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Problems 

1.1 When an object undergoes a change in volume due to 

applied stresses the quantity !:::. V/V is defined as the 

) • ?, 

volume strain or dilation. Show, for a ro~ of cross-

sectional area A, subjected to equal and opposite forces 

of magnitude Fat its two ends, that 

F 
v AY 

(j 
1\ block of dimensjons, ,\, wand his subjected to forces 

on foHJ'. of its six faees as indicated in the accompanying 

figure, 

forces 

and 

I f t h c h e j ~l II t , h , r e m a i n s u n e h a n g P d w h e n t ll c 

a r e (l pp 1 j ed f 
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1 . 3 A b 1 o c k of d i 111 ens i on s ;) , w , h i s sub j e c t e.d to force s on 

all six faces, the forces being of such magnitude that the 

dimensions w and h remain unchCJnged 'when the forces arc 

applied. 

s yy 

Show that 

1,4 Solids and liquids are only slightly compressible and the 

bulk modulus B = - is essentially independent of 

the s i z e of /'.. P a n d the me a n · pre s s u r e a t w h i c h the me a sure-

ment is made. This j s no·t true for gases; it is only fol:' 

very small chanues of pressure about some mean pressure .for 

which the qua n t i t y ;\f) /;~\v '·;) is a constant. The equ-

ation of state of an ideal gas is PV = nRT where n is the 

' number of moles of the gas and R is the gas constant. Show 

t h a t f o r ~!ll a Ll c h a n g e s a b .o u t s o me e q u j 1 i b r i u m s t a t e c h a r ,_ 

a c t e r i zed by P 
0 

, V 0 , t h e ~QJ.:.U.<i_l-.:.!ll.a ]~ b u 1 k mod u lu s i s e qua 1 

When an ideal gas undergoes an adiabatic process, 

'\ 
( 



2, 

··( 
the quantity PV remains constant ( i( is the ratio of 

the 'specific heat of the gas at const:ant pressure to that 

a t c on s t a n t v o 1 u 111 e • ) Show that for .small ehannes about 

s o me e q u i l j In i u m s t a t e c h a r a c t e r i z e d b y P 
0 

, V 
0 

, t h e .l:lJ:U ~l -· 

batic bulk modulus is 

1.5. A brass rod 50 em long and of square cross-section of 

1 cm2 area is compressed against a rigid wall by a force 

11 of 10 nts as indicated in the sketch below, 

Find the stress component Sxx at 

a point P, a distance x from 

the wall. Find 
XX' yy' and 1., 

'I 
//) 

'' 
Find the displace-

Ill e n L i. o f a c r o s ;, ·" s (~ c t. .i o n 

30 em from the wa J l. 

1.6 When a uniform rod is suspended from one end und~r its own 

weight the strain component . .~,. ··':\) 

where p is the density and ft the unstretched lengLh. 
' 0 

Each small piece of lengih dx in the unstressed rod is 

stretched an amount d ,· -· ;;~ dx. s - '.XX Find how yy varies 

/j 

w i t h x , a 11 d f i n d t h e 1 e n g t h /\.. o f t h e s t r e s s e d r o d i n t e r m s 

of /'
0

, Y, /' and g. 

1.7 Which of the equations (1.13), (1.14), {1.15) and (1.16) 

are correct for all values of x from x = 0 to x = L. 

Which need to be modified for x ~ h ? 
2-



') 
d, 

supported on two knife edges at its ends and loaded in Lhe 

center by a wejght W. Show that th~ bending moment Ht a 

point is given by 

4 

M ::: 

where y(x) js the equation of Llle center line of the dis--

torted beam, 

1,9 One end of a light beCJm is clamped in a wall and a load 

W is h11nu from the other end. 

(a) AssumillU the forces exerted 

l~Y- 1: 11 e w a 11 o n I. he iJ e a Ill c 8 n 

be represented by a sj ngle 

force F 
0 

a n d a c o 11 p :1 e of 

moment M0 , find M0 and the 

components of F'
0 

by isolatinu 

the entire beam: 

(b) If the dimensions of the beam 
h 

are L, wand I! and the distor-

tion undergone by the beam is 

small, find the bending moment 

as a function of x and determine 

the equation y(x) of the bent beam. 

,, 
'i 

( 



') 

d' 

supported on two knife edges at its ends and loaded in Lhe 

center by a weight W. Show that th~ bending moment at a 

point is given by 

where y(x) is the eq11ation of the center line of Lhe dis·, 

torted beam. 

1.9 One end of a light IJr;Rm js clumped in a wall and a loa(! 

W is hunu from the other end. 

( a ) A s s um i n 9 t h e f o r e e s c x e r t r' d 

l~Y. t h e w a l 1 o n I. h e I H~ :-1 m e H n 

be represenLed by a sin~Jle 

f o l' e e F 
0 

a lld a co tl p l e of 

moment ~1 0 , find M0 and the 

compone11ts of F
0 

by isolat:inq 

the entire beam: 

(IJ) If the dimensions of the beam 
1: 

are L, wand tl and the d:istor-

tion undergone by the beam is 

small, find the bending moment 

as a function of x and determine 

the equation y(x) of the bent beam, 
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31. 

CHAPTER II PROBLEMS 

2.1 The solution of (2.2) can be written in the two equivalent 

forms: 

or 

Find A and p in terms of C and D. 

2.2 A particle executing simple harmonic motion is observed to 

have a speed of .3 em/sec at the instant it passes the midpoint 

of its path .. If the frequency f 
0 

of the oscillation is 

10 hertz write an expression of the form (2.4) which will 

correctly describe the motion of this particle~ Assume the 

particle is moving along tha x-axis with the origin at the 

midpoint of the path, and that one starts counting time at 

the instant the particle is passing the midpoint and moving 

to the right. 

,2.3~ The real part of 

is a description of a particle executing simple harmonic 

motion. (a) What is the real part of this expre s sian? 

(b) What is the frequency of the oscillation? (c) What is 



amplitude? (d) Plot x(t) in the complex plane ·at times 

t = 0, t = 1/4, t = l/2, t = 1 sec.· What is the angular 

velocity of the point (or vector) represe~ting x(t)? 

32. 

' (2. 4\ The real parts of 
. I 

Z,(l) 

and 

represent simple harmonic motions. Do they have the so.me 

frequency? The same amplitude? Represent x ( t) and 
'"\A 

in the cornplex plane at t == 0. What is the phase difference 

between ~(t) and ~1 (t)? Which leads? 

2;5. If _:1 (t) and _:c2 (t) represent two simple harmonic motions 

of the same frequency and if 

find the phase difference between .-.~l (t) and ~Q.(t). Which 

leads? Find the ratio.of the amplitude of x1 (t) to that of 

x
2 

( t) . 

2.6 If x1 (t) and x2 (t) represent two simple harmonic motions 

of the same frequency and if 



, Chapter I ELEMENTS OF ELASTICITY 

The study of acoustics is basically a· study of vibrations 

and wa\§'e s. Practically all solids and fluids are elastic in the 

sense that the application of external forces to a small portion 

of a solid or fluid produces a dist~rtion of that portion and 

gives rise to internal forces which tend to restore that portion 

to its original undistortcd state. If the external forces are 

removed suddenly, an oscillation of the small portion generally 

ensues, This is transmitted to the neighboring portion of the 

medium, 1vh:ich in turn transmits it to their neighboring portions. 

We speak of this process as wave propagatjon, The nature of the 

waves and the speed with which they are propagated are inUmately 

related to what are referred to as tile clastic properties of the 

medium. Consequently, it will be appropriate to begin our study 

of acoustics by reviewing the basic concepts of elasticity. 

If a long wire is suspended vertically from a fixed support 

and its length and diameter are measured for a number of different 

kilogram masses hung from its lower end (Fig. l.la), one finds 
' 

t h a t (t h e 1 e n g t h i n c r e a s e s a n d t h e d i a me t e r d e c n~ a s e s \1 i Qe a~. ElY. 

with the force mg exerted on the wire, as indicated in Fig. 1,16.* 

If the experiment is repeated with a number of wires of different 

lengths and diameters, but all made from the same material, then 

* The linear relation between the length or diameter of the wire 
and the force exerted on it is observed only over a limited 
range of forces ranging from zero to some maximum value which 
depends on the diameter of the wire and the material from which 
the wire is made. In all that follows it is assumed that the 
force always lies within this range. 



2. 

then for .<?ac!!_ wire one obtains the linear relationship shown in 

Fig. l,lp .. The slopes and intercepts, however, are in general 

different for each wire, If, instead of plotting the length 1 

and diameter d as a function of the applied force, one plots 

(1-1 0 )11 0 , and (d-d 0 )ld 0 against FIA where A is the cross-

s e c t i o n a 1 a r e a o f t h e w i r e , o n e o b t a i ll s J d ~llili .. 9.UJ:.C1Jlh.L.i.2}~ _ _iLll 

(Fig. 1.2). The quantities 

( 1·-1 
0 

>/1 
0 

, ( d -d 
0

) I d 
0 

, and F I A thus appear to be more use f u 1 

quantities than 1, d and F' in describing the behavior of the 

m a t e r i a 1 • T h e r a t i o s ( 1 - 1 0 ) I 1 0 a n d ( d ·- d 0 ) I d 0 a r e c a l l e d E. t f..SI,_lJ:L0 .. , 

w hi 1 e the i.' 11 t i o F I A is c a 11 e d a .~1.1:~2§ .. 

The relation betweell the stress and the corresponding strain 

depicted :in Fig, 1.2 can be represented by the equations 

l~l~ 
(\.,:() 

w h e r e Y a n d <S- a r e c o n s t a n t s . T h e s e c o n s t 8 n t s a r e .9Jl~r a 9..l~i~li9_ 

.2l ....... :t~_g__Jl!9...ULI.t a 1 f r o m w h i c h t h e w i r e· i s m a d e , a n d a r e c a 11 e d 

