Advanced Acoustics

R.J. Marks Il Class Notes
Rose-Hulman Institute of Technology (1973)









3 2] 3 G
Fof AMERT Mo LAy e 4, 6,8
o’

e ASE
/.

A

f

S . -
po gc A

LA
v

1o

Ado L

p} [w
- PR s = //;) o




e

o ) gM




\’\j /







R
5
.
=%
~i
=

s
biig




B S S

A

— ;‘,..«.vu,.:f,..,,n;@;ﬁiéﬁﬁ}ﬁ? e, - -
. it
S | -
| .- - .















Pl




|

RN

i

v £ [

v("/ [} /\j

e

i

NG




4 r

~r ) ) (
(,{/{) o \//C,t)() _L(;
wow CoNSIDER ]

i 2,

PR )
Iy, A = /*\ \< - éf'n < v s

[
(.
i«

Ty

fiinis
1

(]

=7 V) .\;\/’V ¢

>







R,

B FART B Y A
¥
L




v}
















PN

R

o



PR
% W

e,







sy €
‘(} ‘

oL T

TEAN SV RS L WA LS N el

: §§ ﬁi{ (X )

ol &X AX A =

Fplxeax) =y lx)







X

CovpMPR T

e (";




o

v,













X

by

Lr
W

Fad













)0

e

=

Db

i
i



n\

DI JAd .

s

e

|
|
i
{
I







als

W

St

g,
A

-




s~

7




Iz

)
Y

A

/
/

g 2
1 —t 4l
o i
S
. (-
- J -
- G
g, oo B 2
(R i
o , ,
e L :
5 . \,
- // \\w
z\\k
o -
e g
rd
»wn\
i 7
T 7
7
/
e e
-

i
S
a—




-
~.
~
.
~
~
e
2







’}/ﬁ/i-}/ﬁ i

Mg

ﬁ)u

/

A






b frF«?
- .
~_ i o -
s i =
e e




co L T IoN o

o ore

C
ol Eetd

[ Ae

VE e 17T

[

ct - (X & e

[

.

e

PLAN E

‘w, @f

CPLANE WAV (,}
dor Y eas éi’“wzlwz!ﬁ,,é + 7l €




O-19-72

PR Y T

DISTERTIONS MEASL AL LD

fmé{/ o

ot ) ! ) »@’gwf» Mw) e ;)K
o e T /f,j} -
>yt '{9 mg!f»v?u//{?y

-4

)

e e
‘ / p . A%
@ 5y Z [ f\j}

[ &y j‘ﬁf o
F ey Cara e i .
N, (X X w;AJ) ) a 7 (nﬁ Vot ? \}
. ’ Lop) Q Iy f mf 3 4}

logTERrMINE AS Fracyio M or }«2 BLd vl WAavEe s)



St M AR L y’é?j

Dy, Y”)‘, s

Y

) e
; fE-Y:]




den

it







WA VE




A

/A (?3 T &l
R s

%ﬁé&‘ ST - ”é‘(‘;;,)

X

;
18 g

Y

£ 4




=,

By oeneand by el

oy
ol } )
& T

(/”) Lo / SR

}/ /,v/ / / ;4 /\{‘ / l[) f«

e NG

/o

b g1a N L2
& eR

Ve /ﬁi’lw L K *yf ‘; ”1 E ’ N

0»'1]}1)
A

A



A, e

C oA

7

e

Tl A
.p,; /‘C o




JO =26 72,

AlLGERRA  FROM ARoVE

Cen s L

AME b




SN A
At ALEIFR /fk\ =3




|
i

ot

T ARCA (o
MB L SORFACE







|1 O -
DE

3

bots:

B e T
Tl E 5.
5 @O

Ty o6 1

L5

[

0°Cr

PULSATING &Pt ey,
;e

e e (kg g

;i /J ¢ '}(j =,

o B

L= i
s .
- Eo

FEm A

& F B

- ¢ ‘Vju L M i e O0f
o € Pl f k,/ﬁ

o5,
i



-
g
P S

RN

5
43

S
P
‘wg“v
St
S N
e
T,

6)’;') A
2 F N .

f\ s & " ! WA g»:ﬁ e {»){= o {’( cl \j! A f‘e[ ’/’u/l j,/ ; f’”f” p

N Ao ¢4

v—"‘g ‘

A,
A{ert =ley )
P “: . );J%:

i

s o
g

T o
oF
5






W

)

i

J =17

T

[

(co




P

103072,

For ENERGY laf}‘e’vﬁfv("g
"qr_l 7 _4/% LJ/ £ -
20,1 tiﬁi}"z?.}j);“ 29Cy CO. ¢, -

W

SPHER{CAHL  waiES
)

7= -6, LE5

‘ . U ; / />

7y e lI3 /M»«v




NI A

& )
4 sk s

A ot

JAA P E AT

s
wam

)’m a\gJ
e T 9. P
1= 7 [ Podt
’ AVTE ey I )

PULSATING SPH CRICAL Sopre

véz uﬁ(ﬁﬁ i end

Go BACK Teo 10=3|l- 7=

-
e
s

U Vg




oy 21 o U (G AL 6 ,
4 f} ¢k Q@a 2 v ( M%‘ AL é?) J ey w Cept lr
&) - 2 p |< & Avir & -

J,r o

SO WM EN A el s B, NR 9.0 O S ...

LIEuT  GIVING @ESSEL Fouane Tiown )

¥

5 . e e, B -~ ey K5 ] -
QAL ® 5 3,98, P, 00,17 ..

Ler Az 10 A

]
w> é; ] ;?5" Q‘@f ‘M@&gﬁﬁ @;3’7 v .3 . Bé) ,fg ! 1 ¢ e > ﬁj‘ a@) 5 oLt 3 7 ) A! /‘ @ /k{‘ é"},

& ?ﬁ;ﬁw N 1 4 24
A pE TERMINS peMer oF 05 om €

o

o t 4.7 gk
S b A




Aehtl

e A
pels@

P j =

= nail

Eedd

3

o o &

4




Fo=L AR 4 AP T AP Y m‘ » jg
- [é&i é%dfi} %QJQQ Ty
5 a fz ¢ i @A/«' = Qﬁwa tAAFL

8
é

o

P

=¥




-2 72,

R T el VA, AUy AR gt 0 ’3Nj A
. # N ’r l;‘% ‘f éﬁ\ai A ‘;) ‘A[” A

Ci K2R ao .

Ty

¥
7 ,0)

/.
= 2/@3 7 {)}/i A ‘f@’“ j;& fw//% }:j” » PR )J
‘&W%v = A, %/ /”af ol /{i Q{Afi’,ﬁ w%// @} ,5%4&6 , jd;ﬁ’

- A ” y&gwﬂgh ‘ P/

el |
R S |






é’ 2

Wyt B

Ea

=9 p s )
[




i s




Eoogiry




(PP (11a”y
T Ve m




e

R

j

JEINITE

Pl

pMe




.
‘ o e PR TR o




2R IVE

12106




AR ON g3 7 , AL

TN

A el {

Fo &7 7 = (Y ,f! Xl Y A nke

o

NMow X, oo

o
g

: 7
oyt a4, ot
E T gy ;p_ L

~

P

Wil bd




Preo  #RoM VIE = [P o EXTEANALL

A %ﬁ “ ot YR -
P

rRe T s A
S Arpm e bl

- TS
f A
= | /zf? o

NTW T E

A

7 £
=

Eoi g [y /] (1/»3 «}«:

-
e

4 -
&Lﬁf‘b} &y‘f,f 5 f

w;”& qﬂ/f’ég a?fgz ,(«S;

. ¢
sl




—,

“; ) i@/ﬁ)

"fw wg ’ [(f

Lot [ e pENOMIAMAT ¢ 1.

: g/ r L X ! e

it s A e

Ef?J l\,) / Xy A sl + dag ko -4 ( At

p i
£l e flffﬁ

. 4
T atnns,




. Y

4 Ceast —fex




YEIN A oy éjg
JE O e L}

b e 3;@)

e o) 7 l«[«;



/AJ |
(A

s NSTY

= N E

o
[




;e ié
/,/1‘" A k["/




CAN i e
o UT Aeatg g -

CEA e LT

RESANA T

CHa EME Py 2oer e )
(N KD




A

RE £ Uncrion

FTeM& &S TALH

§20
CIVING & n 7

[ T, <

S K-

P

AR ~ %
c e mHY @ d (wE e
o g/ & - iy

2
A ee 0 T/wfd !

7o O = Ll =
f -
el i o (7 tak et - k'

TR = L et ““?,Q“”] = 2 m:,’% (¢ 6“) Ewy, /éf g/@
- o F T ) Je gﬁi’

S N R A I e Py

f

/e fiw‘é
R e AL AN O

} A 4 & /»U :é% e t{ /QA lefg Jﬁ s %

F oo P e e’ ..




) o a . I —
- [M (mg 3 =" 0= qu,%(%w@“ 2 fex, ?

L»{J / y{ - Z W (I -‘4 e,
TeRl4twt) ﬁmj 45’[/%(@@ 7 )] of
f “s .ka,,u, % Lg P 2
R RVE SINETIL % Wj) cdr L ” :
WL CH EQ !Ws Do el “f e @

=

A? = g [iveew )Td t @ CR[1C
‘ﬁiﬂ i
.

i é/{,j " BB i
ge * L) fmég/j 2]
- ' e ol S
g;;{ it V.} . vi | ¢+ (“,! *.2\ [7// “?6“(141,4_&) /éd T
8

Ll "

“‘Yfm’”

pND VEL

V4 = p o
i
oo 5)

et T L 4. _
Pt z/j A T ”"2

AN
LET o
Tl EN




0 —

Mot E e L d ’ A =

VS e Y
479 ’\”‘”‘C’ »;) 4

- wnoT &P L
=

&l Te mMaA L L

‘;;; ég) ,;'M ) W - . gt vlri,/ / lf - { ,4 / QJJ ({ (:1 f{ é‘;* f f

I e Almsers

(= gt@fm ‘ { Aed A !%’ X
!i;‘{’j’ /&,N [

e ey




i

i

///(,K s @, =z [l
N gl i

EEN | C
= 2/ ;/”/ L o d, A X Cao X v 4 A

@)/& L2 //f o / """

—of

o

o 1»)/,,4{ P ()»fﬂ ¢

[ et

O K )

=

Lo ;Jm//f/, d}\/ e 2

|+ ol X -
lo ¥ ( | 4
7 /‘ ‘ ¢ o \/ 3( j’? _
Cogtle XX = [ 4= bt A X

X ;‘,_‘,AA O

. — , . ) L . ,
(’ e /< X - _/(( At /A,,\/X ) 4 ¢ ([)/)) (O A 4 g, J

. 7 '
Ve //// L R K At e

P

N

]

ke x A

=



TYELEMENTS oF ELASTICITY
A)ﬁTR ESSES AND STRAINS

:)@N A STRING

oN A_BLOCIR
2) &

X

GENERALLY ", 41
. / d@ ———
Lo o
| i F’é‘»‘mg o F;mg
MORE ecoNVEN)ENTLY
-d
. A
Z g W e
g
. S%@pg - E/A
'E’ er &

e

do ARE STRAINS (ﬂtMgNSI@NL,E’Tﬁ’&)

WHERE Y (YoUNGE MopuLUS) AND & (PoISSONS
RATIO) ARE SUFFICIENT TO COMPLETELY
PESCRIBE THE ELASTIC BEHAVIOR OF
HOMoG ENEOUS I1SOTROPIC MATERIALS,

v |Fa

2 1
hm-w-»m-ﬂ/

Exn e A" U/A‘f Sxx
‘PT Eyy|* | Yv "% )lSey

:.azﬁ_.’_’“‘ y Esz - "Ops Yyl Sapl

=
STRAINS: &’W S‘TRES;‘E’

/A
6,(* ’Qo SXK Y/XA
U e we ‘ y
é\{\{ - __W:g. z‘f‘f Fa/Az
@aa = Woe P e

U h



—

@

B) BULK MODULUS

i - -

) B*= AV/V
ASOTHERMAL BULIK. . M@@m,ufs COMPUTED. CONSTANT TEMP,
CADIABATIC s computen, & cobSTANT et

:a.) RE"—AT’IQNSH‘I@“\"Q :{'Ma o=

| V=VoLLME oF @LOCLK @ pm«:ssumﬁ’ P
~1/ J; J/ Ve 7 " v ‘! il P’
PRESSURE P - -
- 5/ 5&;(“5\“!’ p
“ PRESSURE P _
.‘Sxx,-v Svyy "'§3:2: P
- -

CHANGE IN STRAIN!
Exx*EyyT Egrn® Y (20~ 1)(p- D’)
GHANGE :M' VO LUME ! € daf.é_e@_-?d do <€w.¢ )
Vi-vzlw'h'-Lwh
= L{Exxt)Wlext ) h (Eut!) ~Lw h
=V[(1te,,)? - 1]
£ l<L =
> viv vmw@m 1]
R~ u
o = 3Exx " '1.’ Z(20-1)(P- p’)
~tp'-r) . X
B=w-vy/v - 3(L-2¢&)
IN THAN B 2O, ol

THU S



€

C)SHEARING STRESSES AND STRAIN S, SHEAR MOPULUS
1)DEFINI TION B A Say

U+ B .
LS O . SY

é,/ F/{Ct’. g comp oF FORCE oN P FARCE
Pg = ARERN ©F P FACE
WiLL pE FORM THE BLOCK/
. AFt—mT > FOR Syw

Gz SX8 - 5HEAR MODVLUS >

X

SSHEARING STRESS

2)SHEAR MoODULUS RKMTI@NSH/% To YMD o ~
coNS|DER CcUBE oF VOLUME Q.5 AND Y 4 2 FORCES

'

""" pEFORMED 2 7
¢ Te QQ”A
i ,
= j— Qta—
CoNSIDER TRIANGUL Aa@ raA RALLELPIPE D
LAY [,‘\ ,9’:;‘ .
4 Y /, g & -
. AN ' F/a.
3 “
[y ” '\/
\\\,, \' \\\




D) STRESS ANR STRAIN AT A POINT

[y -
.
W
Lt L
X
C
A)(f ..-W}g ®) xg Axﬁ—éXSﬁ(X*AX)"iCK)( )
N ARg ;s g (xrar) - £CX) _
RIS P Cyy 7 bt AX

Now €yy T W Say 2 PP (Lo"X) = oA
= £(X)= #}"‘,@g‘[éex #-%-J

gw%



E) THIN BEAM

TR ' 7 i il “ Lo N Yo et o jf
oo T i d — @
ix A o . A *h
MW o

} 7.
X #w .
¥ $om  \
f N N
: \\ :(FYNFL:X% e
Me BENPING MOMENT (ToRQUE IN &
A DIRECTIO
Wy
2,
?‘ Fx2 0O ,
Fy:‘ V\A"/Q.
- WX
2
THUS
e e P
9 kx ﬁm” = 0

Ll 2
Syy = wh = 2wh

CONSIDER AX ©OF THE Rob@POISTANCE X!

(paf-rz;'t) LINE EQUAL IN LENETH To UNDISTORTER ROD)
\

a.y 5/
R=> RADIVS OF CURVA Turz&”-—- ol iy

| CHAN6£’IN LEN6 TH ©F SHA DED STRIP IS
(reR)AP-Rag = rag
ST’RA:N ON STRIP;

rer)oD - RAG.
Rap R

STRESS A”i" STRIP:
=>°‘¢x o dr
TeRq uE DUE"' TO ol Fx AND au::', d')« *2I°dt:x-2r ___,,E..,.O(h
=>M f/ag‘%’Wdr‘ E!b g‘i‘&
2
oR 3_;1'2_ TS ML .




F) RoD ULNDER TORSION

/o ! i ﬁ e e

£ ] T o . b 3 '

L e . i }
24 1 g

B - (R

/
R [ T
&y 1 I

TWIST AND SHIETS o)
/l —";///
R Fapex sy -Yexy]
/ /N e="'d =X
’ [

TV de dPzrdFzrGedi= r[Gr §E]d4

| aPAAPBY P8Y=T[crd¥]amran
“W - ca'md¥ _

(i fe P[GPQ%J amrrdr = =% 3’% = Texr




G) GENERALIZED c@m::.g“/@’i“ OF STRAIy
& igaiw* d*r’*wédz

dx+§;ﬁdy+ 2z
df dx“”g’t?d? %5€d%

ﬁ)

€x
&

. SE

- -%;(

w«‘”é% Exp™ Eayx = g( &%dﬂ
_ 5 ) A

€rn= ES Cya=Car = (2L

z



,
fre et P . H i
. §« : AT .o ¢

7 . s N

i« i i\

a3

i
.
"
vos
" I 2R i




T)HARMONIC MOTION

A)THE SiMpLE HARMONIC ca,sc;u,t,_ﬂ“f;@ﬂ_

“l X = M X
wow\mﬂ?
DX+ et x =0,
hss UME: Xit) = ga £
GrLve Avp mng)

x(t)= C C con wot + D weT
B)CoMPLEX FORM oF sowuTloN
x(t)e A @ et
c)vELOCITY, ACCE

&w’t gQ
x t)= A @ LweT v

ng)z,@wﬂQ " )
X ()= wae Nt

;‘. «

LERA TION., AND PHASE

D)ENEREY O©OF SIMM,E H&RM@/&I& Q%QILLWATO&
E=dmi™s Thx==<4 p42w,*

E’)QAMi@E’@ HARMONIC. MOTION
MX +RX+KX=O
X F2LX Wy XEO D w,.ﬂh oA = R/Qm

+
F) DR)UEN HARMON IC OSClLLATOR

Kt RYFRX = eoa wT
P&&T‘u:.um-m SOLUTION

ppme ey e Fefed (s € @) z,m =R * i wme ¥ )
1Zm| ’

CENERAL SoLuTioN.

X= Ae“"t aog{ Lo f+¢) +Cﬁa/m)gm(wt“¢)).

‘ NVR™+ Cwm - Jﬁ)
X’(t) Lfrc.s F'Ma('wt‘) BY &




6-) MECHANICAL RE SONANCE
oo o= Fo™ R

G TR ST R Gom - ) 7]

top 3 V1/n ’

- _Wp
A= W, =R VM

T e %t B Ry 5

Wy= £, = VirjamD + 4]
H)COMPLEX FORM oF SOLUTION OF
DRIVEN OSCILLATOR,

M+ Rx + lex = F, Aun et
= . AR W pxwl
x<t)m : Z.m e ‘ oy [EYM = 1=
X{t) LAGS F,awmet gy m QWEM)
I) MECHANICAL TMPEDANCE
Bwm= Rt «(wm "”%_}

JYThe LOUDSPEAKER A#AsS A ORIVEN
DAMPED OSCILLATOR

MYV rRY rkY: BAT, Conw T
Bezaeiu&'
Zm




RBixean)- = 8 & g
-
HKed ¥

2) FIAED FND
E(t.,t)=0




) WAVES
LANS %gf{gg %ﬂgéﬁ’g i @@ﬁﬁ

&W@smw@%
4 %Fy@r@xﬁ g

“‘E - TR 1}

%e

?Q,é:kiﬁ
ﬁwf%ﬁ*@%% Fa@ ®)

m@ﬁ@{% ING

Wﬁw%




i %ﬁ/
S
oy

R



GoHdF=6GBdA=Gr
THE TORQUE ﬁ%m’“ A ﬁﬂﬁ’m.




WAUVES

£ %m@%}

FERaR i Plxeand =T (x) = R
~ ¢

LA W‘}

ONDITIONS

v,
x|

%} CLAMPED ENp:

{ 2, g;} =

%




‘F a #‘ ‘%
| % Fl

Te=
;ﬂmwng@ |

) .
.

Y /
Yeay
Y




SOLUTION




DAPPLICATION oF BOUNDRY CONDITIONS

2 (x,0,t)zo »
{ﬁiw %%E =0

ZCK, 9 b)) 2 dumotX
Z(a,,¥.t):0%H 4nc

Z(x,b,,t)=02

g B REcTAd L
3, X










~ a1 a “M=rag tm*ra, aﬁ*.--
Esg%w k*ra, wﬁw

® ¥ B

20, ¥ %Wﬁ?%*%f‘@'

R







0) KETTLE DRUM
" PERIVATION




WAVE = (NN R PR N P

- 3

[ ) 6%
(o8 ; }’ 13 , o0
p 7
& 5
-

&
b e

, ( NG AKM AL Pl el S E AR Mo Sl AR LA e ST JAL T )

STRAN  RCLATION S H R ok A FL

SRS 2 T W

EQUATION -,

.
f"

LA

i ,
AN THE FRONT AMD ISACK TACLS  JROM  NEW TN
SLCOND LAWY
Nl e N A !
POy, ) Az P (erdx,y

K

AND  Sifabe ARLY: ~

) 3 ) ) # .
L ® Y. ST

o h
=i
SR

N N LATIoN SHIE Q})

]



N

soL { [OM  oF THE waveE Lauavio N
4 (q)l' 53] X
A> (/) m = A PLANE WA VE

¥

OR, '(‘C 'éi/‘) B e ot ~(% 444 L6 Qe (iflw S O I (/j{s I (ﬂ;)

Fore AN
[

e €1

Fv=nRt

-

b) HA KM ON
AGA LN o F
ver  0'C

!




120 N Y COND T O N2

PR R

\ e ad. LT Aad - : .
i ¥ ’ [ f) ) . né;
1, - “ " ' 2 a

rA [} ) / [ ( (ﬂ” MJ\ W ﬁ ¢ ” B / % z‘”)‘ y ﬁ\] }! I} »;; //} [ é’tj/o};,z HV /’}1}%: ¢



JHE WAV Gt

{7 o, " /ﬁ‘*, ‘/
ji A
(7%) / Xy oyt
el ) 7 A, . R
/AC TR N BE

&) ’?"m W/ s
(" Ler, /)ér)

”) + Yo
AU daag( 2

A

Mo 'k[ll';-

| ED A
Fore (A) wiEN

. J A =t T IiIoN
CEC AR PRI ’

(W

o [

3



- j L 87,

PR
LA

SOt Tle

Yok A A PLAMN E :

Lot

PN QRN S }
v = / )

SCANG DT ey ME Dt

P
A fi»z:',)wgg




BOOMEEY AN DITION S

ANED A, 0, ¢ b,
o /" Pt

“ (,a.)t’_k&)

T HEMN P, = A, &

P oA e £ et ey )

i et o e

Avop (@ x=o (AT THE BovamprY)

NOTE  FHAT G)A'

ON THE SianN  oF /ﬁﬁ@'i//b.@n "1

o Prase. (P & 0
ARE IN PHASE op owvv o©F PHASE, pPEPENDING



consIRER 3 MEEA  (sTEAPY STATE?

4(["Ut )’<.)< ~y . . t’c&}%”k "
0) e - w2 0,6 2

(it =g K)
/\ﬁi“”
AL ) ot v kox o
@L.x'” %L)Q&Ar

poco | paca

X=7L =0

A4

(’ﬁmmg / ¥ 20 O%’%scw'r }‘»{3@ = fj‘—z ¥ Baw A 2

wa

Y
[ WMW—-

OUgicny 2;4 z0 "’”‘ﬁ/d’zfa C%W%B /PE:a:Q% /Q
g/Muﬁﬁ@ To THE Twd MELIL Cf

: UMID!OU? ‘xz@

r: 2.3 7 4.

wn o5

PPN

BOUNDLEY @@MM?”M Cﬁj) K=l
Flerv lyen ™ D oL [ i.f“é;, o b e
P heftepg ettt pet T e B0
Ugmg;f‘y jX = ‘“‘gyx‘ é’vjééﬂfﬁ%? é ¥t i b
b 3 e et : y * o
St {Ae © eyt iﬁéﬁgifi’ ’ j

L =,
“T"“ t B, 6? - -

s

®m

leal Fan-)
Fpatl S

~ 4 e b Foa =4 i Ko L
e - B &

|8
W 2

9 Fya CORK, L+ 4 2 atn by L
5 r;@,g A 4 5 COA /%QLQ + 2 foa M, L




A
\

ek L . .

