty production is easily accomplished.

for i in range(∞): print binary(i)

Listing all binary bitstrings will generate all novel bitstrings. Lacking is a method
to identify which bitstrings contain increasing novelty. Doing so for an unlim-
ited number of novel bitstrings is not possible due to Chaitin’s incompleteness
theorem [20,21].

2 Prefix Free Complexity and Algorithmic Information

Algorithmic information theory [20,22–25], the study of the mathematics of algo-
rithms, is a useful tool for insight into artificial life and evolutionary comput-
ing [8,26–29]. We here apply it to the analysis of open ended evolution.

Kolmogorov complexity [20] is the length of the shortest program y∗ that
generates a bitstring x when executed on a universal Turing machine, U ,

K(x) = min
y: U(y)=x

�(y). (1)

where �(y) is the length, typically measured in bits, of the program y. Minimiza-
tion is over all y programs to find the shortest program y∗ that outputs x so
that

K(x) = �(y∗).

Chaitin refers to y∗ as the elegant program for x [30]. We use prefix free (a.k.a.
self-delimiting) code [31,32] to simplify analysis. Without prefix free Kolmogorov
complexity, the chain rule of Kolmogorov complexity is [33]

K(a, b) = K(a|b) + K(b) + O(log K(a, b)). (2)

We can understand the source of the logarithmic term in (2) by analyzing the set
generating program p, which generates the set {a, b} from the elegant program
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for b (denoted b∗) and the elegant program that generates a given b (denoted
a∗

b). To generate {a, b} from the elegant programs a∗
b and b∗, the set generator

program p will need to know the size of the length of the smaller elegant program.
Since size of the length of the smaller elegant program is at most a logarithm of
the length, the logarithmic term is added to (2).

Ming and Vitányi show [33] that if we use K(a|b,K(b)) with prefix free
coding, then the logarithmic accuracy term becomes a constant,

K(a, b) = K(a|b,K(b)) + K(b) + c.

The result can be further simplified by observing that an elegant program for
b gives us both b and K(b). Knowing K(b) we find the first short program b∗

that generates b and K(b) by running all programs of length K(b). The shortest
program that halts and outputs b is b∗, and we know this procedure will halt
since we know K(b). We can therefore replace {b,K(b)} with b∗. The complexity
expression where this is done is denoted

Kc(a|b) := K(a|b∗).

2.1 Defining the Set Generating Program

The constant c in

Kc(a, b) = Kc(a|b) + Kc(b) + c (3)

is the size of the program pc needed to generate the set {a, b} from elegant
programs b∗ and the elegant program that generates a given b∗ (denoted a∗

b∗).
We rewrite (3) using the notation1

Kc(a, b) =
c

Kc(a|b) + Kc(b). (4)

To understand how the set generation program pc works, assume we have
the elegant program b∗ for b, and the elegant program a∗

b∗ that generates a when
given b∗ as input. If b∗ does not allow the construction of a program a∗

b∗ that is
shorter than the elegant program a∗ for a, then a∗

b∗ is a∗.
The concatenation of b∗, a∗

b∗ and stopcode s gives the input2 i = b∗a∗
b∗s

for the calculation program pc. The set generation program pc’s operation is as
follows.

1 Some authors use the notation “
+
=” in lieu of “=

c
” [31,34].

2 Even though i is not prefix free (i.e. it will halt once b∗ is executed, leaving a∗
b∗

unread), the program that is run on the Turing machine U is still prefix free because
i is appended to pc, so the full execution on U is U(pci). Since pc is prefix free, then
so is pci, as it will only halt once the entire string is read.
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1. pc executes i on a Turing machine U until U(i) halts. Since b∗ is prefix free,
that means U(i) has output b.

2. The remaining portion of i is run with the previous portion of i as input,
which equates to running a∗

b∗ with b∗ as input, which produces a.
3. Once the stopcode s is encountered, pc collects b and a from the multi-part

execution of i, and outputs the set {a, b}.

2.2 Kolmogorov Complexity is not Computable

No program can tell us what the Kolmogorov complexity is for every bit-
string [30,35]. That there is no such program can be easily shown using proof
by contradiction.

Assume that there is such a program, the True Kolmogorov Complexity
Printer (TKCP). We can then use it in the program in Listing 1.2 to produce a
contradiction.