values of these constants for a few materials are shown in Table l.l. 
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Young's Mod. Y Poisson's 
~~~~-- __ nt_§_Lt_n ___ ~· Ra_tio.L--

Aluminum 7 X 1010 0,35 

Beryllium 31 X 1010 0.05 

Brass 10 X 1010 0.37 

Copper 12 X 1010 0.37 

Iron 20 X lolo 0.29 

Pyrex Glass 6 X 1010 0,24 

Lucite 0.4 X 1010 0.4 

Bulk 
Modull!s 
-;IJ. ~ ~~--:;-:~·-

/0 

/'3 X Ill 

•O 

/5 X /0 

/() 

It, x !o 

r+ x to 
IO 

/0 

0,'7 i\ I 0 

Shear 
ModHlus 
--,M/»1~ 

·-- ID 
S ); I C) 

I I> 
2.<;xto 

I(> 
0, (.'{I 0 



3. 

The two constants, Y and cr, are sufficient to ~Q.n!ll~~~ 

~ c rib Q.....i!l~I i c _l:>~iQL~Jl!Q...~ll.-fQll£i~.!:.Q~PiLlll~Lt.JU.l-n.l~.-~.':' 

The large numerical value of Y ( ~ 10H nts/m2) suggests that in 

the majority of caBes encountered, the strains are very small 

quantities. For example a 10 KG mass hung on the end of a I mm 

diameter brass wire will result in a strain, (1 - 1
0

)/1
0 

= 1.3 x Io-3. 

In what follows, we assume the strains are small compared to unity. 

Other experiments indicate that equations (1,1) are somewhat 

more general. If a rectangular !Jlock of dimensions 1
0

, w0 , and h 0 

i s s u b j e c t e d t o e q u a l a n d o p p o s i t e f o r c e s a p p l i e d t o .~JlY. two 

opposite faces, the changes which occur in any of the dimensions 

can be expressed by equations of the form (1.1). For example, if 

F stands for the magnitude of the resultant of the set of forces 

actinu on either end face of the block shown. in fi'iu. l.3a, and 

1\ the area of one of the end faees then the experimental results 

indicate that 

and 

Here 1, w, h refer to the length, width and height of the block, 

after the forces are applied and 10 , w0 , h 0 , to those same quan-

tities before the forces are applied. 

A homogeneous substance is one whose physical properties are 
the same at all points of the body. An isotropic substance 
is one whose physical properties at a point are independent 
of direction. 



4. 

If forces are applied to the top and bottom faces as in 

Fig. 1,3(b)·, then the results indicate that 

h .. h(, 
~~=-'~ 

h" 

v-t .# liJ~. 
""~'~'-"""''"" "-'-"'"" 

where F' is the resultant of the set of forces acting on one of 

the faces of area A'. If the direction of the two sets of forces 

in either Fig. 1.3a orb is reversed, the sign:?_ of the righthand 

terms of equations (1.2) or (1.3) is changed, If the set of 

forces shown in Fig. 1.3a and the set shown in Fig, 1.3b are 

applied .£..Llllt!.LLaJis;_QJ~~~Ly, it is foHnd that the principle of super-

position* holds, i.e. 

----------~------~-

r' 
y· '(\i 

The strain produced by n sets of forces acting simultaneously 

is the resultant of the strains produced by each set acting 

separately. 
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5. 

/, 3 t, 
By using a coordinate system such as that shown in Fig. , the 

results of all experiments of this ~eneral nature can be summarized 

conveniently by the equations 

(: .. L (' I" 
-~ ~~n ·-/'-~ 

~ ''r "'·/" .>d~ I 

£~~ 
5[ ( I c ~~ 0 . 4) 

~· 
.!,; ·;;:':'"/" .;:. ~~ ~ ,J:n ~ ,;.;)~:< I y· ') 

( + J_, (' 

s·)r ~· ,\ '1 '\ 
"C.f' ,,) t\ '•1 

~ r 
.~ IJ '· 

Here 

= X =::-.~-~1-~:> .. ~.:~~~~--~ f __ !J~-~~~:_:_~ ~~:~~~~-~~-~~ ~-:~!----~-~-t-~ :l_g_ ~~ _L~.~~-B c ~~ 
area of face AGCD · 

the resultant force actin on face BCPQ 
area of face BCP 

= z-component of the resultant force acting on face ABQU 
area of face A R 

As before 1!: 
'XX' 

(:. 
. yy' <!': zz are callecl strains, Sxx• SYY' and 

S z z a r e c a 1 1 e d s t r e s s e s . A 1 t h o u g h i t i s a s s u me d th a t e q n a 1 a n d 

opposite forces are applied to a given pair of opposite faces, 

note that the stresses are defined in terms of the forces acting 

on faces ABCD, BCPQ, and ABQR. These are the "positive" faces 

o f t h e b 1 o c k i n t h e s e n s e t h a t a n Ql~J::_~§~~:s!l~ cl r a w n n o r m a 1 t o a n y 

one of these faces points in the J2Q._Sitive direction of one of 

the coordinate axes. It should be apparent that the stresses and 

the strains are 2_L<i~JLI§..i..£.. quantities. Sxx• for example, is positive 

if the forces acting on face ABCD are directed out of the block, 

and negative if the forces are directed into the block. 



In the examples given above it was assumed that the external 

forces were _?;J:JO initially and that the strains resulted from 

t h e a p p I i c a t i o n o f e x t e r 11 a 1 f o r c e s p r o d u c i n g t h e· s t r e s s e s S x x , 

S -S YY' zz' In many cases of interest, one is interested in the 

strains that occur when the external forces are ~.9:,~9._ from 

one set to another. For example, suppose as in Fig. 1.4 a rod 

[? has a length ~ 1 when subjected to equal and opposite forces of 

m a g 11 i t u d e F 1 a n d a l e n g t h R2 w he n s u b j e c ted t o f o r e e s o f m a g n i t u d e F ~~ • 

If the unstressed length is £
0

, one can write using equations (1.4) 

.e , :: J ,, /) + ~~ 111 v] 

where A is the cYoss-section of the rod. 

arranging one obtains 

J!~-:!r_ 
)., 

Subtracting and re-

since the difference between }
0 

and·f1 is v'ery small. One interprets 

(0
2 

- J?
1 

) I J! 
1 

a s t h e s t r a i n r e s u 1 t i n g f r om t h e c h a n g e F ::: F' - F in 
2 1 

the external forces. In like fashion,(;·xx' < , and E: in ,.__"YY z z 

equations (1,4) can be interpreted as the strains resulting from 

changes in the stresses of amounts Sxx• s yy' 
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6. 

Bulk Modulus 
------~---

If a b)ock is subjected to a uniform pressure by placing it 

for example in a pressure tank containing ~orne 
G'S /Vl /:r:f /, .5/ 

it is found 

experimentally that any change ~p in the pressure results in a 

corresponding change, L\V, in the volume of the block such that 

the ratio of the change in pressure to the change in volume per 

unit volume is a constant. This constant 

(1. 5) 

is called the bulk modulus of the material from which the 

block is made, Tf the experiment is curried out in such a manner 

that the block is maintained at constant temperatvre during the 

e x p e r i me n t , t h e c o n s t a n t r a t i o i s c a 11 e cl t he i §..<Llli.X lll':l1 b u llc 

modulus, If the changes in pressure and the corresponding measure 

ments of the changes in volume are made sufficiently rapidly so 

that during this time there is negligible heat transfer between 

the block and the fluid, a different constant called the Q.~.ia~_g_!j~_£_ 

bulk modulus is obtained, 

It was stated earlier that the two constants 7 and cr are 

sufficient to describe the elastic behavior of homogeneous isotropic 

ma -v,e ria 1 s . The bulle modulus, B, must therefore be related to Y 

(1.4) to 

venience 

One can deri~e ihis relationship by applying equations 
. h V d~1 1~ dv '{-, c r:~'~;'J\ t(I~C-< ~! t n Fi p /. :1-' 

a block and subJected to alt t4n:c:-t-C(f,l~nk~p:re:!nn:n~€'-;;;;-:>. For con~ 

let V be the·volume of the block when the 
~:l 

I 

1: .~ t·l re_ k{).. .P 

and let V be the volume when the 
/1 

block is subjected to a pressure P. Remembering that pressure 

is a force per unit area, and that the forces on a surface due to 

pressure are always in the nature of , it should be apparent 

that when the pressure is P 



and when the pressure 

S - S = S := ·- P' 
XX - yy Z2 

Interpreting if r:: andf of equations' (1,4) as the strains xx 1 "-yy "zz 

due to the change in pressure from~. to P' one obtains 

= C ·- l ( 2 <r-· l) ( P - p 1 
) 

zz y """ 

Letting R , w and h stand for the dimensions of the block when 

the pressure 

the pressure 

{zz 

t')' t 
is.];,, xJ w , h 1

1 the dimensions of the block when 

is g• one has f r o 111 t h e d e f i n i t i o n s o f f. I c· a n d 
XX yy' 

I 
v I - v -- (2 W I h I ~ ,c! VJ h 

-- IJ(l+( )w(l+(: )h(l+ < ) -· j!wh 
X xx yy 'zz 

Since in almost all cases / <'•<' 1 we 
')):X 

have as a good approximation 

so that 

and 

v· ...:. v = 

(V 1 -V)/V 

v l~- ( l +;:/ ) 
- ·"·xx 

= 3 f:~ 

P 1 -P 

XX 
= 3 ( 2 n- ~ 1 ) ( P - p 1

) 

y 

(V 1 -V)/V 30-2 cr) 
(l. 6) 

For all materials, Band Yare positive. Equation (1.6) suggests 
I 

therefore that t~must be less than 1/2, ·a result that is confirmed 

experimentally. 



8. 

Consider a block subjected to the set of forces illustrated 

inFig. I.6a. As in our earlier examples, the forces acting on 

any one face are equal and opposite to the forces acting on the 

opposite face (this is necessary for the block to be in trans-

lational equilibrium). F o r c e s w h i c h a r e ll!!.~J} t:LQ.l. t o a s u r f a c e 

s u c h a s t h o s e s h own :i n t h e f i g u r e a r e r e f e r r e d t o a s .§i.JL~.~Xi!Lg_ 

forces and the quantities 

and 

z-com onent of the resultant force 
(' 
0 YZ - area of ace BFGD 

s zy 

on face BCGF 

on face ABFE 

a r e r e f e r r e d t o a s s h e H r i n g s t r e s s e s . ':' F o r t h e b 1 o c k t o b e i n 

rotational equilibrium (consirler, for example, torques about the 

x-axf~s) Syz must equal S~y· · Under the action of the set of shearing 

forces shown in Fig. l.Ga, the block is deformed into a pArallel-

epiped as indicated by the solid lines in Fig. 1.6b. The Dngle ~} 

tin r~dians) is referred to as the shearing strain, and the ratio 

of the shearing stress to the shearing strain is called the 

i.e. 

G = (I. 7) 

For many materials, this ratio is found to be constant over a 

reasonDbly wide range of stresses. Because of the large numerical 

value of G (see table 1.1), the strain Q is usually small compared 

to unity. 

* The reason for the double subscript on the stresses should now 
b e c l e a r . T h e LiL~!. s u b s c r i p t i d e n t i f i e s t h e ~c e. o n w h i c h t h e 
f o r c e i s a c t i n g , w h i 1 e t h e ~.e ~_Q_ll~L s p e c i f i e s w h i c h ~~l]lJ2Q_,!l~Ul!. o f 
the force i s i n v-o 1 v e d . For exam p 1 e , S x y refers to the y- c om pone n t 
of the force acting on the face which is perpendicular to the 
x-axis. 
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9. 

It is not very difficult to show that the shear modulus can 

be expressed in terms of Y and o· Consider a .block in the form 

of a cube of edge a
0 

and subject it to the set of forces shown 

in Fig. L e t t he r e s u l t a n t of t h e f o' r c e s a c t i n g o n e a c h of 

the four faces be F and 1 e't A = 2 be the of of the ao area one 
( f, IJ. J 

faces. Using equations ("J)\; iJ.'J one finds that the height 1 s shortened 

and the width is :increased by an amount 

as indicated in Fig. which shows only the front face of the 

cube, After the distortions occur all portions of the block are 

i 11 e q u i 1 :i b r :i u m a n d i f o n e :i s o 1 a t e s £1..~lX .120 l~!~L2.l!. of t he b 1 o c k i t 

will be in equilibrium under the action of forces exerted by the 

material adjacent to the isolated portion. We inquire into the 

nature of the forces exerted Q}L that portion of the block bounded 
/, 7 t. 

by the rectangular parallelepiped shown in red in Fig. J 

The front face of the rectangular parallelepiped :is shown by the 
t. '7 & 

d o t t e d 1 i n e s i n F i g . ·l'::~::71J • I s o 1 a t ~ n g t h e t ri a n g u 1 a r p o r t i o 11 o f 

the cube shown by the shaded area and drawing in the forces* 

acting 011 it (Fig. l.Ba), it should be evident that for this 

triangular portion to be in equilibrium, the resultant, Fs, of 

the forces acting on the slant face must be tan~e!l!JJ!l to the 

surface as indicated and must be equal in magnitude t~ F/f~. 

W h e n u s i n g e q u i l i b r i u m c o n d i t i o n s t o c a l c u 1 a t e t h e _in t e rJL~~_L 
force:?_ (and stresses) that arise when a block is subjected to 
external forces, one often ignores the distortions that are 
produced and calculates the internal forces ~t_h<:_~~---l~-~~!:~-~JJ~Q~ 
.9J .. !:LLQ_:r~1L9.Jl~c~-- This procedure yields satisfactory results as 
long as. the distortions (strains) are small compared to unity. 
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10. 

Similarly, by isolating the other three triangular sections and 

using Newton's !lli~_rcl law one can conclude that the forces exerted 

The area, As, of one of the side faces of the parallelepiped is 

equal to 80 or A/ {2, and since F 8 ::.: F/r.f'"2 it follows that 
v2~ 

the shearing stress F
8

/As at the side face is numerically equal 

to the (normal) stress F/A at the surface of the cube. Note that 

the arrangement of the shearing forces on the faces of the 

parallelepiped :is -~~<&2_:U_y_ the same as the shearing forces shown 

a c t i n g o n t h e b 1 o c ]( o f J7 i g . l . 6 n ; c o n s e q u e n t 1 y , t h e s e s h e a r i n g 

forces should produce some shearinu strain, 9, which in this in·· 

s t a n c e c a tJ b e c a 1 c u l a t e d i n t e r m s o f Y <J n d G"' • 

F i g u r e s 1. 9 a a n d b i l 1 tu; t r a t c t h e d j s t o r t i o n s p r o d u e e d i n 

the rectangular p3rallelepiped wl1en the forces are applied to 

the cube. The end faces of the parallelepiped which were 

originally square become parallelograms. I n F i g . l .10 a , . t h e 

original square face (red lines) and the distorted end face 

(dashed lines) are shown with the left edge superimposed and 

Fig. l.lOb shows these two faces after the original square face 

has been rotated through an angle of G/2 with respect to the 

dashed face, From F:ig. l.9b the increase, b., in the length of 
F 0.,, ( I ·1- o- -) I A y 

the d i ago n a 1 of the d i s torte d fa c e lt'F. S i n c e G .c &: 1 , 

the angle HDE in Fig. l.lOb is very nearly equal to 45°. Hence 

from the figure 

6. 



11. 

and e .. F (; ., ()-) 2. 

Ar\.f 

and "y 
fld, 
e ~~ (;·((f) 

( f, Jt ) 

This equation expresses the relationship between the shear 

modulus, G, and Young modulus, Y, and Poisson's ratio a~ . 

In section 3 we have seen how external forces acting on a 

c u b i c a l b .l o c k g i v e ri s e t o s t r e s s e s o ri t h e s u r f a c e s iJ!J~.i<i~ t h e 

block, The stress at any .R9J!'!.t of the block can be defined in 

terms of the stresses on the faces of an infinitesimal sur fuce 

containing the point.* Similarly one can define the strain at a 

.l2.2 .. t.!l1. o f t h e b 1 o c k i n t e r m s o f t h e d i s t o r t i o n s t a l\ i n g p 1 a c e j n a 

small volume surrounding the point. To illustrate how one deter-

mines the stress and strain at a point we consider a thin rod 

which is hung from one end as in Fig. l.lla. Let the rod be 

unifrrrm of density P and mass m and have a length 1 0 , Wl'dth W 0' 

and thickness h
0 

when unstressed (e.g. when resting on a horizontal 

table). When the rod is hung from one end, its length will in-

crease slightly due to the stresses set up by the gravitational 

force. We wish to determine the stress at some general point P 

located a distance x from the supported end. First it should be 

evident that since the entire rod is in equilibrium, the force 

... 
'•' If one chooses the surface to be a rectangular parallelepiped whose 

edges are parallel with the axes of a rectangular coordinate system, 
then the resultant force actin~J on each "positive" face of the 
s u r f a c e c a n lJ e r e s o 1 v e d i n t o _"Lhl:~~ c o m p o n e n t s . S i n c e t h e r e a r e 
.Ul!~ p o s i t i v e f a c e s , t h e r e a r e .!lt.!l.~ s t r e s s c o m p o 11 e 11 t s , S x x , S x y , 
Sxz• Syx• SYY' Syz• Szx• Szy• S22 • These nine componei1ts form 
what js called the stress tensor. The strain at a point is 
s i m i 1 a r 1 y d e s c r i b e d b y B.L n e ·-s.tra-i n c o m p o n e n t s , f o r m i n g w h a t i s 
called the str~ti!1 tensor. 



exerted by the support must equal mg, the weight of the rod. 

If one isol~tes the portion of the rod between the support and 

point P, as indicated in Fig. l.llb, the fQrces acting on this 

portion are the force exerted by the support, the gravitational 
lo.L~-~I"'.A ~~";> 

12. 

force, and a force la~cl~~ F, which represents the force exerted 

!LY the lower portion of the rod. Since the isolated portion of 

the rod is in equilibrium we must have 

where Fx is the x-~component of 
-=) 
F. If we let the cross-section 

a t P b e t h e JL2..tL2..1!! s u 1· f 8 c c o f a s m a 11 r e c t a n g u l a r p a r 8 1 1 e l e p i p e d 

containing P (Fig. l.llc) this bottom surface is a positive face 

of t~e parallelepiped and 

(i) Cl 
• c 0' ,.){}~-._,_, 

J.-\J ~.d r~ 
fe) CJ. )r_ 

(} . 

(1. 9 ) 

The stress component Sxx thus varies 

from point to point of the rod being a maximum at the top of the 

rod and zero at the bottom. 

The strain at point P is defined in terms of the distortion 

undergone by a small segment, Ax, of the rod located at P in 

Fig. l.l2a. When the rod is hung from one end this segment is 

stretched to a.length f::>.xs as indicated in Fig. l.l2b. The 

strain (component) at P is defined as 

() 
,fc{i'! \ 

{};, ~) 0 
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13. 

As depicted in Figures l,l2a and b,, both the cross--section locC~ted 

at x and that at x + d x are displaced slightly when the rod is 

suspended, The displacement that any given cross-section of the 

rod undergoes when the rod is hung depends ·on the location of the 

cross-section, and there is some, at the moment unknown, function, 

say f<x) which specifies how far any given cross section is dis-

placed, The displace~ents of the cross-sections at x and x + ~ x 

are consequently labelled {Cx) and f<x + ~ x) respectively. 

It is evident from Fig. l.l2b that 

so that 

flf<•/t 

th: -1 () 

F (x) 

l\ ); 

I C 
(I( ~) 

The strain component c~xx at a point is thus equal to the der:ivat]ve 

of the function 
c S (x) whicl1 gives the displacement of each cross-

section of the rod, It is generully assumed that the stress·-stra:in 

relations expressed by equations (1.4) hold at every point. Con·-

sequently for the example we are considering 

Thus the strain also varies as x being a maximum at the supported 

end of the rod and zero at the bottom end. We can find §Cx) 

by integrating (J .lH obtaining 

f {>t) 

The constant of integration is zero in this instance since the 

top cross-section of the rod has zero displacement. 
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As a second example illustrating how one calculates stresses 

and strain~ let us consider a thin beam of length L resting on 

two knife edges and supporting a load W at. its center, as indicated 

in Fig, 1.14a, For simplicity let us assume that the weight of tbe 

beam itself may be neglected. Let the beam have a rectangular 

cross-section of width w and height h. Let P be some general 

point in the rod, located a distance x from the left end and let 

us first consider the stresses at this point, (As mentioned 

earlier in a footnote, in calculating the stresses from equilibrium 

conditions one ignores any distortions that may have taken place 

when the beam was loaded,) Notinu first that the entire beam is 
iJ ~-~ .. --~ ~---->- "-=" ~~ 

in equilibrium one conciuJes that the force exerted by each knife 

edge is W/2, Isola tin g the JL~U::U2JL of the !J e am of 1 eng t h x a s 

indicated in Fig. l,l3a, one notes that the forees acting Oll the 

i s o 1 a t e d p o r t i o 1,1 a r e t h c f o r e c o f t h e k n i f e e d 9 e a t t h e 1 e f t e n d 

and the forces exerted QJ!:. the right hand portion of the rod, This 

latter set of forces are distributed in some manner over the cross-

sectjon of the beam as indicated in.Fig. l.l3b, As far as equili··· 

brium of the isolated portion is concerned, this set of distributed 
~-) 

forces can be replaced by a single force F and a couple of moment M 
-', 

as indicated in Fig. 1.14c.* F in turn is usually resolued into 

two components Fx and FY' referred to respectively as the normal 

and s~earing forces, M is called the bending moment and is usually 

depicted as indicated in Fig. l.l4d, (More properly, ~ is the 

The proof that one can always find a single force and a couple 
whose effect as far as equilibrium·is concerned is equivalent 
to an arbitrary set of forees, can be found in numerous texts 
on mech 'cs S-, , d G·'ff'·t·l ~-~> •• ,.,).,r (Jf' i~/,.,"!':lllir! a n 1 ' ' e . g . ' j 11 g e a 11 I 1 . 1 . 1 I .!.l..'L).L.'b •. -,o_\ ·~··•·o·---·······-·· 

( w: c., (I(;) ff,'/1 I '11 e,,) 'lt! H.;: f r; ~/ 1} ). 'vi t! ('(If. r (/'o • 
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kQ_2_~!1?.2.M n t o f t h e t o r q u e , d u e t o t h e c o u p l e , w h e r e t h e z -a x i s i s 

taken to be perpendicular to the plane of Fig. l,l3a and pointing 

out of the paper.) From the fact that the isolated portion of the 

rod is also in equilibrium, it follows that 

F =-
X 

Fy = - W/2 

= Wx/2 (1.111) 

I f we 1 e t t h e c ~~ o s s - s e c t i o 11 a t P b e t h e r i g h t h a n d s u r f a c e o f a 

small rect~ngular parallelepiped containing P, then this right 

hand surface is a positive 

s 
XX 

(' 
.) 

yy 

sur iace and 
F 

X 
::. 0 

wh 
F y ·-- ~-,.{~·~~~- ··- - w 

wh 2wh 

The force components Fx, Fy and the couple M represent essentially 
, 
the resultant or net effect of the set of distributed forces that 

the right hand portion of the rod exerts on the isolated portion. 

It turns out to be profitable to examine in more detail the nature 
·~·------

of these distributed forces as revealed by an examination of the 

distortions undergone by the rod, 

The deformation which the beam undergoes when loaded is shown 

greatly exaggerated in Fig. 1.14a. If the dbformation is slight, 

it turns out that the center (dashed) line of the beam remains 

Strips of the beam lying above this line 

are shorten~d, while strips lying below the line are lengthened, 

We isolate for consideration a small segment of the beam of length 

6 x, located a distance x from the left end. When the beam is 

deformed, the centerline of this small Segment still has a length 
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&x and lies some distance y below the centerline of the beam 

when the beam is unloaded, Fig. l.l4c is an enlarged view of the 

segment. The distance labelled R in this figure is the radius 

of curvature at the point of the dashed curve in Fig. 1.14b where 

{\xis located. The length of the shaded strip in Fig. l,l4c 

which lies a distance r ]?~~)oy.y_ the centerline of the segment is 

(R+r) /:, (6. The length of this segment l)_fL.2X .. ~. the beam was loaded 

wa s H t\ 0 , s i n c c l\1 i t I! the beam unloaded <ll l strips are the sa me 

length and the length of the center line doesn't change when the 

b e a m i s d e f o r me d . T h e g)'Jl~l}JLS2 i 11 1 e 11 g t h o f t h e s h a d e d s t r i p d u e 

to the deformation is thus r l\0 and conseque11ily the strain 