Be " (Naryg- ) eonlal v 4 (ria-rye) A ey L
JlL = e R, '

pe (ryo s L) Coa E% Lot ( Foo m o) A ey |

4@30 {W}g%!)%@ g‘fgﬁw%e@é?;»% r;é)w é""f:l 62

cHoosE K, L = neeo,, 2

My = M2z ( /%& C,o® \‘/ P , 2\ f/ﬁjs 6 ; )
THEN P20 (voe REFLECTIONY

NO ORMAL RAY S oy
ON N DERM :i ) U - lj/ 3/‘14 eﬁ W {M’mg?}/)j
pr= me L
o D L i Cwte kpxeand, s vt
.

j [t = ky (R oo Got ¥ A4n "*5%@ }'j
A, s Lwt - Azz,'g:x Qj{‘}'eﬁ~,~<¢i)l 4y RN V7
Ly Lwt-k(~Resd f, + ¥ avngd, )]
c , : .
/ ’ o a il = leg (X God Py + ¥ gt ?géﬂj

5t
&

POVNDA Y CONBITION S

P -
- ey
& [ent - f@:’%”!@:;ig’ o S RICHT XD 1@? /1 FL&Q% ﬁf#f{gm @gﬁgj

‘j 4 lg @ 45@9)@ Je, At

BUT K At P, = ko Méomze @ @
ﬁ‘?é{\o“‘f“l—glg A:@;

VELOCITY RouNDRY @@N@I‘T‘W@Ngl

> A€

- J,,, -
U e E@ <y Dy C
N iA,”éﬁu'/i Po
— AR P g Ay, /J, Q,
> K v

For we rRELES



ENERSY  (CoNs ITRERATION X

) .
lj - y ‘) Jr 1 T

52 At Cor i = o)

= L5, (,,u }\n(>/)

e fo e YO

) ( 'Cws’,,) T - /“»’T.‘ Ht €4 ) (!/ ool

cad (e U IS X b A ) O

RATE

1“ INTE NS Y f;i:’“W/” ARECA (D 1) CE //w FRLY . B D S A A s mdll s
FPERPeMpIad . A KooTe b /,3/. TS K)/ fAf i e AT




ENE ve <y RN PR Y e NDET o a

., \2-©

[ C el BT

1l



Chapter T Problems

When an object undergoes a change in volume due to

applied stresses the quantity AV/V is defined as the

<

volume strain or dilation. Show, for a rod of cross-

R

sectional area A, subjccted to equal and opposite forces

of magnitude IF at its two ends, that

N T
S ez - N _ O‘
v py (4= 20)

{7/

A hlock of dimensions, .U, w and h is subjected to forces
on four of its six faces as indicated in the accompanying
figure. If the height, h, remains unchanged when the

forces are applied, show that
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1.3

A block of dimensions ¥ , w, h is subjected to forces on
all six faces, the forces heing of such magnitude that the
dimensions w and h remain unchanged when the forces are

applied. Show that

N

AN

~
N

Solids and liquids are only slightly compressible and the
- 4 /[/3";\,' ,') . . " e
bulk modulus B = - AV/&VWY is essentially independent of
the size of AP and the mean pressure at which the measure-
ment is made, This is not true for gases; it is only for
very small changes of pressure about some mean pressure fovr
. , Y. : .
which the quantity /\Y/Aﬂlj . is a constant. The equ-

nRT where n is the

il

ation of state of an ideal gas is PV
number of moles of the gas and R is the gas constant, Show
that for small changes about some equilibrium state char-

acterized by P , V the isothermal bulk modulus is equal

O \]

to Pg. When an ideal gas undergoes an adiabatic process,



| y

v t )
the quantity PV remains

/ .
constant (% 1is

the ratio of

the specific heat of the gas at constant pressure to that

at constant volume,) Show

that for

small changes about

some equilibrium state characterized by PO, Vo' the adia-

. . . v
batic bulk modulus is P .

A brass rvod 50 c¢m long and

I cm? area is compressed against a rigid wall by a force
4 C o .

of 107 nts as indicated in the sketch below,
Find the stress component Sxx at
a point P, a distance x fronm |

' . ‘e & . | y
the wall, Find & S and | 1w
the all ) Wt | yv‘ and l ; . :

. ¢ [N

C,y at P Find the displace- ?
ment U of a cross-seclion ; -
30 ¢m from the wall,
When a uniform rod is suspended from one end undey its own

weight the strain component
where [ is the density and'ﬁo

Each small piece of length dx

stretched an amount d & = .~

XX
with x, and find the length A

of £, Y, / and g.

.01 /

Which of the equations (1.,13),

are correct for all values of

Which need to be modified for

of square cross-section of

“"!" > g / s ‘)
ﬂy,/d (ﬁ# s )

the unsitretched length,

in the unstressed rod 1is
dx. Find howz-':*”,V varies

of the stressed rod in terms

(1.14), £1.15) and (1,16)

0 to x = L.

x from x =
x v L2



1.8 A light beam of circular cross-section of radius a is
supported on two knife edges at its ends and loaded in the
center by a weight W, GShow that the bending moment at a

point is givewn by

™

5,

’lfiﬂfj d? y

M = 4 dx2

where y(x) is the equation of 1he center line of the dis-

torted beam,

1.9 One end of a light beam is clamped in a wall and a load

W is hung from the other end,

(a) hssuming the forces exerted
by the wall on the beam can
be vepresented by a single
force I and a couple of W

moment My, find Moiand the |

components of Fé by isolating

the entire beam. _ .
(b) If the dimensions of tLhe beam 3

b i b
are L, w and It and the distor- i
tion undergone by the beam is
“small, find the bending moment

as a function of x and determine

the equation y(x) of the bent beam,



1.8

(b) If the dimensions of the beamn

e

A light beam of circular cross-section of radius a is

supported on two knife edges at its ends and loaded in
center by a weight W, Show that the bending moment at

point is given by

where y(x) is the equation of the center line of the di

torted beam,

One end of a light beam is clamped in a wall and a load

W is hung from the other end,

~

(a) Assuming the forces exerted

by the wall on Lhe bheam can

be represented by a single
force I and a couple of
moment My, find hh)‘and the
components of I/ by isolating

the entire beam, . Yo

;‘; § "

are L, w and ¥ and the distor-
tion undergone by the beam is
“small, find the bending moment
as a function of x and determine

the equation y(x) of the bent beam,

the
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CHAPTER II PROBLEMS

2.1  The solution of (2.2) can be written in the two equivalent

forms:
X = (?: Coa Wy, 7{“ e D Se l(/of

or

X o= ﬁC&Q@Mﬁ‘+ ¢)

Find A and § in terms of C and D.

2.2 A particle executing simple harmonic motion is obser?ed to
have a speed of 3 cm/sec at the instant it passes the midpoint
of its path. If the frequency f, of the oscillation is
10 hertz write an expression of the form (2.4) which will
correctly describe the motion'of tﬁis particle. Assume the
particle is moving along the x-axis with the origin at the
midpoint of the path, and that one starts counting time at
the instant the pafticle is passing the midpoint and moving

to the right.

. 2.3) The real part of

pLya
X)) = 7e*

is a description of a particle executing simple harmonic

motion. (a) What is the real part of this expression?

(b) What is the frequency of the oscillation? (c) What is



A 2 . 4\‘3

2.5

2.

6

32'

amplitude? (d) Plot x(t) in the complex plane at times
t=0, t=1/4, t =1/2, t =1 sec.  What is the angular

velocity of the point (or vector) representing x(t)?

The real parts of

K) = Het"
and
5"9'77“1‘

Giys) e

i

2, (%)

represent simple harmonic motions. Do they have the same
frequency? The same amplitude? Represent x(t) and xl(t)
in the complex plane at t = 0. What is the phase difference

between x(t) and ﬁl(t)? Which leads?

If x(t) and xz(t) represent two simple harmonic motions

of the same frequency and if

X
Xo= —«:Zz»..w.
144

find the phase difference between ﬁi(t) and ﬁQ(t). Which
leads? Find the ratio.of the amplitude of xl(t) to that of

x2(t).

If xl(t) and  x t) represent two simple harmonic motions

5
of the same frequency and if

2:", (2-7":{»'J EE 2:: (l"é.)
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. Chapter ¥ - ELEMENTS OF ELASTICITY

The study of acoustics is basically a study of vibrations
and waffes, Practically all solids and fluids are elastic in the
sense that the application of external forces to a small portion
of a solid or fluid produces a distortion of that portion and
gives rise to internal forces which tend to restore that portion
to its original undistorted state. If the external forces are
removed suddenly, an oscillation of the small portion generally
ensues, This is transmitted to the mneighboring portion of the
medium, which in turn transmits it to their neighboring portions,
We spealk of this process as wave propagation., The nature of the
waves and thé speed with which they are propagated are intimately
related to what are referred to as the clastic properties of the
medium, Consequently, it will be appropriate to begin our study

of acoustics by reviewing the basic concepts of elasticity.

1

1.1 Stress and Strain

I3

I1f a long wire is suspended vertically from a‘fiﬁed support
and its‘length and diameter aré measured for a number of different
kilogram masses hung from its lower endA(Fig. l,la); one finds
that/the length increasesiand the diameter decreaseQ\ingigLi
with the force mg exerted on the wire, as inaicated in Fig. 1,16.*
If the experiment is repeated with a number of wires of different

lengths and diameters, but all made from the same material, then

*  The l}inear relation between the length or diameter of the wire
and the force exerted on it is observed only over a limited
range of forces ranging from zero to some maximum value which
depends on the diameter of the wire and the material from which
the wire is made. In all that follows it is assumed that the
force always lies within this range,




2.
then for each wire one obtains the linear relationship shown in
Fig. 1.1p.. The slopes and intercepts, however, are in generél
different for each wire, If, instead of plotting the length 1
and diameter d as'a function of the applied force, one plots
(1-1,)/1,, and (d-d,)/d, against F/A where A is the cross-

sectional area of the wire, one obtains identical graphs for all

wires made of the same matevial. (Fig. 1.2). The quantities

(1~10y10, (dwdo)/do, and F/A thus appear to be more useful
quantities than 1, d and F in describing the hchavior of the
material., The ratios (1-1,)/1, and (d-d )/d, are called strains,
while the vatio F/A is called a stress,

The velation between the stress and the corresponding strain

depicted in Fig, 1.2 can be represented by the equations

L e | (1.1}

VA
d-do _ | o £
{ " N

where Y and ¢ are constants, These constants are characteristic

of the material from which the wire is made, and are called

Young's modulus and Poisson's ratio respectively, Typical

values of these constants for a few materials are shown in Table 1,1,






TABLE 1.1

Young's Mod, Poisson's Bulk Shear
Substance nts/m Ratio, Modulus Modulus
Mis /m?' A VATRS
Aluminum 7 x 1010 0.35 7 x10'° 27 %10"”
Beryllium 31 x 1010 0.05
1o ) /0
Brass 10 x 100 0.37 5 x10 Hrte
. - 0 oo%t o'
Copper 12 x 1010 0.37 15 x10 e
: o x4
Iron 20 x 1010 0.29 1o x 10" § %10
P 10 1o 5 - e
Pyrex Glass 6 x 10 0.24 @ x 1o Z2.5%x10
: i3 1o
Lucite 0.4 x 1010 0.4 Q7KIOM O xro



The two constants, Y and @, are sufficient to completely

describe the elastic behavior of homogeneous isotropic materials, ™

The lavrge numerical value of Y (~ 10% nts/m2) suggests that in
the majority of cases encountered, the straﬁns are very small
quantities. For example a 10 KG mass hung on the end of a 1 mm
diameter brass wire will result in a strain, (1 - 10)/1O = 1,3 x 1079,
In what follows, we assume the strains are small compared to unity,.
Other experiments indicate that equations (1.1) are somewhat
more general, If a rectangular block of dimensions 1o+ Wy, and hy
is subjected to equal and opposite forces applied to any two
opposite faces, the changes which occur in any of the dimensions
can be expressed by equations of the form (1.1). For example, if
' stands for the magnitude of the resultant of the set of forces
acting on eitheyr end face of the block shown in Fig. 1.3@, and
A the area of one of the end faces then the experimental results

indicate that :

% ’/:;
A - YA
and , (1.2)
Wewe . hehy . v
us, - ;,}.‘@ o= Y . &

Here 1, w, h refer to the length, width and height of the block,
after the forces are applied and loe Wo, hg, to those same quan-

tities before the forces are applied.

* A homogeneous substance is one whose physical properties are
the same at all points of the body. An isotropic substance
is one whose physical properties at a point are independent
of direction,



If forces ave applied to the top and bottom faces as in

Fig. 1.3(b), then the results indicate that

}? e h ! Ef
Theof VA | ,
[ (1 . 3)
!
W >
e T em e 4
LeT, VAl

where F' is the vesultant of the set of forces acting on one of
the faces of area A', If the direction of the two sets of forces
in either Fig, 1.3a or b is reversed, the signs of the righthand
terms of equations (1.2) ov (1.3) is changed., If the set of
forces shown in Fig. 1.3a and the set shown in Fig. 1.3b are

applied simultaneously, it is found that the principle of super-

position® holds, i.e,

L8, T o
-Mfwé R VN
. ..
wews . . E - [;3
- o - ~ M YA
[3
oy
lt l g F A ﬁﬁ
T= o o I N
P = < 2. /{ Q\/” /,‘ 4
to

* The strain produced by n sets of forces acting simultaneously
is the resultant of the strains produced by each set acting

separately,
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: &
By using a coordinate system such as that shown in Fig, ¥4, the
results of all experiments of this general nature can be summarized

conveniently by the equations

A | JURR D
Q W FRG h R R b 2%
. . 1.4)
é v e & ¢ v “L" gt i P ¢ (
FET AL S T B L
1 C
& P ~ B 3.1 y R
§ g ) T 5 v (’3
Here
w-component of the resultant force acting on face ABCD
g = p v sul e g
XX area of face ABCD ‘
S _ y~-component of the resultant force acting oun face BCPQ
L = el . il
vy area of fac(-; BCPQ
o . z-component of the resultant force acting on face ABOR
b?z = ] g

area of face ABQR

r . 2 éf éf . o Straine S L .
As before éxx' vy ., are called strains, S, qyy' and
S are called stresses., Although it is assumed that equal and

Z%
opposite forces are applied to a given pair of opposite faces,
note’that the stresses are defined in terms of the forces acting

on faces ABCD, BCPQ, and ABQR. These are the "positive" faces

of the block in the sense that an outwardly drawn normal to any

one of these faces points in the positive direction of one of

the coordinate axes., It shoula be apparent that the stresses and
the strains are algebraic quantities. S,., for example, is positive

if the forces acting on face ABCD are directed out of the block,

and negative if the forces are directed into the block,



the application of external forces producing the stresses Sy
syy"szz' In many cases of interest, one is interested in the
strains that occur when the external forces are changed from
one set to another. For example, suppose as in Fig., 1,4 a rod
has a length ﬁ?g when subjected to equal and opposite forces of

magnitude "y and a 1ength£? when subjected to forces of magnitude Fog.

If the unstressed length is“go, one can write using equations (1.4)
4, =4 [1e o lav|

— - \.\ . -
where A is the cvess-section of the rod. Subtracting and re-
arranging one obtains

/@7‘_ /(/»' ~ /~; - f;“ " /()‘a : ,()/Z

/(/ o ) /‘1 Vg; ‘ﬂ'f

since the difference between_ﬂo and[a is very small, One interprets
Q%«i&)/fl as the strain resulting from the changedF = Fo - I dn

- -, PN : Laohsi e . . o~ .

the external forces., In like fashlon‘gxx. ny, and ézz in

equations (1.4) can be interpreted as the strains resulting from

changes in the stresses of amounts Sxx' Syy‘ Szz' )
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2,1 Bulk Modulus

If a block is subjected to a uniform pressure by placing it
' liguid @s e #eg 1.5,
for example in a pressure tank containing some “%wid, it is found

experimentally that any change AP in the pressure results in a
corresponding change, AV, in the volume of the block such that
the ratio of the change in pressure to the change in volume per

unit volume is a constant. This cownstant

3. AP (.5)

is called the bulk modulusiof the material from which the

biock is made.A If the experiment is carried out in such a manner
that the block is maintained at constant temperature duriﬁg the
experiment, the consfant ratio is called the isothermal bulk
modulus, If the changes in pressure and the corresponding measurec-
ments of the changes in volume are made sufficiently rapidly so
that during this time there is negligible heat transfer betweecn
the block and the fluid, a different constant called the adiabatic
bulk modulus is obtained,

It was stated earlier that the two'constants*y and 0 are
sufficient to describe the elastic behavior of homogeneous isotropic
materials,. The bulk modulus, B, must therefore be related to Y
and v, One can derive this relationship by applying equations

. hidn e stetre 2 oas tn g 405
(1.4) to a block and subjected to a walfean ZP, For con-

A Pr(sg}; wre ka b
venience let V@ be the volume of the block when the k 53

¢
and let V be the volume when the

¢
block is subjected to a pressure P, Remembering that pressure

is a force per unit area, and that the forces on a surface due to

pressure are always in the nature of it should be apparent

that when the pressure is P

‘S‘Liggg%f 533 = m_P



and when the pressure is P!’

SXX = Syy = Szz = - P

Interpreting & andé;y of equations’ (1.4) as the strains

Xx'vyy
due to the change in pressure from P to P' one obtains

- = ~ = ::1 T _ pt
Gy = Cyy = €y, =8 o= 1) (R - PY)

Letting Q . wand h stand for the dimensions of the block when
Lt
the pressure is P‘,Vlw', h', the dimensions of the block when

oin

the pressure is P' one has from the definitions ofégy. 6§y' and

Eaz

§

]
Vi - V= Zw'h' - Fuh

i

/i e G 1 _
= I(l*ﬁxx)W(lftyy)h(l*ng) Swh

1

v}! (¢ )" -1

éxxdmil we have as a good approximation

V©os Vo= V| (g ) - 1Z

Since in almost all cases

so‘that

-

(V'-V)/V = 3€__ = % (20--1) (P-P")

H

and

B = - p'-p = Y (1.6)
(V'-v)/v 3(1-297) :

For all materials, B and Y are positive, Equation (1.6) suggests

therefore that o= must be less than 1/2, a result that is éonfirmed

experimentally.



1.3, Shearing stresses and strains, shear modulus

Consider a block subjected to the set of forces illustrated
in Fig. 1.6a. As in our earlier examples, the forces actiing on
any one face are equal and opposite to the'forces acting on the
opposite face (this is necessary for the block to be in trans-

lational equilibrium)., TForces which are tangential to a surface

such as those shown in the figure are vreferred to as shearing

forces and the quantities

z-component of the resultant force acting on face BCGF

< —
v = - e
v area of face BFGD
and
5 _ y-component of the resultant force acting on face ABFE
zy area of face ABFE

are referred to as shearing stresses,™ Ior the block to be in
rotational equilibrium {(consider, for exampie, torques abovt the
K-axes) Syz must equal Szy" Undeyr the action of the set of shearing
forces shown in Fig., 1.6a, the block is deformed into a parallel-
epiped as indicated by the solid lines in I'ig. 1.6b. The angleIO
(in radians) is referred to as the shéaring strain, and the ratio

of the sheaving stress to the shearing strain is called the

.

shear modulus G, i.e.

S
_ vz ' a.7)
6 = —5~

For many materials, this ratio is found to be constant over a
reasonably wide range of stresses, Because of the large numerical
value of G (see table 1,1), the strain © is usually small compared

toiunity.

#*  The reason for the double subscript on the stresses should now
be clear, The first subscript identifies the face on which the
force is acting, while the second specifies which component of
the force is inveolved, For example, SXy refers to the y-component
of the force acting on the face which is perpendicular to the
X=-axis,



:rn/(? /fi, f«,



dotted lines in Fig.

9.
It is not very difficult to show that the shear modulus can
be expressed in terms of Y and ¢ , Consider a block in the form

of a cube of edge a  and subject it to the set of forces shown
Azﬁ. Let the resultant of the forces acting on each of
the four faces be I' and let A = ao2 be the area of one of the
I
faces, Using equations é;} 5 one finds that the height is shortened

s

in Fig,

and the width is increased by an amount

as indicated in Fig,. which shows only the front face of the
cube, After the distortions occur all portions of the block are

in equilibrium and if one isolates any portion of the block it

will be in equilibrium under the action of forces exerted by the

material adjacent to the isolated portion, We inquire into the

nature of the forces exerted on that portion of the block bounded
. Lh7c¢

by the rectangular parallelepiped shown in red in Fig. Juifa.

