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FiLTER THEORY and design is one of the most highly
developed and most widely applied areas of electrical
engineering.

Filters can be found in all kinds of commercial and
military electronics equipment. They help to channel
energy, divide the frequency spectrum, extract Doppler
information, integrate coherent signals and maintain
accuracy of separation between {requency sources.

The special properties of filters allow their application
in many other systems, including mechanical and acous-
tical systems. These properties are the ability to coordi-
nate the action of several resonant elements to produce
uniform output over a prescribed frequency range, and
the ability to deliver energy over the widest possible
frequency range. Filter theory shows how to combine
resonant mechanical or electromechanical elements to
produce a uniform conversion of electrical to mechanical
energy (or vice versa) over a frequency range, and to
determine the greatest bandwidth that can be obtained
without loss of efficiency.

All recent progress in electronics has been closely
accompanied by progress in filter technology and network
theory. The performance of passive and active networks,
in the form of transmission filters, can be predicted and
analytically described under actual operating conditions
in an exact mathematical form. This fact explains why,
in new electronic systems, much emphasis has been placed
on such networks,

The wide diversity of filter configurations, response
characteristics and applications has produced a wealth of

o AL ZVEREY, Westinghouse Electric Corporation
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terminology and design concepts which often proves con-
fusing to the engineer who is not a filter expert. This
article classifies filters in terms of the types of filter ele-
ments used, the functions that the filters perform, the
response characteristics of filters and methods used to
design them. :

A number of specific design tools (polynomials, design
equations, transformations and curves) are given, but
the purpose of the article is to indicate the extent, rather
than to exhaust the content, of the field of filter theory
and design.

Anatol Ivan Zverev was born and educated in Russia,
where he earned a diploma of engineering (M.S.) from the
Leningrad Electro-Technique Institute, and a degree in
advanced technical science from the Academy of Trans-
port in Moscow, where he was Assistant Professor of
transmission-line theory.

In 1953 he joined the Electronics Division of Westing-
house Electric Corporation as a Senior Engineer. Over
the past ten years he has been involved in the design of
communication, radar, data transmission, and satellite
navigation systems. He has been section manager of net-
work synthesis since 1959 and is director of the Network
Synthesis Seminar.

His most recent publications include “Application of
Network Synthesis to Broadbanding Transmitting Sys-
tem,” TPE 4795, 1963, and “Helical Filters,” NS 6312,
1963,
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INTRODUCTION TO FILTERS

THE ELECTRIC-WAVE FILTER was independently dis-
covered by George Campbell in America and Karl
Willy Wagner in Germany in [917. Their results
evolved from earlier work on loaded transmission
lines and the classical theory of vibrating systems.
The first filters were ladder structures, although
lattice sections were discussed by Campbell in 1920-
1922, Next came Zobel’s invention of m-derived
and image-parameter theory based on transmission-
line analogy. Zobel began with simple iterative
structures and extended them to complex or com-
posite (m-derived) sections, each with its useful im-
pedance and attenuation properties. The catalog of
elementary sections is sufliciently extended to cover
most practical requirements. A filter may thus be
designed as a cascade connection of sections with
matched image impedance. Zobel’s filters permitted
control of a wide range of filter characteristics, but
the basic assumption of the theory—that such a
filter behaves as a transmission line terminated at its
characteristic impedance—is only approximate.
The image-parameter approach suflers from three
drawbacks.

1. The network obtained by this approach may be a
lattice which cannot be reduced to a ladder network and
is consequently difficult to realize as a microwave struc-
ture.

2. The network may be unnecessarily complex.

3. The network is frequently poorly matched at the
extreme ends of the passband due to the fixed load and
source impedance.

As far as we know, the first case of an exact filter
design fitting a prescribed characteristic was given
in 1929 by E. L. Norton and W. R. Bennett in U. S.
patents, This work covered what is now known as a
maximally flat type of response. In the late 1940’s
and early 1950’s this method was extended to cover
the Chebyshev type of response by Milton Dishal
and others, In Norton’s paper, the method of de-
sign starting from a prescribed insertion loss is
established.

In 1939, a major advance in filter theory was
made by S. Darlington in the United States, W,
Cauer in Germany, and G. Cocci in Italy, when they
solved the general synthesis problem for four-termi-
nal reactor networks. They demonstrated the neces-
sary and sufflcient condition for a response to be
realized by a physical network and developed a syn-

A. b, EVEBEY, Waestinghouse Electric Corporation

lhésis'procedure for the realization of filter net-
works which could exhibit a prescribed response.
Darlington also devised a method for precompen-
sating the dissipative distortions.

Recently this theory has been widely used by filter
specialists and scientists for the design of individual
filters, and tables of design data covering a wide
variety of cases have been compiled. Insertion-loss
designs based on this synthesis procedure provide
exact filter performance characteristics, and such
designs lead to networks which exhibit desired re-
sponses with a minimum number of circuit ele-
ments.

Types of Fifters

From the frequency-domain point of view, an
ideal filter would be one that passes, without at-
tenuation, all frequencies inside certain frequency
limits while providing infinite attenuation for all
other frequencies, The transfer function | H(jQ) [,
the ratio of output to input quantitics in the fre-
quency domain for ideal filter, is shown graphically
in Fig. 1, .