( c o m p o n e n t ) {: x x a t t l! e p o :i n t w h e r o t h e s t r i p j ~; 1 o e a t e d i s 

r b(if /H/\0 or r/R. S i n c e the s t r 8 j n a t a p o i 11 t :i s r e] 8 ted L o 

t h e s t r c s s a t R p o i n t b y e q 11 11 t i o n ( J , tJ ) t h c point 

where the shaded strip is located must be }\ 

To produce such a stress the actual forces dF exerted on the end 

surface of the shaded strip (see Fig. l.14d) .!LY. t!Jc portion of the 

beam to the right must have a con1poncnt dFx, where 

F o r a s t r i p 1 o c a t e d a d i s t a n c e r a J2.2..~~- t he c e n t e r l i n e , the s a me 
<-o~) I 

considerations lead to the conclusion that the forces dF on 

I 
its end face must have a component dFx· equal to - dF as 

X 
r-.=--"j> ""=-':J-" 

SU(Jgested in Fig. l.l5e, Both dF a 11 d dF' tend to rotate 

the element about the z-axis, the torque due to 12.2...tll being 
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T h e .L9_:L<:!.1 t o r q u e d u e t o f o r c e s a c t i n g o n t h e e n d f a c e s o f a 1 l t h e 

strips is then the bending moment M. Thus 

"'y;~ I!) ~l ,!) 

I,~~ J~ 

This last expression relates the bending moment at a point to the 

radius of curvature of the rod at that point. In practically all 

textbooks on calculus it is shown that for alLY_ curve y(x), the 

A p p 1 y i n g t lt i s r e l a t i on to the e u r v e of t ll e center 11 n e a n d r e 111 ern h c r -~ 

ing that for slight bending the ely s l ope -·~ ~~ 
dx 

at sny point 

compared to unity, we have to a good approximation 

so that the bending moment is given by 

~)/'H)~~~ 
~l I ~.' 

I~. 
C( t(J 

';;;' . 7~~--
I?, (t ,'j. 

is small 

(1. 15) 
This will prove to be a very useful and necessary relation later 

on in the derivation of the wave equation for waves in rods, We 

can use it now to find the curve into which the beam is bent 

when the load is applied, 

d2y 

"dXZ 

Integrating iwice yields 

Substituting fiom (1.14) one obtains 

w 
-~X 

2 

y - W x3 + Cx + c1 
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where C and c1 
are constants of integration. Taking y = 0 at 

x = 0 and d Y = o 
dx 

at x = L 'I I ' b ~· tle aJove expression ecomes 

"\)J" 

·v~~) ,,~~<; 

(J, It<) 

As a final application of the stress strain relation we con-

sider the experiment illustrated in Fiu. 1.15a, in which a rod 

is clamped at one end, and a known torque ext is applied to the 

other end by means of the two forces labelled F. S:ince the entire 

rod :is in equil:i!Jrium, the clarnp must ext)rt on the rod forces 

which give rise to a torque equal and opposite to t!Jat exerted 

at the top end of the rod, I f o.n (~ :i s o J a t c s a s e c t i o n o f t h e r o d 

o f l e n g l h x , s i n e e i t L o o i s i n e q u :i J. j b r i u 111 , t h e f o r c e s e x e r t e d 

by the top section on the jso:rated portion must give rise to a 

torque exactly equal in magnitude to 't' as indicated in ext 

fi':ig. l,14b, We can determine the nature of the forces giving rise 

to this torque, by consider:in~r the distortions that occur when the 

torque is applied. 
~ 

When the rod :is stressed by applying equal and opposite 

torques to the two ends, the rod undergoes a deformation in which 
0 I! IS 

each cross·-section of the rod rotates about the o I..FS of the rod 

through some angle which depends on where the cross-section is 

locRted, The angle through which a given cross section is rotated 

is measured.between a line fixed in the cross section and a line 

fixed in space, For example, in fi'ig. 1.15, the line fixed in 
H .. o '{\ !,.!{, 

space ic; the :L ::~: ,~~ and the fjgure shows the t.op surface of tlJc 

'l 
rod as having been rotated through an angle ~p and the cross 

section ~t x as being rotated through an angle ~J (x). It is 
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assumed that the bottom surface is ~revented from rotating by 

the clamp. We isolate the section of the rod of length Ax and 

imauine it to be made up of a large number of thin concentric 

cylindrical shells. Fig. l.l6a shows one of these shells -~-~LQ.I.£ 

the distortion has occurred. If the shell is thin the portion 

abcdefgh of the shell bounded by two radial sections making a 

small angle with each other, will be (very nearly) a rectangular 

parallelepiped, An enlarged view of this parallelepiped is shown 

i n F i g . l , l 6 b , W h e n t h e t o i1 q u e :l s a p p 1 i e ct , .~ilJ~l~ r a d :i. a 1 1 y 1 i n e 

in the cross section at x + ~ x rotates through some angle 

labelled ~~ (x + A x) while each radial line in the cross-section 

a t x i s r o t tJ t e d t h r o u q h CI n a n g 1 e '·I· ( x ) , a s s u u g e s t e d i n F i u . 1 . 1 6 e . 

The effect of these two rotations on the rectangular parallelepjped 

is shown :in Fig. l.l6d, wllere the bottom surfnces of undistortcd 

and distorted parallelepiped are shown Sllperjmposed, It should 

b e e v i d e n t , t h a t t h e e f f e c t i s t o p l' o d u c e a s h e a r i n g s t r a i n G 

equal to 

which in the limit as 4 x •c-~?0 becomes 

d 
G = r dx 1. 17 

Since the shearing strain and shearing stress are related by 

equation (1.7), there must exist at this point a shearing stress, 

GG, where G is the shear modulus. To produce such a shearing 

stress requires a set of forces dF acting tangentially to the 

top surface·of the rectangular parallelepiped as indicated in 

Fig. 1.17a and b. Such a set of forces would produce a torque of 

magnitude 



·-~··--;-..-" 
''~~ 

T 
! 

(.( 

I 
! 

tY>~ 
' I 

I 
! I I 

' I .I 

.\!. 
\.. ' I· ' ' 

r,:· 

/ 

i <\ 
\ ... ~ 

_,• 

t 

'l G. 

l 
1\ >: I 

I 
h !~ I 

!'~ 
.~L .. ,-

c. f 

(L\ 
U) 



l f"" 

-· )L '( r 
r' ;\ 

where dA is the area of the top face of the parallelepiped, 

Since all of the elements of tl1e area of the top surface of 

20, 

the cylindrical shell have similar shearing forces, the total 

torque due to the forces acting on all the elements is 

f, 
<• 

( I f.• I 

I 
_) 1. 18 

Since the isolated section of rod was considered to be made up 

of thin cylindrical shells, and sinee (1.18) applies to each 

shell,· the t.otal torque due to all the forces exerted on the 

h1/ ,, ' 

~,)> 

\ 
(1. 19) 

where fl is the radius of the rod. This is an important relation-

ship which will be useful later in the study of torsional waves 

in rods. From our consideration of equilibrium, th~ torque due 

to the forces exerted by one portion of the rod on the adjacent 

portion at any cross-section was equal to the externally applied 

torque "'I"~xt. Consequently, the right hnnd side of (1.19) must 

equa] ~. a constant. - ext' It f o 11 ow s t h a t d \f/ m us t a 1 s o be cons t a n t 
dx 

so that 

(
I l/ 1 .~ v '1/ -· .. • 1\ 

( I 
( 

where C and C' are constants of integration. 

when x 
I ')' = 0 and lf ::: (J) when x = L, one obtains 

Noting that 'f = 0 



l 

'>. 

,..-I 
('t(lp 

I I 
I 

'··!; 

I .... ) 
( '! . 

( 0 \ ./ 

ca I 

., 
'J 

.·-' 

) 

/I Cf 
\! 

f l­
it! I 

I· 1') 

! 
I 
I 

:1 

,• 

' 

I 
i 

i 
II I 

I 
I 1 

.. ' I . r/ 
y 

1/' 
\ ·') 

I 

/•il .. I 
I i ~ 

' if.! I ., 

fl.) 

l•i I 
). 

"i ?'· .......... 
;.; ' 



21. 

The external torque required to twist one end of a rod through 
-t 

an angle ;2 is thus 

1. 20 
.'/, 

. d ,,/ 
S:tnce -~~-~ is a constant, the shearing strain G given by equation dx 

(1.17) is independent of x but does vary with r being a maximum 

for those elements located at the edge of the rod. 

L e t M ( x, y , ;d b e a p o :i n t i n t lJ c i n t e r i o r o f a n u il r; t r e s s c d 

body (Fi9. l,J8e~). Imagine an observer at M has some means of 

:ldent:ifyinu all of the points :in his immediate neighborhood, 

Using three appropriate points, say M1, M2, M3 he sets up Cl 

rectangular coordinate system with its origin at M sueh that 

·Mllf1 , Mfif2 , Kf~Y3 correspond respectively to his x, y and z axes, 

If external forces are applied to the body (Fig. l.l8b) 

points M, M1 , M2 , and M3 will in general be displaced to new 

If after this displacement, 

the obsirver reports that his coordinate system (determined by 

~· M1 MI, M1 M3) is still rectangular and all the neighboring 

p o i n t s a r e p r e c i s e 1 y i n t h e s a me p o s i t i o n s r e .!JL!) v,Q. t o i t a s 

before the displacement, one says that the strain at M is zero, 

If the relative positions of the neighboring points has changed, 

then one says that there is a strain at M. It follows from this 

concept that if as illustrated in Fig. 1.19a) a body undergoes 

at pure translation, i.e. a motion in which each point moves Llle 
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same distance along a path that is parallel to a fixed line, 

t h e s t r a Ji1 i s z e r o . A 1 s o , i f a s i 11 u s t r a t e d i n F i g . 1. 1 9 b , 

a body undergoes a pure (small) rotation,, 0, about some axes, 

the strain is also zero. 

Let N(x+ dx, y+ Jy, z+ az) be a point in the neighborhood 

of M(x,y,z) when the body is unstressed. When the body is 

stressed, then in general both M and N are displaced as illus-

trated in Fig. 1.20 which shows a two dimensional version of the 

situatjon. Let the x,y, and z components of the displacement 

o f p o i n t !VI b e .f , 1t a n d ,r r e s p e (: t i v e 1 y , a n d l e t t h e c o r r e s --

'""'> ponding quantities for the displaeemcnt /) of point N be be 

Now the d i s p 1 a c e 111 e n t "A'. a n d i t s c o n1 pone n t s 

cleiH~nd on the location of the pojnt M, i,e, c l 
,\ ' 'l and .rare 

all functions of x, y ancl z, S :i n c e N i s n c a r ~1 o n e h a s f r o rn 

the calculus 

',(. 
d·,v dd + d$ d F f f 

c1 ...,_) + .~ 
k- .. - ~ t A 'J 

,) 
t. ({} ct 1 (J 

" 

·~ f( lv 0~.L. .A II t ~""~ ttl?. 
0 1 {) . . ' dJ (i 

(~ 'l. 7l \1 ~""~-~~ (\ I\ ~)\1 (i - lr/ ~ 
.. Ji( 0 

";i.l c! cJJ 
c:l 'I ··{· rl(j 

J~J J ~· 1- ~~-.,..."'"""' ..... -· -~c--""'0"'~"-o. 

~); nJ -· - cl (t.' \. 

& -;:: G 

I 

\\ / 



24. 

w h e r e t h e p a r t i a 1 d e r i v a t i v e s o f ,g , 'L , a n d J a r e e v a I u a t e d 

at the point M(x,yf)· If these partial derivatives are known 

f o r p o i n t M o n e c a n c a 1 c u 1 a t e d f , d 'L a n d d J' f o r 9 n Y. p o i n t :l n 

the neighborhood of M, and thus determine if there is a strain 

at IV!. To determine the relation between these purtial derivutivcs 

and the strain at the point, one considers the distortion tinder~ 

gone by a tiny cube located at Mas indicated in Fig. 1.20a. 

A 11 p o :i n t s o f t IJ i s c u b e a J' e i n t h e n e i ~J h b o r h o o d o f M . Suppose 

for example, the extern8l forces produce a strain such that 

e: I 
J ' t 

,;L 
·,) ;r Under these conditions 

the cube is stretchf)d (or compressed) in the direction as jndlcated 

:t n · F i g . 1 • 2 0 b , t h c ~ll<~ ~1._~le. i n t h e x ·- d i me n s :i o n o f t h e c u h e d i v i d e d 

l l ' ' · 1 · · J • • ] ·;) r I 1 / JY t1e ori~flllal x·-<lmens:ton .H~Jnu exact .. y 9/df·.d:, vvhich was 

d e f i ned e a 1· 1 i c r a s 

in which 
. I I . 

only dt/dj or 

and 

~imilarly by considering a distortion 

one can see that 

'\ f 'J ' I f t h e d i s t o r tj o n i s s u c h t h a t o n 1 " · · ., / ,~ ·~ ,J d 

is different from zero and positive, then the cube is sheared 

through an angle 0
1

"" ':.>3/,Jd as indicated in Fig, l,20c, If 

the distortion is such that only .;;J'it/,1>< is different from zero, 

the cube is sheared through an angle 

Fig. 1.20d. If both ;2 f\.(,~ 1, a n d :J t/ l >t 
< ' { ,, () are different from zero, 

and all other derivatives are zero, then the cube is shearcid 

through an angle 0 1 + G2 as indicated in Fig. 121 a,b and c 

which shows t·he distortion of the top (or bottom) face of the 

cube. From considerations such as these, one concludes that the 

follow:ing quant:ities are sufficient to descrJbe the strajn at a 
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point~' 

/" .1, ( c'J J 
~+ ~~~~!,·~ ) r:; 'i •'1,_-- ~· ·:)j' .~ 

}!J ') .. , J;w Q 

t:,, ··- ~J. 
(!~ d~ 

( ) /' 

(;~ 0! .. ~\~ t: ,, 
X 

~~ ({ 6} "' ;;.__, CJ (.{ ~i 
.~ ,) " 

(1,21) 

(: ~s~. 
J3 :} •) 

,) 

\ 

( J ~ ,\ j' ) 
f·u~ _L L ,. 

-;::; -·;-)·-· •\" -~)~;·j 
~ s ?~- u;! 

0 "d 

If all of the strain coefficients, / c·· XX' (xy' £x3' 
/' f 
l::yx' ;}l '/3 

,,::' { 
~ .. ZX' .. zy• are zero for point M, no distortion 

of the cube at M will occur. As indicated above, ). f [:. ~ 0 ]~ 
XX' c::c yy' . 

zz are different from zero, the distort·ion cons:ists of strctcll}nu 

or shortcniny the x,y or z dimensions of the cube, while jf (xy• 

{nor art> different from zero, the d:lstort]on consists of x·;:' yz · · 

she<Jring the cube, The nine components (~·xx• Cxy ~·~~ 

(
22

, only six·of which are jndcpcndent from what is called 

the strain tensor. 

The stress at a point M(xmy,z) in a stressed body is defined 

in terms of the forces exerted on the three positive faces of a 

tiny cube located at point M as indicated in Fig. 122. llnder 

conditions of equilibrium it is assumed that if the cube is suf-

ficiently small, the forces exerted .QJl any face of the cube by 

the material outside the cube are exactly equal and opposite tci 

t h o s e f o r c e s e x e r t e d o n t h e _QJ~"'":L~ f a c e b y t h e m a t e r i a 1 o u t s i d e 

::: T h e 1 I 2 u s e d i n t h e d e f i n i t i o n s o f ( (· a n d <::~ i s a r b i t r 'i r ·1' xy• xz yz c • • 

and some authors omit this factor. 
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the cube, so that the forces exerted on the positive faces of 

the cube hre actually representative of the for6es exerted on 

the parallel surfaces passing through poipt M. If F'xx' F I" , xy' xz 

are the x, y and z compon~nts respectively on the force F 1 acting 

on face ABCD, F yx' F F the correSJlonding com]Jonents of r 2 , yy' yz 

and Fzx• Fzy' Fzz the eomponents of F 3 , then the stress at M is 

specified by the nine components 

5xx 
Fxx 

sxy 
F'xy 

sxz 
Fxz 

::: ·~ --
A A A 

F'yy 
s 

F'yx 
s 

F'yz 
s -~ 

.. "~~~~~-~ -- --
yy A yx A yz A 

c· Fzz s Fzx s -~~"~~-.:J ·- -- --
zz 

A 
zx 

A 
zy 

A 

where A::.:: dx dy dz js tl1e area of a f<:1ee of the cube. For 

equilibrium of the cube as regards rotation one must have 

S - S " -- s·· I " -- c· . xy -- . yx' ,)xz - zx a llt c)yz -- ,):,r.y SQ there are actually on 

six independent stress components. The components Sxx• Syy and 

S
22 

are called normal stresses, while the other components arc 

called shearing stresses, 

It is generally assumed that each stress component is a 

linear function of six strain components*, i.e. 

One could equ<llly well assume that each strain component 
is a linear function of the six stress components. 



s = ell + e 1- + e (; + 
XX XX 12 ~y y 1~1 'zz 

s = e : + e22 6yy + e 0;- + yy 21 (\x 23 zz 

where the coefficients ell' e12' 
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e 6 14. xy 
+ e . (. 

15 xz + e & 
16 yz 

e24 6-xy + e2 (" 0 + e (: 
-·;) xz 26-yz 

........ e6 r, ell arc constants) 
.) 00 

characteristic of the material. /\s one might suspect, for an 

js_gJ~J~2_PLS~ solid son1e .of 'these coeffic:i.ents are zero and many of 

the others are equal; jn fact it turns out LhCJt there are only 

two :independent coefficients. For an isotropic solid the strain 

relatJons become 

s :::: 
XX 

s ::: 
yy 

s ::: 
zz 

c::' 
uxy -

s ::: 
xz 

s :::: 
yz 

where 

(el + 

e { 
I ~XX 
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1 -xx 

e20xy 

e2~ - xz 

e t: 2 :yz 

e 
i 

e2) r~ + e 6· + (' f: 
" XX l yy ) ':;;z 

+ (e + c ) (. + e {:;: 
1 2 yy 1 ~zz 

+ e (c; + (el + e ) (: 
1 yy 2 zz 

vY and 
(1+ (r) 0--2 ~r) 

Here Y is·Young's modulus and <:!~is Poisson's ratio. 

() 1)_, 

(1.22) 

The first 



three of t,lw s e e qua t ions a r e , of course , the inverse of 
I 

equntions (1.4). It :is worth mentioning again that{- , 6 
XX xy 

in (1.22)' can be interpreted as the strains resulting from 

s:Jgtn.rrs~ s j 11 t h e s t r e s s e s 0 f a m 0 u 11 t s s X X I s X y 

For an ideal fluid, the stress strain relationships are 

even simpler : 

s s s B( ( + ~.._c: + 
{.,. 

) (l 23) ·- -- -- (:· 
XX yy zz ·xx yy zz 

I" d 
f U I 

) ! ~1 

s ·-· s ·-· s ·-·- 0 
xy xz yz 

where B is the b11lk modulus. Also for n fluid, Lhe change in 

t h e s t r e s s i s s i n1 p 1 y e q lHJ l t o t h e c h a n 9 e t h e n e g a t i v e o f t h e 

change in pressure, /:. P, so that 

. .6 P = -lH ( + c: + <(. ) 
XX YY zz 

or 

{lP ·-B ( 
r;: 

-- + + (1.21) 
X 

This relationship will prove useful in developing the 0ave 

equation for waves in fluids. 



CHAPTER II HARMONIC MOTION 

Simple harmonic motion (along with uniform circular motion) 

is perhaps the simplest type of repetitive motipn that one can 

imagine. Partly because of this, and partly because of the 
I 

si~plicity of its mathematical r~presentation, simple harmonic 

motion proves to be useful in the description of a great many 

diverse physical phenomena. It plays a particularly important 

role in the study of vibrations and waves; as we shall learn 

presently, the vibrations of any material object or any small 

portion of. a medium through which a wave is travelling is almost 

invariably assumed to be simple harmonic or made up of some 

combination of simple harmonic motions. Because of its impor-

tance, it will be worthwhile to review harmonic motion before 

beginning the study df waves. 

2.1 The Simple Harmonic Oscillator 

Consider as depicted in Fig. 1.1 the simplest possible case: 

a particle· of mass m supported by a horizontal frictionless sur­

face and subjected to a restoring force supplied by a massless 

spring of force constant K.· If x is the di spl acemen t of the 

mass from its equilibrium position, Newton's second law applied to 

the mass yields 
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where the X stands for This differential equation is 

called the equation of motion of the particle. Our task is to find 
I 

a solution of this differential equation, since .we know that any 

function x(t) which describes how the particle moves must be a 
ihc'«-f><<,}1-fol' ,,1oi·'"'''' Fundatl'Oic·f,tlf~J ftnd 1 ,:1,r a s·aftt'tu;y1 of"( 

solution off,fll differential equation is a process of trial and 

error. There are, however; some general methods of finding solutions 

of differential equations which are successful in many instances and 

we will use one of these general methods to find a solution. For 

convenience let 

···UJo (2.1) 

so that the equation of motion may be written 

0 (2.2) 

The g~neral method consists of guessing that there is a solution of 

the form 

( 2. 3) 

where are all constants. If such a solution exists 

then 
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Substituting this expression along with (2.3) into equation (2.2) 

one obtains 

For (2.3) to be a solution of (2.2) the above expression must be 

identically zero, i.e., zero for all possible values of time. This 

condition would obviously be satisfied if each of .the bracketed 

quantities were equal to zero. If and are given arbitrary 

values, then the first bracket can be made zero by choosing 

the second bracket by choosing 

():; ~~,: - yJg_ (''( 
\; (0 l I 

the third bracket by choosing 

and so on. Thus (2.3) will be a solution of the equation of motion 

for arbitrarily chosen values of a
0 

and a1 provided the other 

coefficients have the values determined as indicated above. Sub-

stituting these values in (2.3) one obtains after rearranging the 

following solution of the equation of motion 



./ 

I 

X (J \ .. . 
I ) .. . 

\ ' ,_) 

The infinite series contained in the first bracket is a Taylor's 

expan sian for 

expan sian for 

coscu
0

t , 

sin uJ t 
0 

in the more familiar form 

while that in the second bracket is an 

The solution can therefore be written 

4. 

X({) ( 2. 4) 

where C and D have been used to replace a1 and a ~'J 1/v-, 0 

respectively. 

In the expression (2.4), C and D are arbitrary in the 

sense that (2.4) is a solution of the equation of motion no 

matter what values are ass·igned to them. Since the equation of 

motion is a second order differential equation and since (2.4) has 

two arbitrary constants, it may be considered the general solution 

of the differential equation. If the position and velocity of 

the particle are specified at some instant of time, then these so-

called initial conditions determine particular values of C and D 

and the resulting solution is said to be a particular solution of 
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the differential equation. For example, x = 3 cos tV
0

t is a 

particular solution of (2.2) corresponding to releasing the mass m 

from rest at a distance 3 units from· its equilibrium position. 

For any arbitrarily chosen values of C and D it is always 

pos~ible 'to find a number 
J 

A and an angle cp such that C = A cos t/1 

and D = - A sin (/) . The solution (2.4) can therefore be written 
'. 

in the alternate form 

X ( 2. 5) 

A plot showing the x -coordinate of the particle as a function of 

time is shown in Fig. 2.2. It should be noted that the motion 

repeats itself after a time interval 

This time interval is called the period of the motion, and its 

reciprocal 

is called the frequency. The quantity ~v 

is also loosely referred to as the frequency although the term 

"angular" frequency would perhaps be more suitable. The magnitude 

of the largest displacement of the particle from its equilibrium 

position is called the ~ of the motion. It corresponds 
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to the absolute value of A in equation (2.5). 

2.2 Complex Form of Solution 

One can obtain any number of particular solutions of (2.2) by 

simply inserting different values of A and ~into (2.5). Let 
I 

x1 (t) and x2 (t) be two of these particular solutions. Since 
\ 

they are both solutions we must have 

l' 

x,·l 

and 

If the second of these is multiplied by i =,;:I and added to the 

f~rst, one obtains 

(2.6) 

Let x(t) be defined as follows* 
"'"' 

'-./ ' i ; 

i\ \ ·;:, < 

( 2. 7) 

Functions like .~~t) which consist of this simple arrangement of 

two real functions form a special class# of complex functions. 

Differentiation ·or integration of this special class of functions 

*A wavy line underneath i symbol indicates the symbol stands for a 
complex quantity. 

#All complex functions encountered in this book are of this special 
class. 
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is accompli shed by treating i as if it were a real constant. Thus 

~ 

I (-t) ,'+-i )\.) 1

,) 

. r--.. '"'' 
~~ ' .. -

\( ( -t) . \ . ) 

From these rules, it is possible to write (2.6) as 

.. 
I •' \; 

' ;- (j) .f.l /\. (2.8) 

This complex differential equation is identical in form to (2.2). 