The front face of the rectangular paré]lelepiped-is shown by the

Isolating the triangular portion of
the.cube shown by the shaded avea and drawing in the forces®
acting on it (Fig., 1.8a), it should be evident that for this
triangular portion to be in equilibrium, the resultant, Fs' of

the forces acting on the slant face must be tangential te the

surface as indicated and must be equal in magnitude to F/Lﬁf._

* When using equilibrium conditions to calculate the internal
forces (and stresses) that arise when a block is subjected to
external forces, one often ignores the distortions that are
produced and calculates the internal forces as if there were no
distortions, This procedure yields satisfactory results as
long as the distortions (strains) are small compared to unity,
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Similarly, by isolating the other three triangular sections and

using Newton's third law one can conclude that the forces exerted

on the rectangular parallelepiped are the forces shown in Fig. 1,8b,

The area, Ay, of one of the side faces of the parallelepiped is

q " . i .
equal to -9 or A//VZ, and since I'g = F/V 2 it follows that

p=

the shearing stress FS/AS at the side face is numerically equal
to the (normal) stress F/A at the surféce of the cube., Note that
the arrangement of the shearing forces on the faces of the
parallelepiped is exactly the same as the shearing forces shown
acting on the block of Fig. 1.6Ha; consequently, these sheavring
forces should produce sowme shearing strain, 0O, which in this in-
stance can be calculated in terms of Y and G’,'

Figures 1.9a and b illustrate the distortions produced in
the rectangular parallelepiped when the forces are applied to
the cube, The end faces of the parallelepiped which were
originally square become pavallelograms., In Fig., 1]0a, the
original square face (ved lines) and the distorted end face
(dashed lines) are shown with the left edge superimposed and
Fig. 1.10b shows these two faces after the original square face
has been rotated through an angle of 0/2 with respect to the
dashed face., From Fig. 1.9b the increase, A din thé length of

(1 6) /4Y
the diagonal of the distorted face Ejn2(l=wwr)/AY,  Since 6 << 1,

the angle HDE in I'ig. 1.10b is very nearly equal to 45°. Hence

from the figure



[

and N S X G
| i AN
and
Vel ¢ G (1.4)

This equation expresses the relationship between the shear

modulus, G, and Young modulus, Y, and Poisson's ratio ¢

4, Stress and strain at a point

In section 3 we have seen how external forces acting on a
cubical block give rise to stresses on the surfaces inside the
block. The stress at any point of the block can be defined in
terms of the stresses on the faces of an infinitesimal sur face
containing the point.,® Similarly one can define the Strain at a
point of the block in terms of the distortions taking place in a
small volume surrounding the point. To illustrate how one deter-
mines the stress and strain-at a point we consider a thin rod
which is hung from one end as in Fig. 1.lla. Let the rod be
uniform of density P and mass m and have a length 1, width W
and thickness ho when unstressed (e.g. when resting on a horizontal
table)., When the rod is hung from one end, its length will in-
creaée slightly due to the stresses set up by the grévitational
force, We wish to determine the stress at some general point P
located a distance x from the supported end, First it should be

evident that since the entire rod is in equilibrium, the force

#* If one chooses the surface to be a rectangular parallelepiped whose
edges are parallel with the axes of a rectangular coordinate system,
then the resultant force acting on each "positive" face of the
surface can be resolved into three components, Since there are

three positive faces, there are pine stress components, Sy, Sxy'
‘ (4 i ¢ A . : 4

Sy Syx' Syyv SVZ, Sox Szy, S50 These nine compon§nts.f01m

what is called the stress tensor.  The strain at a point is

similarly described by nine strain components, forming what is
called the strain tensor.



exerted by the support must equal my, the weight of the rod,

If one isolates the portion of the rod between the support and

point P, as indicated in Fig. 1,11b, the forces acting on this

portion are the force exerted by the support, the gravitational
fobe led -

force, and a force labeled F, which represents the force exerted

by the lower portion of the rod. Since the isolated portion of

the rod is in equilibrium we must have

3

a
¢
. . .
where F, is the x-component of F. If we let the cross-section
at P be the bottom surface of a small rectangular parallelepiped

containing P (Fig. 1.1lc¢) this bottom surface is a positive face

of the pavallelepiped and

Yo

- Py
rgs

g -] (1.9)

)

since = ﬁ thstflﬂ] . The stress component S, thus varies
from point to point of the rod being a maximum at the top of the
rod and zero at the bottom,

The strain at point P is defined in terms of the distortion
undergone by a small segment, A x, of the rod located at P in
Fig. 1.12a. When the rod is hung from one end this segment is
stretched to a length A xg as indicated in Fig, 1.12b., The
strain (component) at P is defined as
A, - A

Hr

/‘/{f it
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-t ¥
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‘As depicted in Figures 1.12a and.b,.both the cross-section located
at x and that at x + A x are displaced slightly when the rod is
suSpended.( The displacement that any given cross~section of the
rod undergoes when the rod is hung depends on the location of the
cross~section, and there is some, at the moment unknown, function,
say nf(x) which specifies how far any given cross section is dis»
placed, The displacements of the cross-sections at x and x + A x
are consequently labelled §(x) and  £(x + A x) respectively,

Tt is evident from Fig., 1.12b that
A%~ Ayx v §(xe o) §

so that

(1040

The strain component (éxx at a point is thus equal to the derivative
of thé function‘ g(x) whicl gives the displacement of each cross-
section of the rod., It is generally assumed that the stress-strain
r§1ations expressed by equations (1.4) hold at every point. Con-

\ !
sequently for the example we are considering

c ot S’ - %:I\; £ 2} (j)a ¢(> (l . ll)

- %\7,” = MY,

e

Thus the strain also varies as X being a maximum at the supported
end of the rod and zero at the bottom end, We can find g(x)
by integrating (1,11) obtaining

~ 2] :
§0x) = = /’g“ézﬁ’f‘f " (1,12)

iy eemza

2V

The constant of integration is zero in this instance since the

top cross-section of the rod has zero displacement,
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5. Thin beam ,
As a second example illusirating how one calculates stresses
and strains let us consider a thin beam of length L resting on
two knife edges and supporting a load W at.its cenfer, as indicated
in Fig, 1.14a. Tor simplicify let us assume that the weight of the
beam itself may bhe neglected., Let the beam have a rectangular
cross~-section of width w and height h, Let P be some general
point in the rod, located a distance x from the left end and let
us first consider the stresses at this point, (As mentioned
earlier in a footnote, in calculating the stresses from equilibrium
conditions one ignores any distortions that may have taken place
when the beam was loaded,) Noting first that the entire beam is
in equilibrium one concludes that the force exerted by each knife
edge is W/2. Jsolating the portion of the beam of length x as
indicated in FFig. 1.13a, one notes that the forces acting on the
.isolated portion are the force of the knife edge at the left end
and the forces exerted by the right hand portion of the rod, This
latter set of forces are distributed in some manner over the cross-
section of the beam as indicated in.Fig. 1.13b. As far as equili-
brium of the isolated portion is concerned, this set of distributed
-y )
forces can be replaced by a single force F and a couple of moment M
-
as indicated in Fig, ¥.,l14c¢.® F in turn is usually resolwed into
two components F, and Fy, referred to respectively as the normal

and shearing forces, M is called the bending moment and is usually

depicted as indicated in Fig. 1.14d, (More proper]y;JM is the

3%

The proof that one can always find a single force and a couple
whose effect as far as equilibrium~is concerned 1is equivalent
to an avrbitrary set of forces, can be found in numerous texis
on mechanics, e.g., Synge and Griffith7 Propepfes_of ¥ :

(Mcﬁmufﬂulﬁkﬁﬁﬁwng??v Rwd ed, p So .
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I

z~-component of the torque, due to the couple, where the z-axis is

taken to bé perpendicular to the plane of Fig. 1.,13a and pointing
out of the paper,) From the fact that the isolated portion of the

rod is also in equilibrium, it follows that

FX = &
Fy = - W/2 , (1.13)
M = Wx/2 ' (1,14)

If we let the cwoss-section at P be the right hand surface of a
small rectangular parallelepiped containing P, then this right

hand surface is a positive sur face and

F
X
S D e
XK wh
S o l:,ym o vw -
yy wh 2wh

The force components FX, F.and the couple M repvesent essentially

y
the resultant or net effect of the set of distributed forces that
the right hand portion of the rod exerts on the isolated portion.
It turns out to be profitable to examine in more detail the nature
of these distributed forces as revealed by an examination of the
distortions undergone by the rod,

The deformation which the beam undergoes when loaded is shown
greatly exaggerated in Fig. 1.14a, If the deformation is slight,

it turns out that the center (dashed) line of the beam remains

unchanged in length, Strips of the beam lying above this line

are shortened, while strips lying below the line are lengthened,
We isolate for consideration a small segment of the beam of length
A x, located a distance x from the left end. When the beam is

deformed, the centertine of this small segment still has a length
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A x and lies some distance y below the centerline of the beam
when the beam is unloaded. IFig., 1.1l4c is an enlarged view of the
segment, The distance labelled R in this figure is the radius
of curvature at the point of the dashed curve in Fig. 1.14b where

A% is located, The leugth of the shaded strip in Fig. 1.1dc
which lies a distance r below the centerline of the segment is
(R+v) /5 ¢,  The length of this segment hefore the beam was loaded
was R {l%, since with the beam unloaded all strips are the sanme
length and the length of the center line doesn’t change when the
beam is deformed. The change - in length of the shaded strip due
to the deformation is thus r A@ and consequently the strain
(component) é;xx at the poinl where the strip is located is
rAGO/RAG or r/R, Since the strain at a point is related to
the stress at a point by equation (1.4) the stress at the point
be V€ = YA /‘if’gﬁj

oy
L

where the shaded strip is lacated must
To produce such a stress the actual forces dI¥ exerted on the end
surface of the shaded strip {(see Fig, 1.14d) by the portion of the

beam to the right must have a componcnt dFy¢ where

e e

v d

R

4 < b /

dr < h Y T VR

o . 7/ }:f g (‘,{ }y\ o 5 g

For a strip located a distance r above the centerline, the same
[

considerations lead to the conclusion that the forces dF on

7 i
its end face must have a component - dFy,  equal to - dFX as
— 3

suggested in Fig, 1.15e. Both dF and dF' tend to rotate

the element about the z-axis, the torque due to both being

4= .. o to
d ! g F 2 & oo =
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|
The total torque due to forces acting on the end faces of all tihe
strips is fhen the bending moment M. Thus
hfa.

e e L B R "
Mo |2 \f" wdh T T

[24 )
i

This last expression relates the bending moment at a point to the
radius of curvature of the rod at that point. In practically all
textbooks on calculus it is shown that for any curve y(x), the

radius of curvature at a point is given by

[

i T~

Applying this relation to the curve of the centerline and remewber-

ing that for slight bending the slope Y at any point is small

dx
compared to unity, we have to a good approximation

K= ;,
bt

- S - N /‘“ )
M e Yokt A (1.15)

-

This will prove to be a very useful and necessary relation later
on in the derivation of the wave equation for waves in rods, We
can use it now to find the curve into which the beam is bent

when the load is applied. Substituting from (1.14) one obtains
2

_q“my = mrng’..»M“«n_. m“w““ X
dxe Y w h3 2

Integrating twice yields

Wox3 ¢ ox + ¢t

Y wh

Y o= e
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1 - . . .
where C and C are constants of integration., Taking y = 0 at
=0 ang OV _ L .
x.= 0 and E% =0 at x = 5 the above expression becomes

8 . | | (.0¢)
8 = i ~ <>

1.6 Rod under torsion

As a final application of the stress strain relation we con-
sider the experiment illustrated in Fig. 1.15a, in which a rod
is clamped at one end, and a known torque %;xt is applied to the
other end by means of the two forces labelled F, Since the entire
rod is in equilibrium, the clamp must exert on the rod forces
which give rise to a torque equal and opposite to that exerted
at the top end of the rod. If one isolates a section of the rod
of length x, since it Lloo is in equilibrium, the forces exerted

by the top section on the isolated portion must give rise to a

é‘},M

. as indicated in
ext

torque exactly equal in magnitude tio
Fig, 1.14h. We can determine the nature of the forces giving rise
to this torque, by considering the distortions that occur whén ihe
torque is applied,

When the rod is stressed by applying equal énd opposite
torques to the two ends, the rod undergoes a deformation in which

gxts

each cross-section of the rod rotates about the axwus of the rod
through séme angle which depends on where the cross-section is
located, The angle through which a given cross section is rotated

is measured.between a line fixed in the cross section and a line

fixed in space, For example, in Fig. 1.15, the line fixed in
TSN aN (‘,ﬁ;

space is the ywuxn

s, and the figure shows the top surface of the

X b
rod as having been rotated through an angle ( , and the cross

section at x as being rotated through an angle ¥ (x). Tt is



e
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assumed that the bottom surface. is prevented from rotating by
the clamp., We isolate the section of the rod of length & x and
imagine it to be made up of a large number of thin poncentric
cylindrical shells., Fig, 1.16a shows one of these shells hefore
the distortion has occurredl If the shell is thin the portion
abcdefgh of the shell bounded by two radial sections making a
small angle with each other, will be (very nearly) a rectangular
paralielepiped., An enlarged view of this parallelepiped is shown
in Fig. 1.,16b., When the tobque is applied, each radially line
in the c¢ross section at x + 4 x rotates through some angle
labelled W (x + A x) while each radial line in the cross-section
at x is rotated through an angle F(x), as suggested in FFig, 1.16c¢,
The effect of these two rotations on the rectangular parallelepiped
is shown in Fig, 1.16d, wherc the bottom surfaces of undistorted
and distorted parallelepiped are shown superimposed, It should
.be eVident, that the effect is to produce a sheavring strain O

equal to

’ h ' V2RV ?~
W a e =]

e e P T S 8 S A B T T B

T v Ax

which in the limit as A % =»0 becomes

ah

O =r o 1,17

Since the shéaring strain and shearing stress are related by
equétion (1.7), there must exist at this point a shearing stress,
G0, where G is the shear modulus. To praduce such a shearing
stress requires a set of forces g; acting tangentially to the
top surface of the rectangular parallelepiped as indicated in

Fig; 1.17 a and b, Such a set of forces would produce a torque of

@

magnitude
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where dA is the arca of the top face of the parallelepiped.
Since all of the elements of the area of the top surface of
the cylindrical shell have similar. shearing forces, the total
torque due to the forces acting on all the elements is

/2 )/ ¥ ((f (f"h Lo S
b b, v DI e JU e o
S 1.18

Since the isolated section of rod was considered to he made up
of thin cylindrical shells, and since (1,18) applies to each
shell, the total torque due to all the forces exerted on the

surface at x by the portion of the rod above it is

- (x,
/ §
/ -4 Ao \
/ s It _ L { / g
/Z\r o {’i /‘// () I \r_ - TV 5yl - - K[Z »»/ - (1 . ] "))
Y. J¥ 2 & -
o

pr
A

where & is the radius of the wod, This is an important relation-

ship which will be useful later in the study of forsional waves
in rods, From our consideration of equilibrium, the torque due
to the forces exerted by'one portion of the rod on the adjacent
portion at any cross-section was equal to the externally applied
torque/Téxi. Consequently, the right hand side of (1.,19) must
equal Téxt‘ a constant, Tt follows that %g/ must also be constant
so that

%/ f,(ﬁ%’ 4~

where C and C' are constants of integration, Noting that %’: 0

! BN .
when x = 0 and Y= & when x = L, one obtains
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The external torque required to twist one end of a rod through

L >] .
“an angle ¢ is thus

= 1(/‘ - e
- I3 ol
7 (;3 ! < 1.20
& “) . /
(i"/
Since g 1$ a constant, the shearing strain O given by equation

(1.17) is independent of x but does vary with v being a maximunm

for those elements located at the edge of the rod,

1.7 Generalized Concept of Strain

Let M(x,y.,z) be a point in ihe interior of an unstressed
body (Fig, 1.18a). TImagine an obscrver at M has some means of
identifying all of the points in his immediate neighbofzood,
Using three appropriate points, say My, Mo, Mg he sets up a
rectangular coordinate system with its origin at M such that

<

X ﬁﬁ?q Wﬁg correspond respectively to his x, y and z axes,

If external forces ave applied to the hody (Fig. 1.18b)

M

points M, My, Mo, and Mg will in general be displaced to new
positions{ say M', M{, Mg, and M3, If after this displacement,

the observer reports that his coordinate system (determined by

M'Mi, M'Mé, M‘Mé) is still rectangular and all the neighboring
points are precisely in the same positions relaitive to it as
before the displacement, one says that the strain at M is zero.
If the relative positions of the neighboring points has changed,
then one says that there is a strain at M, Tt follows from this

concept that if as illustrated in Fig. 1.19a) a body undergoes

at pure translation, i.e, a motion in which each point moves tihe



same distance along a path that is parallel to a fixed line,
the strain is zero, Also, if as illustrated in Fig. 1.19b,

a body undergoes a pure (small) rotation, O, about some axes,
the strain is also zero,

Let N(x+ dx, v+ dy, z+t dz) be a point in the neighborhood
of M(x,y,2z) when the body is unstressed. When the body is
stressed, then in general both M and N are displaced as illus-
trated in Fig. 1.20 which shows a two dimewnsional version of the
situation., Let the x,y, and z components of the displacement 2?
of point M be £ , | and J respectively, and let the corres-

. s s . o C o
ponding quantities for the displacement A of point N be be

el

? (i o \& . Now the displacement A and its components
A P H

[“a et

depend on the location of the point M, i.e., §, Y% and [ ave

all functions of x, y and 2z, Since N is near M one has from

the calculus

N < !
A€ = f ~ ¢ D8 o4 25 y ot 2 dg
§ = 8 5 ST 93
o 4, A ?jl<dﬁ
dx 5y & sq 4%

B
R

Py
1

%

~F
1

P}

1

Q{{? Jy éi;gi dy é%%;: A1

2

%
H
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where the partial derivatives of f ,Z . andkf are evaluated

at the point M(x,yg). If these partial derivatives are known

for point M one can calculate (ff\ é?¢and dJﬂfor any point in

the neighborhood of M, and thus determine if there is a strain

at M., To determine the relation between these partial derivatlives
and the strain at the point, one considers the distortion under-
gone by a tiny cube located at M as indicated in Fig. 1.20a,

All points of this cube are in the neighborhood of M, Suppose

for example, the external forces produce a strain such that

f, h and A are all zero, and all of the partial derivatives

of these quantitics except %i are zero, Under these conditions
oL raghe quahrirles exeept o ALE zelo

the cube is stretched {(or compressed) in the direction as indicated

1 Fig. 1.20b, the change in the x~dimension of the cube divided

by the original x-dimension being exactily 5[4, which was

defined eaviier as &, . Similarly by considering a distortion
. , sn by, oO¥/ya ., . ohy, €
in which only “wjdj or 9/%5 is zero, one can see that ¢h T Nyy
i
o, . . o | o
and -3 = €y, . YL the distortion is such that only ©“%/dy
2} L] J o

is different from zero and positive, then the cube is shearcd
through an angle 5%7 ggc%. as indicated in Fig, 1.20c, 1If

the distortion is such that only 9h¢é% is different from zero,
the cube is sheared through an angle E& = Md§ﬁ as indicated in

Fig. 1,20d, If bpoth thﬂand 3%@5 are different from zero,

and all other derivatives are zero, then the cube is shecaréd

through an angle 6y + 09 as indicated in Fig, 121 a,b and ¢
which shows the distortion of the top (or bottom) face of the
cube., From considerations such as these, one concludes that the

following quantities are sufficient to descrihe the strain at a
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point®* '
‘ Lo I < . ,{‘—Jg 4 e (':4 %
Epye © "y o &U dé
: - €., : '
€, = 3§” g F <% o (1.21)
& 9y ‘ B
|2 Y
c. < . /le« . éﬁél =
1'} 3 - 4] '5 2.\ aé’ <} ‘(‘}

] | T ) trai " "A 3 tent f ’ 1 ’.i (‘%‘p {; P
If all of the sirain COeii]CJCULS‘éfXX, (xy‘ <5X3, @yx. 290 g

are zevo for point M, no distortion

o

< ¢ O e
o 75 ¢ - zys (ZZ|,~V.,__7,

of the cube at M will occur. As indicated above, if €& &

o & »:“yy, o

6?72 ave diffevent from zero, the distortion consists of stretching

or shortening the x,y or z dimensions of the cube, while if &

Xy
s &  p s . , .o
tx% OT&V, aye diflfervent from zervo, the distortion consists of
(¢ N
shearing the cube, The nine components & & o

XXt YRy

¢,y only six-of which are independent from what is called

the strain tensor,

1.8 Generalized Concept of Stress, Stress Strain Relations

The stress at a point M(xmy,z) in a stressed body is defined
in terms of the forces exerted on the three positive faces of a
tiny cube located at point M as indicated in Fig. 122, Under
conditions of equilibrium it is assumed that if the cube is suf-
ficiently small, the forces exerted on any face of the cube by

the material outside the cube are exactly equal and opposite to

those forces exerted on the opposite face by the material outside

) p o ”
o "l TR o P . LR ; £ < . & K Bt tyrarv
The 1/2 used in the definitions of ny, < and vz is arbitrary,

and some authors omit this factor.
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that the forces exerted on the positive faces of
actually representative of the forces exerted on

If F I, I’

xx! Xy

and z components vespectively on the force F] acting

surfaces passing through point M, %7

I J¢ the corresponding components of Fz,

T
yxt oyy' y=

1d I O ) . S Omy] ts of F then the stress at M it
aud szv Izy' [zz the components of IS, then the stress at R'1§
specified by the nine components
S _ Fyx 5 _ ny g Py
x¥x 7o Xy T o Xy T
y A A
Fyy , Myx Fyz
) T e ) - S T e
¥y yx A ya A
| | - I
57 . o= Wé_/i g « = w/J?Z S = VZ'KX
, 2. Zx A
A y A
4 where A = dx dy dz is the arvea of a face of the cube. Fovr
\
equilibrium of the cube as regards rotation one must have
= N = 5 S = 8 ther ar ¢ : 1
Sxy Syx' Syo Soy and Syy S,y S0 there are actually on
six independent stress componenis, The components Sy, SYV and
SZZ are called normal stresses, while the other components are
called shearing stresses,

linear

It

o

s generally assumed that each

function

stress component is a

of six strain components™, i.e,.

e
W

is a

One could equally well assume that each strain component
linear

function of the six stress components,
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= .+ C e+ L e e €+ &
Sxx Cll,xx Ci2é§y ClS‘zz Ll4d§y Cl5 X% Clé N
Syy - CZldkx * C226yy * CZBééz * C24é3<y ! C256§z N C26éyz

S = £ - L - e " - N 0 > o
vz T Co1%m T G2 Gy T Ce3un T Ceaxy T Cesxy Yooy

where the coefficients C. C. e C,on, C arec constants
- 11 Vi 65' 766 ‘ /

chavacleristic of the maierial. As one might suspect, for an
isotropic solid some of these coefficients are zero and many of
the othevrs are equal; in fact it turns out that there avre only
two independent coefficients. For an isotropic solid the strain

relations become

5 = (C. + €. )&+ z o & ~
xx = G o) Fex Cl‘yy 1 az )
) = C & + (C. + C © o+ C &
yy 1{)()\' 1 2) (‘yy 1(ZZ
S =C ¢ +C. & 4+ + ¢ )
2% ](xx 1(yy (Cl 2) %7
Sxy - C26§y
Syp = Coly
e o (1.22)
Syz = (/Zéiyz
where
C = oY and Cg = X
L Qre)-29) L 4o

Here Y is-Young's modulus and wis Poisson's ratio, The first

b



three of these equations are, of course, the inverse of

equations (1,4). It is worth mentioning again that &yx'éxy .

in (1.22) can be interpreted as the strains resulting from

,,,,,,,,,,, 1 xxt Sxy ccer

For an ideal fluid, the stress strain relationships are
even simpler:

a il fnd - /: n {: 1 \,}
Sxx Syy SZZ B(“Xx-i + &) g | (1.23)

Xy Xz yz

where B is the bulk modulus, Also for a fluid, the change in
the stress is simply equal to the change the negative of the
change in pressuve, £ P, so that

AP = ——B([ ‘ + & 4 A )
. XX

yy 2z
or
AP = —B(Y 4 2h o 1) (1.24)
ol X oy g

This relationship will prove useful in developing the wave

equation for waves in fluids.



CHAPTER II HARMONIC MOTION

Simﬁle harmonic motion (along with uniform circular motion)
is perhaps the simplest type of repetitive motion thét one can
imagine: Partly because of this, and partly because of the
simplicity of its mathematical representation, simple harmonic
motion proves to be useful in the description of a great many
diverse physical phenomena. It plays a particularly important
role in the study of vibrations and waves; as we shall learn
presently, the vibrations of any material object or any small
portion of a medium through which a wave is travelling 1s almost
invariably assumed to be simple harmonic or made up of some
combination of simple harmonic motions. Because of its impor-
tance, it will be worthwhilg to review'harmonic motion before

beginning the study of waves.

2.1 The Simple Harmonic Oscillator

Consider as depicted in Fig. 1.1 the simplest possible case:
a particle of mass m suppofted by a horizontal frictionless sur-
face and subjected to a‘restoring force supplied by a massless
spring of force constant K. If x 1is the displacement of the
mass from its equilibrium position, Newton's second law applied to

the mass yields
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X

where the x stands for §_§ . This differential equation is
dt :

called the equation of motion of the particle. Our task is to find

a solution of this differential equation,\since,we know that any

function x(t) which describes how the particle moves must be a
1‘}\53"3—@((L7"1L‘/.0 noofe Tt ot N p((/)({(? mopda //\-} find | 5 g So {erts o Q-f' @

solution ofﬁ@>differential equation.is a process of trial and

error. There are, however; some general methods of finding solutions

of differential equations which are successful in many instances and

we will use one of these general methods to find a solution. For

convenience let

RS R ST

| . \ ";‘“ i s | N
w, = x/i ]{f%),) (2.1)

so that the equation of motion may be written
8¢ 2 ‘ .
A4 wx = O (2.2)

The general method consists of guessing that there is a solution of

the form
o8
\/ !4"\,MU§;* . p N ) | | <X )3 o
L) Rl BT Sl TS S N S (2.3)
AL =2 b =00 vthab ot +.
=0 .
where a are all constants. If such a solution exists

O, al, a20la.

then

XE2, A0 Hat oA L



Substituting this expression along with (2.3) into equation (2.2)

one obtains
. 1

- - Dk B S R T e ey
LA+ W] 4 [baytw SOOIt + TR0+ Wo G 200t wa, 1T

For (2.3) to be a solution of (2.2) the above expression must be
identically zero, i.e., zero for all possible values of time. This
condition would obviously be satisfied if each of the bracketed
quantities were equal to zero. FIf a, and‘ a; are given arbitrary

values, then the first bracket can be made zero by choosing

the second bracket by choosing

(13 o }f\__«)p (Z)

o

the third bracket by choosing

and so on. Thus (203) will be a solution of the equation of motion
for arbitrarily chosen values of a, and ay provided the other
coefficients have the values determined as indicated above. Sub-
stituting these values in (2.3) one obtains after rearranging the

following solution of the equation of motion

20
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g o AR j I Uy A .
()= a, [+ ) L, ) Z‘;Té,ﬂz,) b
G { 3 §
! ”}" _&;i [{ LU()\( = er( (/U(ft) % (L() 0 [,) ”f . J

The infinite series contained in the first bracket is a Taylor's
expansion for cosw t , while that in the second bracket is an
expansion for sinc06t . The solution can therefore be written

in the more familiar form

Y1) = Coos wol 4 D sinwot (2.4
where C and D have been used to replace ay .and alﬂuo
respectively. |

In the expression (2.4), C and D are arbitrary in the
sense that (2.4) is a solution of the equation of motion no
matter what values are assigned to them. Since the equation of
motion is a second order differential equation and since (2.4) has
two arbitrary constants, it may be considered the general solution
of the differential equation. If the position and velocity of
the particle are specified at some instant of time, then these so-
called initial conditions determine particular values of C and b

and the resulting solution is said to be a particular solution of




the differential equation. For example, x = 3 cos(uot is a
particular solution of (2.2) corresponding to releasing the mass m
from rest at a distance 3 units from its éqﬁilibrium position.