From the time-domain point of view, an ideal
filter is one whose output is identical to its input
except for delay 7, or

eon(t) = et — 7,)

Taking the Laplace transform of the above equa-
tion and looking at the transfer function in the
frequency domain we obtain the ideal transfer
function,

H(s) = e7"0*
Letting s = jQ,
H(jQ) = e

This function is not frequency-selective since it has
unity amplitude; its phase decreases linearly with
frequency. These conditions may be realized in
practice when the delay approximates a constant for
the range of frequencies over which the attenuation
is small.

Electrical filters can be classified in many different
ways. In terms of the frequency spectrum they are
classified as audio-frequency filters, radio-frequency
filters, and microwave filters. In terms of the circuit
configuration of the basic elements, they may be
ladder filters (in the form of T or pi) or lattice filters

ELECTRO-TECHHOLOGY | HINE 1964 g3




(Fig. 2), the latter being the most general type of
network. In terms of the character of the elements,
filters may be classified as LC filters, containing
lumped inductors and capacitors; RC filters, con-
taining resistors and capacitors; transmission-line
filters, containing distributed components such as
stripline filters or coaxial filters; electromechanical
filters such as piezoelectric filters, magnetostrictive
filters, etc. If a filter circuit has an internal source of
energy, it is classified as an active filter, An i-f am-
plifier is an example of an active filter circuit. Fil-
ters with no source of energy within the network are
termed passive. A classification of passive fre-
quency filters is shown in Fig. 3.

The following five basic types of selective net-
works are used for frequency discrimination in
electronic equipment,

1. The low-pass filter (Fig. 4) passes the package of
wave energy from zero frequency up to a certain cutoff
frequency and rejects all energy beyond this limit. For
example, the effective transmission of the human voice
requires a frequency band ranging from near zero to
4000 cps.

2. The high-pass filter (Fig. 5) prevents the transmis-
sion of frequencies below a certain point, and appears to
be electrically transparent to frequencies beyond this
point. The waveguide, used at microwave frequencies,
behaves as a typical high-pass filter, and usually does
not pass signals below several hundred megacycles.

3. The bandpass filter (Fig. 6) passes a package of
waves between certain lower and upper frequency limits,
) and stops all energy outside these two limits. This filter is,
; by far, the most important and most commonly used in
4  electronic equipment,

Frequency filters (passive)

Electric-wove filters Microwave filters

R R Transmission-line
LLC RC Directional Strip-line
(1 With resonalors - Comb-line — Covity g Interdigital
Piezoelectric Coaxial-cavity
Magnetostrictive Electromechanical Helicol-cavity Wavegquide-cavity
Fi.. - Clausification of passive frequency {iliers.
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4. The band-reject filter (Fig. 7) is used in electronic
equipment when a certain unwanted frequency or band
of frequencies has to be rejected. Qutside of the rejection
band or stopband, all frequencies will pass without ap-
preciable attenuation.

5. All-pass filters pass all frequency components of
the input signal but introduce predictable phase shift for
different components of the wave package. A short im-
pulse on the input side of such a filter modifies itself into a
longer frequency-modulated signal at the output. It is
evident that the all-pass device can be called a filter only
in a limited sense because in the frequency domain it does
not discriminate between the amplitude of the various
signals.

Filter Applications

The use of electric-wave filters in electronic equip-
ment has increased as equipment has become more
complex. Many subsystem operations rely upon
filters.

Preselector Networks., Preselector networks are
required at the input of all sensitive receivers. They
separate the desired signal or signals from the un-
wanted signals. Because the desired signal is usually
very low in amplitude, while the undesirable signals,
including noise, may be of appreciably greater
magnitude, the preselector network is required to
have very low insertion loss for the desired signal
and high attenuation for the undesirable signals.
The attenuation of desirable signals reduces the
signal-to-noise ratio. An increase of 1 db in inser-
tion loss decreases the signal-to-noise ratio by al-
most I db. The preselector filter is usually tunable,
covers a whole range of frequency and provides only
a small part of the needed selectivity of the whole
receiver.

I-F Filters. The next step of signal selection
usually occurs in the i-f strip or i-f amplifier. This
selection and signal discrimination is of very high
quality, especially in communication receivers. The
bandwidth of the i-f filter determines the quality of
the system, including the ripples in the passband,
the noise content, and also the sharpness of the
separation between neighboring transmitted signals.
Filters of this kind are usually designed in two or
even three interstage blocks, separated by tubes or
transistors,

SSB Filters. In contrast to the symmetrical pre-
selector filter, the single-sideband (SSB) filter re-
quires a nonsymmetrical attenuation response.
Phase-difference networks are sometimes used in-
stead of a filter to eliminate the unwanted sideband.
In either case, the main purpose of the network is
to suppress the unwanted sideband to such a degree
that it does not contribute appreciably to amplitude
distortion and instability in the received signal. In-
sufficient unwanted-sideband suppression and in-
sufficient synchronism of the carrier frequency pro-
duce undesired beat frequencies,

Comb Filters. Where noise is prevalent or jam-
ming is introduced, the extraction of a predeter-
mined signal from a medium can be performed by
optimum filters. In general the optimum filter is a
device whose input consists of a mixture of signal
and noise. The output of this filter is a signal closely
approximating the desired signal. For a signal rep-

resented by a periodic series ol pulses, such an
optimal filter may be a comb filter consisting of a
chain of narrow-band filters whicii p.ss discrete
frequency components and discriminate against
noise (noise usually has a continuous spectrum.)
The most important application of comb filters is
the extraction of Doppler-frequency-shift informa-
tion for passing targets such as satellites, aircraft,
and underwaler missiles.