A solution of this complex differential equation is any complex 

function of the form (2.7) which satisfies it. It can be easily 

shown if it is not already apparent that the function 

~\j' •' \ \ 
. ( .. I , / '\ C r· r· ( vJ -' 

/ \ . . ' ! • ,) 2> I .., ,.., 
• -v ·. ~ 

\ 
! 

/ (2.9a) 

is a solution of (2.8). Using Euler's theorem one can write this 

in the form 

r\ _,. / ... ~'-"' 
' I I 

I . 
\., ~ 

\ )• V)u t 
(_ .... (2.9b) 

\ \./ 
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where A= Ae~~ is a complex number. Now the real part of (2.9a) 
/'<V-• or (2.9b) corresponds exactly to (2.5), the ·general solution of the 

equation of motion (2.2). For.reasons that will become apparent 

later one, one prefers to work with (2.9b) and to regard it as the 

equ~tion 'which describes the motion of the particle. It is, of 

course, the real part which actually describes the motion of the 

particle. 

2.3 Velocity, Accel~ation and Phase _Relations~§_ 

Equation (2.5) gives the x coordinate of the mass m at 

any instant. The velocity and acceleration can be obtained by 

successive differentiations: 

>< .~,r\ UJv (2.10) 

(2.11) 

(, (:, (j 

Now x, x, and x all vary sinusoidally with the time, and all 

have precisely the same period. However, no two of the three 

quantities attain their largest (peak) positive values at exactly 

the same time. For example x attains its peak positive value, A, 
, 

at times t such that 

"\ ~--: ·--)··r ; .l -~~ 

\')v,I'.J .J•••• 

At such times, x is zero, and 
r• 
x is at its peak negative value. 

When two sinusoidally varying quantities having the same period 

attain their positive peak values at differe~t times they are said 
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to cliff er in phase, the phase cliff eren ce bing clef ined as ;J rr(C ,-(2 )/~~ 
where t 1 is a time at which one of the quantities attains its 

maximum positive value, t 2 
. I 

is the time nearest,to 

the other quantity attains its maximum positive value, 

at which 

and is 

the !period. The phase difference, thus defined, is in radians, 

although it is often expressed in degrees. Since x attains its 
' 

peak positive value at times t" such that 

Jl 

W I 
(l (·· 

' . I • ' li) 
i 

i~} / 
I/) .. ,.,· 
/ ; .. , I ! 

f ' and X its largest positive value at times t" I such that 

' 
I I ! 

U)o 
,,-, ·I (: r· 

' 
., .. , 
'' ' ' 

we can see that x differs in phase from ~ by rr/2 radians or 

90° and from x by rr radians or 180°. 

If we use the complex e~ponential form, (2.9b), of the solution 

we have* 

) 
·' 

J ' /, .l I I\ I , · c . . r , I , ··r L''' . '· / \ \,\ t t ) < \.1\1 ;') \-/ V I / 
/~ . 

,.,1,) ~. '. ,,, 
I ' 

At any given instant of time ' X, X, and are complex numbers and 
r'\·-·- ,...., 

*Note that differentiating or integrating the function 

or integrating 
constants. 

is eactly equivalent to differentivc: 
' 

treating A and I as if the_y were real 
....__~... t·~-
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may be represented in the complex plane as shown in Fig. 2.3. Note, 

that although the position of is arbitrary, since it depends 

upon the particular instant of time chosen, once )C_ is drawn, the 

positions of "~'"" and 
.. 
,X .. , are fixed, since and 

is Tr 
2 

Note further that the angle between 

. 0 ·' or 90 , precisely the phase difference between x 

and 

and X 

while that between x and x is 180°, exactly the phase difference 
/\•v,, ~'"'~ .... 

between x .and x. It should thus be apparent that the phase 

relations between the various quantities are more readily deduced 

from the complex exponential form of the solution than from the real 

form. In 
I 

Fig .. 2. 3. the projections of the vectors , .. ~.' ,(.:,, and ' . 
A 

on the real axis are the real parts of these quantities and hence 

represent, respectively, the values of x, ' x, and 
It 

x at this 

p~rticular instant. As time increases the three vectors each rotate 

counterclockwise with an angular velocity coc,. Because ). is 90° 

counterclockwise from tv>.i.~ it is said to lead 
.. ~-~~="'-"' 

may be said to lead or ~ X by Tr 
",~,·· 

1·,1d,on~' 

by Tr 

2 
0 or 90 . 

or 180° since 

one ordinarily speaks of quantities leading or lagging by angles 

of rr radians or le~s. 

2.4 Energy of the Sim2le Harmonic Oscillator 

The total mechanical energy E of the oscillator is the sum 

of its kinetic and potential energies. The kinetic energy by 

definition is m x2/2. The potential energy of a mass m in a 

given position may be defined as the work done ~y the conservative 



. ( 

\ ' ! 
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forces (in this case the spring force) as the mass is moved from the 

given position x to an arbitrarily chosen reference position 

(chosen for convenience in this case to coincide with the equilibrium 

position of the particle.) We have then by definition 

\
? / '\ 
" , " I / \. J\ ( 

'-•o J 
',, () 

.._/v 
t\ 

for the potential energy. The total energy 

r L · 
: • -.c' 

t ·' 

Substituting from (2.10) and (2.5) one obtains 

The total energy is thus ~onstant as we would expect since the only 

force acting is a conservative one. 

2.5 Damped Harmonic Motion 

· From experience we have learned that there is no real oscillating 

system which co~responds exactly to a simple harmonic oscillator. All 

real oscillating systems are subject to dissipative forces, and if 

left to themselves (i.e. if no energy is supplied regularly from 

some outside source) the oscillations will eventually cease. To make 



our hypothetical oscillator correspond more closely to a real 

oscillating system, .we need to include a dissipative or damping 

force. Conventionally one selects a dissipative force which is 

proportional to the velocity of the particle and is opposite in 

12. 

dire,ction~. This choice results in an equation of motion, the solu­

tion of which corresponds reasonably closely to the observed motion 
'· 

of certain real oscillating systems. The equation of motion with 

this damping force included becomes 

t('l -. ' 
I 1 'I I ~t' • (" f. ·, €.."'1 \ ·I 

.. ·. 

For convenience let 

,. 
' 

) 
'~. ', • I •· 

so that the equation of motion may be written 

(2.12) 

It can be readily verified by differentiating and substituting in 

(2.12) that 

(2.13) 
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where 

is~ solution of (2 .. 12).* This will be found to be a solution for 

any arbitrarily chosen values of A and .:1' ; hence may be regarded 
'. 

as the general solution of (2.12). The quantity in brackets is 

exactly the same form as (2.5), the solution of the undamped 

oscillator. The type of motion represented by (2.13) is shown 1n 

Fig. 2.4 where the cosirle term and the exponential term are sketched 

separately and multiplie~ at each point to obtain the value of x. 

It is seen that the motion is oscillatory with a gradually decaying 

amplitude. While strictly speaking this is not a periodic function, 

ws may define the frequency as the number of times per second that 

the particle passes through its equilibrium position in the positive 

direction. The frequency is thus 

1 r-;" .. ···· ~ .:;::~~;-- Y· 
• \} J :- ;;, l • (/') 2 l\1! " 

' ,. (2.14) 

If R/2m is small compared to Kjm, this frequency is only slightly 

smaller than the frequency of an undamped oscillator of the same 

mass and spring constant. If ~ r') I 1\ 2. /(j 

then over any short time interval, say 

is small compared to l, 
·I' 

t
2 

- t
1

, the term 11 e ... '">~ 

is approximately constant, 1.e. the values 

Ae- ~·f ... 

*There are three types of solutions of equation (2.12) depending on 
whether '~ is greater than, equal to, .or le~s t~an ~ . Th~ so~u­
tion of most interest in our present d1scuss1on lS (2 .. /3) wh1ch ls 
the solution when c0" > "" 
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are all very nearly the same, and over this time interval the motion 

can be con side red undamped harmonic motion with an amplitude A e-o,- t, 

(or either of the other two values). In this sense we can say that 

when C<< < 1 ' the amplitude at any time t can be con side red to 

be 
A ~ 4;-~ 

It follows from this that 1 2m is the time for the 1 e = R.-6( 

amplitude to decrease to 1 of its initial value. By measuring -e 

this time one can determine 0\ • If q· is not small compared to 

1 one still can determine ~ by measuring two successive positive 

(or negative) peak values xn 

shown (see problem 2.8) that 

2.6 Driven Harmonic Oscillator 

and (Fig. 2.5). It may be 

(2.15) 

An important type of motion results when a damped harmonic 

oscillator is subjected to sinusoidally varying force of the form 

F
0 

cos cUt where F
0 

and uJ are constants. If such a force is 

applied to a damped oscill~tor it is observed after sufficient time 

has elapsed, that the particle is executing a repetitive type motion 

which has exactly the same frequency u.J as that of the driving 

force. The equation of motion for such an oscillator is 

(2.16) 
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The general solution of this equation consists of the sum of two 

parts: 
. •o /)" 1/) () the general solution of the homogeneous part

1 
M)( ·r 1< x -1 ,, ~ -~: ) 

and any E_articula~ solution of ·the ent:i re equation. The solution 

of the homogeneous part is exactly that of the damped oscillator 
I 

which was found in the previous section. The experimental observa-

tion~ suggest that a particular solution might be of the form 

(2.17) 

where C and G are constants. Differentiating this expression 

to obtain 
. . ' 
x and x and substituting for x, i, and x in 2.16 

one obtains 

which on expanding sin ( (.vt - G) and cos ( V-Jt - G) and rearranging 

becomes 

[ (' ~ (~· ~,, -k) ,,_,, ,, + F( &J c, ,, ['} - (;:] c, .. ,;I 

-{- c (1}:·- ~i) /.h1) u_,,_ [) -/ (_? u) S-ki 0 J tJI-<; IJ( .: Q 
(2.18) 
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Thi~ expression must be identically zero, i.e. zero for all possible 

times if (2.17) is to be a solution of (2.16·). It is apparent that 

if we can make 

I . 

and 

- F·· = o 
0 

... () 

by a proper choice of C and G, then (2.18) would indeed be 

identically zero. A choice of G such that 

·-- . -·--~ --- --

VR '<; ((.Vnl · k/u!) 

ja.q IJ ·::: 
tOOl · 

R ·"·-· .... 
-·---~-------·----) 

(fo ~~ (!v 111 - kft,J) -

(2.19) 

will make the second of the above equations correct. One can sub­

stitute this value of G in the first equation and solve for that 

value of C which will make the first equation true. One finds 

A particular solution nf (2.16) is thus 

. / fl.\,, 
II'(~} (7 
\. 

·x .. 
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and the general solution ·is 

'v 
,-;,, t\n!' <t.! 1/ 

wher.e 

The first tenn of the solution is called the transient part since 

after a sufficient time has elapsed its contribution to x becomes 

negligibly small. The second term, the particular solution, is 

called the steady state solution. · No·te that after the transient 

part becomes negligible the motion of the particle is simQl~ 

harmonic with con's tan t ampJ) tude. The sys tern is then said to be in 

the steady state and its motion is then.described by (2.20). For 

convenience let 

--~e-·--- -==-"'~·~ 

:z~.\ ~ vk ·:~-~~~ ·-2~)~~·-~. /-( /41) ·.·. (2.21) 

so that one may write for the steady state 

r; 

(2.22) 
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We note that 
. 0. 

X, X, X, and the driving force F
0 

cos w t 

all vary harmonically with the time, and that all have the same 

frequency and period, but that in general no twci ~f these quantities 

are in phase. It should be apparent that X and 
Pn 

X differ in 
I 

phase by 180° and that the driving force F cos L)J t and x differ 

in phase by G. A more complete discussion of the phase relation­

ships will be deferred until a complex solution of (2.16) is 

d~veloped, iince as pointed out earlier, phase relationships are 

then much more readily apparent. 

2.7 Mechanical Resonance 

Let us now calculate the rate at which the driving force does 

work or supplies energy to our driven oscillator in the steady 
,c.:) 

state condition. Recalling that the work done by a force. F in 

an infinitesimal displacement 
~ 
ds is by definition 

the rate at which work is being done by the force is 
d w •"') d~ ·~"'> ·"'' •• :) 

dt = F · dt = F · v where v is the velocity. The rate at which 

the driving force is supplying energy at a given time is thus 

The average rate at which this force supplies energy, the average 

being taken over one cycle, is the work done by this force during 

one cycle, divided by the time required for one cycle, i.e., divided 

by t1"te f=lGriod 
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Substituting for. cos Q from (2.19) and for Zm from (2.21) this 

may be written as 

(2.23) 

If the angular frequency w of the driving force is varied, keeping 

the amplitude, F
0

, of the driving force constant, then p, will 1av 

vary since it depends on W . A plot of P. as a function of uJ 1av. 

under the condition of constant F
0

, is shown in Fig. 2.6. This 
r- ·"····. 

curve attains a maximum when t)J:: u.)L -:~· V .i//;,1 as should be evident 

from an examination of (2.23). This angular frequency and the 

corresponding actual frequency at which average input power p, 
1av 

has its peak .value the resonant fregueng!(iit'i · of the 



syst 
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t; ( ~t (~ ~~· ( 
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1 ,' .' ''t ~ I ,' ;. I ,~ '/ 

(2.24) 

The resonant f~equency and the shape of the P. 
lav 

versus 

frequancy curve are two important characteristics of an oscillating 

system,· As a quantitative measure of the sh~~ of the curve, one 

uses a quantity called the Q of the system which is defined by 

(l) 
... IU),:. 
.. 

/();> ,. (!), 
(2.25) 

where uJ 1 and uJ 2 are the two angular f requen c ie s at which the 

input power P. lav is 1/2 of the input power at resonance. These 

two frequencies are indicated in Fig. 2.6. If they lie close to 

each other then Q is large and P. decreases rapidly on either lav 

side of the resonant frequency, and the resonance is said to be 

If '1} ,. 1 and t<l
2 

are widely spaced then Q is small and 

Piav is approximately constant over a range of frequencies in the 

neighborhood of the resonant frequency. When this is true the 

resonance is said to be broad. 

One can determine which parameters of the oscillating system 

determine its Q by calculating ~~l 

is one of the angular frequencies for which 

we have 

t; h 

as follows. 

P. lav = 1/2 P. lav 

If 
I 

(/) 

max 

(2.26) 



21. 

Rearranging and simplifying one obtains 

I 'J ~ j I 
uJ 01 ·- _,<;· 1 w 

This equ9tion gives rise to two quadratic equations, one for +R 
I 

and one for -R. Writing both of these down side by side and solving 

each 'for 

I 
1).) : 

. I 
!AJ we have: 

I I. 
U) Iii 

I 
(.1) ~-

I< 
r;J V)1 

There are thus four values of LV
1 

which satisfy (2.26). However, 

we note that two of these val~es are negative and have no physical 

meaning. Setting the larger of the positive values equal to W~ 

and the smaller one to W 1 yields 

w, 

Substituting these values in (2.25) gives 

1"""=---~~-"'--- ~·---

{\) 
wh l~'l -L l/k J'Yl (2.27) .. .-~-~---~~~0. .. 

F< 'F<._ 



Rearranging and simplifying one obtains 

This equ~tion gives rise to two quadratic equations, one for +R 
I 

21. 

and one for -R. Writing both of these down side by side and solving 

each •for . I 
cu we have: 

There are thus four values of 

I ;.~, 

LO !Jj 

I h. .. f 
il: w lch satls·y ( 2. 26) . However, 

we note that two of these val~es are negative and have no physical 

meaning. Setting the larger of the positive values equal to W~ 

and the smaller one to w, yields 

~--- - -----~--~ -·~-- ·--

tAJ?.. fL -t· R/z;;J) ~- ·i f</ll1 
:> IYi 

w, -
F\) 

·-1- V(R-/ ?.::1);-~- -~;;;~; 
,-

;) IY\ 

Substituting these values in (2.25) gives 

W~c }1·1 
-·'"""--.·~~"'-"'·--'-~& • .>. (2.27) 
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2.8 Complex Form of Solution of the Driven Oscillator 

In section 7 we found that the steady state solution of the 

equation of motion 

·I· (/ v .. > ('· 

of a driven harmonic oscillator was 

r· 
I t_.1 

j ,, \ 
I .- (/) 

(2.28) 

'I 

'· ·/,../ '). 

If one is interested only in the steady state solution as is oft~n 

the case, it turns out one can obtain such a solution with less 

algebra by the following technique. Suppose that a force F sin cv' t 
tJ 

rather than F coswt (this simply means starting to measure time at 

a different instant) is applied to the oscillator and that y rather 

than· x is used to measure the displacement. The equation of.motion 

in this case would be 

(2.29) 

If we multiply (2.29) by 1 and add it to (2.28) we have 
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n) ( -x· i ) ~r ) 
' Q ' i? ();' '( ~; L1 ) 

. ' ' - .-! ' ' . ' .,., ~ (2.30) 

I 

which by setting X = X + ~y can be written 
1/'-r'\•, 

\ 

I 0 <• 
!<~ /" ./u!{ 

)YI '(i -1- F X ~l '(,~, " {' (2.31) " II 
"••.-'\-, ..... \_ 

If one can find a solution of this complex differential equation of 

the form 

where x1 (t) 

that x1 (t) 

solution of 

function 

where 

·';(, (J) 1/ (/) 
\I I /' 

and y1 (t) are real functions, it should be apparent 

would be a solution of ( and y1 (t) would be a 

). Now it is readily verified that the complex 

A .. 

?.'?I 

/ ir) ;( A. (' .. 

;( 
""''· o=-,,__."--~,,_~=.-~· ---~--~•=-._,J~A~·-----.-.• "', 

l s a so 1 u t i on 0 f ( ~- :c,) ,. Hen c e + h P 1~ e ? l I' art of 
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(2.32) 

must' be a solution of (2.28). If we write the complex number 

R + .i:( tum = K/11.> ) in exponential form we have 

Hence 

X .. 
J i '• v;; '.L 

F-"~ 

' ' 
i f..",. ~-~~.~ .r, 
i 
i 
i 
l_r., 

I tc•N· 
,..---·! 
( ' /( ~) 

+ / ( l ~I:': 'f J. 
I () 

The.real part of this is exactly the steady state solution we found 

earlier. For reasons mentioned earlier we prefer to regard (2.32) 

as the steady state solution of the driven harmonic oscillator, and 
I ,.._/, 

to regard F
0

e" !{!A. as the driving force. Taking the real part of 

these complex functions will always give us the actual solution and 

driving force. If we let 

(2.33) 

we can write 
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' 
11)! ~ ;:: d ;:_ ... c .. 

,{ tO ·v .. r· I'\~ ,I. 

( 2. 34) ('\"\.-"''• 

., 

(I' /~ 
I;)·( 

'I· 
')( 

<';,/ .. c t() t' (l)v 
{\ .. •v'' 
.-· .. ~-, ;/ n! 

~ , .. ,.' 

'•' The rGal of ' parts x, X and X correspond exactly to the express1.on 
'~I 

··-.... (--"~ 

\ ~' ' - ',1, 

for x, and given in ) . If at can arbitrarily chosen 

instant of time, 
(\ " plane one represents .?C' ;><.' X in the complex one 

ootain s a figure like that shown in Fig. 2.7. Although the position 

of x is arbitrary since it depends on the particular instant of 
··-~-~. 

time chosen, ·once x is drawn, the positions of 
r,-..._,., 

I 

X and . ' x are ... "". 

fixed from the relation ' x = it;.Jx 
~>A·· 

and Note again that 

the angle between any two of the quantities is exactly equal to the 

differepce in phase between the corresponding real quantities. 

Moreover, we note that the (complex) driving force is 

~elated at every instant of time to " 3 by the second of equations 

(2.34). This may be written 
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" If at any instant of time one represents ~ in the complex plane, 
,, ' ( K) • then the quantities R~"' and ! tOm = zu ~ and their sum are fixed 

I 

as indicated in Fig. 2.7b. From this figure it iB easily seen that 

the angl~ between the vector· representing F 0e~~f and that repre-

senting 
I 

X is the angle whose tangent is (tOm = K/~~J )/R which is 

the angle Q defined earlier and is exactly the difference in phase 

between the driving force F cos ~ t and the velocity 

x = E.r· cos( tt>t - Q). In drawing the figure it was assumed that zm 
K 

(l)m > --· • For this case the driving force "leads" the velocity by 
[.\) 

the ang1e Q. 

Because of the re1atively greater ease of manipulation and 

the fact that the phase relations are more readi1y apparent, one 

usua1ly prefers to do algebraic manipulations with the quantities 
IF 

x, x, ~. and 
l'l'V" ,..~r-. 

,/.. 
,,( V..J ( 

F e remembering that by taking the real parts of 
0 

these quantities he can obtain '" de) x, x, x and the real driving force 

F
0

cos u) t. The technique of working vyith complex rather than real 

solutions is a1most universally used not only in the study of 

vibration and sound, but also in the study of electric circuits. 

It has the rather considerable advantage, not really brought out in 

the simple examples illustrated, of reducing the solution of a set 

of differential equations to the solution of a set of algebraic 

equations involving complex quantities. It should be pointed out 

that in dealing with energy and power one must use real quantities. 

In calculating, for example, the average power input as we did in 

velocity. 

''):; I 
!I !\ ' 

(1 ,\ 
), 

iY1 

' ) 
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2.9 Mechanical Impedance 

For a driven damped simple harmonic oscillator, the quantities 

'" and are referred to respectively as the complex X, X, X 
ry,, t,..,. "'"'"' 

acceleration, complex velocity, complex displacement, and complex 

dri~ing force. The ratio of the complex driving force to the.com­

pl ex ,velocity is called the mechanical _i.!_nped_ance L1n of the system. 

Thus 

-7 
;7 

,- tl! 
..-·\~v''\ 

Note t h a t the .a b so 1 u t e v a 1 u e of Zm i s 

a quantity we had defined earlier. The mechanical impedance Zm , 
.. ~. \._ · .. 

the driving force and the velocity " x play roles in a 

mechanical system that are analogous to the roles played by the 

electrical impedance, the applied emf, and the current in an 

electrical circuit. 

2.10 Stiffness, Resistance, and M~ss Controlled Oscillators 

For a given driven harmonic oscillator it may happen that 

over a certain range of ~):requencies one of the three terms R, UJ}·r1 
-~ 

or Klttl is much larger than the other two. At frequencies con-

siderably below resonance, for example, K/ · may be much larger 

than R or uJ m. If so then Z ;; K/r' m c-v and 
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f 
Such.an oscillator is said to be stiffness controlled over this 

range of frequencies. Note that it has the important property that 

the displacement amplitude F
0

/K is independent of frequency. 

Similarly, for frequencies near the resonant frequency of the 

system, R may be large compared to ( u; m - K/tu ) so that over 

this range Z · ~· R and 
m 

"-" 

(/) /~ 

i l ,.' 