For any arbitrarily chosen values of C aﬁg” D it is always
pos§i51e'to find a number A and an angle ¢ such that C = A cos¢
and D= - A sin¢ . The solution (2.4) can therefore be written

in thé alternate form
A J
A o (Wo LT C]S) | (2.5)

A plot showing the x -coordinate of the particle as a function of
time is shown in Fig. 2.2. It should be noted that the motion
repeats itself after a time interval
U QQ“T/ 2t ;nyojr\ﬁ‘pﬁ
" [/we = D

This time interval is called the period of the motion, and its

reciprocal

is called the frequency. The quantity W,
is also loosely referred to as the frequency although the term
"angular”'frequéncy would perhaps be more suitable. The magnitude

of the largest displacement of the particle from its equilibrium

position i plitude of the motion. It corresponds

w




to the absolute value of A in equation (2.5).

2.2 Complex Form of Solution

One can obtain any number of particular soiﬂfions of (2.2) by
simely inserting different values of A and ¢ into (2.5). Let
x(t) and x2(t) be two of these particular solutions. Since

they\are both solutions we must have

Loy

i 1

e TEN ——
Xy w3 ()

and

If the second of these is multiplied by i =4-1 and added to the

first, one obtains

AT ; bf d , N . .
/'\’:_, - /{ >\;)\ \{ W(,} (’>\IL%A/{\ '7\:)\)% 1\“1 (2.6)

Let x(t) be defined as follows*

s N ‘ ,‘f \ . .
= 20 X L) o7

Functions like ‘gﬂt) which consist of this simple arrangement of
two real functions form a special class# of complex functions.

Differentiation or integration of this special class of functions

*A wavy line underneath a symbol indicates the symbol stands for a
complex quantity.

#All complex functions encountered in this book are of this special
class. »
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is accomplished by treating i as if it were a real constant. Thus

€ ,l, ) \ [ EY
/ol N (l} N NS L
Ko = ) X, )
v - /«‘«\ [N
; L 2 I 5 &
! hi¢ ( | > VAL I R
\ J N BN ;’:\: FARN Y \1}

From these rules, it is possible to write (2.6) as

& & - .
N | N

O A% N .

N wJ A ( 2.8 )
PAVASANE )

This complex differential equation is identical in form to (2.2).
A solution of this complex differential equation is any complex
function of the form (2.7) which satisfies it. It can be easily

shown if it is not already apparent that the function

NS e g e N A o
/ Cud s 2 cpStwWay =40 ) - ﬁ’ INEt W T (2.9a)

is a solution of (2.8). Using Euler's theorem one can write this

in the form

N )
le o {;UJt (2.9b)
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where A= Ae;¢ is a complex number. Now the real part of (2.9a)
o
or (2.9b) corresponds exactly to (2.5), the 'general solution of the

equation of motion (2.2). For reasons that will become apparent
later one, one prefers to work with (2.9b) and {E regard it as the
equqtion‘which describes the motion of the particle. It is, of
course, thelreal part which acfually descfibes the motion of the

A

particle.

2.3 Velocity, Acceleration and Phase Relagtionships

Equation (2.5) gives the x coordinate of the mass m at
any instant. The velocity and'acceleration can be obtained by

successive differentiations:

€

. ¢ ' /
N\ e ~ Gl
) /\ Wo Silw, g{)) (2.10)
%} N Lo (2.11)
AN W 0y ( W c{{: ~}- (7/>/)

L

Now  x, §,4 and X ali vary sinusoidally with the time, and all
have precisely the same period. However, no two of the three
quantities attain tﬁeir largest (peak) positive values at exactly.
the same time. For example x attains its peak positive value, A,

at times t’ such that

i : T LT
i ¢ N S B
NI : W i ety RN by i Tl v e

s

At such times, x 1is zero, and X is at its peak negative value.
When two sinusoidally varying quantities having the same period

attain their positive peak values at different times they are said



to‘differ in phase, the phase difference bing defined as Qﬁfﬁf?&léé
where t, 1is a time at which one of the quéntities attains its
maximum positive value,( t2' is the time'ﬁearest}to tl at which
the other quantity attains its maximum positive value, and T s
thefperiéd. The phase difference, thus defined, is in radians, |
althquh it 1s often expressed in degrees. Since x attains its

peak positive value at times t" such that

I , N ,
s [
! t o L -7 ey f A l r, RS

w() 2 b ,{a uf/cu-).. /[ ’ //(1,)‘ i s “)‘ 4!J| PR

and X its largest positive value at times t"!' such that

po N A G EQ
<‘j‘/U L ! t D N o Foos a4y

we can see that x differs in phase from x by w/2 radians or
900 and from X by 7 radians or 180°.

If we use the complex exponential form, (2.9b), of the solution

we have¥*

<A L

Lo L\ - AogoN N &y .
>\ o \ COS L usn Ll Aoy VS W) B

‘

e

%
e e g N / L : ‘,;\ ¢ N A T
T T AainlWelH ) 4w, A ces Wb SIEN
¢ 3 ; ) y 9 LA My
MY o W ‘\ }f ! .o ' [l ,,‘\A . .4‘! Loy N L = | !ﬁvv \,~ . : \?/
Voo (AJC RRRIER AN VPSR SRS A 4 (’L)O NG ity e ) [L)O Lo =W G ,\_,:/\‘_.
AN .
. . . ° £
At any given instant of time x, x, and x are complex numbers and
A Py A

*Note that differentiating or integrating the function
: R Y Lo is eactly equivalent to differentive

SN

or integfatihg /A €Ac%ﬁf‘ treating A and /8 as if they were real

constants.
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- may be represented in the complex plane as shown in Fig. 2.3. Note,
that although the position of x 1is arbiﬁrafy, since it depends

upon the particular instant of timé chosen, once,..x 1is drawn, the
¢

bA

. . c A o N ":J/ — . Va ,
positions of x. and ,x are fixed, since ,gx»~i,ub’&b and
i
e &

X =7 w, X . Note further that the angle between x and x

P

is %' orlQOO, precisely the phase difference between % and x

while that between x and éi is 1800, exactly the phase difference
between x .and x. It should thus be apparent that the phase
relations between the various quantities are more readily deduced
from the complex exponential form of the solution than from the real
form. In Fig. 2.3. the projections of the vectors X, jJ and X
on the real axis are the real parts of these quantities and hence
represent, respectively, the values of x, %, and X at this
particular instant. As tihe,increases the three vectors each rotate

. . . I ¢
counterclockwise with an angular velocity «,. Because x 1is 90

counterclockwise from x it is said to lead x by % or 90°.

fi may be said to lead or lag x by 7 1adiong or 180°% since
“one ordinarily speaks of quantities leading or lagging by angles

of 7 radians or . less.

2.4 Energy of the Simple Harmonic Oscillator

The total mechanical energy E of the oscillator is the sum
of its kinetic and potential energies. The kinetic energy by
definition is m ;2/2. The potential energy of a mass m in a

given position may be defined as the work done by the conservative
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forces (in this case the spring force) as the mass is moved from the
given position x to an arbitrarily chosen reference position
(chosen for convenience in this case to coincide. with the equilibrium

position of the particle.) We have then by definition

'
/

! - ]
IR 5 . ! * =
! e =Ty gy NS Jdode g/ Y *)\

Lo AOHEA T 0 NA

Substituting from (2.10) and (2.5) one obtains
2 b - f . s P
Foe bomh w' ruilogd) 5 KA cnat [ f 4 &)
: ' )
= /L N A e ”;{ m A 4/\)01

- The total energy is thus constant as we would expect since the only

force acting is a conservative one.

2.5 Damped Harmonic Motion

| "From experience we have learned that there is no real oscillating
system which corresponds exactly to a simple harmonic oscillator. All
real oscillating systems are subject to dissipative forces, and if
left to themselves (i.e. 'if no energy is supplied regularly from

some outside source) the oscillations will eventually cease. To make
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our hypothetical oscillator correspond more closely %o a real
oscillating system, we need to include a dissipative or damping
force. Conventionally one selects a dissipétive force which 1is
proportional to the velocity of the particle andﬂéé opposit® in
direction. This choice results in an equation of motion, the solu-
tion of which corresponds reasénably closely to the observed motion
of ce}tain real oscillating systems. The equation of motibn with

this damping force included becomes

For convenilence let

{/7 ., R T N
T , S -
Wyt | e R e

so that the equation of motion may be written

aot k!
W :f-?,) S W -t ({)(; a0 om (A ( 2.1 2)
It can be readily verified by differentiating and substituting in
(2.12) that

. . 6{3\‘“ 7\’/ \uw" A ‘
%o (© g/ 1l (Wb 1 A= )] (2.13)
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where

+

is a solution of (2.12).%¥ This will be found to be a solution for
any a;bitrarily chosen values of A and ¢ ; hence may be regarded
as the general solution of (2.12). The quantity in brackets is
exactly the same form as (2.5), the solution of the undamped
oscillator. The type of motion represented by (2.13) is shown in
Fig. 2.4 where the cosine term and the exponential term are sketched
separately and multiplied at each point to obtain the value of x.
It is seen that the motion 1is oscillatory with a gradually decaying
amplitude. While strictly speaking this is not a periodic function,
we may define the'frequency as the number of times per second that
the particle passes through its equilibrium position in the positive

direction. The frequency is thus

e e e
\/ - 2 I A H/“ - Uf’)' 2 \
\ (/\)' = 6\"' [ [ \/ Ex Jth o / Jo
. (‘}‘\‘.)‘b - . 14 fwn.w;w - - i ,A,_('_w,:, SN ( 2 ° l 4 )
LT & r ad

=

If R/2m 1is small compared to K/m, this frequency is only slightly
smaller than the frequency of an undamped oscillator of the same
mass and spring constant. If & R/omm  is small Compared to 1,
then over any short time interval, say t, - t;, the term Ao

is approximately constant, i.e. the values

o e
a {a

ot AT _ L A
et pemet g et

¥Therc are three types of solutions of equation (2.12) depending on

whether “» is greater than, equal to, or less than = .  The solu-
tion of most interest in ouf present discussion 1s (2.13) which is

the solution when iy > x
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are all very nearly the same, and over this time interval the motion

’

can be considered undamped harmonic motion with an amplitude /\6—¢1
(or either of the other two values). In this sense we can say that
then << < 1, the amplitude at any time t cé; be considered to
be A" . Tt follows from this that L= 20 s the time for the
amplitude to.decrease to % of its initial value. By measuring
this fime one can determine <. If o¢ is not small compared to

1 one still can determine 4 by measuring two successive positive
(or negative) peak values x, and X . (Fig. 2.5). It may be

shown (see problem 2.8) that

2.6 Driven Harmonic Oscillator

An important type of motioh results when a démped harmonic
oscillator is shbjected to sinusoidally varying force of the form
FO cos W t where F, and w are constants. If such a force is
abplied to a damped oscillator it is observed after sufficient time
has elapsed, that the particle is executing a repetitive type motion
which has.exactly the same frequency w as that of the driving

force. The equation of motion for such an oscillator is

U

my 4 Ra o4 Koxow Fecwl 0 (2.16)
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The general solution of this equation consists of the sum of two
parts: the general solution of the homogeneous part, mX -+ €4 + K¥=¢

and any particular solution of ‘the entire equation. The solution

of the homogeneous part is exactly that of the damped oscillator

which was found in the previous section. The experimental observa-

tions suggest that a particular solution might be of the form

where C and © are constants. Differentiating this expression
to obtain x and X and substituting for x, x, and X in 2.16

one obtains

. . T 8l N Y =
c Cwtm sin /w{-,@) + K Cw' ("”,(ﬂ * /\ ( /}bi@{ng T e

which on expanding sin{wt - @) and cos(wt - ©) and rearranging

becomes

]Cgéﬂ%~kﬁpm@ + R@C%@}““ﬁla&wf

* C &Ai’ Wl"”) conf4 (ud S (‘?] O (J/’ = 0 (2.18)




le.

This expression must be identically zero, i.e. zero for all possible
times if (2.17) is to be a solution of (2.16). Tt is apparent that

if we can make o ‘

# { (Wi = Yo b F R oo ol - F =0

and

(fi - W 2")%)”4};0, o + Ruw An©® = U

by a proper choice of C and ©, then (2.18) would indeed be

identically zero. A choice of © such that

) Wl - **L\’/,)
T sz (i - fﬁ@ﬁ
o LN - /}:x | |
N Sl P
I oo (95

U?\) L, G/m - /\/,))

will make the second of the above equations correct. One can sub-
stitute this value of © in the first equation and solve for that
value of C which will make the first equation true. One finds

/ /é()

' (ﬁ et —.

(/P o ({u - k.)(u)mm

A particular solution of (2.16) is thus

fcx//{;@ ((/'\ (/) Ly«(() PR o .
" l i [))!1‘} K f') ( Ze [_\/)

]/ /ﬂ ftu e - ,'(/w) £
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@

and the general solution-.is

et , (’I 5/, /Ao, </U ,( T & )
X A ¢ ‘ v (u)h/( T 4)) + M ?}“W.«,;ﬁi—t: :tmmw*m%w
\) \\\\\ N ﬂ, P,f (,,,)h /u) 2// S

TRAMNS py VE \/) Sped
) /

where
; - T
: & = TZ\”‘ amd W I8 - // g A
PRGN
P )

e

SN S
The first term of the solution is called the transient part since
after a sufficient time has elapsed its contribution to x becomes
negligibly small. The second term, the partiéular solution, 1is
called the steady state solution. Note that after the transient
part becomes negligible the motion of the particle is simple

harmonic with constant amplitude. The system is then saild to be in

the steady state and its motion is then.described by (2.20). For

convenience let

V,{'—,f t’M - ’\/‘“) (2.21)

so that one may write for the steady state

¥ & j} DA ((JJ?Z " e )

4 ‘ ’ (2.22)
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We note that x, x, x, and the driving force Fé cos w t
all vary harmonically with the time, and‘that all have the same
.frequency and period, but that in éeneral no two of these quantities
are in phase. It should be apparent that x and 'x differ in
pha;e by 180° and that the driving force F cosw/ t and x differ
in phase by ©. A more complete discussion of the phase relation-
ships will be deferred until a complex solution of (2.16) is

developed, since as pointed out earlier, phase relationships are

then much more readily apparent.

2.7 Mechanical Resonance

Let us now calculate the rate at which the driving force does
work or supplies energy to our driven oscillator in the steady

state condition. Recalling that the work done by a force. F oin

an infinitesimal displacement de is by definition dW = F « ds,

the rate at which work is being done by the force is

aw _ 2 ds
dt tdt

the driving force is supplying energy at a given time is thus

- =

=F . v where v 1s the velocity. The rate at which

na . S Fo Gt cna &)
vc‘[{*(/‘ = (/L o too W) (> A = e A WA e ’
” /~Z mo .

The average rate at which this force supplies energy, the average
being taken over one cycle, is the work done by this force during

one cycle, divided by the time required for one cycle, i.e., divided

1 e -] 17 | P £
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Substituting for " cos © from (2.19) and for Zm from (2.21) this

may be written as

i i A g SO T

p ot R
Lo !V ((/] "y f\ /(u)

(2.23)

If the angular frequency W of the driving force is varied, keeping
the amplitude, FO, of the driving.force constant, fhen Piav will
vary since it depends on W . A plot of piav. as a function of w ,
under the condition of constant FO, is shown in Fig. 2.6. This
curve attains a maximum when LU:AMA)ﬁ Még2; as should be evident
from an examination of (2.23). This angular frequency and the
corresponding actual frequency at which average input power Piav

of the

the resonant frequencyp,

has its peak value ¢
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Pocr i sincmsormis?

f o= A VK pa (2.24)

Pl A /7

t

/
The resonant frequency and the shape of the Piav versus

frequency curve are two important characteristics of an oscillating
system.  As a quantitative measure of the shape of the curve, one

uses a quantity called the Q of the system which is defined by

: (l}

- (2.25)

U},

where (Ul and LUQ are the two angular frequencies at which the

input power piav is 1/2 of the input power at resonance. These

two frequencies are indicated in Fig. 2.6. If they lie close to

each other then Q 1s large and Plav decreases rapidly on either

side of the resonant frequency, and the resonance is said to be

sharp. If 1”1 and k02 are widely spaced then Q 1s small and

Piav is approximately constant over a range of frequencies in the

neighborhood of the resonant frequency. When this is true the

resonance is said to be broad.

One can determine which parameters of the oscillating system

determine its Q by calculating ) and W, as follows. If '

is one of the angular frequencies for which Poav = 1/2 Piov .
we have
/y Il\" - b f;L_ f (2.26)
T T h o4 3 2 }\3 d

2
I~ Yo~ ! A £
/’ N /) n/... /)/‘)'/
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Rearranging and simplifying one obtains

! . o
wm - K/ o= 4 R
This equation gives rise to two quadratic equations, one for +R

/
and one for ~-R. Writing both of these down side by side and solving

4
each \for w  we have:

h 2 . / .o i
‘ | e p W fyg e W e O
wh 4 Rw' =K =0 b o Ruw' = K

i T ey
W's e B () B

! :
There are thus four values of @ which satisfy (2.26). However,
we note that two of these values are negative and have no physical
meaning. Setting the iarger of the positive values equal to w,
and the smaller one to w, vyields
w o B e K

K ﬂﬂlﬂ?hﬂd YK

W, = 2

Substituting these values in (2.25) gives

['\) - %j_'lmili) = “‘L;‘ l/ k’ m (2.27)
(i"\ | <




Rearranging and simplifying one obtains

wm - K/w' = 4 R

21.

This equation gives rise to two quadratic equations, one for +R

/
and one for -R. Writing both of these down side by side and solving

o
each‘for w we have:

P

L / 2 o) /
-~ : . Wy e R K

K

! 1%

o S e L </«'J‘ = ’
PRy

/

“+ @'

I .
There are thus four values of v which satisfy (2.26).

: O

e :/ 1\
/Z’)-IJ -+ (fl\ ,/;‘{,J )'

However,

we note that two of these values are negative and have no physical

meaning. Setting the iarger of the positive values equal

and the smaller one to w, vyields

CE e ffedm) K
, o |

, Went
(Y = “ﬁﬁ?“’ C R V}\ 7

to w,

(2.27)
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2.8 Complex Form of Solution of the Driven Oscillator

In section 7 we found that the steady state solution of the

equation of motion

ae e I 5 =T 4 Ve l
f m >‘ w{« ,\) X ‘{'- / kY ,\’, ’f. ]To [ =S PR V) /\ (20 o 8)

AN

of a driven harmonic oscillator was
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If‘one is interested only in the steady state solution as is oftén
the case, it turns out one can obtain such a solution with less
algebra by the following technique. Suppose that a force F_ sinwt
rather than F coswt (this simply means starting to measure time at
a.different instant) is applied to the oscillator and that vy rather

than- x is used to measure the displacement. The equation of motion

in this case would be

: te . S f - . i wt/ﬂ (2 ° 29 )
; X &) A ~+ F\ U = [ S |
m P | - ) d o

If we multiply (2.29) by i and add it to (2.28) we have
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which by setting x = x + iy can be written
1o i 0 B “/‘((,) 7/
me o+ Ry b Ky /€ (2.31)

If one can find a solution of this complex differential equation of
the form

P RCANEN Y CORE e

where xl(t) and yl(t) are real functions, it should be apparent

that xl(t) would be a solution of (g

and yl(t) would be a

solution of (i Now it is readily verified that the complex

function
(WA
where
o/
) A /:» /u
/ti‘ v m et e 54
e /5\7 - g { W - il“i/ (4))
72
is a solution of (7 "#). Hence the meal part of
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must be a solution of (2.28). If we write the complex number

R+ i(wm = K/ ) in exponential form we have

i e

o kl0) < R T L e
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Hence
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The - real part of this is'exactly the steady state soiution we found
eaflier. For reasons mentioned earlier we prefer to regard (2.32)
as the steady state solution of the driven harmonic oscillator, and
to regard Foexwﬁé as the driving force. Taking the real part of

these complex functions will always give us the actual solution and

driving force. If we let

P flpmwﬁwﬁy (2.33)

1 P
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45N

we can write
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The real parts of x, x and x correspond exactly to the expression

ot
&
[Ng
A}
1

and If at an arbitrarily chosen

given in (g

for x,

instant of time, one represents x, g, g‘ in the complex plane one
obtains a figure like that shown in Fig. 2.7. Although the position

of x 1s arbitrary since it depends on the particular instant of

[N
L4

- . . . . !
time chosen, ‘once x 1is drawn, the positions of x and x are

A o

LN

t

fixed from the relation gA: iwx and = "L%zﬁx Note again that

e

the angle between any two of the quantities i1s exactly equal to the

difference in phase between the corresponding real quantities.

; w"{“ .
Moreover, we note that the (complex) driving force Foe { is
related at every instant of time to ,ﬁ by the second of equations

(2.34). This may be written

[
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If at any instant of time one represents g; in the complex plane,
then the quantities Rg‘ and é(zdm = %)% and their sum are fixed

as indicated in Fig. 2.7b. From this figu}e it is easily seen that
the angle between the vector representing Foe‘”f

and that repre-~
senﬁing %& is the angle whose tangent is (wm = K/Av )/R which is
the angle 0 defined earlier and is exactly the difference in phase

between the driving force F cos w t and the velocity

X = %" cos(wt - Q). In drawing the figure it was assumed that
m

e

wm > % . For this case the driving force "leads" the velocity by
the angle 0.

Because of the relatively g;eater ease of manipulation and
the fact that the phase relations are more readily apparent, one
usually prefers to do algebraic manipulations with the quantities

e cw T

Xs X%, %, and Foe” remembering that by taking the real parts of

¢ o

these quantities he can obtain x, x, x and the real driving force

FOCOS(nt. The technique of working with complex rather than real

solutions is almost universally used not only in the study of
vibration and sound, but also in the study of electric circuits.

It has the rather considerable advantage, not really brought out in
the simple examples illustrated, of reducing the solution of a set
of differential equations to the solution of a set of algebraic
equations involving complex quantities. It should be pointed out
that in deéling with energy and power one must use real quantities.

In calculating, for example, the average power input as we did in

section 7, one must usze real values {or the force and for the
velocity.
N A bt .
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2.9 Mechanical Impedance

For a driven damped simple harmonic oscillator, the

3 Ve ! (Uy( . .
x, x, x and Fe are referred to respectively as the
acceleration, complex velocity, complex displacement, and

driving force. The ratio of the complex driving force to

27

quantities
complex
complex

the com-

plex velocity is called the mechanical impedance Zm of the system.