Multiplexing Filters. Filters can provide multiple
use of a broad-spectrum beam between terminal
stages of a radio relaying system. It is possible to
create up to one thousand telephone channels in one
microwave link., In the case of a wirc-carrier or
power-line communication network the frequency
range extends from the audio band up to 200 ke.
The use of coaxial lines widens the usable range of
frequencies and allows more communication chan-
nels to be created. The purpose of multiplexing
equipment, in general, is the channeling of voice
communications, telegraph, telcmetering or tele-
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control between distant points of road networks,
pipe-line networks, power stations, etc. The major
requirement of a multiplexing filter is to obtain the
sharpest possible attenuation outside of the pass-
band in order to suppress any crosstalk between the
channels.

Anti-Jamming Uiltering. Artificially created noise
for jamming can completely destroy a radar target
signal if no anti-jamming features are incorporated
into a radar systeni. To improve target detectabil-
ity, some special equipment features are needed and
the narrow-band filter is the key component. The
main requirement in this situation is that the filter,
operating with pulsed signals, has both selectivity
and the ability to minimize overshoot and ringing.
Jo satisly this requirement, the {requency-response
curve of the filter usually has to be of a Bessel or
Gaussiar .iupe,

Matched Filters. The new science of correlation
techniques and time-domain filtering is based upon
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the matched filter. Such filters are used for genera-
tion and detection of the famous chirp signals,
which have been widely used in radar for target
identification, A chirp signal is a long pulse having
a frequency which changes continuously in one di-
rection without reversal. All-pass filters are used to
generate this type of pulse. Chirp signals can be
used to transmit binary data since marks and spaces
can be coded by corresponding ascending and de-
scending frequency-modulated pulses.

Matched filters provide a spectrum-spreading
technique, and can make effective use of any band-
width and tolerate large distortion; they can be in-
sensitive to noise, tones or spurious signals, resist
jamming, operate with single-sideband-frequency
translation or Doppler shift, reject impulse noise,
provide good signal-to-noise ratio, and require no
synchronization. Their areas of application include
teletype, signaling field data, and various data-entry
systems. Matched-filter correlation techniques are
very useful in meteor-burst communication sys-
tems for minimizing the effect of multipath propa-
gation and external interference. '

Frequency Multipliers, Filters with a nonlinear
reactance find application in all sorts of electronic
equipment. In frequency multipliers, nonlinear
elements and idlers are inserted between narrow-
band filters tuned to the fundamental and one of the
harmonic frequencies {(which has to be extracted).
This arrangement can produce any signal harmonic
related to the pilot source clock.

A chain of parameteric frequency multipliers can
start with any low frequency which can be main-
tained constant.

The ideal network with one nonlinear reactor
element transforms all the power of the funda-
mental input frequency into power at certain har-
monics. Here the efficiency depends upon the fa-
miliar Q factor. Unavoidable conversion losses and
the Q factor of nonlinear reactors in the harmonic
generator have the same relationship as the inser-
tion loss and Q factor of linear reactors in conven-
tional filters.

Broadbanding Filters. A reactive network inserled
between a transmitter and a narrow-band, low-
frequency antenna can tremendously improve the
pandwidth of the whole system. In the case of solid-
state transmitters and high-speed binary transmis-
sion al low radio frequencies, broadbanding with
the aid of filters is the only practical solution for
many cases where already existing high-Q antennas
are involved. The only consequence of this broad-
banding is that the filter input impedance, with
respect to the transmitter output, varies widely with
frequency. This type of system imposes require-
ments on available power from the source: however,
the efficiency of the transmitter for frequencies in
the vicinity of the center frequency can still be as
high as 90 per cent,

Impedance Transformation. Every bandpass filter
is potentially an impedance transformer. No matter
how the bandpass filter is developed, its input and
output impedances can be made different from one
another. The usual way to obtain the impedance
transformation is to introduce Norton’s ideal trans-
former, which consists of three elements in pi or T

i~



form. This transformation imposes some limitation
on the transformation coefficient n (the step-down
or step-up ratio). Some prototype filter sections
may be transformed info sections with realizable
clements for values of transformation ratio no
greater than a certain maximum, The resulting net-
work usually consists of fewer eclements than the
original prototype.

Filter Design Problems

Some basic relationships and definitions pertain-
ing to filter design are given in Appendix 1.

There are two conflicting methods of filter design.
The method originated by Zobel is known as the
image-parameter method, The method originated
by Norton and Bennett in 1931-32 is known as the
exact or polynomial-synthesis method.

Image-Parameter Method. Image-parameter filter
theory is based on the properties of a long trans-
mission line. A simple network with lumped com-
ponents is described in terms of this continuous
structure. Several such elementary networks with
equal characteristic terminal impedances are con-
nected together to produce a chain of sub-networks
which will possess a transmission constant equal to
the sum of all the individual transmission constants
of the elementary sections.