;~, ·. ~ ', i {.I ) { 
\ 

\ 
'. ~ } 
l I j 

Such an oscillator is said to be resistance controlled. Note that 

although the displacement amplitude is not independent of frequency, 

th 1 · t 1 · t d · F · 11 if W m > > I< R then ·- e ve ocl y amp l u e ls. lna y uJ or 
"'-/ 

Z = uJ m and such an oscillator is said to be mass controlled. A m 

mass controlled oscillator has the sometimes desirable property that 

the acceleration amplitude is independent of frequency. 

2.11 The Loudspeaker as a Driven Damped Oscillator 

As a practical and sometimes useful example of a system that 

behaves to a first aooro~imation as a driven damped harmonic oscil-

lator consider the familiar permanent magnet loudspeaker. Two 
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sketches showing the essential features of the loudspeaker are shown 

in Fig. 2.8. Fastened securely to the center of the speaker cone is 

a short hollow plastic cylinde~ on which is wound several turns of 

copper wire, constituting that is called the voice coil. The speaker 

con~ is flexible allowing some. motion of the voice coil along the 

axis ,of the cone but subjecting the coil to restoring forces whene~er 

it is moved in either direction from its equilibrium position. The 

voice coil is positioned so that it lies in a ma_gnetic field set up 

by a permanent magnet and a soft iron frame. A cyrrent I flowing 

in the voice coil gives rise to a force on the coil, and for a 

magnetic field '12 and a coil length -~' the force is simply 
., (/ . ,. 

since the field is arranged so that it intersBcts each element of 

\ the coil at right angles. A current I= I
0 

cosuJt will thus pro-

d0ce a driving force '
1.) --'--. I

0 
cost•\t. Motion of the voice coil and 

speaker cone results in mechanical energy being lost from the sy~tem 

in the form of sound which is radiated and heat which is generated 

in the cone. In representing the speaker as a driven oscillator we 

associate these losses with a damping force proportional to the 

velocity of the voice coil. Thus we write for the equation of 

motion of the voice coil of the speaker 

k t:J 
(• 

( ,' ",t· <I 

.\. .••• f) 

I 

c):·\:). t~J x;c~ 

where y represents the displacement of the voice coil from its 

equilibrium position. To get better agreement between the predictions 

of this equation and the actual motion of the voice coil the m 



30. 

should include not only the mass of the voice coil but also some 

fraction of the speaker cone. The K in the equation depends on 

the stiffness of the speaker cone. The st~ady state motion of the 

voice coil will be given by the real part of 

. I 

\ 
l't} 

where 

is the mechanical impedance of the speaker. 
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Chapter III WAVES ON STRINGS ' 

.. , 

1. Introduction 

Waves and wave motion play an important role not only in 

the classical areas of acoustics and optics, but also in many 

areas of modern physics, as the name wave mechanics would sug-

gest. To write down a meaningful definition of a wave is some-

what difficult. However, some concept of what is meant by a 

wave may be obtained by observing visually the behavior of the 

system sketched in Fig. 3-1, consisting of a number of blocks 

of wood fastened at regular intervals to a wire which is sus-

pended from the ceiling. If the lowest block A is given a 

sudden twist it will be observed that this motion will be trans-

ferred to the block immediately above it, causing it to twist, 

and' that the motion will be transmitted in turn to the next 
I 

block and so on. We describe this motion by saying that a wave 
0(!111;J . 

isApropagated along the wire. When the mo~ion which is being 

transferred to successive blocks reaches the block which is 

fastened to the ceiling, a transfer cannot take place, and 

one observes that the motion is impressed a second time on the 

block immediately below the fixed one and subsequently trans­

mitted in turn to each block below it. We say that the wave 

'has been reflected. When the wave reaches the lowest block, 

a second reflection takes place and the whole process is re-

peated. Eventually the motion of the block ceases, the initial 

energy being dissipated in internal friction in the wire. 
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In the example above, several characteristic~ of wave 

motion may be noted. First there is a definite time required 

for the motion given to A to be transmitted to any given block 

above A, i.e., the wave is propagated with a finite velocity. 

Second, although energy is transferred from block to block along 

the wire there is no actual transport of mass along the wire. 

Third, when the wave reach~s a point such as D or A where the 

properties of the medium change, a reflection of the wave takes 

place. 

If bl~k A, instead of being given a sudden twist, is given 

a periodic motion by twi~ting it back and forth by hand, one 

observes after a short time has elapsed that all of the blocks 

are in motion, oscillating about their equilibrium positions. 

When this steady state has been established, one no longer can 

observe that waves are being propagated up and down the wire. 

All one observes is the regular motion of the individual blocks. 

Nonetheless, it is reasonable to suppose that waves are still 

being propagated and that the motions of the individual blocks 

are produced by these waves. 

Although the above system of blocks on a wire is admirably 

suited for demonstrating waves, it is not the simplest system to 

analyze mathematically. We consequently will begin by studying 

transverse waves on a string. 

2 . 
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2. The wave equation. 

It is readily observed that a string fastened between two 

points and under some tension will vibrate i/ pulled ~side and 

then released. The wave nature of this motion is not readily 

apparent; all that we can observe is that each small piece of 

the string oscillates back and forth in some regular fashion. 

Nonetheless, as we shall see, the oscillations are readily ex-

plained in terms of waves travelling back and forth along the 

string. First we need to see how one describes the motion of 

such a string mathematically. Let us a~sume that the motion is 

confined to a plane which we will take as the. x-y plane. In 

Fig. 3.2 let the solid line represent the configuration of the 

string at some instant of time t1. Using the coordinate system 

indicated in the figure, we can describe the configuration of 

I 
the string at time t1 by some function Yl(x) which if plotted 

I 

w~uld coincide exactly with the position of the string at every 

point. At an~ther time t 2 , the string would have a different 

configuration and thus would require a different function y2 (x) 

to describe it. To completely describe the motion of the string, 

i.e., to specify its configuration at every instant of time thus 

requires a large number of functions of x, one for each instant 

of time. This entire set of functions can be represented for-

mally as y(x,t), each individual function of x being obtained 

by inserting the corresponding value of time. An equally good 

way of describing the motion is to specify how each point of the 

string moves in time. This requires a la·rge number of functions 

3. 
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of time, one for each point of the string. This complete set of 

fpnctions can also be represented by y(x,t), the function of 

time f~r a given point being obtained by inserting the x 

coordinate of that point. Thus the motion of a string vibrating 

in a plane can always be described by some function y(x,t). 

We will now show that~ function y(x,t) which describes 

the motion of a string must meet a certain requirement; it must 

be a solution of a partial differential equation called the wave 

equation. This. condition comes about by requiring the motion of 

each small piece of the string be governed by Ne~tonis second law. 

Referring again to Fig. 3,2 let us isolate for consideration a 

small piece of string of length ~L. Fig. 3.3 shows this small 

piece considerably enlarged and shews the two forces T1 and T 

exerted on its two ends by the other portions of the string*. 

Newton's second law applied to this small piece, assuming it 

* A sketch showing !!..!l. the forces acting on this piece of string 
would show in addition a gravitational force and a damping 
force. For any real strin~ the magnitude of the gravitational 
force 6an be shown to be extremely small compared to T and Tl 
(se~ problem 3,1), so that the effect1neglecting it is in­
consequential. For real strings, the damping force is not 
negligible, since it is readily observed that a vibrating 
string left to itself comes to rest rather quickly. Never­
theless we will neglect the damping forces at this point in 
our development to keep the mathematics as simple as possible. 
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moves only in a vertical direction yields the following two 

e~uations. 
.., 

== D 

-r'('_ ~ 
I ~""\ - TS<M 4" --

Here m is the mass of the piece and ay stands for the y-component 

of the acceleration. If the amplitude of vibration of the string 
I 

at any point is small then the angles~ and 6.; will be small no 

matter which piece of string or which instant of time we choose. 
I 

If~ and « are sufficiently small then to a good approximation 

If we mcike these approximations we see that T = T1 and the y 

equation of motion can be written as 

(3 ,1) 

Iff is the mass per unit length of the.string, then;4.x may be 

written for m. Also if ~(x,t) represents the configuration at 

the instant of time t we are considering 



': 6. 
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1
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iht~ ~I :.. £ (x )-t) 
::: 

J.y, X,1 

Since y(x,t) also specifies how that P-Oint of the string a 

distance x from the end moves in time, the acceleration of the 

~idpoint of the small piece of string under consideration is 

We can now write (3.1) as 

{).,.~. clr.,J b'i··' t.:.x a.,d._ ~t?fSt~-'>7 -h -life lt"n,;-f ~s L\x -'> o we. 

/,ave f"l()-n-1 ~~ d~fint-l·t~h 0 t "'d.w-,rvqf,v.::: 

This is the wave equation for waves on strings. Any function 
b{>Sii) 
~) which is to descrive the motion of a string (subject of 

course to the restrictions and approximations mentioned above) 

must satisfy this equation. The quantity T in the above equations 

is called the tension in the string and is equal to the magnitude 

of the force any given segment of the string exerts on any 

neighboring segment. 



-( 
\ 

7. 

3, Solutions of the wave equation. 

Any function y(x,t) which satisfies the partial differential 

equation (3.2) is said to be a solution of it. Fundamentally4 

one finds solutions by trial and error, although as we shall see 

presently, there a!e general methods of finding solutions which 

work in many instances. Before looking for any solution we note 

that (3.2) h'as the following important property: if one can find 

two different functions, say !l(x,t) and Y2(x,t) both of which 

satisfy (3.2) then their sum or more generally, the function 

<:..-·-

t 
(3.3) 

~ 
where a and bare arbitrary constants, is also a solution. This 

-+d 
may be 

easily proved as follows, Substituting (3.3) into (3.2) one obtains 

-- t 

which on rearranging becomes 

- . 'l. 

J c~ ~-~ 
a .L a-"'~ 

~1. '] -~ 

Since y1 and Y2 both are solutions, the terms in brackets are zero 

and hence y = ayl + by2 is also a solution since it satisfies the 

differential equation. 

f / I / I,! ,; .·!-' · J~, i l I • • 
J 
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It is easy to show that ~ function y(u) where u = x - ct 

satisfies the wave equation (3.2). We havel using the func-
'· 

t"ion of a function rule; 

a :: ~ ~ - ~ (,) 
~x ~l{, ~X - d.U.. 

'L . (3.4) 
~7.u. [j-t~Jl•" . 3.Jf (I) 
~X'l. = u .j-lt ~ .;)l-!1. 

:!.'i, :: ~~) :- ~(-c) 
d-t Jlt .}1- c:1tt 

:: (3.5) 

Substituting y(u) into (3.2) using (3.4) and (3.5) yields an 

identity proving y(u) is a solution. It should now be evident 

that .!L!lY. function y(v) where v = x + ct also will satisfy the 

wave equation, and it should be evident that setting u = ct - x or 

v::;:: ct + x would not invalidate the .argument. By virtue of the 
• ''-·I 

the sum of~ function Yl(u) and~ 
j 

other function y2 (v) is also a solution. We assert without proof 

(3.6) 

1S f/lQ, ~€rH'...>,~[ so(....._-~tovt ¢f Tif.Q WQve.. C88tta.+tt>l1 11'1 7lf..e_ 
sense that any solution we may find of (3.2) can always be derived 

from (3.6) by writing some specific function for Yl or Y2· The 

function y(x,t) which describes the motion of a vibrating string 

thu~· must be of the form (3.6). 

Any function y(x-ct) represents a "disturbance" moving to 

the right with a. v~locity c. This may be seen from the following 
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considerations. At time t = ~ y(x- ct) becomes simply y(x), 

i.e., some function of x. Suppose, for example, this function 
.. 

when plotted gives the curve shown in Fig. 3.4(a). At another 

time say t 1 , y(x ct) becomes some other function of x, namely 

9. 

y(x- ct1l = y(x- x1) where x1 = ct1. But we know from analytical 

geometry that y(x - XI) has the same form as y(x) except that each 

point is displaced a distance XI to the right. Hence y(x - ct1) 

must look as in Fig. 3.4(b). In time t1 the "disturbance" has 

moved a distance x1 to the right, hence must be moving with a 

speed c = x1;t. Thus the quantity c = Fr must represent the· 

speed with Which a disturbance or wave moves along a string. By 

a similar argument one can show that any function y(x + ct) repre-

sents a disturbance propagating to the left with a speed c. 

4. Harmonic solutions of the wave equation. 

Although at this point we already know the general solution 
I 

of the wave equation (3.2), let us imagine this were not the case 

and we were attempting to find a solution. A very useful technique 

in finding solutions is to "separate the variables", which in the 

case of equation (3.2) means to look for solutions of the form 

(3.7) 

, where X(x) is a function of x alone, and H(t) is a function of t 

on 1 y.. Subs tit uti n g ( 3 . 7) i n to ( 3 . 2 ) one o b t a ins after rea r r a n g i n g 

- I 
(3.8) 

- -H 

., 
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If (3.7) is a solution of the wave equation then condition (3,8) 

m_ust hold, and moreover it must hold at~ point of the string 

for all times, and at~ time for all points of the string. 

Since the left hand side of (3.8), being a function only of x, 

doesn't change with time, the right hand side of (3.8) must be 

the same for all times if the two sides are to be always equal. 

Hence both sides of (3.8) must equal a constant. Calling this 

constant -w2 we obtain from (3.8) the following two ordinary 

differential equations 

.:. ' (3.9) 

d2.({ ~ - w '2.. H 
dj;'~- ~ . 

If solutions of these ordiflary differential equations exist then 

X(x)H(t) will be a solution of the wave equation. Both of these 

equations have the same form as the equation of motion of a simple 

harmonic oscillator. Their general solutions are therefore 

a co-a. QU!c) ;< + 

A 
where a, b, d, and e are arbitrary constants. If~ solution of the 

wave equation thus ~~~~~ ~ 

\ 

(
. <.1)-1; /';"' (w/.\ + bP·h-1/U)!C..Iy]l)"A~··'+ -f-e_~l).)t] 

~- >iji = La. ~(Jc;-;( \. .. Jc:..J !.0 VY.U w 

~ fc' OK'{¥ X -t fl ~ ~ ;J OnJwf -t- [ D tn~x ~ 8"" ~1x,, "tj 
((;,v) 
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Note that this is a solution of the wave equation'for every positive 

value of the constant ~and for completelY arbitrary values of 
.; to. .. n:; «. 

the constants A, B, C and D. Note that if such an equation re-

presented the motion of a string then each point of the string 

would be moving in simple harmonic motion with an angular fre-

quency u) For this reason, solutions of the form (3.10) are 

called harmonic solutions. It is easy to show (see problem 3.3) 

that the harmonic solution (3.10) can be expressed in terms of 

functions whose arguments are x - ct and x + ct. 

5. Boundary conditions, eigen frequencies. 

We have just seen that any function y(x,t) which is to 

describe the motion of a string must satisfy the wave equation. 

There is a second restriction. If the string is tied down at 

both ends as in Fig. 3.1 then obviously the two ends of the 

string never move. If y(x,t) is to correctly describe the string 

then 

~ (ol 7:.) = o 

~ (l, t) - 0 

where L is the length of the string. These, for obvious reasons, 

are called boundary conditions. 

Now (3.10) is a solution of the wave equation. Does it 

satisfy the boundary conditions? It may be seen by inspection 

that for x = 0, (3.10) will be zero for all values of t if C and D 

are taken equal to zero, i.e., the harmonic solution 
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(3.11) 

does satisfy the first boundary condition. This will also 

satisfy the second boundary condition if 

or 

U) 
(3.12) 

Thus harmonic solutions of the wave equation satisfy the boundary 

conditions only foi these special values of ~ . These special 

values of W and the corresponding act~al f.requencies) f::::. ~~J are 

referred to as characteristic or eigen frequencies. For each eigen 

fr~quency there is a function of the form (3.11) which satisfies 

both the wave equation and the boundary conditions. These are 
I 

referred to as characteristic or eigen functions. We list some 
I 

for reference. 

I 

' . . 

r; lTC ?I~ TIF- 1:] 
::- ,Do/11 If. X LA I CA.>4 L- t + /~ .... 

::: ~<f X [A._Cn<l. ~ t + B2. M-11 ~ f] 

If the string is vibrating so that the first of these, Yl(x,t), 

describes its motion, then the string is said to be vibrating in 

its first or fundamental mode. The corresponding frequency 
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f= vJ/;11:: c(;.L is called the fundamental frequency. It is the 

smallest of the allowed frequencies. If the string i~- vibrating 

so that its motion is described by (3.13) then it is said to be 

vibrating in its n!h characteristic mode. Note that the fre-

quency fn corresponding to the n!h mod~ of vibration is n times 
' 

the fundamental frequency. When the characteristic frequencies 

of a vibrating system are all integral multiples of the fundamental 

frequency, they are called harmonics, f 1 being the first harmonic, 

f 2 = 2f 1 the second harmonic, and ~o on. 

Suppose a string is vibrating in its nth characteristic 

mode. What is the general appearance of the string? Using a 

little trigonometry, equation (3.13) which describes the nth 

mode may be written 

(3.14) 

I 
where W - YIIIf 

I I) - /.. 
and C and 4>_ are constants related to An and Bn. 

'I n 

I~ we consider some particular point of the string corresponding 

to a particular value of x)say x1J then the quantity in brackets 

becomes merely a fixed number, the absolute value of which repre-

sents the amplitude of the simple harmonic motion of the parti-

cular piece of string at that point. This amplitude is, of 

course, zero at x = 0 9nd x = L and may also be zero at inter-

mediate points; in fact it will be zero for all values of x lying 

between 0 and L for which 

nL 77 X -:: 7r, 2 7r; e: "ff; 

For example, for the 4th mode, for which n = 4, x is zero at 

points for which 
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as well as at 0 and L. Points for which the amplitude of the motion 

is zero are called nodes, At points midway b~tween the nodes the 
. 

amplitude of the vibration is a maximum. Such points are referred to 

as antinodes. Because an object which is vibrating with simple har-

monic motion spends much more time near the end points of its motion 

(the velocity being smaller there) than it does at its midpoint, an 

object vibrating with a frequency of 30 cps or greater appears to be 

an observer to be two approximately stationary objects, one at each 

end point. Thus, a string vibrating in say its fourth characteristic 

mode appears as shown in Fig. 3,5. Because the pattern appears to-be-

stationary it is-referred to as a standing wave. 

6. Initial conditions, general solution. 

We have just shown that there are _harmonic solutions of the wave 

equation of the form (3.13) which satisfy the boundary conditions, 

there being one such solution for each value of UJ given by (3.12). 

It is possible for a string to be vibrating so that its motion is 

described by one of these characteristic functions. The cases for 

which this is true are very special and require that the string be 

set in motion in a special way. We inquire if it is possible to find 

a solution which will .describe the motion of a string started in an 
~6L-~<J a r b i t r a r y w a y . By v i r t u e o f t h e s u p e r p o s i t i o n ·P~~~i~~ t h e s u m of a 11 

the characteristic modes, 

+ (3.15) 

is itself a solution of the wave equation, and obviously satisfies 

the boundary conditions. We argue that if the A 'sand B 'sin (3,15) 
n n 
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can be chosen so that this sum correctly describes the motion of 

a string at a given instant of time then it will correctly describe 

the motion for all subsequent times. Let the given instant of time 

be t=O and let the motion of the string at this instant be described 

by the two functions y0 (x) and v0 (x), the first function specifying 

the position of each element of the string at t=O and the second 

the velocity of each element. If (3.15) correctly describes the 

string at t=O we must have* 

00 

,()~ !2!' ~ ~b(:r) - £A" - /.... 
Yl: I (3.16) 

• .. 

cO r'JJf 

~('K) ":; '!I£ i n 'Bn /.J4t L ;y 

L r'l..:l (3.17) 

The required values of the An's to satisfy (3.16) can be determined 

b y mu 1 t i p 1 y i n g b o t h s i d e s o f ( 3 • 16 ) b y s i n ( m -rr- . x ) d x , w h e r e m i s 
L 

some integeri and integrating from 0 to L. All of the terms on the 

right except the term for which m=n will then be found to vanish 

(see prob. 3.5) yielding 

L-

f ~ o ( "') MA't "J...rr ;< c;{ ?I' 
0 

The student may recognize the right-hand sides of (3.16) and 
(3.17) as Fourier series representations of the functions 
y

0
(x) and v

0
(x). 
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or 

(3;18) 

Similarly 

B ~ 
f) 

L . . .. r 'If;, r-x) <>wT '!r :y .< )( 
0 

(3.19) 

As an example consider a string which is released from rest 

from the position shown in Fig. 3.6. The initial conditions are 

·1/;{x) = o 

I 

It should be evident that all B:are zero. Substituting in (3.18) 

we have 

aL L 

]:_ [c-~ An z r ax .0~ Gl! X of.'( 
-(- a J YlTI' c1. 