Foteg

Thus

. g fu) . ;A
- M e - )
e ["C, e = }\"\) o (?cl e 7 )

ya - i i
UMy P &

A Y /‘y\

s

Note that the absolute value of Zm is

el

a quantity we had defined earlier. The mechanical impedance Zo

'(;\ff N . N
the driving force He< and the velocity X play roles in a

mechanical system that are analogous to the roles played by the

electrical impedance, the applied emf, and the current in an

electrical circuit.

2.10 Stiffness, Resistance, and Mass Controlled Oscillators

For a given driven harmonic oscillator it may happen that

over a certain range of érequencies one of the three terms

R, ¥m

3

or K/y 1is much larger than the other two. At frequencies con-

siderably below rescnance, for example, K/. may be much larger

than R or wm. If so then Zm = K/u and
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K
Such .an oscillator is said‘to be stiffness controlled over this
range of frequencies. Note that it has the important property that
the displacement amplitude FO/K is independent of frequency.
Similarly, for frequencies near the resonant frequency of the
system, R may be large compared to (wm -~ K/u, ) so that over

this range Z 'S R and

Y

;f\ »,% Care A\J/ { /)

Such an oscillator is said to be resistance controlled. Note that

although the displacement amplitude is not independent of frequency,

the velocity amplitude is. Finally if wm > > g or R then

Z € wWm and such an oscillator is said to be mass controlled. A
mass controlled oscillator has the sometimes desirable property that

the acceleration amplitude is independent of frequency.

2.11 The Loudspeaker as a Driven Damped Oscillator

As a practical and sometimes useful example of a system that
behaves to a first avoroximation as a driven damped harmonic oscil-

lator consider the familiar permanent magnet loudspeaker. Two
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sketches showing theressential features of the loudspeaker are shown
in Fig. 2.8. Fastened securely to the centér of the speaker cone is
a short hollow plastic cylinder on which is wound several turns of
cobper w%re, constitﬁting that is called the voice coil. The speaker
coné is flexible allowing some motion of the voige coil along the
axis.of the cone but subjecting the coil to reétoring forces whenever
it is moved in either direction from its equilibrium position. The
voice coil is positioned so that it lies in a magnetic field set up
by a permanent magnet and a soft iron frame. A current I flowing
in the voice coil gives rise to a force on the coil, and for a
magnetic field @ and a coil length { the force is simply SR
since the field is arranged so that it intersects each element of

the coil at right angles. A current I = IO coswt will thus pro-
duce a driving forcefffﬁjlo coswrt. Motion of the voice coil and
speaker cone results in mechanical energy being lost from the system
in the form of sound which 1s radiated and heat which is generated

in the cone. In representing the speaker as a driven oscillator we
assocliate these losses with a damping force proportional to the
velocity of the voice coil. Thus we write for the equation of

motion of the voice coil of the speaker

epa wlen
ey Coou) A

Y
3

t o P - G f
m Lé 4+ R Y K 4 SR
where vy represents the displacement of the voice coil from its

equilibrium position. To get better agreement between the predictions

of this equation and the actual motion of the voice coil the m
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should include not only the mass of the voice coil but also some
fraction of the speaker cone. The K in the equation depends on
the stiffness of the speakef cone. The steady state motion of the

voice coil will be given by the real part of

s

.
- ) e e
<3:% ”é;,jfé,ﬁ? C

3
\J
N -

where

is the mechanical impedance of the speaker.
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Chapter III WAVES ON STRINGS °

[N

1. Introduction

Waves and wave motion play aﬁ important role not only in
the Qlassicai areas of acoustics and optics, but also invmany
areas of modern physics, as the name wave mechanics would.sugf
gest. To write down a meaningful definitiﬂn of a wave is some-
what difficult, However, some concept of what is meant by a
wave may be obtéined by observing visually the behavior of the
system sketched in Fig. 3-1, consisting of a number of blocks
of wood fastened at regular intervals to a wire which is sus-
pended from the éeiling. If the lowest block A is given a
sudden twis¥ it will be observed that this motion will be trans-
ferred fo the block immediately above it, causing it to twist,
and’ that the motion will be transmitted in turn to the next

!
block and so on. We describe this motion by saying that a wave

i:igfopagated along the wire, When the motion which is being
transferred to successive blocks reaches the block which is
fastened to the ceiling, a transfer cannot take place, and

one obsérves thap the motion is impressed a second time on the
block immediately below the fixed one and subsequently trans-
mitted in turn to each block below it, We say that the wave
 has been reflected. When the wave reaches the lowest block,

a second reflection takes place and the whole process is re-

peated. Eventually the motion of the block ceases, the initial

energy being dissipated in internal friction in the wire.
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In the example above, several characteristics of wave
motion may be noted. First there is a definite time required
for the motion given to A to be transmitted ﬁo an& given block
above A, i.e., the wave is propagated with a finite velocity.
Secoﬁd, although energy is transferred from block to block along
the wire there is no actual transport of mass along the wire.
Third, when the wave reaches a point such as D or A where the
pfoperfies of the medium change, a reflection of the wave takes
place.
| If blggk A, instead of being given a sudden twist, is given
a periodic motion by twisting it back and forth by hand, one
observes after a short time has elapsed that all of the blocks
are in motion, oscillating about their equilibrium positions,
When this steady state has been established, one no longer can
observe that waves afe being propagated up and down the wire.
All one observes is the‘regular motion of the individual blocks,
Nonetheless, it is reasonable to suppose that waves are still
being propagated and that the motions of the individual blocks
are produced by these waves,

Althoughlthe above system of blocks on a wire is admirably
suited for demoﬁstrating waves, it is not the simplest system to
analyze mathematically. We consequently will begin by studyihg

transverse waves on a String,.
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2. The wave equation.

It is readily observed that a string fastened between two
pbints and under some tension will vibrate if pulled aside and
then released. The wave nature of this motion is not readily.
apparent; ail that we can observé is that each small piece of
the string oscillates back and forth in some regular fashion,
Nonetheless, as we shall see, the oscillations are readily ex-
plained in terms of wéves fravelling back and férth élong the
string; First we need to sée how one describes the motion of
such a strf&g mathematically. Let us assume that the motion is
confined to a pléne which we will take as thevx—y‘plane. In
Fig. 3.2 let the solid line represent the configuration of the
string at some instant of time tj. Using the cbordinate system
indicated in the figure, we can describe the configuration of
t%g string at time tj; by some function yj(x) which if plotted
wguld coincide exactly with the positién of the string at every
point."At another time to, the string would have a different
configuration and thus would require a different function y2(x)
to describe it. To completely describe the motion of the string,
i.e., to speéify its configuration at every instaﬁt of time thus
requires a large number of functions of x, one for each instant
of time, This entire set of functions caﬁ be represented for-
mally as y(x,t), each individual function‘of x being obtained
by inserting the corresponding value of time, An equally good
way of describing the motion is to specify how each point of.the

string moves in time, This requires a large number of functions




of time, one for each point of the string. This complete set of
functions can also be represented by y(x,t), the function of
time for é given point being obtained by inserting the x
doordinate of that point. Thus the motion of a string vibrating
in a plane can always be described by some function y(x,t).

We will now show that any function y(x,t) which describes
the motion of a string must meet a certain requirement; it must
be a solution of a partial differential équation called the wave
equation, This condition comes about by réquiring the motion of
each small piece of the string be governed by Newton's second law,
Referring again to Fig. 3.2 let us isolate for consideration a |
small piece of String of length AL, Fig., 3.3 shows this small
piece considerably enlarged and shows the two fprces Tl and T
exerted on its two ends by the other portions of the string¥®,

Newton's second law applied to this small piece, assuming it

* A sketch showing all the forces acting on this piece-of string
would show in addition a gravitational force and a damping
force. For any real string the magnitude of the gravitational
force can be shown to be extremely small compared to T and Tl
(see problem 3.1), so that the effecti%eglecting it is in-
consequential, For real strings, the damping force is not
negligible, since it is readily observed that a vibrating
string left to itself comes to rest rather quickly. Never-
theless we will neglect the damping forces at this point in
our development to keep the mathematics as simple as possible.




moves only in a vertical direction yields the following two

equations.

T e e — Ttog =0
T sma — Tsudk 7 md’g

 Here m is the mass of the piece and ay stands for the y-component
of the acceleration, If the amplitude of vibration of the string
atbany point is small then the angles g and &'I will be sﬁall no
matter which piece of string or which instant of time we choose,

! :
If  and ¢ are sufficiently small then to a good approximation

-.(‘};4,5( = _'L (‘,0’2,(\" T 4.
M& —:,TO_;«A\’ , M&/l :77%46(

If we make these approxiﬁations we see that T = T! and the y

equation of motion can be written as

T“[ﬁzﬂaf\—a lz‘;\w‘] T _ma’54 (3.1)

If /7is the mass per unit length of the string, then/pdx may be
written for m. Also if.y(x,t) represents the configuration at

- the instant of time t we are considering
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Since y(x,t) also specifies how that point of the string a
distance x from the end moves in time, the acceleration of the

midpoint of the small piece of string under consideration is

: 2 ) |
b - '3'}’%‘&'{) = o (e z)
A

We can now write (3.1) as

—~ Y, x4 A2 74)
Tfo(xMi\x,i‘) - ‘Cx(x'*)j ” /o X /I(
D.l,'.—\rnd.mﬁ 6%.,-; Ax  ond pafum% do e limH 4s Ay -> o we
héve 450W7 the defﬁn+dh of @ dQMVq%ne |

| T[ﬂxfx,‘éﬂ = /’767/71.3)
or 1w Slltf}\'f“lu! dl{;{i&)pw“(‘ MO'II"Q %ION’I A '
eodd= 3% | G

ThlS is the wave equation for waves on strings. Any function

Bout)

¥LIE) which is to descr1ve the motion of a string (subject of

course to the restrictions and approximations mentioned above)

must satisfy this equation. The quantity T in the above equétions
is called the tension in the string and is eduai to the magnitude
of the force any given segment of the string exerts on any

neighboring segment.




3. Solutions of the wave equation, +

Any function y(x,t) which satisfies the partial differential

‘equation (3.2) is said to be a solution of it, Fundamentally,

one finds solutions gy tfial and error, although as we shall see
presently, there are general methods of finding solutions which
work in many instances, Before looking for any solution we note
thaf (3.2) has the fbllbwing important property: if one can find
two different functions, say yj(x,t) and yp(x,t) both of which

satisfy (3.2) then their sum or more generally, the function -

uln) = a%ﬁr,'f) t bgt(a;-f)

(3.3)

where a and b are arbitrary constants, is also a solution. This
$o, caHe& ;U9@AJ7OF/170%““A$oﬂmh%ll

% may be

easily proved as follows, Substituting (3.3) into (3.2) one obtains

Yids Ay
c*[a%‘?z bw] :GS%Tgi%‘

which on rearranging becomes

R 1.)1 Q Y
LCIE-%-“ %’%‘7’_ | + tg ¢ pred 5&

Since y; and'yg both are solutions, the terms in brackets are zero

and hence y = ay; + byo is also a solution since it satisfies the

differential equation.

. , .
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It is easy to show that any function y(u) where u = x - ct

satisfies the wave equation (3.2). We have, &&gm the func-
tion of a function rule, .

4. . 8% . _ 9

_5§T T2y Sx T ég‘(d

Yu, V(3w = & (1)

IR ’é'(eru ]ax T out

W zgkgm> - %%"(-C)

>t U

i Ju ﬁ?& e |

9__&)‘3 ;i (CGLJ}T  Jut ) . (3.5)

ai"“ )

Substituting y(u) into (3.2) using (3.4) and (3.5) yields an
identity proving y(u) is a solution. It should now be evident
that any function y(v) where v = x ; ct also will.satisfy the

wave equation, and it should be evident that set&ing u =c¢t - x or
v = ¢t + x would not 1nvalldate the argument. By virtue of the

AQU2lA o (T; /h/u-;,m:ZZ N
5 i w@gmﬂﬁﬁgﬁﬁa the sum of any function yj3(u) and an y

other function yz(v) is also a solution. We assert without proof

that this sum .@?%ﬁﬁﬁz;mﬂwrwvaw%%

N
/ sEpientad § e Sxpas fog B TR aan

,-\d.(xl‘ﬂ = ‘é O""C{) t GHC:/) (3.6)

15 The general soluwtronm OF he wave eguq#mm 1n The
sense that any solution we may find of (3.2) can always be derived

from (3.6) by writing some specific function for y; or yg. The
function y(x,t) which describes the motion of a Viﬁrating string
thuslmﬁst be of the.form (3.6).

Any function y(x-ct) represents a "disturbance" moving t6

the right w1th a. ve1001ty ¢. This may be seen from the following
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considerations, At time t = @ y(x - ct) becomes simply y(x),
i.e., some fﬁnction of x. Suppose,’for example, this function
when plotted gives the curve shown in Fig. 3.4(a)., At another
~time say tg, y(x - ¢t) becomes some other function of x, namely
y(x - ¢t3) = y(x - x1) where x; = c¢ty;. But we know from analytical
géometfy that y(x - x3) has the same form as y(x) except that each
point is displaced a distance x] to the right. Hence y(x - cty)
must look as in Fig. 3.4(b). 1In time t] the "disturbance” has
moved a distance x1 to the right, hence must be moving with a
speed ¢ = xl/t.' Thus the quantity ¢ = QE?meust represent the:
speed with which a disturbance or wave moves along a string. By

a similar argument one can show that any fupction y(x + ct) repre-

sents a disturbance propagating to the left with a speed c.

!
4, Harmonic solutions of the wave equation.

/' Although at this point we already know the general solution

/
of the wave equation (3.2), let us imagine this were not the case
and we were attempting to find a solution. A very useful technique

in finding solutions is to "separate the variables", which in the

case of equation (3.2) means to look for solutions of the form
%(x/%) = X (%) H &) | (3.7

where X(x) is a function of x aloné, and H(t) is a function of t

only. Substituting (3.7) into (3.2) one obtains after rearranging

0t L Q(_i}f-: ) J4%H C(3.8)

L -

X dxr T H dAT
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If (3.7) is a solution of the wave equation then condition (3,8)
must hold, and moreover it must hold at any point of the string
for all times, and at iﬂl time for all points of thé string.
Since the left hand_side of (3.8), being a function only of x,
doesn't change with time, the right hand side of (3.8) must be
the same for all times’if the two sides are to be always equal.
Hence both sides of (3.8) must equal a constant, Calling this

constant 1p2.we'obtain from (3.8) the following two ordinary

differential equations

%; = - @)769 X | ‘ (3.9)

7 2
d1 . _w*H

e ;
If solutions of these ordinary differential equations exist then
X(x)H(t) will be a solution of the wave equation, Both of these

equations have the same form as the equation of motion of a simple

harmonic oscillator, Their general solutions are therefore

W) = 6 wa@)x 4 banlh) x

He)
A

where a, b, d, and e are arbitrary constants, ¥Re solution of the

"

Jowwt + € ot
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Note that this is a solution of the wave equatibn‘for every positive
value of the constant & and for completely arbitrary values of
x Furlhe

the constants A, B, C and D, Note that if such an equation re-
presented the motion of a string then each point of the string

would be moving in simple harmonic motion with an angular fre-
quency w , For this reason, solutions of the form (3.10) are
called harmonic solutions, It is easy to show (see problem 3.3)

that the harmonic solution (3.10) can be expressed in terms of

functions whose arguments are x - ¢t and x + ct.

5. Boundary conditions, eigen frequencies,

We have just seen that any function y(x,t) which is to
describe the motion of a string must satisfy the wave equation,
There is a second restriction., If the string is tied down at
both ends as in Fig, 3.1 then obviously the two ends of the
st;ing never move, If y(x,t) is to co;rectly describe the string

then

glo1) =0
y(h,t) =0 |

where L is the length of the string. These, for obvious reasons,
are called boundary conditions,

Now (3.10) is4a solution of the wave equation. Does it
satisfy.the boundary conditions? It may be seen by inspection
that fﬂr x =0, (3.10) will be zero for all valueslof t if C and D

are taken equal to zero, i.e., the harmonic solution
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(3.11)

y,t) = omx [Aeet + B et |

does satisfy the first boundary condition. This will also
satisfy the second boundary condition if

."QL: NTr- n:/,2,3...

c
or

- are (3.12)
w = N ¥q .

Thus harmonic solutions of the wave equation satisfy the boundary
conditions only for these special values of W ., These special

values of W and the corresponding actual frequenc1es}f‘ ;%jare

referred to as characteristic or eigen frequencies. For each eigen
frequency there is a function of the form (3.11) which satisfies
both the wave equation and the boﬁndary conditions, These are
re%erred to as characteristic or eigen functions, We list some

/

“for reference,

‘ TS
“.g’{K/{):r AMq%?X'[:A\ 0&@7%§’f + ’rgl'oM & ii]
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If the string is vibrating so that the first of these, yj(x,t),

describes its motion, then the string is said to be vibrating in

its first or fundamental mode. The corresponding frequency
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' 5:=l%bﬁ':: QQL is called the fundamental frequency. It is the
smallest of the allowed frequencieé. If the stri;g is” vibrating
$0 that its motion is described by (3:13; then it is said to be
vibrating in its nth characteristic mode. Note that the fre-
quency fa cbrresponding to the nth mode of vibration is n times
‘the fundamental freqﬁency. When the characteristic frequencies
of a vibrating system are all integral multiples of the fundamental
frequency, they are called harmonics, f; being the first harmonic,
f, = 2f; the second harmonié, and so on, |

Suppose é'string is vibrating in its nth characteristic
mode. What is the general appearance of the string? Using a

little trigonometry, equation (3.13) which describes the nth

mode may be written |
Y (X/%) = [Ziq M%E 7&"]’ m(wn t ot Cb'?)‘ | (3.14)

wﬁere u%: ﬂgg and C; and 4% are constants rélated to A, and B,
If we consider some particular point of the string corresponding
to a particular value of X,say X, then the quantity in brackets
becomes merely a fixed number, the absolute value of which repre-
sents the amplitude of the simple harmonic motion of the parti-
cular Piece of string at that point.. This amplitude is, df
course, zero at x = 0 and x = L. and may also be zero at inter-
mediate points; in fact it will be zero for all values of x lying
between O and L for which

| I?sz = T, 27y B,
For exémple, for the 4th mode, for which n = 4, k is zero at

points for which
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as well as at 0 and L, Points for which the amplitudé of the motion
is zero are called nodes., At points midway between the nodes the
ampii%udé of the vibration is a makimum; Such points are referred to
as antinodeg. Because an object which is vibrating with simple har-
monic motion spends much more time near the end points of its motion
(thelveiocity being smaller there) than it does at its midpofnt, an
object vibrating with a frequency of 30 cps or greater appears to be
an observer to be two approximately stationary objects, one at each
end pbinf. Thus, a string vibrating in say its féurth characteristic
mode appears as shoWn in Fig. 3.5, Because the pattern appears to-be-

stationary it is referred to as a standing wave,

6. Initial conditions, general solution.

We have just shown that there are harmonic solutions of the wave
equation of the form (3.13) which satisfy the boundary conditions,
there being one such solution for each value of W given by (3.12),

It is possible for a striné to be vibrating so that its motion is
described b& one of these characteristic functions, The cases for
which this is true are very Specigl and require that the string be

sét in motion in a special way. We inquire if it is possible to find
a solution'which will describe the motion of a string started in an
arbitrary way. By virtue of ihe superposition $§§§§é§@@ the sum of all

the characteristic modes,

= pen DT [A o, LT o2 B s B4
J. A [Ageermd 4 S MY
n:y

(3.15)

Nt (x, 1) =

is itself a solution of the wave equation, and obviously satisfies

the boundary conditions. We argue that if the An"s and Bn's in (3.15)
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can be chosen so that this sum correctly describes the motion of

¢

a string at a given instant of time then it will correctly describe

the mﬁtion fér all subsequent times. Let the given instant of time
be t=0 aﬁd let the motion of the string at this instant be described
by the two functions y,(x) and vy(x), the first function specifying
tﬂe pbsition of each element of the string at t=0 and the second

the velocity of each element, If (3.15) correctly describes the

string at t=0 we must have¥*

‘(”o(?() = g An aad %E
- Nz

(3.16)

vy(x) = I 7 A

nz !l (3.17)

The required values of the A 's to satisfy (3.16) can be determined

by multiplying both sides of (3,16) by sin (M Zr‘x)dx, where m is
some integer, and integrating from O to L. All of the terms on the
right exdept the term for which m=n will then be found to vanish

(see prob., 3.5) yielding

7;Qﬂ? X = Aﬂ él
f‘é“(?r s N Ay = A, fM 7 d -

* The student may recognlze the right-hand sides of (3.16) and
(3.17) as Fourier series representatlons of the functions
Yo (x) and v, (x). '



17.

or s
( - nir
A:-%gg(x)W”z':"“ |
e k)9 (3.18)
" Similarly .
B - % ﬂ(x)um"-’ifzfﬁ(k’
N nme (3.19)
(2]

As an example consider a string which is released from rest

from the position shown in Fig. 3.6 The initial conditions are

() 31@2,“7( O:%Tx-é.g,L
. X -

% ‘ - & f“&" L gLskéL
( : L(P?) ] B

, '
It should be evident that all Bﬁpare zero, Substituting in (3,18)

we have »
5L L
4o 2 ax plan + TG B gy ) e
A T T e
0

The integrals are readily evaluated using the method of parts
yielding |

. A4
n [C”Tf')z%('“g)

. _ 2..-
pua NTT G ~ h=l,2
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For d= l¢m, g =4  L=/00cm and = 10 e ot .

the equation describing the motion of the string becomes

780 oL x Coo l@TX F.196 Mﬁ%xmzm’f‘f‘ — 0¢F s Laer Tl o -

:‘ﬁv*):“

The coefficient of the terms for n=3, 6, 9, ... are zero. A string
vibrating in this manner would be said to have the 3rd, 6th, 9th,

etc., harmonics missing.

7. Enerqy considerations.

Suppose a string is vibrating such that its motion is described
by a function y(x,t). The kinetic energy T:C; of the string at any
instant of time say ty is the sum of the kinetic energies of all

the elemental lengths, i.e.,
| L ~ 3 ) L
- (1
- n ek b
L]é“ leoa(k’[;t Z
o

where the derivative %ﬁ} is evaluated at the given instant of
time ty and is, of course, a function of x. At time ty the string
will have some configuration given by y(x,t3). The potential energy
of the st?ing in.gﬁé configuration is equal to the work done by

the tensile forces as the string is moved from this configuration

to some arbitrarily chosen standard configuration. For convenience,
we will choose the-standard configuration to be the configﬁration of

the string when it is at rest (see Fig, 3.7). Now the potential

energy of the string in any given configuration is independent of the

way the étring got to this configuration. (Recall that for conservative

forces the work is independent of the path). 1In calculating the work
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done by the tensile forces we can move the string from the given

configuration y(x,t;) to the standard configuration in any convenient

+

way. We will move the string from the given configuration y(x,tq)
to the standard configuration in such a way that any intermediate

configuration between the given and standard will be given by

% CK) = é'gl%,f,)'

where & is some positive number between O and 1,
Consider the string in one of the intermediate configurations
specified by'y{x) and isolate a small element of length AL,

The y-components of the tensile forces acting on the element are

~ l ~ vl s )
Tams — Tome £ T g:& - T
COOR lyuaw dn R

. : a’u‘
i d" \ ST - T-'*"&l
i gt T - T

= T%%dx

- thece .

The work done by #W#=8 forcet as the string.is moved from the given

to the 'standard configuration is

(Z. :}'2. d
du, - [ [ a1
g00,%)

Remember that the quantity §;2 is evaluated at x and is a
. ’ xX=

function of y, the variable of integration. Now



 @(X); € al%,%J ‘ - 21.