The properties of different sections arc very easy
to determine and for all practical cases are easy to
tabulate, Calculation of the cascade of composite
networks is, therefore, a relatively easy procedure,

The disadvantage of this method is that, in prac-
tice, it is the effective transmission constant rather
than the image transmission constant that is of
interest and importance. When one designs net-
works by the image-parameter method, the load im-
pedance is assumed to be equal to the characteristic
impedance of the network. In practice, constant-
value ohmic resistors are used, rather than a vari-
able image resistance. Many corrections will there-
fore be needed in order to determine the actual
effective transmission coeflicients.  Another im-
portant disadvantage of this design method is that
only a limited number of design parameters are
available for choice. For example, the pole of ef-
fective attenuation can be chosen freely, but the
number of zeros and their positions in the passband
(which appear whenever the characteristic imped-
ance of the filter and load impedance are equal) can
then be modified only by switching from one class
of impedance function to another. The choice of
input-impedance class affects the class of attenua-
fion because it changes the number of poles and
zeros of the filtering function, D.

The fault of the image-parameter design is usually
that the transmission is too flat and some discrimi-
nation is thefefore lost, In practical terms this
means that, for a particular level of passband ripple,
only one image-parameter design is possible for
each width of transition region.

The image-parameter method seems to be in dis-
repute among network theorists partially because
of the cut-and-try method that is involved and par-
tially because of the restricted freedom of design.
The practical significance of this restriction, how-
ever, has not been adequately explored, and very

little seems to have been doune in applying the re-
sults of modern theory to improving older design
procedure. If the Zobel design procedure could be
brought up to date it might provide cconomical
filters easy to design and adequate for most com-
mon applications.

Polynomial-Synthesis Method, The polynomial-
synthesis method deals directly with effective pa-
rameters; it also provides an elegant solution to the
approximation problem, but involves laborious
computation for the determination of the element
values. This procedure is now greatly simplified by
tables, step-by-step design procedure, and design
curves, but the theory behind these design tools is
still in the province of the specialist. In more gen-
eral synthesis procedures, a range of designs is pos-
sible in which greater stopband loss can be obtained
at the expense of greater ripple factor. I, for ex-
ample, a filter is designed by the polynomial method
to have the same ripple as a Zobel filter of the same
configuration, both filters will be identical.

Since the reflection coefficient is directly related
to the insertion loss, it is usually necessary, if a low
reflection coeflicient is desired, to design the filter
for flatter transmission than would otherwise be
necessary, The polynomial filter has no practical
limitation even for such an extremely severe re-
quirement as reflection of § per cent or lower,

The use of the complex plane in polynomial-
synthesis design is discussed in Appendix 2.

Comparison of Methods. In practice, either the
synthesis or the image-parameter method of calcula-
tion may be used depending on the requirement in
cach specific case. In cases requiring the smallest
number of elements to satisfy an exact performance
specification, it is better 1o use the optimal design
of the polynomial-synthesis method. This method
certainly is worthwhile for mass production.

The synthesis procedure is always preferable
when maximum stopband loss must be obtained at
the expense of higher passband ripple, or where
very flat transmission is needed to secure low re-
flections,

Figure 8(a) illustrates an attenuation curve for an
m-derived, bandpass filter designed on the basis of
image parameters. The accompanying schematic
includes four coils and four capacitors and provides
two peaks of attenuation outside of the passband.
Figure 8(b) shows a filter of the same configuration
designed according to polynomial-synthesis theory.
In both cases the bandwidth and the quality factor
of all components are the same. It is evident {rom
this comparison that the second curve provides
more attenuation outside of the passband. An ex-
planation for this difference is the fact that, in the
case of the ideal image-parameter filter, the band-
pass region is much flatter.

As is well known, the losses add some rounding
effect to the shape of the curve in the proximity of
the cutoff. In most cases this rounding is very un-
desirable. Darlington and Nai-Ta-ming have de-
veloped an alternate design technique which is also
based on polynomial synthesis, but in which the
losses are taken into account and the rounding effect
in the passband is effectively removed by predistor-
tion. Figure 8(c) shows the same basic filter with the
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design based on the predistorted technique. An in-
sertion-loss ripple of 0.05 nepers or 0.43 db is pres-
ent in the passband, and a certain amount of flat
loss in the passband may be noted in the new de-
sign. In addition, the curve has a more rectangular
attenuation shape. The difference between pass-
band and stopband attenuation is 3 nepers, which is
in accordance with the theory. From these curves
the value of the predistortion technique is evident.
The increase in passband attenuation of the pre-
distorted filter does not diminish the practical value
of the technique because in most applications the
filter is followed by an amplifier to compensate for
the loss.

Amplitude Besponse

There are many different shapes of amplitude-
versus-frequency responses of filters which may be
described by analytic functions.  Also, there are
established design procedures to approximalte these
types of response. The following are the main dis-
sinctive varieties ol response.

1. Butterworth response (B) with “maximally flat”
passband. Filters having this response are sometinies
called power-term filters,

2. Chebyshev response (C) with **equal ripple” attenu-
ation in the passband,
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3. Inverse Chebyshev response (IC) with equal min-
ima of attenuation in the stopband.