Listing 1.2. Code showing a Klomogorov Complexity printer results in a contradiction.
len(self) means the length of this program, including all code for the subfunctions
such as TKCP.

def contradiction ():
for i in range(∞):

bs = binary(i)
if TKCP(bs) > len(self):

return bs

The contradiction program iterates through all integers until it finds one
that has a binary encoding with a greater Kolmogorov complexity than the
size of contradiction (which includes the code for all subfunctions such as
TKCP). Once the program finds such an integer, it outputs the binary encod-
ing of this integer bs∗. Thus, we have a program with a smaller size than the
Kolmogorov complexity for bs∗ which nevertheless outputs bs∗. Yet, the defini-
tion of Kolmogorov complexity is the length of the shortest program that outputs
bs∗. This is a contradiction. Therefore, TKCP cannot exist.

2.3 Chaitin’s Incompleteness Theorem

Chaitin’s incompleteness theorem is based on a similar argument but deals
with axioms and proofs instead of programs. The theorem similarly shows an
axiomatic system cannot prove the Kolmogorov complexity of a bitstring above
a certain limit, and that this limit is dependent on the size of the axioms plus a
constant for the length of the proof assembling program.
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Listing 1.3. A program demonstrating there is a limit to proving lower bounds on
Kolmogorov complexity. len(self) means the length of this program, including all
code for the subfunctions.

def contradiction(axioms ):
L = len(self) + len(axioms)
for i in range(∞):

bs = binary(i)
goal = "K("+bs+")>"+str(L)
for proof in all_proofs(axioms ):

if proves(proof , goal):
return bs

Listing 1.3 shows again we end up with a contradiction, since a program that
is shorter than the Kolmogorov complexity of bs∗ generates bs∗. The difference
between this listing and the previous is the function accepts a set of axioms it
can use to prove a lower bound on the bitstring’s Kolmogorov complexity.

3 Limits on Identifying Novelty

3.1 Definitions of Novelty

There are many different approaches to defining novelty. In a biological setting,
novelty refers to new aspects in an organism that not homogonous or homol-
ogous with ancestral organisms [36] and fulfill unique functions [37]. The field
of information retrieval defines novelty as a new information nugget in a user’s
interest set that is also contained within the document set [38] and sentences
that contain information not contained in previous sentences [39]. In the field of
computer generated art, novelty is defined using Dorin and Korb’s definition [40]
which characterizes a system S2 that can reliably generate patterns that can-
not be created by another system S1, where S1 is the existing worldview of an
audience.

Within the fields of anomaly [41], fault [42], and outlier detection [43], the
systems are generally trained or designed to recognize the typical behavior, and
flag atypical behavior. Atypical behavior is not necessarily novel, since it may be
well understood as in fault detection where a variety of failure states are derived
ahead of time. Novelty is atypical behavior that is unanticipated, and these
disciplines provide different techniques for defining the typical region, ranging
from rule based, to statistical to complex nonlinear regression models such as
neural networks [44–46].

A digital organism can be measured as novel with reference to an existing
population. Novelty is measured by a distance function from the rest of the
population where the distance function is domain specific [47]. Selecting for
novelty is also used in evolutionary computation [48]. In the case of digital life
and evolutionary computation, the typical population changes as the algorithm
progresses, but there is still the desire to find individuals that do not fit the
latest typical population.
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3.2 Commonalities of Novelty

In all these domains, novelty has common characteristics. Novelty is

– defined relative to a typical population,
– measured using a distance, and
– unanticipated.

Within a computational domain, everything can be represented by a bit-
string. We can measure a bitstring’s distance from a population in many ways.
A large distance signifies something outside of the typical population. We can
characterize the typical population by the smallest program that can pro-
duce the population, the size of which is the Kolmogorov complexity of the
population.3 When a member is added to the population that requires the pro-
gram size to increase, then the member is atypical albeit not necessarily novel.
Note if a member is novel, then it is atypical, thus it will increase the population’s
Kolmogorov complexity.

3.3 Necessary Condition for Novelty

We can measure atypical information in bitstring bN by the conditional Kol-
mogorov complexity in reference to the smallest program that generates the cur-
rent population {b1, b2, . . . , bN−1}. If the bitstring bN contains new information
then the conditional complexity is positive.

Kc(bN |b1, b2, . . . , bN−1) > 0. (5)

Since Kolmogorov complexity corresponds to the length of a program in bits,
its measure is restricted to positive integers. Therefore (5) can equivalently be
written as

Kc(bN |b1, b2, . . . , bN−1) ≥ 1. (6)

Randomness also meets this definition, which makes (6) a necessary but not suf-
ficient definition for novelty. For the purpose of this proof, however, a necessary
condition is all that is needed.