. e @ (x,1,) ‘
{ wax‘ ) e

Substituting one gets 6

A}

2 - élb( Iiwl)
du, = fo'ré lvg%‘(‘ii’;)dx [yo,) 46 = T 5657 d6m) & jédé
P x* ‘

4
1 .

-

2 Ix*

e D'ﬂé [x,él !j(xlii) dx

Dropping the subscript on the t we have for the potential energy

of the entire string when it is in a configuration specified by
S y(x,t) L .
- 2
U, = =T [yt 20D dx
P 2 ' ox*

—

This integral may be.recast in a different form by integrating

using the method of parts Setting

n ‘ B SN Vi
Wey Ay < S‘j\"dx,.
dusdy re

we get
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0 “?[ ”" ) ax ”/’4 (3.20)

The total energy thus becomes

L. L
U“.; (/[H»( U‘f: ,E g@;%“ + "il'; @_35) d+x (3.21)
. : | |

[4]

If a string is vibrating in one of its characteristic modes

so that its motion is described by

Y (x,'i") = O-M'\“%EV[ neot, St By st ”’":(Z
n

| foney + @)
- C 0 A )QZD" Y Lo (“ Z .‘1 (ib"

~

then

: ,2“ \ ‘ %\ ‘ 2 ne ¢ >
‘ ) () G e £ %
. AT L zaZZﬁkff + )
AR (QJI) C, coa® Il Aon U7X o
. - YA
ax) |

and (3,20 yields

Ui = Z,QZZLQL (‘m . N (3.21)
n " - :
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Chapter V. _ WAVES IN MEMBRANES

“If dne blows across thé top of a thin sheet of plastic

(e.qg. Sayan Wrap) stretched across a rectangular or circular form
as in Fig. 5.1 one will heér a characteristic tone. This tome is
produced byithe vibration of the plastic sheet. It can be inferred
by inspection that the amplitude of vibration is very small, since
it is difficult to observe with the unaided eye. In developing a
description ofAthe motion of such a "membrane" one assumes that the
motion of any small piece is strictly at right angles to the plane
formed by the undisturbed membrane, " If one takes this latter plane
as the xy plane, then the motion of the meﬁbrane,can be described
by Some function z(x,y,t). Juét as in the case of the string it
turns out that any function desciibing the motion must satisfy a
wave equation, this condition coming about by the requirement that
the motion of ahy small piece of the membrane muét be governed by

Newton's second law.

5.1 Wave Equation

Consider first a membrane stretched over a rectangular form
: #

of length a and- width b, Let the origin of the coordinate system

‘be at one corner of the membrane as indicated in Fig. 5.2, We

assume our membrane is homogeneous and isotropic and that the forces
applied at the boundaries are uniformly distribu@ed over the peri-
meter of the membrane as suggested in Fig. 5.334 With such a
uniform distribution, the magnitude of the force on any piece of

the perimeter of length AL can be expressed as T OL where T is

the force per unit length (the sum of the magnitudes of all the
forces shoﬁn divided by the perimetgr). If one’isolates for con-

sideration the triangular (shaded) portion of the membrane shown
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in Fig., 5.3 a and b and aéks what forces the adjécent portion of

the membrane must exerf on this isolated piece, 'in order that the
isoiated piecé be in equil ibrium, one sees that these forces must
have a resultant ﬁy whose x and y compdnents must be numerically
equal to TAL' and TAIJréSpectively. This resultant must have a.

magnitude given by
CR= (Tl +qaL)*= TVRD (L) =T{lengthaf sideAF

\_?
Moreover, it should be evident from geometry that R is at right

angles to the side AF. By extending this argument to other por-
tions of the membrane one arrives at the conclusion that the force
that any piece of the membrane exerts on an adjacent portion across
the line separating the two is always in the nafure of a pull at
right angles to the line and has a magnitude equal to T multiplied
by the length of the line, The quantity T which is determined by
the externally. applied forces is called the tension in the membrane.
It follows from the above argument that with the membrane at
.rest, the forces exerted on a small piece 4x Ay.of the membrane
by ;he édjapent portions are as indicated in Fig,. 5.4a. In Fig,
5.4b the membrane is shown at some instant of timé t after it has
Seen sef in vibration, The two forces labelled T" Ay and T' Ay
no longer lie in thé Xy plane; each makes a small angle with the
x-axis, as indicated in Fig. 5;40 which shows the curve formed
by the intersection of the membrane with a plane parallel to the
Xy plane and passing through the center of Ax Ay. Since the motion
of AX Ay is assumed to be only in the z-direction, the x-components
of T" Ay and'T:Ay must add up to zero, If the anglesCKNand K({
which these two forces make with the x-axis aré sufficiently

C

small so that the cosines may be taken as unity,‘thén



5.4

T"Ay - T 4}':

or
T" = T' =T

-where the last result follows from consideration of an element of
area whose edge coincides Qith one of the boundaries, Since the
y4components of the forces on Ax Ay must also add up to zero,

it follows that T2 =T, = T. Thus the maqnitudes of the four

forces shown in Fig, 5.4a remain unchanged when the membrane is

set in motion; only their direction changes.
The z-components of the two forces T"Ax and T' Ax is from

Fig. 5.4c
‘ n Iy 't_ I
Tax Sine "TA’)L Sin& = TAX[fan"( JCO/YLK’]

& Tax [_6_2:'_ — ¥ ]
L% Ip,,t 3% J, %
Similarly, by cbnsidering the curve formed by the intersection of
the membrane with a plane parallel to ‘the yz axis and passing

through the center of Ax Ay, one finds the z-components of the

forces T, Ax and T; Ay to be

' 31&@%{)} g@(%/%t)
-T—ZSf%/ a’yb %, )41}'€ 9~2¥’ '%lﬁ%ft

Newton's e%uation of motion for the element thus becomes

s

TMJ’{ Y xmc Yt B > \x,%,t}"rTA’}}) {%% %,f;w;}?

&
— (o=, —
’Xl}fx,‘g}fi”( Azd%)ﬁa KTog

where U is the mass per unit area of the membrane. Dividing

s

e

MJ‘

through by Ax Ay and passihg to the 1limit one obtains
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or

) (5,1)

This is the wave equation for waves in membranes and any

function z(x,y,t) which is to describe the motion of a
membrane must be é solution of this wave equation,

It is a simple matter to demonstrafe that any function f(u)
where |

u=-ct - (x cos 8 +'y sin 0)
is a solution of the wave eqﬁation (5.1) for arbitrary values of
6. That functions f(ct - [k cos 0 +y sinng ) have wave properties
can easily be seen by choosing a‘new>coordinate system X, Y where
axes are inclined at an angle 6 to the ky axis as indicated in
Fig. 5.5. For any point P, the x and y coordinates are related
to the X and Y coordinates by
X=xcos & +ysin® ; Y=ycos®-xsin@

" Hence f(ct - [x cos & + y sin 6] ) becomes f(ct - X). %Eéé we
recognize as a disturbance being propagated in the +X direction
with a velocity ¢. Hence any further f(ct - [? cos 6 + y sin 9] )

represents a disturbance being propagated in a direction making

an angle 6 to the positive x axis.
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5.2 Harmonic Solutions, Boundary Conditions, Eigen Functions

The general approach for finding solutions of partial dif-
ferent equations is to separéte'the variables, i.,e. to look for
solutions of the form '_

2(x,y,t) = X(x)Y(y)H(t) (5.2)
where X(x) is a function of x)&ﬂd.Y(y) is a function of y only
and H(t) is a function of t only, Substituing (5.2) into the

wave equation one obtains after rearranging the following expression

A 1" GRS U Lo g DS U L
x dx?2 Y dy2 H dt2

" If (5.2) is a solution, the above expression must hdld for

all values of x,y and t. Since the left-hand side is only a

function of x and y it doesn't change with t, and hence the right-
hand side must be the same for all times, i.e, equal to a constant,
Calling this constant~W2 we obtain the following two ordinary

differential equations

1 d%H _ 2
—.—_2"“)
H dt
IS G G AT A T L
X dx2 ¢ Y dy?

The general solution of the first of these should be immediately
apparent, It is

H(t) = Cq cos wt + Dg sin wt

where C3 and D3 are arbitrary constants,
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The second equation must hold for all x_and y if (5.2) is to be a

solution, 'Again this leads to the conclusion that both sides
2
must be equal to a constant, Calling this constant - we obtain

the following two differential equations

We can write down the general solutions of these two equations

immediately since they are of the same form as (5.2) provided

%)‘><¥. We obtain.

X=¢C, cos &Yx + D

1 sin & x

1

Y

— i
C, cos v(%ﬁéixz y + D, sin »EOQ —2}2 y

Our solution of the form (5.2) is thus ,
/5’(%‘:’3’)%') :[Cl coS YL +D, qu%] EC;‘COS \K%) ..Q{& /g/ + Dg\.
snVB -yl [Ceosut 4 Dg sinut]

This is a solution for every value of ) and every value of .

and for arbitrary values of the constapts Cl' 02, C3, Dl' Dz, D3.
If sqch a function did describe the motion of the membrane, then
any point (x,y) of the membrane would be moving in simple harmonic
motion with a frequency wW. For this reason (5.3) is called an

harmonic solution,
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If thq}mémbrane is stretched over a rectangular form of
: dimensions a and'b, then functibn, z(x,y,t), describing the
motion of the membrane-mﬁst satisfy the~following boundary

conditions:

(i) z(O.y;t) =0
(ii) =z(a,y,t) =0
(iii) =z(x,0,%) =0
(iv) z(x,b,t) = O‘

- If we examine the harmonic solution (5,3) it is apparent that if

we choose C, and C, both equal to zero, conditions (i) and (iii)

More pien
fpgmmpiees, we can satisfy condition (ii) for

will be satisfied,

arbitrary values of D, if we restrict & to values given by

o= nIl m=1,2,3, ..o......

a
and we ﬁan satisfy condition (iv) for arbitrafy values of Dy if we
restrict Og) 2 _o to values given by.

(w?_&2: nJT ‘n=12ﬁ. ....... '
N
We see from these two restrictions that the harmonic solution (5.3)

will satisfy the boundary conditions only for:values of w given by

-\l )"

and hence for frequencies

2 2
Cr ) -6

These values of (yand f are of couizxse the eigen frequencies and

'''''''

{1
Sy
N DN

the corresponding functions,
—t)r\»‘

%S%,fg},t): Sin i Sinfilﬂf[,é\mncos( \/ )+€b }w) ~

Bmgm \/("m J+ )]
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are the eigen functions of a membrane with a rectangular boundary,

There is an eigen function for any combination of values of m and

.n, The Smallest of the eigen frequencies

- \[fz) -+ (X)

is called the fundamental frequency and if the membrane is vibrat-

ing so that its motion is described by the cdrrespbnding eigen

function

o, (2yt) = sinE g ssn%—cy[A,,cos&J@%@a& 1)+
Bn SpY‘) J(IL +€l ] [C” S))’) a % SM 0 ,HJCOS Wzb-t+¢'l)

it is said to be vibrating in its fundamental mode. If it is
Vibrating in its fundamental mode, the amplitude of the motion
(represented by the quantity in the brackets) is a maximum at the
center of the membrane, since the two sine terms in the bracket
have a value of one at that point., Since sin I x sin'g'x

a
is positive for every point of the membrane, if at any time

(x,y,t) is positive for ényvone point it will be positive for
every other point; the motion of any point of the memprane is thus

in pbase with the motion of every other point,.

If a membrane is vibrating so that it is described by the

eigeﬁ function for which m=2 and n=3 i.e., the function

C i 2 ‘ ‘ '
73\3 = Sin "'d]l% gm_égtr%]jﬁ%'cos Wga‘t +B&3 COSQS{J

““B@35nfﬁm%8nw @Juh(maﬁﬁ~@%)

Waz = @¥f+§§f




then it should be apparent that the amplitude will be zero for

any point for which

X =

|

and zero for any point fof which

_b 2b
Y7303

A}

}

.Hénce, in addition to the boundaries there will be nodal lines as
indicated by tﬁe dotted lines in Fig, 5.6. Note that the quantify
sin ggrx sin §§Ty"is posifive for every point in the shaded regions
of Fig. 5.6 and pegative for every point in the unshaded regions,
.If then at éome instaﬁt of time z23(x.y,z,t) is positive for one of
the points in the shaded regions it will be positive for every point
in the shaded regions and negative for every point in the unshaded
regions, Thus the motions of any two.poinfs in the shaded region

are in phase, and are 180° .out of phase with the motion of any point

in the unshaded region.

5.4 General Solution,

The sum v
oD oo
%’(%;'})-b) = Z Z Sin TY&TT %Sin h”\o‘::: [Ah’mcos U)mn‘t ‘f' an'
m=] =] .

SihLJmﬂt] 7 ijQlywm,a
Wi :\/CT }’W)
of all the eigen functions-is itself a.solption of the wave
equations satjsfying the boundary conditions. It may be regarded
as a general solution in the sense that with the proper choice of
the Ay,'s and the an'é it will describe the motion of a membrane
started in vibration in an arbitrary way (subjected, of course,
to the limits on the amplitude for which our approximations are

reasonably valid). If one knows the z coordinate and the velocity




of every point of the membrane at some instant of time, say t=0,
then one can determine the Amn's and the an's such that (5.4) will
describe its subsequent motion, If

z,(x,y)
voﬁx,y)
are the functions describing the position and velocity of eaech

-~

point of the membrane at t = 0, then
2 mﬂ: .DJI
%oloy) =2 7 sinfgTx sinfFy A,

Multiplying both sides by sin ™'X sin n'Y dxdy and integrating over
ltiplying y - n LY dxdy

the surface of the membrane one obtains
. . "L . h:”% _
74 2 gint =
I ¥o (£,y) sin 6= Sin N C}QMCQ/}'/

b a " , | " o o) .
f / Sin T .smﬁ-bu—mﬂ(,},c@&,%/ S S sin 5Ly Sintr
o 7o mE R
Although the double sum on the right looks more formidable than
the single sum we obtained in the case of strings, if one writes
but a few terms of this doub1e1§um, it will be seen that the
integration is perfectly straight forward, ail integrals being

zero except those for m = m' and n = n', For m = m' and n = n'

the integration on the right yields %?_so that

a b
4
A = - zo(x,y) sin Ef_ sin ﬂz_dxdy
mn ab a b
, 0o 0

Similarly one obtains

a b

P | . .
B = —= | v (x,y) sin BX sin DY dxdy
mn ab%)mn Jo Jo o a b



5,5 Circular Boundary, Wave Equation in Polar Coordinates .

For a membrane with’a circular boundary, Fig. 5.7 a and b, the
exterhal‘fordes.are presu@ed‘tq'be distributed uniformly around
the boundary so that the magnitude of the force exerted on~ény
;mall segmént of length Af;of the bouﬁdary can be written as T AL,
where T is a constant called the tension. By requiring that each
portion of  the mémbrane"be in equilibrium, one can show by an
argument similar to-that used in section 5.; that the force that
aﬁy‘portion bf'the membrane éxerts on an adjacent portion écross
‘the line separating the two is always in the nature of a pull at
right angles to the line and has a magnitﬁde equal to T multiplied
by the length of the line, If the motion of eadh piece of the
membrane is perpendicular to the plane of the undisturbed membrane,
the motion can be described by some function z(r,@,t).

Fig, 5.7d .shows the forces exertéd on a small segment of the
membrane of area rA@ Ar, when the membrane is at rest, Fig. 5.7e
shows at some instant of time t after the membrane has been set in
motion, the curwe formed by the intersection of the membrane with
the.radial plane z = ¢ + Q%Q . .The two forces labelled T(r + Ar)A ¢
and T¢r A ¢ in Fig. 5.7d are labelled T"(r + Ar)A @ and T'r AG |
~in Fig. 5.7e. Writing down Newton's second law for the r-motion
oﬂe has at this instant of time

T"(r +AILA¢cos§ﬁ-I”rA¢(ms¥' =U~r Ar AG a.
where a_ is thg radial component of acceleration of the midpoint
of the segment, If the angles &)“and K;}are at every instant
sufficiently small, then since there is no radial motion, a, = 0
and one obtains on dividing by /\ 0 and passing to the limit as. ..

: L
goes to zero



T" - T' = O

or .
T" = T

]
=

where the last result follows by cohsidering a small segment
whose outer edge coincides with the boundary of the membrane,
The z-components of the two forces T"(r +Ar) @ and T'r A@ can

now be written

T(r+ Ar) Af be’(r.g.t) - T rA¢ 3z

or gr
r+Ar¢t - r|¢'t

where we have used the approximation that sin & "tan«ﬁ' %?—

and sin & tan d; %%_’ In a similar manner, by con51der1ng

the curve formed by the Intersection of the membrane with the

r +AT

cylinder z = r + l%l , one can show that the vertical components
of the two forces labelled TAr in Fig, 5.7d are at time t given by
TAr 9¥(r, @, t) _]jAr A% (r.d,t)

ra ¢ r.A¢
r, g+ A0, t r,g,t

Newton's second law for the z-motion of the element r Ar A@

becomes ' : »
T(R+Ar)A¢ BZL . TrAg 22
or T
+ar,g,t r,g,t
+ Thr 22 - T Ar 02 =07 r Ar A¢ 27z
r g ro¢ t2 Ar
' B+ ALt r.g,t ir+ 85,



Dividing by r ArA ¢ and passing to the limit as both Ar and §

go to zero one obtains

T ézz + 1 dz + 1 azz _Cr,éig
dr? r Or 2 }¢2 -3t2

or

e? 32z £ 1 pz 1 b2z = QEZ ‘ ‘ (5.5)

a'1'2 r dr 2 &¢2 }tz @3\’T70"

This is the wave equation expressed in polar coordinates,
' \

5.6 Harmonic Solution, Bessel Functions

If there are solutions of the wave equation of the form
Z(r,g,t) = R(r) §5(¢) H(t) (5.6)

then substitution into (5.5) leads to the condition
2 a
[ (8 + - dB) 4 7. L d H
C [_\‘%(C{Kif Ty &;? + @ﬁa 5 H d%2

which must hold for all times and for all values of r and §.
It follows that both sides must equal the same constant, Calling

this constant~1u31eads to the following two equations

2
9——§= ~wie (5.7)

2 2 2 2
IR, _l_(dg_R +1.d_5>-+w_ S A a4 0 (5.8)
R\ r dr c2 § d¢2;‘
Since the latfer of these equations must hold for all values.of @
and all values of r, each side must equal the same constant.
Calling this constant m? leads to the following two differential

v
equations

H il T
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2
dg
l = 2 .
d R l] dR k - 0_ —
— + = ——-+-< 2) R=20 (5.10)
r dr b

dr

where k = W/e¢, If one can find solutions of (5.7), (5.9) and
(5.10) then there exists a solution of the form R(r) @(ﬁ{H(t).
Solutions of (5.7) and (5.9) are readily apparent;

H(t) = A cos wt + B sin wt

A' cos mf + B' cos m@

-
7~
=
-

1

Assuming one can find some function say R(r) which satisfies

(5.10) one will have an harmonic solution of the form

z(r,g,t) = R(r) [A'cos mg + B'sin m¢] [A cos wt + B sin u;ti] (5.11)

If this function is actually describing the motion of a membrane
then the motion of a point located say at L ¢1 is given by
z(r1,¢1,t). Since the point located at (r;,@;) and the one at

‘(r1,¢1 x £:2TT) Where Jgié any integer are exactly the same point

of the membrane it follows that for the description of the motion

A ) .
to be unambiguous z(r1,¢1,t) = z(r1.¢1 * £,27T,t).€quation (5.11)

will have this required property only if the constant m is re-

stricted to integral values, i.e.

Keeping in mind that m must have integral values, we attempt

to find a solution of (5,10) by assuming one exists of the form

3 0 n

. 2 -
R(y) = a, + ajr + asr +agr + ... = X" apr (5.12)
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where a,, a, ... are constants. It follows that




woe a7

1 dR _ -1 2 3

T ar ayr | + 232 + 3a3r + 4a4r + 5a5r + ..., .
2

d~R . ) 3

—_— = + + + +

dr2 232 v6a3r 12a4r 2OaSr ey
sz = k230+ kgalr + k232r2 + k233r3 + ;...

:ng = —m2a r_2 —m2a r_l -m2a -m~a,r —mza r2—m2a r3 +
2 o 1 2 3 4 5

Substituting into (5.10) one gets

2

-m“a (1-m )a
2°-+ 14 B4n1h 4—kaj B9m M ﬁalr

r T
. 2 2 '] 2 _ 2. 2 @! 3
[(16-—m )a4 +.k a \r + [(25m )a5+kas)r

(5.13)

It
(=}

Remembering that this expression must be zero for all values of r

if (5.12) is to be a solution, it is apparent that either m or a,

must be zero, and either (1-m2) or a, must be zero, since otherwise

1

the first and second terms become infinite at r = 0, If m = O,

setfing a1, 83, 5.4 equal to zero and choosing
2 '
- _ k r
g = 4 20
- k2 - k4
Ay = 7T 8y T 3,
16 (16) (4)
a :--Iﬁ :--_-—---—_—-—-—--.k6 a
6 36 4 (36)(16)4 °

will make (5.13) identically zero for any arbitrary choice of a,



Form = 1 §etting g, g ay, Bgr oo all equal to zero and

dhoosing
2

a = - k_ a

3 8 1

a = - ki a = __ki___ a

5 24 3 (24)(8) 1

a :_EEH :__k_é____a
7 48 5 (48) (24)8 "1

will make (5.13) identically zero for any arbitrary choice of a,.

-

For m = 2 setting a, and Ay, g, A5, A ... all equal to zero and

choosing
2
- k
a4 7 " 17 9
2 4
a, = -~ k- a, = ————km——'a
6 32 4 (32)(12) 2
a = = kg a = - k6 a
8 60 4 (60)(32)(12) 2

will make (5.13) identically zero for anvarbitrary choice of ag.
Thus the following are solutions of (5,10):

2 4 6 ‘
) ) (kr) (kr) (kr)
= 0, R(r) = -t = - T
kr.,2 kr. 4 kr.6
(=5) =) =)
=a |1 - 2 g - 2 T i]
ol 111! 21 21 31 31

= a }J (kr)]
o o

' 2.3 4.5 6,7
m=1 R(r) = a - Kty ko M S s =+ .,,1
) 1[} 8 2D (8)  (48)(24)1(8)
T 3 5 7
I G DG SRS DA SR _]
koLorfit o 1r 20 213l 314! j

L

Ay g (kr \1
STk L1



&m . v 2
@ =2, R(r) = a r2 k4 ___Kﬁ___ r6 - k6'r8 o
‘ y 1 (32)(12) (607 (32)12 |

I(kr/2)2 (kr/2)4 . (kr/2)0 (kr/2)8+ ]

ol2! 1! 3! 21 41 3! 5!

and so on, As indicated above, Jo(kr). Jl(kr) and J2(kr) are short-

hand notations for the infinite series contﬁined in the brackets -

of the above solutions. The infinite series for which J (kr) stands

is called the zero order Bessel function of the first kind,

Similarly Jl(kr) and Jo(kr) are referred to respectively as the

first and second order Bessel fﬁnptions of the first kind, A plot of
these functions (Fig. 5.8) shows that each of these functions re- |

sembles a decaying sine fuﬁction. Some of the more interesting and

N

useful prOpertles of these funct1ons are summarized in Table 5.1,
inte C//a\
It should now be evident that there exist for every kmdegryl

value of m an harmonic solution of the wave equation of the form,

i

zm(r,¢.t) Jm(kr) LA& sinm ¢ + 3& cos m ¢t]lAmC°S“)t + Bm costdtl

i

c J_(kr) [sin(m ¢+ ) ?E:os (Wt +_(Lm.)] (5.14)

Each of these harmonic solutions is a solution for every positive
value of k and for arbitrary values of A‘m, B'm, Am and Bm (or

"Co 0 and Jlm).