4. Chebyshev complete response (CC) with equal
ripple attenuation in the passband and equal minima of
attenuation in the stopband. Filters having this response
arc sometimes called eliptic integral filters or filters with
Cauer parameters,

5. Gaussian response.

6. Besse! response with “maximally flat delay.” Filters
having this response are known as Thorson filters.

1. Equal-ripple-delay filter response,

8. Legendre filter response.

9. Synchronously tuned (multiple-pole) filter response.

The first four response types belong to the Cheby-
shev family.

Usually, gain is cheap while selectivity is very ex-
pensive. For this reason a tremendous effort is
made to find the most rational way to design a net-
work with the minimum number of expensive com-
ponents while satisfying the fundamental require-
ments of attenuation, phase etc, The mathematical
problem posed by these considerations consists pri-
marily in finding a network whose transfer function
fits some appropriate polynomials. In most cases
the polynomials which provide the best and most
-economical solution are of the Chebhyshev type.



The next three responses (5, 6, and 7) belong to
the Gaussian family in the sense that they may all
be conveniently used to satisfy phase and group-
delay requirements. (Sce the section of this articie
entitled “Phase and Group Delay.”) The Gaussian
response is represertted by the well known expo-
nential formula. The importance of this response
shape cannot be fully appreciated {rom the point of
view of frequency discrimination since the rate of in-
crease in altenuation for Gaussian, Bessel and
equal-ripple-delay filters is very low. Gaussian-
response filters should be regarded as compromise
designs for pulsed systems where, except for the
frequency discriminations, it is the truthful repro-
duction of the pulse shape that is important,

The amplitude response of an equal-ripple group-
delay approximation depends upon a special design
parameter, which is characterized by the height of
the group-delay ripples. This filter, for a given
number of poles, will produce different curves of
altenuation which depend upon the magnitude of
the group-delay ripples.

Figure 9 illustrates several of the typical ampli-
tude discrimination shapes mentioned above,

In filter technology there are many other types of
amplitude response which cannot be prescribed by
specific parameters. The design of filters which
supply such responses requires consideration of
physical rather than mathematical factors. Among
these filters are:

1. Single-sideband (type S), which is basically unsym-
metrical (sharper on one side of the passband than on the
other).

2. Extremely-narrow-bandpass filters designed to

transmit virtually one frequency only.
3. Very-wideband response filters.

4, Filters with restricted or unrestricted attenuation in
a restricted band or bands of {requencies.

" Each of these types has different design tech-
niques, different requirements for element values,
and different component technology. An example
is that of filters designed to reject unwanted fre-
quencies on one side of the passband. Here the
sharpness of the response curve on this particular
side has to be much higher than on the opposite side
of the passband where there are only limited attenu-
ation requirements. The use of a symmetrical
Chebyshev type for such an application would be
wasteful of components and would complicate aux-
iliary problems such as insertion loss in the pass-
band.

Very-narrow-band filters require an extremely
high quality factor Q for resonators. Such designs
use crystal resonators, electromechanical resona-
tors, etc. Narrow-band filters are used for comb
arrangements and pilot filters for SSB communica-
tion, and in modern frequency synthesizers using
varactor multipliers. The quality of the filter de-
pends exclusively upon the quality of filter com-
ponents. Stability during temperature changes and
under severe mechanical conditions is a factor
which may have to be considered.

The Chebyshev approximation is impractical for

very-narrow-bandpass filters because of the high-Q
requirements for the components. Very-wideband
filters, on the other hand, need high-(Q resonators
only when high rates of cutoh alienuation are
required. Insertion loss is very low and does not
present any problems for components in such wide-
band applications. In order to realize bandpass
filters (with a 100 per cent bandwidth, for example),
a tandem combination of low- and high-pass filiers
is often used instead of direct bandpass synthesis.
This technique can simplify the circuit and separate
the problem of selectivity from the problem of in-
sertion loss in the proximity of cutofl. It also avoids
excessive requirements on inductive and other com-
ponents used in the circuit,
Thie Chebyshev Family of Resposise Funciions

As indicated above, the Butterworth, Chebyshev,
inverse Chebyshev, and Caucr-parameter filters
are closely related to cach other and can be devel-
oped along similar lines,

The Butterworth low-pass insertion-loss function
is expressed by
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where the filter discrimination factor D = {1 and
the normalized frequency € = w/w,, the ratio of
the given frequency o to the cutoff frequency w,.
The first ten Butterworth polynomials are given in
Table [.

The insertion loss for these filters is 3 db at w,.
The insertion-loss function has the flattest possible
shape at the center of the passband and is a mono-
tonically increasing function. Above the cutoff
frequency the loss approaches a line drawn from
w, which is increasingly linear on a logarithmic fre-
quency scale at a rate of 67 db per octave. (See Fig.
10.) .

Butterworth filters require n reactive elements
(n appears as an exponent in the above equations).
Maximally flat response curves for various values of
n are given in Fig. 11. For n = 2 this shape corre-
sponds to that obtained for the critically coupled
condition of the familiar double-tuned circuit.

The Butterworth approximation is useful for
many applications; however, its main advantage is
its mathematical simplicity. The Butterworth func-
tion is unsuitable for applications which require
uniform transmission of frequencies in the passband
and sharp rise at cutoff, The response to a unit im-
pulse input has overshoot which increases with in-
creasing n, exceeding 11 per cent forn > 4. .