The distinction between necessary and sufficient conditions is an important
qualification, since many bitstrings are random, and their addition will most
likely increase the Kc(·) without increasing the true novelty in the population. It
may even be true that every new bitstring added to a population increases Kc(·).
In either case, whether the new bitstring is entirely random or if it contains true
novelty, Kc(·) will be increased. Increasing Kc(·) alone is therefore not sufficient
to indicate the addition of novelty. However, we will see that regardless of the
source of Kc(·) increase, randomness or novelty, the fact that Kc(·) increases
when novelty is added makes it impossible to detect novelty beyond a limit.
3 While Kolmogorov complexity is an exact metric, and has to account for both mean-

ingful structure and random noise in the population, the Kolmogorov sufficient statis-
tic can be used to measure just the meaningful structure in the population.
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3.4 Unbounded Novelty Detection is Nonalgorithmic

Assume there exists a set of axioms that can identify novelty when novelty is
added to a population. When a new bitstring is generated, we use the axioms to
derive a proof that the new bitstring is novel. Note these axioms are not directly
calculating the conditional Kolmogorov complexity of the new bitstring. The
axioms are only being used to prove the new bitstring bN is novel with respect
to prior observations. However, based on the argument in Sect. 3.3, proving bN

is novel indirectly entails (6), namely that the conditional complexity of bN is
positive.

If we have a set of axioms that always identifies novelty added to the popula-
tion, then when novelty is added, (6) states the conditional complexity of bN is at
least one bit. With this knowledge, we can use the Kolmogorov complexity chain
rule [33], as defined in (4), to estimate a lower bound on the population’s joint
Kolmogorov complexity, substituting 1 whenever we detect novelty and 0 other-
wise. Assuming we’ve identified M instances of novelty during the generation of
N bitstrings, we can lower bound the joint complexity using (6).

Kc(b1, b2, . . . , bN ) =
c

Kc(b1) + Kc(b2|b1) + . . .

+ Kc(bN |b1, b2, . . . , bN−1)
≥
c

M. (7)

Since c is the size of the set generating program pc, as detailed in Sect. 2.1, and
thus is positive, then by removing c we can make the inequality exact

Kc(b1, b2, . . . , bN ) ≥ M. (8)

As proven in Sect. 2.3, Chaitin’s incompleteness theorem states we cannot prove
K(b) > L for some L that is based on the proof axioms. However, if we can
detect unbounded novelty, then M in (8) becomes arbitrarily big, and at some
point we can prove Kc(b1, b2, . . . , bN ) ≥ M > L, which is a contradiction.

Therefore, we can only detect novelty a finite number of times. Furthermore,
this limit is not much larger than the size of the axioms as can be inferred from
the foundation of Chaitin’s incompleteness theorem.

Additionally, this argument works for novelty generating algorithms. If we
have an algorithm that we know always creates novel bitstrings, then the condi-
tional complexity in (6) is always greater than zero, and eventually the algorithm
will create an M that is greater than L thereby contradicting Chaitin’s incom-
pleteness theorem.

4 Conclusion

The great novelty and diversity resulting from biological evolution suggests there
is an algorithm that can produce the same. Finding this algorithm is the goal of
evolutionary computation and artificial life research. Yet, it is not sufficient to
produce endless novelty, but also identify novelty when it occurs.
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However, a reliable method of identifying an endless amount of novelty would
also imply the ability to calculate a lower bound of arbitrary size on Kolmogorov
complexity. Since every axiomatic system has a limit to the lower bound it
can calculate, due to Chaitin’s incompleteness theorem, the reliable method of
novelty detecting introduces a contradiction. This same contradiction results if
we have a program we know only generates novel bitstrings.

As such, we must conclude there is no reliable method of identifying an
endless degree of novelty, nor of producing only novel bitstrings. We can only
reliably detect novelty to a finite amount, and not significantly more than the
Kolmogorov complexity of the axioms used for detection.

The bound on novelty observation can be high, so our analysis does not
specifically preclude observation of novelty in the evolutionary process - but
does prove there are limitations. There is also the assumption of consistency.
If the novelty requirement is relaxed to also allow inconsistencies such as the
occurrence of false positives and false negatives, then observing endless novelty
might still be possible such as labeling all bitstrings generated by the algorithm
in Listing 1.1 as “novel”.
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