5.7 Eigen Frequencies, Eigen Functions, Characteristic
Modes for Circular Membrane

‘the n
If the radius of the circular membrane is a_Eﬁ%ﬂ the

boundary condition is that

zm(a,G,t) =0

An examination of (5,14) that this will be satisfied if

’ » rhe firsT kind
Ja(ka) = 0. Every Bessel function of -«emed@wsmr is 'zero for certain
values of the argument, These values determine the eigen fre-

quencies, For example

Jo(ka) = 0 for ka = 2.405, 5.520, 8,654, ...
Jl(ka) = 0 for ka = 3.832, 7.016,10.174, ...
J2(ka) =0 for ka = 5,136, 8.417,11,620,
Since k = w/c, the eigen frequencies for m = 0, 1 and 2 are
m=0 m =1 - m = 2
_ 2.405 _ 3.832 _ 5.136
Wop = =% ¢ ¥ a ¢ Wy a ’
_ 5.520 , _ 7.016 _ 8.417 ¢
Woo 2 Yo a Wa2 a
- 8,654 - 10.174 _ 11,620
= X 2e 2 ¢ w = s 2 C = et == C
W o3 13 a “53 a

The corresponding eigen functions are

VA = J .g.JAO_f).% coS (2_':15_01; +ﬁ

01 01 O a

o
&/ ’_.\/

- .52 5.520 B
VA 002 JO<T—~-—r) cos( ct + 0

02 a a
“11 7 T11 1(\ a C) sin (G +qy) e < st + Ib,

2 = C J (7.016C\’ sin (¢ +(51(l) cos(l:_g_l.éct +le2)

. 8,654 . i 8.654
Zogy = Ca\1 J2(\ " c) sin (2¢ +5§1) cos ( . ct +‘C51>




The smallest of the eigen frequencies is M%l and the cor-

responding actualAfrequency f01 =U%1/2ﬂ is called the fundamental

frequency, If the membrane is vibrating so that its motion is

described by Z01 it is said to be vibrating in its fundamental

mode., Since 21 is not a function of ¢, the fundamental mode

exhibits circular symmetry, A plot of Jo(?':OST) as a function
of r is shown in Fig. 5.9.a. Since this is everywhere positive,
it follows that all points of the membrane vibrate in phase, and
the membrane vibrates as suggested in Fig. 5.9 b and c.

If the membrane ié vibrating so that its motion is described
by 202 then it should be evident from Fig. 5.9.c. that the motion
of all points of the membrane for Which'r)»2.405 a/5.520 is 180°
out of phase with the motion of ‘those points for which fu:2.4053/5.520.
The motion of the membrane is as indicated in Figs, 5.9d and e,

The modes for which m X 0 are slightly more difficult to
describe, since the amplitude at any point depends on ¢ as well
11" a plot of J.<§;§§gr> as a

function of r, Fig, 5.10a, reveals that this function is positive

as r, For the mode described by =z

for r<a, However, a plot of cos(§ + é( ) as a function of ¢
'ﬂ: Y.,<LP < QT"&”

shows it is positive for ¢<.7?- %H and negative for \@r— == -

‘\ j.w o Q’ Q"’éﬁs

'There is a nodal line, @ = %} - GTI' and thg motion of points on
one side of this line is 180° out of phase with the motion of
points on the other side as suggested in Fig. 5.10c., Figures
5.10 d, e and f suggest how the motion of the mode described by
Zyo may be deduced. This mode exhibits two nodal lines and one

nodal circle, Table 5.2 lists the nodal patterns.for the modes

corresponding to the ten smallest eigen frequencies,

12




5.8 The Kettledrum

A kettledrum consists of a membrane stretched over the
open end of a hemispherical vessel as suggested in Fig. 5.11.
When the membrane is at fest,'the air trapped in the vessel will
be at atmospheric pressure, the same as the air outside, so that
the net force on any small area of the membraqe due to the pressure
of the air is zero, If the membrane is depressed slightly, the
volume of the trapped air will decrease and the pressure will
increase, The increase in pressure will give rise to a net force
on each element of area & S of the membrane, the magnitude of the
net force being (P - P ) AS where P is the pressure of the trapped
air ‘and PO is the pressure of the air outsidé, If the depression
in the membrane is Small, the direction of the net force on any
element of area will make a very small angle with the vertical,
"so that the'vertical‘component of the net force is to a good
approximation equal numerically to the magnitude of the force,

If the membrane instead of being depressed statically, is
set into vibration, the pressure of the air in the vessel will

vary above and below atmospheric.* Let us assume that the air in

* Strictly speaking one can only refer to the pressure of a gas
when the gas is in equilibrium, and the pressure is the same at
all p01nts Any sudden motion of the membrane sets up a pressure
wave in the air and the air attains equlllbrlum only after this
wave is sufficiently attenuated, In treating the kettledrum,
one generally assumes that at each instant the pressure of the
trapped air is the pressure the air would attain if the membrane
were held fixed in its position long enough for equilibrium to
be established. This is a reasonable assumption if the pressure
wave is attenuated in a time that is short compared to the
period of vibration of the membrane,

A8




the vessel behaves as an ideal gas and that the time for one
pressure cycle is short compared to the time for appreciable

" heat transfer to take place between the trapped air and its
sufroundings, i.e. assume that the compressions and expansions
of the trapped air take plaee adiabatically, It follows that at

every instant

N

PV = a constant
where P and V are the pressure and volume of the trapped air at
that instant, and ¥ is the ratio of the specific heat of air at
constant pressure to that at constant volume.. If the pressure

changes are sufficiently small it follows that

P
- = 0
| P - P = dP = - 7 QV
where VO is the volume of the trapped'agr when the membrane is at
rest, At any instant when the volume of the trapped air differs
by dV from the equilibrium value Vo' the vertical component of

" the force on any area dA due to the pressure differential will be

P
(P-P Y)AS = - o dvV A4S
o v
‘ 0
If one writes down Newton's second law for the element of area A S,
and includes this force along with the forces due to the tension

one obtains after dividing by AS and passing to the limit, the

following wave equation

2 2 2 ‘
r| 2%, 192 1 9% P av = o222 (5.15)

dr2 r 9r r* g2 Vv ‘ >t2

0
Any function describing the motion of the membrane must be a
solution of this equation, Suppose the membrane is vibrating

so that its motion is described by the function z(r,§,t). Then



" at any t, for an element of area r dr df located at ¥

quantity z(r,@#,t) r dr d@ is the volume of air in the

‘length z and area r dr d@, shown

positive if z >0 and negative if z<0. Hence at time

change dV of the volume of the air in the vessel is
1V, '

dv = z(r,¢,t) r dr dg -

o 0

1f z(r.ﬁ,t)‘is of the form‘\PTr,¢)H(t), then

AT G
dV = H(t) 'f (lv(r.¢)r dr d¢ = I,
(LI 4
where ] a
I, = Wir,g)r dr dg

o @
is a constant,

function 4’(r,¢)H(t), then since it must be a solution of the wave

equation one must have 4P d%%

- g 8 ! YW E2X

FlHS A pd s AR - B TH = oV G
or

— @ ¥ 1, LAY

é’l /é ‘_é’l e P it T e

Bl R Ll - WY T w T

Since the quantity on the left is only a function of

that on the left only a function of t, both quantitie

the same constant, say - w2. Thus
| 2
d-H 2
..__5 - WH
dt
4 nd
1 R . ) \E,x '[;) 'T
¢ [ [REIE I
ARV L AN EEN S cvors

the

'¢'

"column of

in Fig. 5.12., This quantity is

t, the

H(t)

(5.16)

Thus, if the motion is being described by a

r and ¢ and

s must equal

({_»,

i

yEpe



2,393

where k = w/c., The solution of the first of these equations is
apparent, To find a solution to the second suppose for the moment

the term, on the right, were zero, so the equation were simply

P L o¢ 1 %
én‘- .“ W + A ;/LZ t /Qz 4)

Assuming a solution of this latter equation exists of the form

R(r)(b(¢). one obtains on substituting and rearranging

ﬁz ! djg d() & J = e

?% &n*, hR dn

(

But this is exactly equation (5.7) whose solution was found to be
Jm(kr)}HAé cos m@ + B, sin mQZ m=0,1,2,3 ...

Since this is a solution of (5.17) when the right-

hand term is zero, and since the right-hand term is aconstant it

follows that -=solution of (5,17) exists of the form

- : : o

Jm(kr) LAé cos mf + Bé sin m¢! + K

Y o(r,¢)

where

P I 1

K = 0”0 - % Poly

2 . 2
ch & oW v,

Thus solutions of the wave equation (5.14) exist of the form

z(r,@g¢t) :<{J (kr) LA' cos mg + B' cos mé] —nuyig

§ A cos wt +B sinw t)g (5.18)
m m

and for each integral value of m there is a solution for each

positive value of W, From (5,16) g




2

. .
" I
{%l(kr) lAé cos m@ + B' cos mé] ___%_Q.E r dr d¢

T =
o m :
o 0 v w V
or
I = {? (kr) LA& cos m + B sin mQ]%r dr d¢
o .
%P wa
1 - =
cw V
Unless m% 0, I, = 0 because the integral of sin m@ and cos mf

from 0 to 271 is zero. If I = 0 then (5,18) reduces to (5.,14),

e, for m % 0, the harmonic solutions of the kettledrum are
identical with the harmonic solutions of the free membrane. Since
the boundéry conditions are identical for both the kettledrum.and
the free membrane, it follows that m ¥ 0, the eigen frequencies
and the eigen functions‘of'the kettledrum and the free membrane
are identical,

For m = 0

1 = 2T Jb(kr) r dr
_ ¥P,TTa’
2
rwV,

\

= 27 ang(ka)"
{POTTa2 ka
) Vv
T w o

where the last result is taken from Table 5.1, Harmonic solutions

of (5,.15) for m = 0 are



Bt

.Finding'the values of k = w/c which satisfy (5.19) will yield

5.35

"

. ., |

p 27 a“J;(ka) N ‘ ,

L g 1 (A coswt + B sin\.dt)

cw Vo {1 YPO Tr a {ka L
w3V,

zo(r,t)‘= Jo(kr) +

"The boundary condition requires that

2
P 2mac J,(ka)
J (ka) + LA 1 =0
0 2y 2
agw VY, P a }
1 = 9 . ka
{ 2y
0

By using the identity Jo(ka) + Jz(ka) = 21J (ka)/ka the above

condition may be written

Jz(ka) , :
Tolka) = - —=—0 (5.19)
' (ka) RN
‘where
4 4
- P0 a 'Po a
¢y T v
0 0

the eigen ffequencies of the kettledrum for m = 0, Note that if
& = 0, these eigen frequencies are identica1 with those- of the
free membrane, If & =<1, then one would expect that tlie eigen
frequencies would differ only slightly from their values when&= 0.

Note that o¢ is made smaller by increasing the tension or by'in—

creasing the volume, as one might suspect since both such increases

tend to make the tensile forces larger in relation to the pressure

“forces, The eigen frequencies determined from (5,19) for several"

numerical values of & are shown in Table 5.3, Note that the

fundamental frequency is the one most affected by 0(% 0.




Table 5.3

4
P a
Y-o’" kla kza
TV, '
0 2.405 5.520
g 2.68  5.55

10 ©3.485 5.

67

8.654

8.66

8.69

5.36
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5.9 The Driven Membrane, Circular Boundary

.If a loudspeaker is mounted some distance from a free

"membrane as in Fig. 5,13, and the speakef is driven at some .

frequency u) determined by the oscillator setting, then the sound

wave emitted by the speaker will cause the pressure P on the top

~surface of the membrane to vary with time in the following manner

= <+ .
P Po P1 coswt

where Pé ig;atmospheric pressure, and P1 is a constant which

depends on how hard the speaker is being driven. If one assumes
. . beHom

the pressure, g, is uniform over the %@ surface of the membrane

then the net force on any element of the area A S of the membrane

due to the pressure is : N

(P - P)AS = P,AA cosw t

Adding this force to the tensile forces and writing down Newton's
second law for the element of area AS one obtains after passing

to the limit the following wave equation

p ‘
02 22, + L 3z + L _9_2_2_ + L ogos t = 322 (5.20)

¥rl r or r 3¢2 < 31:2

Any function z(f,¢,t) deécribing the motion of the mémbrane under
the above conditions must satisfy the wave equation., Now experi-
mentally it is found that under the abo&e conditions, the membrane
reaches a é;$§ééy state in which each portion is vibrating har-
monically with the same frequency,W , as that of the oscillator,
This suggests there must exist a solution of (5,20) of the form
z(r,g,t) = W (r,g) cos (wt + g )
Substituting this in (5.18) one obtéins after expanding the

cos (wt + B)term, and rearranging
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o | | 5.3
2 ,
19 4&} 2 } 1|
+ I a¢; w q# Oésg. + F cos.wt

N o2 ry2¢ 1 ¢ 1 32¢] 2 . tl . -
- c — + L =2 A T - sin sinwt =0
l.[l [3r2 r or 2 3¢2 »M) v ?

This condition must hold for all times} a requirement'that can

]

be satisfied if the coefficientAsintnt and cosw <t is zero,

Boik
coefficients will be zero if S= 0 and
2| 2% 1 . g VW p
(v —E—.‘g"f'—];—é——"‘ —1—-——5 _WZ‘P = - —'l' (5.21)
dr r Ir r og<l r :

By PIAr is zero, the above equation has the solution

| W (r,9) Y'Jm(kr) [-Aé cos m@ + B% sin mé]

where m = 0,1,2 ...

H

Hence (5.19) has a solution

. _ | ;
J (kr) [A' cos m@ + B' sin mé] - 1
m m m ;

1l

Yir,g)

w2

and there exists a solution of the wave equation (5,18) of the
form

z(r,@,t) = JJ (kr) | A' cos mg + B' sin m@] - P1 “cos W t
m mvr m . | 0“02

If this is to satisfy the boundary condition that z(a,@,t) =0
one must have |

_ P,y
A' cos m@ + B' sin mg =
m m

d-wsz(ka)

This can be satisfied only if m = O and

A' = Pl
0 o‘u)zJo(ka)




/ 5.40

so that a solution of (5.20) which satisfies the boundary condition

becomnes

P . "~ J (ﬁ’_r) ‘
z(r,t) = 12 o ¢ -1 cosw t
cw (W :
. JO(TTa)

This expréssion p;edicts infinitely large amplitﬁdes at those
frequencies for which Jo(uJa/c) = 0. These fréquencies correspond
to the eigqq frequencies for m = 0, A more‘realistic wave equation
for the driven membrane would include damping forces and the
corresponding solutions would not show these discontinuities.
How@ver, one would still expect relatively large amplitudes to

occur at or near the characteristic frequencies.
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Chapter VI. WAVES IN FLUIDS

For longitudinal waves in a thiﬁ rod, the displacement of any
given élement of the rod has dnly a single'component, and hence a
single coordinate, S , is sufficient to describe this displacement;
Similarly, the displacement of any element of a membrane has only a
single component and a single coordinate z is sufficient to déscribe
this displacement, The displacement of an element of a fluid has
in general three components, In addition, three coordinates,
éay X, ¥y and z, are required tb locate an element. as contrasted
to two for an element of a membrane, and one for an element of a rod.
Moieover, one often prefers to deSCf'bc waves in fluids in terms of
quantities other than those of the displacement, For these and
other reasons, the description Qf waves in fluids is more complicated;
None the 1ess; the derivation of tha wave equation follows along the
same general lines; one uses the stress—strain relations and requires
that the motion of each element be governed by Newton's second law,
The type of waves which are propagated in fluid are called "com-

W 1"

pressional or dilational” or "longitudinal" or "sound" waves.

6.1 Wave Equation for Waves in Fluids

Consider a confihgd fluid as indicated in Fig. 6.la. By an
element of the fluid (also referred to as a particle) one means a
tiny portion of the fluid. To be more specific let the element
located at point M (x,yz) to be the mggg of fluid contained in a
tiny cubical volume located at M, as indicated in Fig. 6.1b. 1If
the external force ;ﬁl of Fig. 6.1a is changed to a new value, then

after equilibrium has been established, the element of fluid origin-

ally at M in general will be at some new location and the dimensions




6.2

of the element will have changed., Let the x, y and z components of
the displacement undérgone by point M be_f ,? and;f’reSpectively.
We assume that the displacement of point M is a suitable measure of
the displacement of the element, and as we learned in Chapter 1
the change in shape of the element can be determined fron1§§§ fgég
andJ%%% all evaluated at point M., 1In the static case the relation
between a change in pressure and the change in the shape of the
element was given by (1.6), namely
AP =-BH +3) +25]

where B is the bulk modulus of the fluid.

If the force F 4 of Fig. 1.6a 1is varied

‘rapidly about some mean value, then in general the pressure at

any instant of time will be different at different points of the

fluid and at a point such as M will vary rapidly above and below some

mean value P, If P' is the (instantaneous) pressure at M at any time

N

t one assumes that
P-P=-BL3 +43 +$4]

i.e,, that the static relationship holds at every instant of time.

If one defines the acoustic‘pressureﬁPiat a point as the difference

between the instantaneous pressure P' and the mean or equilibrium

pressure P, i.,e.,

ar

peF-p (6.1

the above relationship becomes

T, L3P ] | .2

It is worth noting that the acoustic pressure is an algebraic

quantity while P' and P are not. Also, for most cases of interest,

'

the pressure changes are sufficiently rapid so .that the appropriate

modulus is the adiabatic bulk modulus.




¥

6.3

The forces acting on the element of fluid at any instant are
those due to the pressure at the six faces of the small cubical
volume containing the element, -Considering ‘only the x-equation of

motion one has (see Fig. 6.2).

—

: . Q
Lg'(XJ,Lt)-£%x-+AL y,z,t{léy&zzfoAyAszg
! ‘ T3t

where P' (x,y,z,t) and P' (x + Ax, y, 2z, t) are the instantaneous
pressures at faces ABCD and EFGH respectively, and p is the density

of fluid, Dividing by ax Ay Az and p3551ng to the limit one has

-3F = p i

or in terms of the acoustic pressure
=3 e

Similarly for the y and z equations of motion one gets

:§ P 5e
-3F = rgt

Differentiating (6.2) twice with respect to time and interchanging

oN
the order of dlfferentlatlon w8 the right side one obtains

Jt :”8[ )"*'J)?(‘é‘"g‘) (‘;%g)]

Substituting from (6.3) one obtains the wave equation

&l ; %g‘f%%@] = %‘%‘aﬁb | (6.5)

€=Vg/P

for waves in fluids.

e




6.4

6.2 Plane Wéves, Velocity of Propagation:

Although the wave equation (6.5) is different from any
encountered thus far it should be evident that any function
(P(n)) wheren) = x i ct or y +ct or z *+ ct wouid'satisfy
it, sincé if P(%) ) is a function only of one of the coordinates,
the wave equation reduces to the form for waves on stringé ,
- ' The real f’“‘“’{' of &

Such functions represent what are called plane waves, :N function

like o A P (Wt-kx) e
Ply) =4, et (WEokx k= w/e

for example represents a plane harmonic wave being propagated
in the +x direction, It is called a plane wave since the pressure
is independent of y and z and hence at any instant of time.is the
same-at all points of any plane‘perpendicular to the x;axis;

It is not difficult to show following the method used in
section 3.3, that any function ®(v)| where | |

V) = xsin @ cos @ + y siﬁaé sin § + z cos © (6.6)
will also satisfy the wave equation'(6.5) for arbitrarily chosen
values of © and @. By choosing a new éoordinate system, X,Y,Z
such that the direction cosines of thé’+X—axis with respect to
the xyz coordinate system are sin @ cos @, sin Qnsin ¢ and
cos O respectively, as indicated in Fig..b.Ba, such functions
can be written Gﬂxft)u and thus represent plane waves being
propégated in the +k%direction,with a velocity c.' For example,
the function
,6(’1}%)*) :&ei[‘wt.—k(x cos § + y sin ¢):]

where k= «/c represents a plane harmonic wave being pfopagated

in the +X direction where the +X-axis makes an angle € with the

—— b

+x-axts  as indicated in Fig. 6.3b. Note that for such a wave,

the acoustic pressure at any instant of time is the same at all
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points of'any plane perpendicular to the X-axis, and that these
w Thas WIS'hMCQ
planes ar%\parallel to the z-axis.

The speed ¢ at which any plane wave is propagated in any

c=.VE§;; |

where Ba is the adiabatic bulk modulus, and R is the density of

fluid is given by

the fluid. For an ideal gas it can be shown that for small vari-
ations of the pressure about some equilibrium pressure P,, the
adiabatic bulk modulus

Ba =7f Po
where Y is the ratio of the specific heat at constant P to that
at constant volume, Thus for an ideal gas |

c =S’§;§E |
This result correctly predicts the speeds of propégation of plane
waves in real gases at ordinary pressurés. Also for n moles of

ideal gas of mass m, and molecular weight M

PV = nRT; V=_m_ =nM_: _P
R A T

so that . X

c = »EZ%I: = const Vﬁ?

Experimental results on real gases at ordinary pressures bear out
this prediction that the speed of propagation is proportional to

the square root of ‘the absolute temperature. The speed of sound

in air at 0°C is 331.6 m/sec and this increases approximately

0.6 m/sec per degree rise in température.

The‘velocity of propagation of_plane waves in liquids is for the
most part higher than that in gases, the velocity of sound in water
being 1480 m/sec at 20°, a figure about 4 times the speed of sound

in air. The speed also increases with the temperature, although
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there is no simple relationship as is the case with gases,
Table 61 gives the speed of sound in some of the more common

gases and liquids, -

6.3 Harmonic Solutions of the Wave Equation

\
Following the usual procedure for finding solutions to

partial differential equations one looks for solutions of (6.5)

of the form
P(x,y,z,t) = X(x) Y(z) Z(z) H(t) -

Substituting into (6.5) leads to the requirement that for all

X,¥,2 and t

Q1 d?x 1 a1 4%z [ _ 1 d%m
X dx2 Y dy2 =z dz? H dt2.

a condition that requires both sides equal a constant, say —uﬁ,

One thus obtains

2 .
9—-’21=-w23 O 6.7)
dt '
“and
1 d2x  _ 2 1 d2y 1 d2z
= aea - - kK- 5= 5
% Y dy Z dz

where k = W /c. Once again this second equation cén only be satis-

fied for all values of x, y and z if both sides equal a constant

say -at rwhich leads to

1 d%X o _ g2
X dx2
2 : 9
1 d°y  _ 2 1 d°z
— L2 = L (k%ef) - L
Y dy? Z dz? (6.8)

The second of these two eqﬁations can only be satisfied for all"

values of x and y only if both sides equal a constant say —;32.

jm.,, K




-

4L -.-p° | (6.9
Y dy A :
" and 9 '
. 1 d%Z - _ 2.2 _g?2 ,
L = - (2w -2
7 dz2 A (6.10)

Solutions of (6.7), (6.8), (6.9) and (6.10) are readily
ce 22 2 '
apparent if k"> a +B 7, Setting}/2 = k2 o2 —,3,2, a solution

of the wave equation is

P(x,y,zt) = (alcosxx+blsinxx)(azcdsﬁy+bgsinﬁ&)(asco§XZ+b35ian)

This is a solution for all positive values of b(,‘ﬁ, and ¥ and
and for arbitrary values of the constants al...{ Ay 51 oo b4.