:: L + (i ) ,0-41 - ri' 
7: ~ 1- I-~ J.. 

() ~L 

The integrals are readily evaluated using the method of parts 

yielding 

h -{2S•r* - ) / 



18. 

For I It ; .t ) L :: /OO ('m Cl= cmJ q ..;) 

the equation describing the motion of the string becomes 

The coefficient of the terms for n=3, 6, 9, . · .. are zero. A string 

vibrating in this manner would be said to have the 3rd, 6th, 9th, 

etc, harmonics missing. 

7. ~nergy considerations. 

Suppose a string is vibrating such that its motion is described 

by a function y(x, t). The kinetic energy Uk. of the string at any 

instant of time say t 1 is the sum of the kinetic energies of all 

the elemental lengths, i.e., 

u-k 
C) 

where the derivative is evaluated at the given instant of 

time t 1 and is, of course, a function of x. At time t 1 the string 

will have some configuration given by y(x,tl). The potential energy 

f '1 t . . th"is f. . . 1 h I d b o t1e s ring In~:~ con Iguration IS equa tote wore one y 

the tensile forces as the string is moved from this configuration 

to some arbitrarily chosen standard configuration. For convenience, 

we will choose the-standard configuration to be the configuration of 

the string when it is at rest (see Fig. 3.7). Now the potential 

energy of the string in any given configuration is independent of the 

way the string got to this configuration. (Recall that for conservative 

forces the work is independent of the path). In calculating .the work 
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done by the tensile forces we can move the string f~om the given 

configuration y(x,tl) to the standard confi~uration in any convenien~ 

way. We will move the string from the given configuration y(x,t 1 ) 

to the standard ,configuration in such a way that any intermediate 

configuration between the given and standard will be given by 

where ~ is some positive number between 0 and 1. 

Consider the ~tring in one of the intermediate configurations 

s p e c i f i e d b y y( x ) a n d i s o 1 a t e a s m a 11 e 1 e me n t o f 1 e n g t h /J L . 

The y-components of the tensile forces acting on the element are 

t}\e~(>_ 
T h e .w o r k d o n e b y :&:ii>£~ f o r c e$ a s t he s t r i n g i s m o v e d f r om t h e g i v e n 

to the 'standard conf~guration is 

f[-r 
~ (x,-t,) 

A 
o!.A·1.-

Remember that the quantity is evaluated at x and is a 

function of y, the variable of integration. Now 



~ (x) ::: (; ~ (-x ,1 ,) 21. 

!~. .. €-
b.£x~-tJ 

~ :l,.: '1--
d';("-

cUJ -:::: 
't(¥,1,) )~ 

Substituting one gets 6 

0 "'<Ib!.J dx ~ (~; tS1 cl G - ~) 'j-{~,t.) h f e-J~ 
d u· :' { Tc - T .;>t-.,. . 

p ..:))('Z. .1 
i 

'· . 
;) "l. ~ r~ , :tJ ~ (X j -ij) d x· 

:: I - .---~~ 

2. 'il>l'\, 

Dropping the subscript on the ~ we have for the potential energy 

of the entire string when it is in a configuration specified by 

TJ p 

' 
L 

~-f r'i(,,i) 
y(x,t) 

D 

This integral mcty be -recast 
.. 

different form by integrating 1n a 

using the method of parts Setting 

1._ 

U::~ -J 1T:: ~ dx 
~-')( ..... 

. dl{::Jif 'lf:: ~~ 
d'-1-

we get 



\... . L 

U =--r ~ ~-1 t '1' [ ~. cL1 - ;,))' f '2. ;;..."/. 1.. tl 
i) 

L ' 

0 + I t~l (_i':J. "1 "rf~rd~ - A. J-x >-x - • • 

The total energy thus becomes 
l 

1r-;:_ U 1 [[f :: 1 ( &f \ 1-J x u 1-l 2.. ) ~,) 
. () 

0 

L. 

+ T !/)~) ~i< 
2. \;).y. 

D 
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(3.20) 

(3,21) 

If a string is vibrating in one of its characteri.stic modes 
' 

so that its motion is described by 

then 

and (3,20 yields 

(3.21) 
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Chapter V. WAVES IN MEMBRANES 

If one blows across the top of a thin sheet of plastic 

(e.g. Saran Wrap) stretched across a rectangular or circular form 

as in Fig. 5.1 one will hear a characteristic tone. This tome is 

produced by the vibration of the plastic sheet. It can be inferred 

by inspection that the amplitude of vibration is ·very small, since 

it is difficult to observe with the unaided eye. In developing a 

description of the motion of such a "membrane" one assumes that the 

motion of any small piece is strictly at right angles to the plane 

frirmed by the undisturbed membrane. If one takes this latter plane 

as the xy plane, then the motion of the membrane.can be described 

by some function z(x,y,t). Just as in the case of the string it 

turns out t h a t a n y fun c t ion des c:r i b i n g the mot i on m us t sa tis f y a 

wave equation, this condition coming about by the requirement that 

the motion of any small piece of the membrane must be governed by 

Newton's second law. 

5.1 Wave Equation 

Consider first a membrane stretched over a rectangular form 

of length a and· width b. Let the origin of the coordinate system 

be at one corner of the m~mbrane as indicated in Fig. 5.2. We 

assume our membrane is homogeneous and isotropic and that the forces 

applied at the boundaries are uniformly distributed over the peri-

meter of the membrane as suggested in Fig. 5,3a. With such a 

uniform distribution, the magnitude of the force on any piece of 

the perimeter of length AL can be expressed as TAL where T is 

the force per unit length (the sum of the magnitudes of all the 
,, 

forces shown divided by the perimeter). If one isolates for con-

sideration the triangular (shaded) portion of the membrane shown 
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. 
in Fig. 5.3 a and b and asks what forces the adjacent portion of 

the membrane must exert on this isolated piece, ·in order that the 

isolated piece be in equil ilirium, one sees that these forces must 
~ 

have a resultant R whose x and y components must be numerically 

equal to T4L' and T.OL respectively. This resultant must have a 

magnitude given by 

R = \j-(T_jj_L_)a~,--+-(T-4L-'~)i::: TV~L);;,+(b.t')~ -=T {len3tho.t s;de~F] 
~ 

Moreover, it should be evident from geometry that R is at right 

angles to the· side LlF. By extending this argument to other por-

tions of the membrane one arrives at the conclusion that the force 

that any piece of the membrane exerts on an adjacent portion across 

the line separating the two is always in the nature of a pull at 

right angles to the line and has a magnitude equal to T multiplied 

by the length of the line. The quantity T which is determined by 

the externally.applied forces is called the tension in the membrane. 

It follows from the above argument that with the membrane at 

. rest, the forces exerted ~a small piece 6x ~y of the membrane 

by the adjacent portions are as indicated in Fig. 5.4a. In Fig. 

5.4b the membrane is shown at some instant of time t after it has 
-.: 

been set in vibration. The two forces labelled T" /ly and T' bY 

no longer lie in the xy plane; each makes a small angle with the 

x-axis, as indicated in Fig. 5,4c which shows the curve formed 

by the intersection of the membrane with a plane parallel to the 

xy plane and passing through the center of ~x~y. Since the motion 

of .&x 6Y is assumed to be .Q1!1_y in the z-direction, the x-components 
I 

of T" Cl.y and· T AY must add up to zero. 
II J 

If the angleso( and 6{ 

which these two forces make with the x-axis are sufficiently 

small so that the cosines may be taken as unity, then 



5.4 

T" Ay - T' Lly = 0 

or 
T" = T' = T 

where the last result follows from consideration of an element of 

area whose edge coincides with one of the boundaries. Since the 

y- components of the forces on A x /Jy m us t a 1 so add up to zero , 

it follows that T2 = T1 = T. Thus the magnitudei of the four 

forces shown in Fig. 5,4a remain unchanged when the membrane is 

set in motionj only their direction changes. 

The z-components of the two forces T" Ax and T' Ax is from 

Fig. 5,4c 

Til 'X ~in or''_ T A 'l- s)·n t.\(
1 = T IJ X- [i()Y\c.(''-tevr1,'6('] 

~ TA~ [tt I - h I ' J 
- L1rx 'X+b'X,~~t d-ry: -x.,~~t 

Similarly, by considering the curve formed by the intersection of 

the membrane with a plane parallel to ·the yz axis and passing 

through the center of t:.x f)y, one finds the z-components of the 

Newton's e,uation of motion for the element thus becomes 

through by .(lx AY and passing to the limit one obtains 
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+ 

or 

( 5. 1) 

This is the wave equation for waves in membranes and any 

function z(x,y,t) which is to describe the motion of a ~ 

membrane must be a solution of this wave equation. 

It is a simple matter to demonstrate that any function f(u) 

where 

u = ct - (x cos Q + y sin Q) 

is a solution of the wave equation (5.1) for arbitrary values of 

Q. That functions f(ct- [x cos Q + y sin--G]) have wave properties 

can easily be ieen by choosing a new coordinate system X, Y where 

axes are inclined at an angle Q to the xy axis as indicated in 

Fig. 5.5. For any point P, the x and y coordinates are related 

to the X and y coordinates by 

X = X cos Q + y sin 9 y = y cos 9 - X sin Q 

Hence f(ct ~ 9] ) f(ct X). 
-#, i.s 

- cos Q + y_ sin becomes - ~- we 

recognize as a disturbance being propagated in the +X direction 

with a velocity c. Hence any further f(ct - [x cos Q + y sin 9] 

represents a disturbance being propagated in a direction making 

an angle Q to the positive x axis. 
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5.2 Harmonic Solutions, Boundary Conditions; EigenFunctions 

The general approach for finding solutions of partial dif-

ferent equations is to separate the variables, i.e. to look for 

solutions of the form 

z(x,y,t) = X(x)Y(y)H(t) (5.2) 

where X(x) is a function of x)~ Y(y) is a function of y only 

and H(t) is a function of t only. Substituing (5.2) into the 

wave equation one obtains after rearranging the following expression 

_1_ d2Y]= 
y dy2 

If (5.2) is a solution, the above expression must hold for 

all values of x,y and t. Since the left-hand side is only a 

function of x and y it doesn't change with t, and hence the right-

hand side must be the same for all times, Le. equal to a constant. 

C a 11 i n g t h i s c o n s t a n t-W2 we. o b t a i n t h e f o 11 ow i n g t w o o r d i n a r y 

differential equations 

1 

H 
-w 2 

1 

y 

The general solution of the first of these should be immediately 

apparent. It is 

H(t) = c3 cos wt + 03 sin Wt 

where c3 and o3 are arbitrary constants. 
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The second equation must hold for all x and y if (5.2) is to be a 

solution. Again this leads to the conclusion that both sides 
. 2 

must be equal to a constant. Calling this constant-« we obtain 

the following two differential equations 

1 d 2Y ---- = 
y dy2 

We can write down the general solutions of these two equations 

immediately since they are of the same form as (5,2) provided 

W ).cf. We obtain 
c 

X= c1 cos cyx + 01 sin cyx 

Y = c2 cos {(~)~-rx 2 y + n2 

Our solution of the form (5.2) is thus 

. - --
2 

- <1- y 

~('X,Ilf Jt) = [ cl cos C( 1-- + D I sin cy rx, J [ cd- CoSY(~)~~ d. ~ t- Dl' 

Sin V(~fl-~~~J [c3 co~ wt + D3 Sin wi] 
This is a solution for every value of w and every value of. 

(5.3) 

and for arbitrary values of the constants c1 , c2 , c3 , o1 , o2 , o3 . 

If such a function did describe the motion of the membrane, then 

any point (x,y) of the membrane would be moving in simple harmonic 

motion with a frequency W. For this reason (5.3) is called an 

harmonic solution. 
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' If th~ membrane is stretched over a rectangular form of 

dimensions a and b, then function, z(x,y,t), describing the 

motion of the membran~ must satisfy the following boundary 

conditions: 

(i) z(O,y,t} = 0 

(i i) z(a,y,t) = 0 

(iii) Z (X, 0, t) = 0 

(i v) z(x,b,t) = 0 

If we examine the harmonic solution (5.3) it is apparent that if 

we choose c1 and c2 both equal to zero, conditions (i) and (iii) 

will be satisfied. 
M t)f'i! M~ . 
~. we can satisfy condition (ii) for 

arbitrary values of o1 if we restrict o/ to values given by 

((< = !!0I m = 1,2,3, 
a 

and we can satisfy condition (iv) for arbitrary values of o2 if we 

restrictV(¥1) 2 -·Ot 2 to values given by 

!!JI 
b 

n == 1,2,3, ...... . 

We see from these two restrictions that the harmonic solution (5.3) 

will satisfy the-boundary conditions only for,values of w given by 

and hence for frequencies 

f 

m = 1,2,3 
n = 1,2,3 

These values of Wand f are of cohnse the eigen frequencies and 

the corresponding functions, 

'{,~'X.,~, i) == Sin ~X Sin n:b~ "t [A.,ncos (c &fY+fb')\ )-• 
BrnnSin(c{~~Tit T~~J't )] 
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are the eigen functions of a membrane with a rectangular boundary. 

There is an eigen function for any combination of values of m and 

n. The smallest of the eigen frequencies 

is called the fundamental frequency and if the membrane is vibrat-

ing so that its motion is_ described by the corresponding eigen 

function 

'Y11 (?:, "f1t) :::: Sin .1f 'X- Si Yl -1;"- '}[A 11 cos (c ~ 0f)" +Aft i) + 

811 Sin (c J &=Y+&Y t )]::: ~~~ Sin~x Sinlf-JJ cos (w
11
t +¢

11
) 

it is said to be vibrating in its fundamental mode. If it is 

vibrating in its fundamental mode, the amplitude of the motion 

(represented by the quantity in the brackets) is a maximum at the 

center of ~he membrane, since the two sine terms in th~ bracket 

have a value of one at that point. Since sin JT x sin TI x 
a b 

is positive for every point of the membrane, if at any time 

z 11 Cx,y,t) is positive for any.one point it will be positive for 

every other point; the· motio~ of any point of the m~mbrane is thus 

in p~ase with the motion- of every other point. 

If a membrane is vibrating so that it is described by the 

eigenfunction for which m=2 and n=3 i.e. the function 



then it should be' apparenCthat the amplitude will be zero for 

any point for which 

X = !!_ 
-2 

and zero for any po1nt for which 

Y = b . 2b 
3' T 

H~nce, in addition to the boundaries there will be nodal lines as 

indicated by the dotted linei in Fig. 5.6. Note that the quantity 

Sin 2'fr X S in ~ y. i S p 0 S it i V e f 0 r eVery p 0 i n t i n the Shaded reg i 0 n S 
a b 

of Fig. 5,6 and negative for every point in the unshaded regions. 

If then at some instant of time z 23 (x,y,z,t) is positive for one of 

the points in the shaded regions it will be positive for every point 

in ·the shaded regions and negative for every point in the unshaded 

regions, Thus the motions of any two .points in the shaded region 

are in phase, and are 180° ·out of phase with the motion of any point 

in the unshaded region. 

5,4 General Solution, 

The s urn 
Ci.> ():) 

':r(~/~J-t)~ L_ 2: SIYl~'XSin ~[AM~cos Wr<lht i-8Mn• 
n.-:::1 )1'::..1 . 

of all the eigenfunctions is itself a solution of the wave 

equations satisfying the boundary conditions. It may be regarded 

as a general solution in the sense that with the proper choice of 

the Amn's and the Bmn's it will describe the motion of a membrane 

started in vibration in an arbitrar1 way (subjected, of course, 

to the limits on the amplitude for which our approximations are 

reasonably valid). If one knows the z coordinate and the velocity 



of every point of the membrane at some instant of time, say t=O, 

then one can determine the Amn's and the Bmn's such that (5.4) will· 

describe its subsequent motion. If 

z
0

(x,y) 
v 

0
_( x, y) 

are the functions describing the position and velocity of each 

point of the membrane at t = 0, then 

S · .tnrr. s · .n.li A 
1 n a X 1 h b ~ mt1 

I 

Multiplying both. sides by sin~ 
a 

sin ~ dxdy and integrating over 
b 

the surface of the membrane one obtains 

Although the double sum on the right looks more formidable than 

the single sum we obtained in the case of strings, if one writes 

out a few terms of this double sum, it will be seen that the ,. 

integration is perfectly straight forward, all integrals being 

zero except those form= m' and n = n'. Form= m' and n = n' 

the integration on the right yields ab so that 
4 

4 fl mx ~dxdy A -- z (x,y) sin sin 
mn ab 0 

b a 

Similarly one obtains 

a b 

r r •: 

B 4 I (x,y) sin mx sin .!2Y. dxdy = 
Jo I v mn ab !,..)mn Jo 0 a b 



5,5 Circular Boundary, Wave Eqaation in Polar Coordinates 

For a membrane with a circular boundary, Fig. 5,7 a and b, the 

exter·nal forces are- presumed to be distributed uniformly around 

the boundary so that the magnitude of the force exerted on ·any 

small segment of length AL of the boundary can be written as T ~L, 

where T is a constant called the tension. By re~uiring that each 

portion of the membrane Qe in equilibrium, one can show by an 

argument similar to·that used in section 5.1 that the force that 

any portion of the membrane exerts on an adjacent portion across 

the line separatJng the two is always in the nature of a pull at 

right angles to the line and has a magnitude equal to T multiplied 

by the length of the line. If the motion of each piece of the 

membrane is perpendicular to th~ plane of the undisturbed membrane, 

the motion can be described by some function z(r,¢,t). 

Fig. 5. 7d .shows the forces exerted on a small segment of the 

membrane of area rA¢ Ar, when the membrane is at rest. Fig. 5. 7e 

shows at some instant of time t after the membrane has been set in 

motion, the curvre formed by the. intersection of the membrane with 

the r a d i a 1 p 1 a n e z = ¢ + M . The two f or c e s 1 a be 11 e d T ( r + Ar)il 0 
2 

and T•rA0 in Fig. 5,7d are labelled T"(r +Ar)A¢ and T'r60 

in Fig. 5.7e. Writing down Newton's second law for the r-motion 

one has at this instant of time 
II I 

. T"(r +Ar)-60 cos~- T'r~0 cos~ =er-r 6.rb.0 ar 

where a is the radia·l component of acceleration of the midpoint 
r 

11 I 
of the segment. If the angles~ and ~are at every instant 

sufficiently small, then since there is no radial motion, ar = 0 

and one obtains on dividing by L.\0 and passing to the limit as. L 

go~s to zero 



T" T' :::: 0 
or 

T" = T' = T 

where the last result follows by considering a small segment 

whose outer edge coincides with the boundary of the membrane. 

The z-components of the two forces T"(r +b,r) 0 and T'rL\0 can 

now be written 

T(r+ Ar) 60 'Q?rCr,¢, t) 

0 r 
r+ 6,r,¢,t r 10 It 

tlrv 1/ h 
wh~re we have used the approximation that sin ~ =tan~ = ~ l 
and sin ?s/ = tan(¥'= ¥r) r. In a _similar manner, by considering 

the curve formed by the fntersection of the membrane with the 

cylinder z = r + ..i::li... t 

2 
one can show that the vertical components 

of the two forces labelled TAr in Fig. 5. 7d are at time t 

T6.r d:'r(r,¢,t) - T 6r d}(r 1 ~ 1 t) 
r d- ¢ r.L.\¢ 

r 1 ¢+ 4¢1 t r 1¢,t 

Newt 0 n I s s e c .0 n d 1 a w f 0 r t he z - m 0 t i 0 n 0 f t h e e 1 e me n t r A r /:::;. ¢ 

becomes '·' 

T(R+Ar)A¢ El . o-r 
+ .6r 1 ¢, t 

- Tr 6.¢ 

r 1 ¢ 1 t 

+ TAr ~ zl 
r c~ ¢ 

~ I¢+ A¢ t t 
T llr M I ro¢ 

r,¢ 1 t 

given 

~\ at~ 
r+ 

by 

/J.r 
2' 

¢+Mit 
2 



Dividing by r Ar/).0 and passing to the limit as both ,4.r and~. 0 

go to zero one obtains 

or 
r-------------------------------------------·------------~ 

(5_.5) 

This is the wave equation expressed in polar coordinates. 

5,6 Harmonic Solution, Bessel Functions 

If there are solutions of the wave equation of the form 

Z(r,0,t) = R(r) ~ (0) H(t) (5.6) 

then substitution into (5.5) leads to the condition 

which must hold for all times and for all values of r and 0. 

It f o 11 ow s t h a t b o t h s i d e s m u s t e q u...a 1 t he sa me c on s t a n t . C a 11 i n g 

d this constant -lv leads to the following two equations 
( 

(5,7) 

(5.8) 

Since the latter of these equations must hold for all values of 0 

and all values of r, each side must equal the same constant. 

Calling this constant m2 leads to the following two differentiGl 
( 

equations 



d
2 f 2 1 = - m 

d0
2 

" ~a m2) d R + l QB. + k -- R = 0 (5.10) 
~ 2 r dr ·r 

where k = Wfc. If one can find solutions of (5.7), (5.9) and 
-

(5.10) then there exists a solution of the form R(r) P<0)H(t). 
\ 

Solutions of (5.7) and (5.9) are readily apparent; 

lHt) =A cos vJt + B sin w t 

~( 0) = A ' ·cos m0 + B ' cos m0 

Assuming one can find some function say R(r) which satisfies 

(5,10) one will have an harmonic solution of the form 

z ( r , 0, t ) = R ( r ) [A ' c o s m0 + B ' s i n m0 J . [A cos w t + B s i n w t 0 ( 5 . 11 ) 

If this function is actually describing the motion of a membrane 

then the motion of a point located say at r
1

, 0 1 is given by 

z(r 1 ,0 1 ,t). Since the point located at (r 1 ,0 1 ) and the one at 

·(r 1 ,0 1 j;, 2_ 2lT) where _tis any integer are exactly the same point 
I 

of the membrane it follows that for the description of the motion 
' 

to be unambiguous z(r 1 ,0 1 ,t) = z(r~,0 1 ± i2/T,t),(quation (5,11) 

will have this required property only if the constant m is re-

stricted to integral values, i.e. 

m = 0, 1, 2. 3 

Keeping in mind that m must have integral values, we attempt 

to find a solution of (5,10) by assuming one exists of the form 

(5,12) 

n=o 
(; 

where a 1 , a 2 ... are constants. It follows that 



1 dR = 
r dr 

d 2 R 
= 

dr 2 

k2R = 

2 
;:!!!_R = 

r2 

2 -2 -m a r 
0 

2 -1 -m a 1 r 

Substituting into (5.10) one gets 

... '' 

(5,13) 

Remembering that this expression must be zero for all values of r 

if (5,12) is to be a solution,· it is apparent that either m .Q_£ a
0 

must be zero, and either (1-m2 ) Q£ ~~ must be zero, since otherwise 

the first and second terms become infinite at r = 0. If m = 0, 

setting a 1 , a 3 , a 5 ..... equal to zero and choosing 
,, 

k2 r 
a2 - - 4 ao 

a4 = 
k2 

a2 = 
k4 

a 
16 (16) (4) 0 

a = 
k2 

a4 = 
k6 

ao -
6 36 (36) (16)4 

will make (5.13) identically zero for any arbitrary choice of 

(; 

a • 
0 



For· m = 1 setting a 
0

, a2, a4, a 6' ... a 11 equal. to zero and 

choosing 

a = - k2 
a 

3 8 1 

a = - k2 
a3 = 

k4 
al 5 24 (24) (8) 

= 
k2 a = 

k6 
a al 7 48 5 (48)(24)8 

will rna ke (5.13) identically zero for any a rbi tra ry choice of a 1. 

Form= 2 setting a
0 

and a 1 , a 3 , a 5 , a 7 .... all equal to zero and 

choosing 

will 
Thus 

a6 = - k2 
a4 = k4 

a2 32 (32)(12) 

2 k6 
a = '""L a - - a 

8 60 4 ( 60) ( 3 2) (12) 2 

make (5.13) identically zero for an arbitrary choice of a 2 . 
the following are sol~tions of (5.10): 

m = o1 R ( r) = (kr) 2 + ~fk.!-'-)~4~ (kr) 6 J 
4 ·rt 6 ) < 4 ) -< 3_6__;)c..:;;(..::....l6"-)-<_4_) + .. · 

m = 

(g)2 
_2=--- + 
1 ! 1 I 

2a i ""'! (q) 
=-- --

k L or 1 r 

21 21 l 

(48)(24)(8) 



........ 
,m 

lr2 
k2 4 k4 6 k6 r8 ... J 411 = 2, R(r) = a r + r + 

2 12 (32)(12) (60)C32)12 

8a 2 I (kr/2) 2 (kr/2) 4 (kr/2) 6 (kr/2) 8 

+ .:J = + 

k 0121 11 3! 21 41 3! 5! 

= 
8a 2 [J2(kr)l T 

and so on. As indicated above, J
0

(kr), J
1

(kr) and J
2

(kr) are short­

hand notations for the infinite series contained in the brackets 