Figure 12 shows an example of a low-pass filter
response with an attenuation typical of the so-called
Chebyshev filters where the abscissa is the nor-
malized frequency €. The insertion-loss function
for this response is

a = 10log|1 + CHY| = 10log(l + D?)

where D = ¢C,(9), the parameter e is the ripple
factor and C,(§) is the Chebyshev polynomial of
the first kind and of order #. The first 12 orders of
C, are given in Table I, In the passband (-1 <
Q < 1), the attenuation response varies between the
values of zero and a,,,. The maximum passband
insertion loss is a,,,, = 10log(l + €). At frequen-
cies slightly above Q_ (the passband limit), the at-
tenuation will surpass a,, for the first time. A
transition range follows and the stopband begins
with frequency €,. Here the attenuation a,. is
reached for the first time. If the filter is designed
according to a Butterworth or Chebyshev poly-
nomial, the attenuation curve will rise monotonic-
ally.

The Chebyshev response (n = 2) corresponds to
that obtained with the overcoupled conditions of
the familiar double-tuned passband circuit. In gen-
eral, this shape has a number of ripples of equal
height; this number is equal to the number of reso-
nanot circuits used. The equal-ripple filter for a given
bandwidth has the greatest attenuation outside of
the passband of any monotonic stopband or all-pole
filter. The rate of increase depends not only upon
the number of poles or resonators, but also upon a
special design parameter, i.e., the height of the rip-
ples; the attenuation rate is higher for larger pass-
band ripples.

The Chebyshev function is exceedingly useful in
applications where the magnitude of the transfer
function is of primary concern. This approxima-



tion gives more constant magnitude response
throughout the passband bul no improvement in
decreasing the overshoot of the impulse response.
The class of the Chebyshev functions is oplimum
in the sense that of all possible transfer functions
with zeros at infinity (all-pole functions) it has the
lowest complexity lor yielding a prescribed maxi-
mum deviation in the passband and the [astest pos-
sible rate of cutofl outside the passband. As a con-
sequence, the transition range for reaching a pre-
scribed attenuation, ., is @ minimum, and the
attenuation in the stopband is never less than this
prescribed attenuation. No other polynomial pos-
sessing these optimum properties exists.

The Chebyshev polynomial includes the restric-
tion that all the zeros of the transfer function lic in
infinity. In other words, the reciprocal of the trans-
fer function is required to be a polynomial. On the
other hand, the Chebyshev rational functions are
not so restricted. Rather, their transfer function
takes the form

5 > I
VA T m
Zul® =3 ARHQ)

and the atienuation becomes

log |1 + 2R Q)|

10log(l + D?)

where R, () 1s chosen so that a has an equiripple
attenuation in the passband and the stopband. Here
the filter discrimination factor D = ¢R,(Q). De-
pending upon whether it is even or odd, R,(Q) has
one of two forms:
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Fig. 12—Typical Chebyshev attenuation response
for a low-pass filter.
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Ry (@) = B2 - Q@ - 910 - 93, )

(QF — (0 — Q7). (22 — 0,0

In the passband, -1 < @ < 1, R, (€) must lie
between the limits —1 and +1. In the stopband,

‘R.(§2) should take the maximum possible absolute

values for the given degree of n,

Parameters ,---€),, , are always in the pass-
band, while §,---Q,, are in the stopband. More-
over, the following relation also holds:

QIQZ = an‘lszbl = QJQC

where {1, is the passband ripple bandwidth and Q,
corresponds to the first frequency atienuated by
a,.... I1nother words, the poles of R, arc the recip-
rocals of its zeros. The integer n determines the
complexily of the function; specifically, it is equal to
the number of 07 zeros (or poles or a suitable com-
bination of the two types of critical f{requencies)
that must be specified. Because of the reciprocal
relationship between the zeros and the poles of the
function its value at any {, in the range 0 < @ < |
is the reciprocal of its value at 1/, in the range
1 < @ < e, Ifthe critical frequencies can be found
so that rational function has equiripples in the pass-
band, it will automatically have equiripples in the
stopband. In Fig. 12, &, = 1 is used as the actual
cutoff frequency.
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From the preceding discussion it is clear that
there are four parameters involved in the specifica-
tion of the optimum filter:

I) the maximum attenuation in the passband, a_,,,;

2) the maximum gain in the stopband (or minimum
attenuation, a;,);

3) the transition interval; and

4) the complexity of the function denoted by n.

Any three of these may be given in a practical prob-
lem. Minimizing the fourth is automatically ac-
complished by use of the appropriate Chebyshev
rational function.

The universal normalized Chebyshev response is
shown in Fig. 13. The transition interval between

M
'1

| ﬂ /1T
U I A

(a)

passband and stopband is represented by Aa,
which can be simply related to the transmission
function. All design parameters, such as value and
position of a,,,, and a_,,, as well as frequencies Q
and 0, are under the control of the designer.

If the stopband attenuation a,, is increased to
infinity, the value of £, will then have to go to in-
finity and the defined restricted stopband will be
compressed and moved to infinite frequency, in
which case the Chebyshev rational function re-
duces to a Chebyshev polynomial. To design a
low-pass prototype filter which exhibits any re-
sponse of the Chebyshev family one need not go
through the complete synthesis procedure. Tables
of the element values for normalized low-pass filters
are available. The properties of the Chebyshev
filters are tabulated in Fig. 14. The responses for
inverse Chebyshev filters are shown in the first row
of Fig. 14(a). The corresponding locus of the trans-
fer-function poles, shown in the first row of Fig.
14(b), changes from the deformed half circle to the
half circle which is characteristic of Butterworth
filters.