Note that if such a function does describe the preSSugbwave in a
fluid, the\acoustic pressure at ény point varies harmonically in

time with a frequency W,

Using trig identities the harmonic solution (6.11) can be

recast in the following form

P(x.y,z.‘;):-A {cos(q’x+8y+3’z— th+.fll) + cos(o{x+ﬁy+72+wt+.n2)

+ cos(@x+ﬁy-z'z—mtn.3) + cos (ofx+fy-yztut+a,)

+ cos(f:{x—By+3’z-m+.n,5) + c'os(“{x—ﬁy+b’z+wtm6)

+ ¥z -Wit + Ax By e+t + f

cos(°<x53y Jz-wt .[\.7) cos (x-Py-¥z wt.ﬂ.e) (6.12)

‘Each one of the eight terms in this expression is of the form
P() where~) is given by (6.6), and thus represents a plane
harmonic wave being propagated in a direction determined by the
values of @f,ﬁ and Eﬂ The direction of propagation is in general

different for each wave, For example, the direction of propagation

of the plane wave represented by the first term is along a line




whose direction cosines with reSpect‘tQ thé X,V,2 coordihate

system are sin 6 cos @, sin @ sin , cos & where tan © =V4"2+Bzr/.z/
and tan ¢ = ﬁ/b'(‘. while the direction of propagation of the

plane wave represented by the third ferm,is along a line whose

direction cosines are sin 6' cos ¢, sin ©' sin ¢, cos ©' where

o' =W - 0

6.4 Boundary Conditions, Eigen Frequencies

Suppose the flgid is confined by a rigid vessel in the form
of a box ofllength [, width L§ and height Ly as indicated in
Fig. 6.4. Any particle of fluid in contact with the face OMNQ is
prevented by the wall from moving in the x direction, i.e.

‘f(O,y,z,t) =0
and consequently

12__? | :‘O
Y2
' O,y.z,t

If this latter condition is satisfied it follows from (6.3) that
P
X

An harmonic solution of the form (6.10) can be made to satisfy

=0
o'yIZQLt

this condition by setting b1=0. Similarly at the face opposite

DMNQ the particle displacement is zero, i.e.

&3 (L_.y,z,t) =0 -_-é,v-%—z]

1
S

Lx,y,z,t

The harmonic solution (6.11) with b;=0 will satisfy the above

condition provided _

o= N /L, M-04,2 .«  (6.13)
Similarly the boundary conditions .

PL(X,O.z,p) =0 ;é} f??/ = 0

x,0,z,t



N,o0.5,#)=0 = %‘3 - 0
;03;\?

‘can be met by a function of form (6.11) by\chdosing b,=0 and
ol T |
| B . =0,1,2,3 ... (6.14)
| 4 y _

and the boundary conditions ) R

A0 - ;
-‘t— -0 ﬂ / = D
“f(%'%'o' ) >3 9,04

_ o® | _
F 4,k ,t) =0 = .a%l =0
*o&f/l«s;x g

can be met by choosing b2=0 and
X=W§:§;®=TV%3 ny,=0,1,2,3 ... (6.15)

Thus the harmonic solution ]
.

P(x,y,z,t)= W-L"XCZA _L_%CM_L—S[ Q°¢w n + B M ",Y\g?j(

I

where . e 0,1,2,3

= ~ e Nx ~
T, (n ﬁ ( ) | (6.17)
= T\ g (Do + (Mo - o0.1.2.3 (.
thngna e (Lx> L, L, Ny :
T =0,1,2,3
z .

satisfies both the wave equation and the boundary conditions,

The latter expression which gives the eigen frequencies is determined
‘from (6.15); k6.f3):ahd (6.145. If Lx is the largest dimension of
the box, the smellest of the eigen frequencies is

Wi oo = me/Ly f100= ©/2Ly

and the corresponding eigen function is

P (x,t) = cos-JTL_ A cos.7Ct + B sintrey
100 L 100 Ly 100 Ly
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oo (Xl‘f) lo ° 7( [c"/"‘ Tt 4 -Q“:-(

Thus if the system is vibrating in its fundamental mode, the
acoustic pressure amplitude is a maximum,at x=0 and x=L and is
zero at x=L/2, It should be evident that the above expression
can be recast so as to represent two plane waves, both'pfopagated
with a velocity ¢, one in the +x direction and one in the -x

direction. For either of the characteristic modes corresponding

oio

To W, amiu%oif.the situation is similar; the pressure amplitude
is maximum‘at the two opposite faces and zero in the middle, and
the pressure variations can be thought of as being due to two
plane waves moving in opposite dfrections. In.fact for all char-
acteristic modes for which only one of the YUS is different from
zero, the'pressudgwaves are plane waves. For a characteristic
mode corresponding t017x= 1, 'ny“ 1, 'n = 0, the eigen function is”
%Oﬁj) QD@4—Xw&7g&M( t+ﬂm$

‘110

where.akia = qTc \’(I/Lx)z + (1/Ly2). ‘This mode has nodal planes
at x = Lx/2 any y = Ly/2.' Higher modes have progressively more
and more nodal planes.

The sum of all the characteristic modes

jP(x yyt) = S Z cos TwIly CoS %ﬁ%

ﬂx=o y, <0 'n,f L.')(

Il%a... ' e
Cog y [ Apyrg? S Wpnymgn i+ B.R%n}hs; Yo ;]
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is also a solution satisfying the boundary conditions and can if

desired by a fo er choice of the constants A and be
y a prop N7y 7 BNXTWY&

made to fit a set of initial conditions,

6.5 Propagation in a Rectangqgular Wave Guide

If one of the dimensions, say LZ of the box of Fig, 6.4,
is. made indefinitely large, one has what is called a recténgular
wavelguide. The boundary conditions at the four walls of the

guide are, of course, the same as they are for the closed box.

It follows that

7 Mgl_ﬁmw**gﬁ‘“wj
Ly by

GYX“LB/*) = [é3cmyy3 + % Otut

. N, Y (61¢)

where

v = O 1 (&)

is an harmonic solution of the wave équation satisfying the
boundary conditions for any integer values of n, and “: and for
any value W for which Y is real. For any fixed value of W there

is a harmonic solution like (6.1%) for each pair of values of

¥ .

n, and h for which ' %na .
- : | w)ﬁ + .._hx_,‘at
, L? (6.19)
Suppose a harmonic solution of the form (6.18) did actually
describe the acoustic pressure at all points of the guide, and
one made measurements of the acoustic presshre at points along a
line parallel to z- axis ~ Since every point on this line has the

same x and y coordlnate, say X and T for points on this line

(6.18) could be recast in the form



E.

P ‘ , - 6.12

C o T
x4, 3,1) = s

N toa (¥ ~Wh+ f1-8) + G (837 W*""‘”“E)
Ly b 3 | |

+

Y Woea Q4
A s (38t + 279) —rvkm%f(su,w‘ )

o . S ) o .
where A is 4 con stant s'i‘dnchnj dor the first bracket .

From its appearance, one could argue that the first term represents
a wave being propagated in the +z-direction and the second term a
wave being propagated in the -z-direction, both waves being

propagated with a speed
w C
2 2
@& - - V'- NG ‘"‘)
C L‘ . L@ La

One thus interprets harmonic solutions such as (6,18) as repre-

N

t w -
c S a e =
X

senting waves being propagated along the guide, For any fixed
value of W there is a solution of the form (6.18) for each pair
of values of 7\ and )b;which satisfy the'restriction (6.19).

Each such solutlon 1s referred to as a mode, the 00 mode being

38) = (e (¥ 3+:)mcwt+m

= —Cg {mﬁ(%-ch %’fl) v o R (34ct 4 gi_{tn

e - - —— ——— e A - R T

This expression represents two plane waves, each propagated with

. a velocity ¢ = \[EZ; . The 01 mode,
B Gat) = G cos Ty ™ coslyy ~;—J)Cos(wt-+_n,)

is not a plane wave and its speed of propagation down the wave

guide is -
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Note that this velocity, which is referred to as the phase
velocity is greater than c. All modes except the 00 mode have
phase velocities greater than ¢, and none are plane waves.

In general, if an harmonic source (e.g. a loud speaker) of

frequency W is located at some point of a wave guide, one expects

that some time after the source is started, the acoustic pressure
at any point in the guide will be given by some combination of
the aliowgd modes., For any source frequency it is possible by
virtue of condition (6.19) to choose the dimensions of the wave
guide to insure that only the 00 mode will be present, and thus
that the waves in the guide will be plane waves, As may be
verified from (6.19) for a square.ﬂﬁvék guide 0.15 m x 0.15m con-
taining air at 20°C only the 00 mode will be present for all

source frequencies below 1140 hertz, In many cases of interest,

~the dimensions of the wave guides are such that one has to deal

only with plane waves.

6.6 Particle Velocity, Specific Acoustic Impedance for Plane Waves

Plane harmonic waves in fluids are an important special case
and the remainder of this chapter will deal exclusively with

such waves, The real part of

B, (x,t) :‘éqegﬂut—kx) +I%)€;ﬂdt+kx) (6.20)
where k=W /c represents two plane waves being propagated in the
+ aﬁd -Xx-directions respectively., If such waves existed in a
fluid, one could find how the acoustic pressure at any point of

the fluid varies with time merely by inserting the x-coordinate
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of the point into (6.20); To find the displacement of the element

of fluid (i.e, the particle) located at that point as a function
of time, one makes use of equationé (6.3) and (6.4) which relate
the components ﬁf ,wl , and JP of the particle displacement at any
point to the pressure gradient at that point. For the wave repre-

i

sented by (6.20) one has from (6.3)

e 4

) AW %L Llwtt X
@}@,{é\me (,t ')Q });),B (w*..?:) /D‘g

2

L}LAQ A (k- )}JQ,L(&B wﬂﬁ:%)ﬁ
/Lw/‘ — 3t

AW P

A’ Ltk WN_g_ﬁ__e wt+)ax) (x Jc)

Lwp e — AWpPC

Since the pressure is not .a function of y or z, n‘and:f are O
from (6.4). It turns out that the particle yvelocity rather than
the particle displacement is the more widely used acoustic variable,

7 Ihg XV, and z-components of the particle velocity are simply

3§ an and 2] s . Letting u =:3§/921 s be the x-
or ) I 3% '

componentAdf béiticle veloéity one has for the pressure waves

represented by (6.20)

%(7(\{):70_4%_8"“ W%“jg’z) N,@M Llwt+bz) 62D

e

Lo

¢
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The specific acoustic impedance Zz at a point in a fluid

is defined by

Ei'gg. -

where @ is the acoustic pressure at the point and u 1is the

[

particle velocity at the point, If the pressure waves represented

by (6.20) existed in.-a fluid then at any point

B Aﬁiég(w‘t%z) B phlut+h) }51 7?6"”'2“

ooy LA‘ & (ot~ bx) 5 L (wt %‘Jz%) ﬁ < X B & hx
AAL 6 - e - B e
Pe A

The specific acoustic impedance is thus a function of x, If

§'= 0 then (6.20) represents a plane progressive wave and the

specific acoustic impedance

/Oc

is a constant, the same at all points. This constant impedance

_pe is called the characteristic impedance of the medium, The

of

unltsﬁspec1flc acoustic impedance are kg sec/m or rag(S.

6.6 Transmission and Reflection at a Boundary - Normal Incidence

A progressive plane wave incident on the boundary separating
two media, in general, gives rise to a reflected and transmitted
wave, After a steady state has‘been established there will exist
in the first medium ywo waves, the incident and reflected waves.
Only a single wave will exist in the second medium assuming it is
infinite in extent, For the case of normal incidence illustrated

in Fig. 6.5, if '
O R

Z?J‘: .\%,JQL - — W/
Bre A o (AR B
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represéhts the incident, reflected and transmitted waves respeétf
ively, then at any point to the left of the boundary the acoustic
pressure will be given by |

Po= At @ '2“) Bae

and on the right by

59 &(Lut"ﬁzaXJ
® =

)(', (UJ“" *“j})V-)

The correspond1ng part1cle velocity at any point on the left is

~ A ilwt=bx) R lwtth )

UL =t e oo @

| A2

and on the right .
U= A L(me =)

M : 5
At any interface it is generally assumed that the stress{in this
instance the pressuré}is'continuous across the boundary, i.e.
that the value of the'pressure calculated approaching the bound-
ary from the left must equal the pressure calculatedAapproaching

the boundary from the right. It is also assumed that the particle

displacement at right angles to the boundary must also be the same

approaching the boundary from the left or right. If this were not
true, e.g. if the two particles labelled (1) and C) in Fig, 6.5

did not move simultaneously to the right‘or left, a gap would

appear in the boundary. If the particle displacement at right
angles to the boundary is continuous, it foilows that the component
of pafticle velocity at right angles to the boundary is also con-
tinuous. Letting the interface be located at the origin of the

coordinate system for convenience, the boundary conditions for

the case illustrated in Fig. 6.5 yields

Al'f' @Q :',é\,};
A B _ A
/ S fe T e I

from which one obtains
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- times t which satisfy the condition

33.

find the phase difference between xl(t) and Xz(t) and the
ratio of the amplitude of xl(t) to that of xz(t).

If .
- ,((,(]L . -y 4[4]’{ ™ o 4(4)71«
,é{:ﬁ'@ ) '/zTE,e ) !ﬁumf‘a
and
B -t '(721 = #
P. R = 2R

find the phase difference between Pi(t) and Pr(t) and the

ratio of the amplitude of Pr(t) and that of Pi(t).

The solution of the dampled harmonic oscillator has the form
,ﬁ&‘za .
x(t) = Ae Lo é()b Lo+ d).

This function of t' has a series of maxima and minima. The
condition that x(t) have a maximum or minimum is that

%% = 0, i.e. the maxima and minima occur at those times when
the velocity is zero. Show that the velocity is zero at

| ., Lal (- %) - ¢
o (ot 14) = - & =5 4 ' (- 5) ~ ¢

2
22 N

(4)

If 4{ is the smallest positive angle whose tangent is C”%ﬂ%)

then every angle

\111 =\ ot n<0,0,2,2.. -




will also heve < %L“?‘“'TL oglm(' e (’“’ [‘/wb) o Thas /Z/e viluwe ¢

of Fime ‘!n Fon u)lncl\ (1) ¢ ,f'zf"]!(;(\[’,pd{/ ire 34,
£ = Vo 4 7 —dp
. ’} i s e T A Y T ST S

M= 0, 0,2,8 -~

4
{ (ls

+ Show that the ratio of two successive maxima (or two successive

. . . 200 o,
minima) of x(t) is constant and equal to ™ .

;‘2-9 Show that it is possible to express the coefficients Ay 8y,

Ag eeee in terms of a, and a; so that the series

ek S " 3

will be a solution of

\
t @ ) &

3
K REX + W, X E O

the equation of motion of the damped harmonic oscillator.

2.10 A mass m on the end of a spring of force constant K 1is
held in equilibrium by a force Fo ) ‘equal in magnitude to
the gravitational force mg. Find the subsequent motion of
the mass if the force FO is suddenly removed. Assume a
damping force proportional to velocity and neglect the mass

of the spring.
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2.11; A simple harmonic oscillator of mass m, spring constant K
is set in motion by a sharp blow. Assume the impulse of the
blow is I . Find the subsequent motion of the oscillator

assuming a damping.force proportional to the velocity.

e g
4

yg2.12\\A certain damped harmonic oscillator is found to have a period
T, of 1/2 sec and an = = Rm of 0.1 sec™t . If
this oscillator were driven by a force Fo cos u t, .at what

frequency w would resonance occur?

2.13 A drvving force FO cosw t 1s applied to damped harmonic
oscillator at a time t = 0 when the oscillator is at rest
in its equilibrium position.' Describe the subsequent motion

of the oscillator.

T

A ‘
\ s 4o \¢f
(it Y T B S 0 S S S It
%fw?(WMsz o) dt = ;%m( ¢ )
o

(2;l4y%éhow that

o
and

(f“
A (C"“@)l b ’>’) coa o+ A+ ‘Q) A= GN[:Q/P”
{"\“
4

where )+ 277/'7*’ and J%s &, and © are arbitrary

constants.

x/;2.l5\ In the steady state the motion of an harmonic oscillator driven

by a force FO cosw t 1s given by

2l y ) R
Y g g N o Vi g o
o N o @ ¢ ¢ . m “ Vf\ {ém\\ - i H

W)\({Q,JZ,

7: . {51, éua,@/‘./’ (9) Ao ) = wi - - ﬁ M)

g )
Fra Y
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For obvious reasons the quantity Fo/‘uzm is referred to as
the displacement amplitude, while the quantity F,/Z, 1is
referred to as the velocity amplitude. If the angular
frequency w of the driving force is varied keeping Fo

constant, and for each frequency the displacement and velocity

.amplitudes are noted, find in terms of m, K and R, the

angular frequency at which the disgacement amplitude would be

largest. Find the frequency at which the velocity amplitude

.would be largest.

It is poséiblé to apply a force of the form FO coswt to an

harmonic oscillator by means of the arrangement shown in the
Lo

figure (i). The end P of the spring is fastened by a

to a peg on a wheel mounted on the shaft of a motor which

rotates with an adustable angular velocity w .

i

Boint P is forced to move (very
nearly) with simple harmonic motion, so that its motion is
given by x = B cos w t. Fig (ii) shows the system at some

instant when the spring is unstretched and point P 1is at the

midpoint of its motion. Fig (iii) shows the sys£em at some
general time t. Isolate the mass m in.this last figure,

draw in the force exerted by the spring and assume an additional
damping force Rx. Write down the equation of motion and show

that this has the form

7 .

.“ 7y . F 4
pLY e A K om E el
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How is FO related to B. Let Al be the displacement

amplitude of the system when the system is at resonance, i.e.

S

when w = i@ﬁn Show that the Q of this system is equal to
Al/B‘

28 UL r AL ‘
’ Do emrysvowrae g (n

N~
\anﬂ fnact

T S e Y ( " )
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3

s

el oy

A A L AL
/ !
// N . .

\/}l7f}An hérhonic'oscillator is being driven by a driving force

.

F, cosw t at such a frequency that
Wy =B J%gﬁmm
/\’/m = 5 l)cbw /0»:‘-«@

Zﬁag /(9%’:—&

i
Y

53

Is the driving frequency smaller than, equal to , or greater
- than the resonant ffequency? What is the phase difference

between the driving force and the displacement x? Which
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38.

leads? What is the mechanical impedance Zm'of the oscillator

at this frequency? What is the Q of this mechanical system?

E]

In the steady state, is the rate at which the driving force

~supplies energy to a damped harmonic oscillator equal at every

instant to the rate energy is being dissipated? Is the total.

‘mechanical energy (potential plus kinetic) of a driven damped

oscillator a constant in the steady state?
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Problems for Chapter VI

Show that P()) where'o‘z X sin @ cos g +y sin © sin ¢
+ z cos 0 is a solution of the wave eduation 6.5 for

*

arbitrary values of © and ¢,

-~

- The density F at a point in any medium is defined .as the

ratio of the'mass'conpained in a tiny volume surrounding the
point to this tiny volumef A particle of a fluid is thought

of as a fixed méss of fluid which occupies some tiny volume V
when the preséur% is P. If the pressure increases to some
value P', the volume occupied by the fixed mass will shrink

to a value V' and consequently the density of the fluid at

the point where the particle is located will change to a

value /P'. When an harmonic wave exists in a fluid the density
ﬁ;var1es sl1ght1y above and below Some mean value/P and the
quantity S = &f ‘/o){/o is called the condensation at the

point., The den51tyjP at any instant is only slightly dif-

-ferent,from)/’and 84#41. Show that the acoustic pressure at

a point and the condensation at a point are related by P = BaS

where Ba is the adiabatic bulk modulus,

The stress-~strain relation (6.2) can be written in vector

notation as @ - b div _? )
where § is thé particle displacement vector with components
£.0.7 . Similarly the three equations of (6.3) and (6.4)
can be written as the single vegtor equation

) g‘}Eg@ = p 04 - (ii)
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(3., (continued)
By taking the divergence of both sides of this equation and

substituting from (i) one obtains the .wave equation

2 25 _ D°p = 5/
i_é? ® | a.tz c = B{f
where V2P = grdd div®. 1In cylindrical coordinates the

gradient of any scalar point function such as P is

qed P = %ﬁ?'*‘"l"‘% Lk

where r, ¢ and }@ are unit vectors in the r, ¢ and z-

direction respectively., - Also for any vector E whose r, @

——,

and z components are E, 'E¢ and E respectively
T = QE)“ Er* éFQf»;, 3Ey

Using these expressions write down the wave equation in

cylindrical coordinates.

4. Given Q-= 3m~1, ﬁgz an~Y, ¥ = 5m~!. Find the directions of
-propagation of the waves represented by each of the eight

-terms of (6.12).

K%(S. ‘Suppose a gas confined in a rigid box of dimensions L., Ly' L,
is vibrating in a characteristic mode for which n, = 1 ny =1,
nz = 1. At any point of the box the acoustic pressure varies

harmonically with an amplitude A, which in general is different
at different points, If one measured this amplitude at various
points with a microphone, at which points would one find the

largest amplitude?'
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Fiﬁd the posxtions of the nodal planes for a fluid confined

_in a rigid box of dimensions Lx' Ly' Lé and vibrating in a

characteristic mode for which n, = 2, n = 1, ng = 1.

7. The wave equation in cylindrical coordinates is

- __J_Na"’“il@ 31
A[EE 3 T R

(i) Show by using the separation of variables approach that

one can obtain an harmonic solution of the form

G—"(r 6,3 = T \)@I k) [acosmg+ B Sinmgl | [A,wear§ +Bomad )
' [AQCOSUﬁF%@ Sﬂnw%]

where m is any positive integer including zero, and
Al' A2, Ag, By, By, Bg Oiagd U are arbitrary (subject to
Q
the restriction that}i‘“‘Y >0 ). Here k = W and
- c
I (\ k —&? r) is Bessel's function of order m,
(ii) Consider a cylindrical cavity of length L and radius a.
If the walls of this cavity are rigid so that the com-

ponent of the particle displacement perpendicular
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AN

| . 6.29

(continued)

to the walls must be zero, show that the harmonic

- solution will satisfy the boundary conditions at § =0

andz% = L only if

B, = 0 and ﬂgf n=20,1,2,3,,,
For any pair of aliowed values of m and n there will

be an harmonic solution satisfying gll boundary condi-

tions only for certain special values of W ( and f =W/27y7T).

Find some of these eigen frequencies for the following

two caseg (1) m=0, n=0; (2) m=1,n=1,

For any wave guide, tﬂe cut-off frequency for any mode is
the lowest frequency f for which the mode can exist in the
guide, For air at 20°C and a rectangulaf wave guide of
dimensions LX = 0,05m, Ly = 0.10m what is the cut-off
frequency for the mode characterized by n, = 1, ny = 17
Show that for normal incidence the requirement that the

specific acoustic impedance Z,= j;/gw be continuous across a

~ :
boundary separating the fluids leads to ,‘Iaﬁfé ) . g )
_ ‘ ‘ L§¢‘ ,&&ra%

. 5

E ey

B ey frei] —
_‘A.,! S ,ana/[olc'-“{"/ . ) . Aé/( }(\d'&m

Pl

fic A0 faca

for the ratio of the amplltude of the reflected wave to that
of the incident wave. Determine A2/A1 from the above ratio
and the requirement that the average rate energy is brought
to the surface by the incident wave ig equal to that carried
away by the reflected and refracted waves. Calculéte‘the

sound power transmission coefficient.
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"When as in the figure for problem 9, a plane wave is incident
on a boundary separating two fluids, the reflected wave is
said to suffer a phase shift of 180% if the harmonic vari-
ations of the pressﬁfe produced by the incident and reflected
waves separately are 180° out of phase at the boundary,.

Under what conditions will such a phase shift occur? When

it does occur is there also a phase difference of 180° between

/ o
"the particle velocity@ CJ'”&'LORA¢QA7 due 4 e ncecdand “M”ﬁ /

)

M ‘/&Q : szj&é". A/W/&ﬂt} 4.:{“ —“Q /Or'uawl:ﬁ:%ﬂ? M é ﬁu h.‘f—klaw oo CL/QJ/Y\,
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WRITE(5,12)
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DF=10.%%{1./
CUEF=2%P1/2.
NF=10,#NDEC+*
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A=P+Q/SQRT(F
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DN=4 . #FLOAT (
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DN=DN#4 o % (FL
SUM=SUM+( (4.
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