of the above solutions. The infinite series for which J
0

(kr) stands 

is called the zero order Bessel function of the first kind. 

Similarly J 1 (~r) and J 2 (kr) are referred to respe6tively as the 

first and second order Bessel functions of the first kind. A plot of 

these functions (Fig. 5,8) shows that each of these functions re-

sembles a decaying sine function. Some of the more interesting and 

useful properties of these functions are summarized in Table 5.1. 
1 rde "11« \ 

It should now be evident that there exist for every ~~ 

value of m an harmonic solution of the wave equation of the form. 

zm(r,¢,t) = Jm(kr) [A~ sin m ¢ + B~ cos m ¢ Jl:mcos(()t + Bm cosu.Jtj 

= CmJm(kr) [sin(m 0 + O(m) 1Lcos (tU t +..£lm)l (5.14) 

Each of these harmonic solutions is a solution for every positive 

value of k and for arbitrary values of A'm• B'm• Am and Bm (or 

· C De- and JL ) . m' m m 

<] 



5.7 Eigen Frequencies, EigenFunctions, Characteristic 
Modes for Circular Membrane 

""the r. 
If the radius of the circular membrane is a ~ the 

boundary condition is that 

An examination of (5.14) that this will be satisfied if 
rfi-t- fi r-si" k'" I( 

Jm(ka) = 0. Every Bessel function of -~is ·zero for certain 

values of the argume~t. These values determine the eigen fre-

quencies. For example 

J 
0 

( ka) = 0 for ka = 2.405, 5.520, 8.654, 

J 1 ( ka ) = 0 for ka = 3,832, 7.016,10.174; 

J 2 ( ka ) = 0 for ka = 5,136, 8.417,11.620, 

Since k = t»/c, the eigen frequencies for m = 0, 1 and 2 are 

m = 0 m = 1 m = 2 

w01 = 2.405 c 
. vJ11 = 3,832 c 1))21 = 5,136 c 

a a a 

= 5.520 c = 7.016 c = 8.417 c 
W02 a '12 a w22 a 

= 81654 c vJ = 10.174 c = 11.620 c 
w 03 13 a {)}23 a 

The corresponding eigen function~ are 

ZOl = COl Jo ~·;os~ cos0·!05 ct + jl.Ol) 

z02 = C02 Jo~·:2orj cos(5 · 520ct +.Jl) 
a 02 

z = c J ~.832c) sin (0 +tX) cos(3·~ 3 2ct +J\1) 11 11· 1 a 11 

zl2 = c J ~7. o16 6\ sin (0 +De- ) cos(7 ·~ 1 6ct +~ 2 J 12 1 . a ! 1!-
' 

J2 ~· ~54c) 
( 

cos ~·~ 54 ct +fl~21) z21 = c~l sin (20 +~1) 



The smallest of the eigen frequencies is uJ
01 

and the cor­

responding actual frequency f 01 =().~)1/2n is called the fundamental 

frequency. If the membrane is vibrating so that its motion is 

described by z
01 

it is said to be vibrating in its fundamental 

mode. Since z01 is not a function of 0, the fundamental mode 

exhibits circular symmetry. A plot of J
0

(2.;o5r) as a function 

of r is shown in Fig. 5.9.a. Since this is everywhere positive, 

it follows that all points of the membrane vibrate in phase, and 

the membrane vibrates as suggested in Fig. 5.9 b and c. 

If the membrane is vibrating so that its motion is described 

by z02 then it should be evident from Fig. 5.9.c. that the motion 

of all points of the membrane for which r) 2.405 a/5.520 is 180° 

' out of phase with the motion of -those points for which r<2.405a/5.520. 

The motion of the membrane is as indicated in Figs. 5.9d and e. 

The modes for which m ~ 0 are slightly more difficult to 

describe, since the amplitude at any ~oint depends on 0 as well 

as r. For the mode described by zll' a plot of J (3·:32rJ as a 

function of r' Fig. 5. 1 Oa , reveals that this function is positive 

for r< a. However, a plot of cos(¢ + rX ) as a function of 0 
' 11 ']:~''r',,"",h < )Tf-~tt 

~ ~ . . ~ ~ 

s h ow s i t i s p o s i t i v e f o r 0 < ...!L
2 

- ex:
11 

a n d n e g a t i v e f o r \~~~; -~~~~~~;].~·_:! . 
\.~~<-"'~->¢4Q-~"'~§< ~ 

There is a nodal line, d.~ .1!:...- ex and the motion of points on 
'11 2 11 t 

one side of this line is 180° out of phase with the motion of 

points on the other side as suggested in Fig. 5.10c. Figures 

5,10 d, e and f suggest how the motion of the mode described by 

z12 may be deduced. This mode exhibits two nodal lines and one 

nodal circle. Table 5.2 lists the nodal patterns .for the modes 

corresponding to the ten smallest eigen frequencies. 



5.8 The Kettledrum 

A kettledrum consists of a membrane stretched over the 

open end of a hemispherical vessel as suggested in Fig. 5,11. 

When the membrane is at rest, the air trapped in the vessel will 

be at atmospheric pressure, the same as the air outside, so that 

the net force on any small area of the membrane due to the pressure 
I 

of the air is zero. If the membrane is depressed slightly, the 

volume of the trapped air will decrease and the pressure will 

increase. The increase in pressure will give rise to a net force 

on each element of area 6 S of the membrane, the magnitude of the 

net force being (P - P
0

) DS where P is the pressure of the trapped 

air ·and P is the pressure of the air outside. If the depression 
0 

in the membrane is small, the direction of the net force on any 

element of area will make a ,very small angle with the vertical, 

so that the vertical component of the net force is to a good 

approximation equal numerically to the magnitude of the force. 

If the membrane instead of being depressed statically, is 

set into vibration, the pressure of the air in the vessel will 

vary above and below atmospheric~* Let us assume that the air in 

* Strictly speaking one can only refer to the pressure of a gas 
when the gas is in equilibrium, and the pressure is the same at 
all points. Any sudden motion of the.membrane sets up a pressure 

I 

~ in the air and the air attains equillbrium only after this 
wave is sufficiently attenuated. In treating the kettledrum, 
one generally assumes that at each instant the pressure of the 
trapped air is the pressure the air would attain if the membrane 
were held fixed in its position long enough for equilibrium to 
be established. This is a reasonable assumption if the pressure 
wave is attenuated in· a time that is short compared to the 

• period of vibration of the membrane. 



the vessel behaves as an ideal gas and that the time for one 

pressure cycle is short compared to the. time for appreciable 

heat transfer to take place between the trapped air and its 

surroundings, i.e. assume that the compressions and expansions 

of the trapped air take place adiabatically. It follows that at 

every instant 

PV'{ = a constant 

where P and V are the pressure and volume of the trapped air at 

that instant, and i is the ratio of the specific heat of air at 

constant pressure to that at constant volume, If the pressure 

changes are sufficiently small it follows that 

Po 
p - Po = d p = - V dV 

Q 
where V is the volume of the trapped· a1r 

0 
when the membrane is at 

rest. At any instant when' the volume of the trapped air differs 

by dV from the equilibrium value V
0

, the vertical component of 

« the force on any area dA due to the pressure differential will be 

p 
o dVLIS 

v 
0 

If one writes down Newton's second law for the element of area ~ S, 

and includes this force along with the forces due to the tension 

one obtains after dividing by 65 and passing to the limit, the 

following wave equation 

T ~ 0 
2

z + l .:b.__ + _l J2,l - '6 Po dV = d2 z (5.15) ()"'" --
cir 2 r .dr r"l. d0 2 v <1- t 2 

0 

Any function describing the motion of the membrane must be a 

solution of this equation. Suppose the membrane is vibrating 

so that its motiou is described by the function z(r,0,t). Then 



"" 

at any t, for an element of area r dr d~ located at r,~. the 

quantity z(r,~,t) r dr d~ is the volume of air in the column of 

length z and area r dr d~, shown in Fig. 5.12. This quantity is 

positive if z>O and negative if z<O. Hence at timet, the 

change dV of the volume of the air in the vessel is 
t rr ().. f ( z(r,¢,tl r dr d¢ · 

0 0 

dV = 

r·f z(r,~,t) is of the form -t~< r, (11) H ( t) , then 

dV = H(t) r (~(r,¢)r dr d~ = I 
0 0 

where (\"' (A 

0 
H(t) 

Io = j [ 1/l<r.¢lr dr d~ (5.16) 

~ i) 

is a constant. Thus, if the motion is being described by a 

function t (r,~)H(t), then since it must be a solution of the wave 

equation one must have 
r:r .¥ !_2H ~ l a 

T CH ~ { H ~ + 
..L ~i.} - T H ~ 

iJ/I.l -1 /l ... H '34' .. -~~v -o di1. 

or 

Since the quantity on the left is only a function of r and ~ and 

that on the left only a function of t, both quantities must equal 

the same constant, say - w2 • Thus 

and 
·o T -. \ / 

~~qr ~ ~·r 
i I;) ,! 0 

_}_ rt£ .L -t .• 
-::;. ----- +- ~r 

[t'l.. d~\. o-y· c ').. 
d It 'l.. ll ()h. 0 

,, 



where k = w/c. The solution of the first of these equations is 

apparent. To find a solution to the second suppose for the moment 

the term, on the right, were zero, so the equation were simply 

t 

Assuming a solution of this latter equation exis~s of the form 

R(r) po~O, one obtains on substituting and rearranging 

But this is exactly equation (5.7) whose solution was found to be 

Jm(kr) [A~ cos m0 + B~ sin m01 m=O,l,2,3 ..• 

Since this is a solution of (5.17) when the right-

hand term is zero, and since the right-hand term is a constant it 

follows that ~solution of (~.17) exists of the form 

where 

K = = 

Thus solutions of the wave equation (5.14) exist of the form 

z ( r, 0.t) 

\ A cos w t + B l m m 
sin W (5.18) 

~ and fo~ each integral value of m there is a solution for each 

positive value of W. From (5,16) ' 



2,- (( 

I r nJm(kr) rA~ cos m~ + B' m~ '(P I f = cos + 0 0 r dr d~ 
0 m 2 

0 (> if' w v 
0 

or -""''' 
I =[ 1 [ (im(kr) [A~ cos m~ + B I sin m~J ~ r d r d~ 0 p 2 m 

~ o'f7fl 
2 b 

0"' w v () 
0 

Unless m ~ 0, I
0 

= 0 because the integral of sin m~ and cos m~ 

from 0 to 2-r/ is zero. If I
0 

= 0 then (5.18) ·reduces to (5.14), 

i.e. for m ~ 0, the harmonic solutions of the kettledrum are 

identical with the harmonic solutions of the free membrane. Since 

the boundary conditions are identical for both the kettledrum.·and 

the free membrane, it follows that m \ 0, the eigen frequencies 

and the eigen functions of the kettledrum and the free membrane 

are identical. 

For m = 0 

I = 2TT f~ J 0 (kr) r dr 

1 -
~P 0 rra2 
c-w 2v () 

0 

21i 2 
a J 1 ( ka) 

ka 
1 -

where the last result is taken from Table 5.1. Harmonic solutions 

of (5,15) form= 0 are 
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(A cos w t + B sinu.J t) 

The boundary condition requires that 

. '(Po 

({! 
211'a2 J 1 ( ka) 

J
0

(ka) + 
2 = 0 

(jW V o p a2 
ka} 0 

2v 
0 

.... ~ 

By using the identity J ( ka) 
0 

+ J 
2 

( ka) = 21J ( ka) I ka the above 

condition may be written 

J 
0 

( ka) = -
J 

2 
( ka) 

(ka) 2 (5.19) 

wher.e 

Po a4 Po a4 
= 

c 2v T v 
0 0 

Finding the values of k = w/c which satisfy (S.l9) will yield 

the eigen frequencies of the kettledrum for m = 0. Note that if 

~ = 0, these eigen frequencies are identical with those- of the 

f r e e me m b r a n e . I f 4i' ....;:< 1 , t he n o n e w o u 1 d ex p e c t t h a t t He e i g e. n 

frequencies would differ only slightly from their values when~~ 0. 

Note that ~ is made smaller by increasing the tension or by in-

creasing the volume, as one might suspect since both such increases 

tend to make ~he tensile forces larger in relation to the pressure 

forces, The eigen frequencies d~termined from (5.19) for several 

numerical values of ~ are shown in Table 5.3. Note that the 

fundamental frequency is the one most affected by~\ 0. 
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Table 5.3 

0 2.405 5.520 8.654 

2 2.68 5.55 8.66 

10 3.485 5.67 8.69 

·, 
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5.9 The Driven Membrane, Circular Boundary 

.If a loudspeaker is mounted some distance from a free 

'membrane as in Fig. 5.13, and the speaker is driven at some 

frequency~ determined by the oscillator setting, then the sound 

wave emitted by the speaker will cause the pressure P on the top 

surface of the membrane to vary with time in the following manner 

where P
0 

i·s.:atmospheric pressure, and P1 is a constant which 

depends on how hard the speaker is being driven. If one assumes 
b<> tfo;-1 

the pressure, P, is uniform over the .., surface of the membrane -
then the net·force on any element of the area AS of the membrane 

due to the pressure is 

( P - P 
0 

) A S = P 1A A c o s w t 

Adding this force to the tensile forces and writing down Newton's 

second law for the element of area AS one obtains after passing 

to the limit the following wave equation 

+ 
PI 

cos t = (5.20) 

Any function z(r,~,t) describing the motion of the membrane under 

the above conditions must satisfy the wave equation. Now experi-

mentally it is found that under the above conditions, the membrane 
.stea.d ~ 

reaches a ~~ state in which each portion is vibrating har-

monically with the same frequency,W, as that of the oscillator. 

This suggests there must exist a soluti6n of (5.20) of the form 

z(r,~,t) = '-¥ (r,~) cos ( wt + f3 ) 

Substituting this in (5.18) one obtains after expanding the 

cos (I.() t +~)term, and rearranging 



5.3D 

p -, 

+ : Jcos.t.Vt 

This condition must hold for all times, a requirement that can 
'1 . 

be satisfied if the coefficient .... sin w t and costU t is zero. Bod 

coefficient's will be zero if (5= 0 and 

(5.21) 

:r:f 
Pl/q-Jr:a=r is zero, the above equation has the solution 

'-P (r,~) = J (kr) [A~ cos m~ + B' sin m~l m m 

where m = 0,1,2 Hence (5.19) has a solution 

*( r, ~) = J ( kr) [A' cos m~ + B' sin miJ m m m aj 

and there exists a solution of the wave equation (5.18) of the 

form 

-~~·cos W t 
<1""tV2 \ 

If this is to satisfy the boundary condition that z(a,~,t) = 0 

one must have 

A' cos m~ + B' sin m~ = 
m m 

This can be satisfied only if m = Q and 

A' 
0 

= 



5.40 

so that a solution of (5.20) which satisfies the boundary condition 

becomes 

z(r,t) = 

This expression predicts infinitely large amplitudes at those 

frequencies for which J
0 

( wa/c) = 0. These frequencies correspond 

to the eig~n frequencies for m = 0. A more realistic wave equation 
.f •• 

for the driven membrane would include damping forces and the 

corresponding solutions would not show these discontinuities. 

However, one .would still expect relatively large amplitudes to 

occur at or near the characteristic frequencies. 
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Chapter VI. WAVES IN FLUIDS 

For longitudinal waves in a thin rod, the displacement of any 

given element of the rod has only a single component, and hence a 

single coordinate, J , is sufficient to describe this displacement. 

Similarly, the displacement of any element of a membrane has only a 

single component and a single coordinate z is sufficient to describe 

this displacement. The displacement of an element of a fluid has 

in general three components. In addition, three coordinates, 

say x, y and z, are required to locate an element, as contrasted 

to two for an element of a membrane, and one for an element of a rod. 

Moreover, one often prefers to clesc,.., be waves in fluids in terms of 

quantities other than those of the displacement. For these and 

other reasons, the description of waves in fluids is more complicated. 

None the less, the derivation of tha wave equation follows along the 

same general lines; one uses the stress-strain relations and requires 

that the motion of each element be governed by Newton's second law. 

The type of waves which are propagated in fluid are called "com-
,, 11 

pressional or dilational" or "longitudinal" or "sound" waves. 

6.1 Wave Equation for Waves in Fluids 

Consider a confined fluid as indicated in Fig. 6~la. By an 

element of the fluid (also referred to as a particle) one means a 

tiny portion of the fluid. To be more specific let the element 

located at point M (x,yz) to be the ~ of fluid contained in a 

tiny cubical volume located at M, as indicated in Fig. 6.lb. Ii 

the external force ~ of Fig. 6.la is changed to a new value, then 
ext 

after equilibrium has been establish~d, the element of fluid origin-

ally at M in general will be at some new location and the dimensions 



) 

6.2 

of the element will have changed. Let the x, y and z components of 

the displacement undergone by point M be .! , lz andr respectively. 

We assume that the displacement of point M is a suitable measure of 

the displacement of the element, and as we learned in Chapter 1 

the change in shape of the element can be determined from M ,-f~ 
and~ all evaluated at point M. In the static case the relation 

between a change in pressure and the change in the shape of the 

element was given by (1.6), namely 

.6P =--BC!i +*f +#J 
where B is the bulk modulus of the fluid. 

If the force ~t of Fig. 1.6a is varied 

rapidly about some mean value, then in general the pressure at 

any instant of time will be different at different points of the 

fluid and at a point such as M will vary rapidly above and below some 

mean value P. If P' is the (instantaneous) pressure at M at any time 

t one assumes that 

P'-P- -s[~+#+#J 
i.e., that the static relationship holds at every instant of time. 

If one defines the acoustic pressure~ at a point as the difference 

between the instantaneous pressure f' and the mean or equilibrium 

pressure P, i.e., 

Q=>::: p'- p ( 6. 1) 

the above relationship becomes 

&> -= ~ s [ 21 + ~ 4 u] · oi{ ~~ -'a 
(6.2) 

It is worth noting that the acoustic pressure is an algebraic 

quantity while P'. and Pare not. Also, for most cases of interest, 

the pressure changes are sufficiently rapid so that the appropriate 

modulus is the adiabatic bulk modulus. 



6.3 

The forces acting on the element of fluid at any instant are 

those due to the pressure at the six faces of the small cubical 

volume containing the element. ·Considering 'only the x-equation of 

motion one has (see Fig. 6.2). 

(x,y,z,t) - P'(x + ~x. y, z, t)l AY AZ =/Ax AY A z d.:J 'J · ct2 

where P ' ( x , y , z , t ) a n d P ' ( x + Ax , y , z , t ) a r e the i n s t a n t a n e o us 

pressures at faces ABCD and EFGH respectively, and J is the density 

of fluid, Dividing by AX AY 4z and passing to the limit one has 

--!? = }~ 
or in terms of the acoustic pressure 

Similarly for the y and z equations of motion 

-ll- ' d~~.··, 
d'T - fl-w 
~if=!'~ 

(6,3) 

one gets 

(6.4 

Differentiating (6,2) twice with respect to time and interchanging 
afl 

the order of differentiation~ the right side one obtains 

Substituting from (6,3) one obtains the wave equation 

J - (6,5) 

for waves in fluids. 



6.4 

6.2 Plane Waves, Velocity of Propagation 

Although the wave equation (6.5) is different from any 

encountered thus far it should be evident that any function 

(P('\)) where'\) = x + ct or y + ct or z + ct would satisfy 

it, since if P(~) is a function only of one of the coordinates, 

the wave equation reduces to the form for waves on strings~ t'--l 
The. r-ea. I f (l.r "T 0. 

r 4 

Such functions represent what are called plane waves, 1\ function 

1 ike 
k = W/c 

for example represents a plane harmonic wave being propagated 

in the +x direction. It is called a plane wave since the pressure 

is independent of y and z and hence at any instant of time is the 

same·at all points of any plane perpendicular to the x-axis. 

It is not difficult to show following the method used in 

section 3.3, that any function (?(-v)i where 

~ = x sin Q cos 0 + y sin Q sin 0 + z cos Q (6.6) 

will also satisfy the wave equation (6.5) for arbitrarily chosen 

values of Q and 0. By choosing a new coordinate system, X,Y,Z 

such that the direction cosines of the +X-axis with respect to 

·the xyz coordinate system ai~ sin Q cos 0, sin Q sin 0 and 

cos Q respectively~ as indicated in Fig. 6.3a 1 such functions 

can be written (?(.X-ct)', and thus represent plane waves being 

prop a g a ted i n the +X d i r e c t i on. w i t h a v e 1 o c i t y c. F o r ex a m p 1 e , 

the function 

=A eifl:vt-k(x cos 0 + y sin 0U 
~ . 

where k= ~/c represents a plane harmonic wave being propagated 

i n t he +X d ire c t i o n w h e r e t he +X-a xi s m a k e s a n a n g 1 e ¢ w i t h t h e 

+-;{-a"XtS as indicated in Fig. 6,3b. Note that for such a wave, 

the acoustic pressure at any instant of time is the same at all 
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points of any plane perpendicular to the X-axis, and that these 
I.M Th1 ~ 11'1 sf-4-tH~ 

planes are parallel to the z-axis. 
. /' 

The speed c at which any plane wave 'is propagated in any 

fluid is given by 

\ 

where B is the adiabatic bulk modulus, and~ is the density of 
a 

the fluid. For an ideal gas it can be shown that for small vari-

at constant volume. Thus for an ideal gas 

c=~ 
This result correctly predicts the speeds of propagation of plane 

waves in real gases at ordinary pressures. Also for n moles of 

ideal gas of mass m, and molecular weight M 

PV = nRT; v = m - nM • P 
.,? - y- )· ~ 

so that 

c = ~ = const ~ 

= RT 
M 

Experimental results on real gases at ordinary pressures bear out 

this ·prediction that the speed of propagation is proportional to 

the square root of the absolnte temperature. The speed of sound 

in air at 0°C is 331.6 m/sec and this increases approximately 

0,6 m/sec per degree rise in temperature. 

The velocity of propagation of plane waves in liquids is for the 

most part higher than that in gases, the velocity of sound in water 

being 1480 m/sec at 20°, a figure about 4 times the speed of sound 

in air. The speed also increases with the temperature, although 



there is no simple relationship as is the case with gases. 

Table 61 gives the speed of sound in some of the more common 

gases and liquids. 

6.3 Harmonic Solutions of the Wave Equation 
I 

Following the usual procedure for finding solutions to 

6.6 

partial differential equations one looks for solutions of (6.5) 

of the form 

P(x,y,z,t) = X(x) Y(z) Z(z) H(t) 

Substituting into (6.5) leads to the requirement that for all 

x, y, z and t 

1 d 2Y -----
y dy2 

+ _1_ d
2z] 

Z dz2 = 1 

H 

2 '• 
d H 

dt2 

a condition that requires both sides equal a constant, say -ut. 
One thus obtains 

(6.7) 

and 

where k = W /c. Once Bgain this second equation can only be satis-

fied for all values of x, y and z if both sides equal a constant .., 
-

"1.' 
say- q- which leads to 

_1_ d
2

X = _0<(.2 

X dx2 

(6.8) 

The second of these two equations can oniy be satisfied for all 

values of x and y only if both sides equal a constant say -p 2 . 
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Thus 

(6.9) 

and 

(6.10) 

Solutions of (6. 7), (6.8), (6.9) and (6.10) are readily 

apparent if k 2 )~2 +f3 ~'. Settingy2 = k2 -<:><2- {3, 2 , a solution 

of the wave equation is 

(6.11) 

This is a solution for all positive values of o( ,fi, andY and -W 

and for arbitrary values of the constants a 1 .... a 4 , b1 ... b4 . 

Note that if such a function does describe the pressu~ wave in a 

fluid, the acoustic pressure at any point varies harmonically in 
' 

time with a frequency W. 

Using trig identities the harmonic solution (6.11) can be 