In the middle row of Fig. 14, the responses for
filters with Chebyshev approximation in the pass-
band and stopband are shown. The amplitudes of
ripples and amount of attenuation guaranteed in
the stopband are changing in definite steps from one
extreme value to another. The corresponding trans-
fer-function poles remain on a circle.

In intermediate cases when the ripples in the pass-
band and ripples in the stopband are arbitrary
{more ripple may be accepted in the passband in
order to get more attenuation in the stopband), the
locus of poles is deformed into an ellipse.
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In the case of an arbitrary design with small
ripples in the passband and guaranteed minimum
in the stopband, the half-circle locus is deformed as
shown in the second row of Fig. 14, In this case, the
half axis of the ‘‘circle” along the real negative
direction is longer than the axis along the imaginary
direction.

The last row of Fig. 14 illustrates the degenera-
tion of typical Chebyshev responses when limiting
conditions are gradually applied. The filter with no
ripples in the passhand and no poles of atienuation
outside of it depenerates into a power-term filter
with maximally flat amplitude response and with
the zeros of filtering located on a semicircle.

Phiase and Group Belay

A specific amplitude response, given by a and D
vs frequency, does not describe the complete trans-
niission property of a filter. Indecd, the filter dis-
crimination factor is somewhat superficial because
it describes only the gain and loss of the network.
The phase characteristic which is included in the
cflective transmission factor, H, becomes very im-
portant when considering radar and communication
systems, especially those using pulsed signals.

The plot of zeros and poles for the Chebyshev
family of filters indicales that when a curve enters
into the transition frequency region, it is sharper
when the transfer-function poles are concentrated
closer to the imaginary s-pliane axis. In the proxim-
ity of the poles the effective phase angle changes
more rapidly and the group time delay has high
peaks.

A flat group delay is desirable because this sig-
nifies that all frequencies will be delayed the same
amount while going through the filter. If the vari-
ous frequencies are not delayed equally, dispersion
results, and the output for a pulsed input does not
retain its identity.

Figure 14(c) shows curves of the normalized
group delay; it may be observed that relatively con-
stant group delay in the passband can be reached
only when one avoids using sharp attenuation
curves. A transmission function of the Chebyshev
family is thus optimum only from the point of view
of the attenuation requirement but not from the
point of view of the group delay.

The phase response of the ideal Gaussian filter is
linear, and no overshoot will be produced as a re-
sult of rapid signal changes. Realizable all-pole
Gaussian magnitude filters with a finite number of
elements yield nonsymmetrical pulse responses be-
cause the phase is not sufficiently linear. The trail-
ing edge of the output pulse is longer than the lead-
ing edge.

The phase response in finite-pole Bessel filters is
more linear than that of the Gaussian magnitude
type with an equal number of poles. The skirt of
selectivity of the passband is sharper for the Bessel
filter, but the attenuation cutofl for both filters
is not very great, Both types have very poor attenu-
ation characteristics (especially with a wide pass-
band), but from the point of view of group-delay
distortion or phase characteristics their pulse re-
sponses, in comparison with Chebyshev or Butter-
worth, are remarkably good.

For purposes of comparison, the group delay of
Bessel, Gaussian, Chebyshev, and Butterworth
filters of second degree are plotted in Fias, 15, 16,
17 and 18. It should be noted that the group delay
of the Bessel filter is flat at the center of the pass-
band, while the Gaussian curve drops far off center
frequencics and the Butierworth has a pronounced
peal at the cutofl frequency. '

Although the Bessel filter phase characteristic is
greatly superior to that of the Chebyshev filter,
its disadvantages preclude its use in most cases. The
Bessel insertion-loss response in decibels versus fre-
quency approximates a parabolic curve, so that its
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voltage standing-wave ratio (VSWR) increases rap-
idly as the frequency deviates from center frequency.
Over most of the 3-db bandwidth the VSWR and
reflection coeflicient are high, As a result, reflection
interactions with a slightly mismatched load or
generator may seriously affect the otherwise good
phase-shift response of this type of filter. For a
given selectivity, Bessel filters need more elements
than the Chebyshev type. In fact, no matter how
many elements are used, this type of filter cannot
provide appreciably greater selectivity than a parab-
olic insertion-loss response curve,  The multiple
resonator structure for Bessel filters is highly un-
symmetrical, with a very large variation in the cou-
ing elements from one end to the other. This large
variation makes the design difficult, and values of
-the couplings are more likely to be in error relative
to each other.

The impulse response of an equal-ripple delay
filter is quite symmetrical relative to the mean value

Table tH—Simplest Polynomial Filiors

Pt

of group delay. The impulse response of a Bessel
filter is not as symmetrical as that of the equal-
ripple filter, although it shows more symmetry
around the center, and that of the Gaussian filter,
even for higher-order approximations, is the least
symmetrical of the three. A plot of the impulse re-
sponses for these three filters (n = 3) is given in
Fig. 19. For a larger number of poles (more com-
plicated filters), the impulse responses become more
and more similar, but with increasing complexity
the equal-ripple delay response gives a more sym-
metrical pulse response. In the case of the equal-
group-delay filter, the estimated overshoot will be
comparable to the Bessel filter, but the steady-state
amplitude response is somewhat better.