recast in the following form 

P(x,y,z,l)=A {cos(C(x+~y+~z- Wt+~) + cos'lx+,By+~z+Wt+"'2) 

+ c o s ( Q.x+fty - (fz ~t tit..3 ) + c o s (c(x+ fty-"Oz +Wt + -Att ) 

+ cos (Ofx-~y+~z-lJt+..n.s> +c-os (~x-~y+(J'z+t,..;ttA,.6 ) 

+ cos (o(x~y-(Jz-wt+""-;) + cos (~x-J9y-)"z+c.vt+.A..a) I (6.12) 

Each one of the eight terms in this expression is of the form 

P(-\)) where-0 is given by (6.6), and thus represents a plane 

harmonic wave being propagated in a direction determined by the 

v a 1 u e s of ~ , f3, a n d (f. The d i r e c t i o n of p r o p a g a t i o n i s i n g e n e r a 1 

different for each wave. Foi example, the direction of propagation 

of the plane wave represented by the first term is along a line 
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whose direction cosines with respect to the x,y,z coordinate 

system are sin Q cos 0. sin Q sin 0, cos G where tan Q =VC} 2+/1 2/y 

and tan 0 = P /&.-, while the direction of propagation of the 

plane wave represented by the third term is along a line whose 

direction cosines are sin Q' cos 0, sin Q' sin 0, cos 9-' where 

Q' =IT-g. 

6.4 Boundary Conditions, Eigen Frequencies 

Suppose the fluid is con~ined by a rigid vessel in the form 

of a box of length L" width L~ and height L} as indicated in 

Fig. 6.4. Any particle of fluid in contact with the face OMNQ is 

prevented by the wall from moving in the x direction, i.e. 

_f(O,y,z,t) = 0 

and consequently 

:a:J/ = 0 4 t 2 
0' y' z. t 

If this latter condition is satisfied it follows from (6,3) that 

= 0 

O,y,z,~ 

An harmonic solution of the form (6.10) can be made to satisfy 

this condition by setting b
1
=o. Similarly at the face opposite 

. 
DMNQ the particle displacement is zero, i.e. 

rc ( L y z t ) = o ~ M ! -~ X' ' ' --7' d X. 

L , y, z, t . X 

= 0 

The harmonic solution (6.11), with b1=o will satisfy the above 

condition provided 

(6.13) 

Similarly the boundary conditions 

~(x,O,z,t) = o ~M! '0-Y x,O,z,t 
= 0 
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-can be met by a f~nction of form (6.11) by choosing b2=o and 

,j ~= ~. 
.· i . L'J -n. = 0,1,2,3 

y 
,(6.14) 

and the boundary c~nditions 

can be met by choosing b2=o and 

't :;=. v~2- (4.:"1. ... pl) -:::- 111'7Tfi 
} 

n
3

:::: o, 1, 2, 3 ·(6.15) 

Thus the harmonic solution 

P(x,y,z,t)= 

i 
I 

I 
where 

0,1,2,3 1\x = 

LV_ t~J~(~)\(~r )ty = 0' 1' 2' 3 
(6.17) - 11-'C. 

T7..t n1 n3 = 0' 1' 2 '3 'hz 

satisfies both the wave equation and the boundary conditions. 

The latter expression which gives the eigen frequencies is determined 

from (6.15), (6.l3) ·and (6.14). If L is the largest dimension of 
X 

the box, the smallest of the eigen frequencies is 

and the corresponding eigen function is 

P (x,t) = cos~x [A cos ~Ct + B sin~CtJ 
100 L 100 LX 100 LX 
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Thus if the system is vibrating in its fundamental mode, the 

acoustic pressure amplitude is a maximum,at x=O and x=L and is 

zero at x=L/2. It should be evident that the above expression 

can be recast so as to represent two _plane waves, both ·propagated 

with a velocity c, 011.e in the +x direction and one in the -x 

direction. For either of the characteristic modes corresponding 

to wo!o QnJ 1.1{
01 

:. the situation is similar; the pressure amplitude 

is maximum at the two opposite faces and zero in the middle, and 

the pressure variations can be thought of as being due to two 

plane waves moving in opposite directions. In fact for all char-

acteristic modes for which only one of the n• s is different from 

zero, the pressure waves are plane waves. For a characteristic 

m 0 d e c 0 r r e s p 0 n d i n g t o_ 17 X= 1 I l1 y = 1 • 'n z = 0 I t he e i g e n f u n c t i 0 n i s 

~oc~. ~.-tJ -= G~o eM l!..L x ~ :zr !1 
')( L'!S 

where WH(> = -1fc \f(l/Lx) 2 + 0/L 2 ). 'This mode has nodal planes v - y 

at x = Lx/2 any y = Ly/2. Higher modes have progressively more 

and more nodal planes. 

The sum of all the characteristic modes 
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is also a solution satisfying the boundary conditions and can if 

desired by a proper choice of the constants A~x~~ and ~x~nz be 

made to fit a set of initial conditions, I 

~ Propagation in a Rectangular Wave Guide 

If one of the dimensions, say Lz of the box of Fig. 6.4·, 

is made indefinitely large, one has what is called a rectangular 

w~ve guide. The boundary conditions at the four walls of the 

guide are, of course, the same as they are for the closed box. 

It follows that 

:: c.o ~t ~ &ro. ( w 1+ .n.) 
~ . . 

wh"e,..e 

,. 

is an harmonic solution of the ~ave equation satisfying the 

boundary conditions for any integer values of t\x and 11~ and for 

any value W for which~ is real. For ·any fixed value of~ there 

is a harmonic solution like (6.1~) for each pair of values of 

~ and "n~ for 

(6,19) 

Suppose a harmonic solution of the form (6.18) did actually 

describe the acoustic pressure at all points of the guide, and 

one made measurements of the acoustic pressure at points along a 

line parallel to z- a.)<is Since every point on this line has the 

same x andy coordinate, say x1 and y1 , for points on this line 

(6.18) could be recast in the form 
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' I 

\I, .. ' , '., .· .. 
··~here A' /.s 

. 

From its appearance, one could argue that the first term represents 

a wave being propagated in the +z-direction and the second term a 

wave being propagated in the -z-direction, both waves being 

propagated with a speed 

r-' ... & = .... - '( 

c 

One thus interprets harmonic solutions such as (6.18) as repre-

senting waves being propagated along the guide. For any ~d 

value of W there is a solution of the form (6.18) for each pair 

of values of '1\1( and )1. which satisfy the restriction (6.19). 
~ . 

Each such solution is referred to as a mode, the 00 mode being 

= c ~ ( ~ d -+ .( ) (.~ c w t + J2.) 
oo ' 

=- ~ { ~Pe(,-cr~ '~.n.) + ~Pt.(~·<t• •:fill)( 
- -~- ------· ------ ......- - - -- ------- -- ------------------

This expression represents two plane waves, each propagated with 

a velocity c = \[Bij . The 01 mode, 

£
1 
(x,-a.,t)::: ~1cos~?\ cos(ta.+J)cos(v.rb+JL) 

is not a plane wave and its speed of propagation down the w2ve 

guide is 
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Note that this velocity, which is referred to as the phase 

velocity is greater than c. All modes except the 00 mode have 

phase velocities greater than c, and none are plane waves. 

In gener<:~l, if an harmonic source (e.g. a loud speaker) of 

frequency w is located at some. point of a wave guide, one expects 

that some time after the source is started, the acoustic pressure 

at any point in the guide will be given by some combination of 

the allowed modes. For any source frequency it is possible by 

virtue of condition (6.19) to choose the dimensions of tpe wave 

guide. to insure that only the 00 mode will be present, and thus 

that the waves in the guide will be plane waves, As may be 

verified from (6.19) for a square wttve! guide 0.15 m x O.lSm con­

taining air at 20°C only the 00 mode will be present for all 

source frequencies below 1140 hertz. In many cases of interest, 

the dimensions of the wave guides are such that one has to deal 

only with plane waves. 

6.6 Particle Velocity, Specific Acoustic Impedance for Plane Waves 

Plane harmonic waves in fluids are an important special case 

and the remainder· of this chapter will deal exclusively with 

such waves. The real part of 

,£,. (x, t) = ,&, ei,.(Wt-kx) + ~ e,J.,(Wt+kx) (6.20) 

where k=~/c represents two plane waves being propagated in the 

+ and -x-directions respectively. If such waves existed in a 

fluid, one could find how the acoustic pressure at any point of 

the fluid varies with time merely by inserting the x-coordinate 
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of the point into (6.20). To find the displacement of the element 

of fluid (i.e. the particle) located at that point as a function 

of time, one makes use of equations (8.3) and (6.4) which relate 

the components f, .\ , and J of the particle displacement at any 

point to the pressure gradient at that point. For the wave repre-

sented by (6.20) one has from (6.3) 

_Q_ L(wt-hx) 

f 
e -

}vW C 

S i n c e t he p r e s s u r e i s n o t .a f u n c t i o n of y o r z , \. a n d :/ a r e 0 

from (6.4). It turns out that the particle velocity rather than 

the particle displacement is the more widely used acoustic variable, 

The x,y, and z-components of the particle velocity are simply 

~~ ~!. ({\"(&. ~ • 
Q~ ) ~'t .... 0 1r. 

Letting u = • be the x-

component of particle velocity one has for the pressure waves 

represented by (6.20) 

U (x, i) ::::A_ ""'(wt -):,;~:) Ji 
IVW fc e .. /c 

(6.21) 
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The specific acoustic impedance z at a point in a fluid -
is defined by 

& 
<:1- -d--
- u. ...... 

where <? is the acoustic pressure at the point and u 
......... - is the 

particle velocity at the point. If the pressure waves represented 

by (6.20) existed in a fluid then at any point 

The ~pecific acoustic impedance is thus a function of x. If 

B = 0 then (6.20) represents a plane progressive wave and the 

specific acoustic impedance 

~ = fl c 

is a constant, the same at all points. This constant impedance 

yc is called the characteristic impedance of the medium .. The 
af 

units specific acoustic impedance are kg sec/m2 or ra1ls. ,.. 

6.6 Transmission and Reflection at a Boundary - Normal Incidence 

A progressive plane wave incident on the boundary separating 

two me~ia, in gene~al, gives rise to a reflected and transmitted 

wave. Afte~ a steady state has been established there will exist 

in the first medium two waves, the incident and reflected waves. 

Only a single wave will exist in the second medium assuming it is 

infinite in extent. For the case of normal incidence illustrated 

in Fig. 
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repres~nts the incident, reflected and transmitted w~ves respect-

ively, then at any point to the left of the boundary the acoustic 

pressure will be given by 

X) = A o A, (wi ... J~,-x.) 
Afvvl nNVI\.. . + 

and on the 

\ 

The corresponding particle velocity at any point on the left is 

i\ L ::: A~ 
0 

i ( w-t-J1 ~) ~ h (wi t.! 1 ~) 
'""W p, c, c - .p;c, e 

and on the right 

At any interface it is generally assumed that the stress{in this 

instance the pressure)is conti.nuous across the boundary, i.e. 

that the value of the pressure calculated approaching the bound-

ary from the left must equal the pressure calculated approaching 

the boundary from the right. It is also assumed that the particle 

displacement at right angles to the boundary must also be the same 

approaching the boundary from the left or right. If this were not 

true, e.g. if the two particles labelled (j) and ® in Fig. 6.5 

did not move simultaneously to the right or left, a gap would 

appear in the boundary. If the particle displacement at right 

angles to the boundary is continuous, it follows that the component 

of particle velocity at right angles to the boundary is also con-

tinuous. Letting the interface be located at the origin of the 

coordinate system for convenience, the boundary conditions for 

the case illustrated in Fig. 6.5 yields 

A _?. • 

from which one obtains 
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find the phase difference between 

ratio of the amplitude of x1 ( t) 

'. 
( 2. 7 \ If 

B A, e 
/wi 'F) 4 l<r{ 

':: . f!, e 
""' ~- Ia 

and 
P 'P . • .;· /i -,.. . 

find the phase difference between 

ratio of the amplitude of p ( t) 
r 
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x1 (t) and x2 (t) and the 

to that of x2 (t). 

and p ( t) 
r . and the 

and that of 

2.8 The solution of the damp;ed harmonic oscillator has the form 

This function of t' has a series of maxima and minima. The 

condition that x(t) have a maximum or minimum is that 

~~ = 0, i.e. the maxima and minima occur at those times when 

the velocity is zero. Show that the velocity is zero at 

times t which satisfy the condition 

If lJ1 is the smallest positive angle whose tangent is ( 0/ttiJ 
then every angle 
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"ft~ ~t r} 77 ~·· tf 
.... ·--~-~~ ~~--~ "-" ~-~~=,··~~-· -~ ""'~ n:- 0 1 .1,'/.,'!'···· 

1 Show that the ratio of two successive maxima (or two successive 

minima) of x(t) is constant and equal to 

2.9 Show that it is possible to express the coefficients a3 , a4 , 

a5 •••• in terms of a
0 

and a1 so that the series 

'X(;{) 

will be a solution of 

I 1/ t, .. /:. 

/( _.,. t:\t X + W
0 

X' ~ 0 

the equation of motion of the damped harmonic oscillator. 

2.10 A mass m on the end of a spring of force constant K is 

held in equilibrium by a force F
0 

equal in magnitude to 

the gravitational force mg. Find the subsequent motion of 

the mass if the force F
0 

is suddenly removed. Assume a 

damping force proportional to velocity and neglect the mass 

of the spring. -t: 
(, 
l, 
t. 
, .. 
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2.11 A simple harmonic oscillator of mass m, spring constant K 

is set in motion by a sharp blow. Ass0me the impulse of the 

blow is I
0 

Find the subsequent mo·tion of the oscillator 

assuming a damping force proportional to the velocity. 

; 

1.(2.12 \A certain damped harmonic oscillator is found to have a period 

1~ of 1/2 sec and an of 0.1 -1 sec If 

this oscillator were driven by a force F
0 

cos ~ t, at what 

frequency w would resonance occur? 

2.13 A drvving force F
0 

cos t.\J t is applied to damped harmonic 

oscillator at a time t = 0 when the oscillator is at rest 

in its equilibrium position.· Describe the subsequent motion 

of the oscillator. 

. \/ 
(2 .14 11 Show that 

If~ 

~' f (_v<;.~'( VJ 'I~ 1 (A 1 4 t>;) di 
'I 

v 

and 
1-

J_ {to<l(;vl + P< ·1·) e,"-1 ~~l -~- i >: + c9) dl 
tj'- ' 

\) 

where and 

constants . 

and Q are arbitrary 

. 2.15) In the steady state the motion of an harmonic oscillator driven 

by a force- F 
0 

co s vJ t i s g i v en by 

t;~ 

~)/ c) 
~-...... --.~~- "----- - ~ -

')-' ,. /{}{-h .2"1 v k' ...f (?VI·\\ l"//·:i) ,, 
,'/ 

.. , .. 
"il""h\ 

wlte'1·'" 

c C»o~G,; ·( ' {J ) -fo.'-119 U)l/1 '" j( !~t) 
'A - .~~ .. 

/' ~~ ~-('--' 
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For obvious reasons the quantity F 
0

/ 1{) Zm is referred to as 

the displacement amplitude, while the q'uantity F
0

/Zm is 

referred to as the velocity amplitude. If the angular 

frequency w of the driving force'is varied keeping F
0 

' constant, and for each frequency the displacement and velocity 

amplitudes are noted, find in t~rms of m, K and R, the 
\ 

angular frequency at which the disptacement amplitude would be 

larges~. Find the frequency at which the velocity amplitude 

.would be largest. 

2.16 It is possible to apply a force of the form F
0 

cos ~t to an 

harmonic 6scillator by means of the arrangement shown in the 

figure (i). The end P of the spring is fastened by a 

to a peg on a wheel mounted on the shaft of a motor which 

rotates with an adustabl~ angular velocity U> 

~oint P is forced to move (very 

nearly) with simple harmonic motion, so that its motion is 

given by x = B cos uJ t. Fig (ii) shows the system at some 

instant when the spring is unstretched and point P is at the 

midpoint of its motion_. Fig (iii) shows the system at some 

general time t. Isolate the mass m in this last figure, 

draw in the force exerted by the spring and assume an additional 

• damping force Rx. Write down the equation of motion and show 

that this has the form 
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How is F
0 

related to B. Let A1 be .the displacement 

amplitude of the system when the system is at resonance, i.e. 

Show that the Q of this system is equal to 

'P 'ttl 

~-~~·-·=~-=· ~-_:~"'n·--y:?~~?~"~'I·~~-_, __ -_--~'N"-'-----~-----

An harmonic oscillator is being driven by a driving force 

F cos (~ t at such a frequency that 
0 

VJ v'n ·-· 3 }c;q /r:ec. 
~ 

/\ /(t) 
~, <;;;- Je0· I !J'-C'-"'-"" 

rR - z 2~ 8; 0!-<:. 

Is the driving frequency smaller than, equal to , or greater 

than the resonant frequency? What is the phase difference 

between the driving force and the displacement x? Which 
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leads? What is the mechanical impedance Zm of the oscillator 
"'~·.~ 

at this frequency? What is the Q of this mechanical system? 

2.18 In the steady state, is the rate at which the driving force 

supplies energy to a damped harmonic oscillator equal at every· 

instant to the rate energy is being dissipated? Is the total 

mechanical energy (potential plus kinetic) of a driven damped 

oscillator a constant in the steady state? 
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6.26 

Problems for Chapter VI 

1. Show that p (I)) where\.) = X sin e cos 0 + y sin e sin 0 
'· . ' 

+ z cos e is a solution of the wave equation 6.5 for 
~ 

arbitrary values of e and 0. 

(2. The density f at a point in any medium is defined .as the 

ratio of the-mass' contained in a tiny volume surrounding the 

point to this tiny volume. A particle of a fluid is thought 

of as a fixed mass of fluid which occupies some tiny volume V 

' when the pressure is P. If the pressure increases to some 

value P', the volume occupied by the fixed mass will shrink 

to a value V' and consequently the density of the fluid at 

the point where the partie!~ is located will change to a 
. I 

value~ • When an harmonic wave exists in a fluid the density 

v a r i e s s 1 i g ht 1 y a b o v e a n d be 1 ow s om e me a n v a 1 u e / · a n d the 
I 

qua n t i t y S = <J -/ ) l_f i s c a 11 e d . the e on d e n sa t i on a t the 
. I 

point. The density/ at any instant is only slightly dif-

. f e r e n t f r om J a n d S .L L 1 . S h ow t h a t t he a co u s t i c p r e s s u r e a t 

a point and the condensation at a point are related by~= B S 
a 

where B is the adiabatic bulk modulus. 
a 

The stress-strain relation (6.2) can be written in vector 

notation as ~ & = -B .. d i v s (i) 

where s~ is the particle displacement vector with components 

f, 7 ,j Similarly the three equations of (6.3) and (6.4) 

can be written as the 

- grdd 

single vector 
\ 2 ->, 

-p cJ ,0 

I d t2 

equation 

(ii) 
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/ 
~3. (continued) 

By taking the divergence of both sides of this equation and 

substituting from (i) on.e obtains the wave equation 

where \1 :W = 

c2 g2(r = a 2~ c = 'fBjt 
-4- · Ot 
grdd div'il?. In cylindrical coordinates the 

gradient of any scalar point function such as P is 

~ XJ _(}_£ J_.d_ A c\(? 1' 
'3"attu~=-a-r~+r 6Yf ¢+~~ 

A IJ !(}- n where r, ~ and )~ are unit vectors in the r, ~ and z-

direction respectively. Also for any vector ft> whose r, 0 

and z components are En, E0, and Ez respectively-

J 111 f ::: d E)"' t E r + _L 6); _¢ + fu 
~ _r 1 d-¢ (1~ 

Using these expressions write down the wave equation in 

cylindrical coordinates. 

4. Given 9-= 3m- 1 , P= 4m- 1 , o= 5m-~. Find the directions of 

propa~ation of the waves represented by each of the eight 

·terms of (6.12). 

Suppose a gas confined in a rigid box of dimensions Lx, L , L y z. 

is vibrating in a characteristic mode for which nx = 1, ny = 1, 

nz = I. At any point ~f the box the acoustic pre~sure varies 

harmonically with an amplitude A, which in general is different 

at different points. If one measured this amplitude at various 

points with a microphone, at which points would one find the 

largest amplitude? 
' f 
;·\····~--------------·~----

// ll~ 
I L"<f 

#------?'-- -----------

I 
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6- Find the posxtions of the nodal planes for a· fluid confined 

_in a rigid box of dimensions L , L , L and vibrating in a 
X y Z 

characteristic mode for which nx = 2,' n.y = 1, ·n3 = 1. 

/ 

7. The wave equation in cylindrical coordinates is 

(i) Show by using the separation of variables approach that 

one can obtain an harmonic solution of the form 

~·( r, r/J,r;y)= Jrn (w:;~.~~),l_(1,coS:mp+8,Sihm¢] [l\"l~0:3.t-f:?~6tn<ir~]. 
· [A3 cos lvi + 83 S'i M v/ij 

where m is any positive integer including zero, and 

A1 , A2 , A3 , B1 , B2 , B3 o<,and Ware arbitrary (subject to 
a ~ 

the restriction that.~~-cy >o ). Here k =~.and 
c 

. I 2 2' Jm ( v k -~ r) is Bessel's function of order m. 

(il) .Consider a cylindrical cavity of length Land radius a. 

If the walls of this cavity are rigid so that the com-

ponent of the particle displacement perpendicular 
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7. (continued) 

-
to the walls must be zero, show that the harmonic 

solution will satisfy the boundary conditions at~= 0 
' 0 

and ~ = L only if 

and ·0( = nTf 
L 

n = 0,1,2,3 ,., 

For any pair of allowed values of m and n there will 

be an harmonic solution satisfying all boundary condi-

tions only for certain special values of t;J (and f =W/2JT). 

Find some of these eigen frequencies for the following 

two case~ (1) m=O, n=O; (2) m=l,n=l. 

"c { ·" ¥8. For any wave guide, the cut-off frequency for any mode is 

the low~st frequency f for which the mode can exist in the 

guide. For air at 20°C and a rectangular wave guide of 

dimensions Lx = O.OSm, Ly = O.lOm what is the ~ut-off 

frequency for the mode characterized by nx = 1, ny = 1? 

,/ 

~· Show that for normal incidence the requirement that the 

specific acoustic impedance z = P ~~ be continuous across a 
1\iW """"' ""-,.r---

~oundary separating the fluids leads to 

·_;;;;. c:J. /t~c, - I 
fd.o:;./nc,+J 

f,c, 
for the ratio of the amplitude of the reflected wave to that 

of the incident wave. Determine A2/A 1 from the above ratio 

and the requirement that the average rate energy is brought 

to the surface by the incident wave is equal to that carried 

away by the reflected and refracted waves. Calculate the 

sound power transmission coefficient. 
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6.30 

in the figure for problem 9, a plane wave is incident 

on a boundary separating two fluids, the reflected wave is 

said to suffer a phase ~hift of 180~ if the harmonic vari-

ations of the pressure produced by the incident and reflect~d 

waves separately are 180° out of phase at the boundary. 

Under what conditions will such a phase shift occur? When 

it does occurris there also a phase difference of 180° between 
ol..~ 

·the particle velocity~ a..t 11-w· ho((lf dt~l\~ due._ .;;, 7k..: 111Ct~ ~ 1 
J /\ ? 

·w tt..e. ·p-4/~-:t..ct._ ~4- a.:t 14 k..-~<t~kki' ctw_ ~- tl~, tu./ .. '1-::t;.J wo.,..,.~ ,~,._ · 
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