Simple Polynomial Filters. The conditions for
Butterworth and Chebyshev response for the sim-
ple polynomial filters shown in Table 1T are de-
rived in Appendix 3.

Zobel Filters., In image-parameter theory, the
insertion loss is usually computed as the sum of the
image attenuation, the reflection loss and the inter-
action loss, This method is useful for computing
the loss of a filter whose constants have been deter-
mined and whose design is complete. It is not a
convenient method for showing how the insertion
loss varies with the choice of parameters. It is pos-
sible, however, to obtain complete inscrtion-loss
formulas for multi-section image-parameter filters
in a form suitable for study. A discussion of at-
tenuation of Zobel filters is given in Appendix 4,

Coupling

Neither image-paramelter theory nor modern syn-
thesis theory requires a specific concept of coupling
in order to design the filter or to explain its physical
operation. So-called “halfl sections” or “full sec-
tions” can be connected together if they have ap-
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propriate characteristic impedances. In a discussion
of the polynomial filter, the term coupling loses its
sense because filter components are a result of the
basic design procedure. Coupling in modern fillers
refers only to the parasitic effects of one component
upon another. The electronic engineer sometimes
uses the degree of coupling to describe the partic-
ular responsce as over-coupled, under-coupled, crit-
ically or optimally coupled, and transitionally
coupled, bul even these descriptlive terms are being
replaced by Chebyshev or Butterworth responses,

The term coupling was re-introduced in network
synthesis theory by Milton Dishal,  There is no
physical coupling between coil and capacitor in the
sense of connection, but the numerical value of a
coupling term has an elfect on the bandwidth simi-
lar to that of the familiar coupling coeflicient. The
element values for ladder nctworks may be ex-
pressed so that every reactive component of each
element of the filter is related to the reactive com-
ponent of the immediately preceding element and Lo
a definite bandwidth (such as the 3-db down value.)
The numerical results are the normalized coelh-
cients of coupling. Structures which may be nor-
malized in terms of coupling include not only the
bandpass configuration, where coupling is used in
its original physical sense, but also the low-pass,
high-pass, and band-reject structures. For the fow-
pass filter of Fig. 20, coupling is defined by the
ratios

02, Q, «,
B e U phat L By &
2344 2 Qyan w 2340 M
where
| I L0 - 1

Yo o T Ve T Ve
In most high-frequency designs, especially the
microwave type, the use of the normalized value of
k may simplify the adjustment procedure since the
numerical value of & could be directly applied to
the tuning of the actual filter.
Cocflicient of Coupling. For a magnetically reso-
nant circuit, the value of the coeflicient of coupling
can be obtained from the theory of transformers:

M
VL L

ps

Analogously, one can define the coeflicient of cou-
pling for the four other types of two-pole filters
mentioned above.

In general, the degree of coupling or the coupling
coeflicient is the ratio of the reactance of the cou-
pling element to the geometric mean of the open-
circuit impedances from opposite terminals,

The coupling, K, will now be defined as

})
V8,8
where y is the coupling admittance and g,, g, are

the input and output short-circuit admitiances of
the filter at resonance frequency. From

K =

gl_d__l. &2 =d=—l»
Wy Cl l Ql ' mel! ?

S 4 - o

it may be seen that
K = k kv Ql@

V| d,

fiuiti-Fole Filters

The design of multi-pole filters generally follows
either of two different methods. In the synchro-
nously tuncd method, all the resonant circuits are
tuned to the desired center frequency at each node.
The symmetrically detuned method (stageered tun-
ing) has one or more regonant circuits detuned sym-
metrically about center frequency. Strong coupling
is equivalent to strong resonant detuning,

Both mcthods may arrive at the same amplitude-
frequency response, but the absolute value of the
output at center frequency is generally preater for
the synchronously tuned filter. This is the reason
for realizing only synchronously tuned filters in
practice, especially when the network consists of
more than two poles.

In order to understand the physical concept of
coupling and selectivity, it is worthwhile to concen-
trate one’s attention on simple bandpuss filters in
the form ol a double-tuned circuit such as that gen-
erally used between amplifier stages and similar cir-
cuits,

A two-pole bandpass filter can produce the same
amplitude-frequency response as & two-stage tuned
amplifier with a single resonant circuit in each
stage. Moreover, the response of several stages of
single-tuned circuits in cascade can be replaced by a
single filter with an equal number of resonant cir-
cuits, which may be coupled by either capacitive or
inductive reactances; the method of coupling may
alternate from each resonant circuit to the next as
required by the situation.

Two basic assumptions will be used here. First,
we will assume that coupling reactance is independ-
ent of frequency; the change in reactance is so small
that, within the limits of the frequencies wherein the
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filter is operating, the change can be completely dis-
regarded. Secondly, we will assume that each reso-

4 {/:} L2 nant circuit is coupled only with the circuit ad-
L jacent to it,
S [ ' The general schematic of the filter with two anti-
o j‘: i resonant circuits is shown in Fig. 21. It can be
Sy Y shown that five different ways-of coupling produce
L essentially the same responses and that all of these
- _ may be represented by the schematic of Fig. 21.
Fig. 21—=General representation of a two-pole
filter.
Lr‘(
(g l L LI _] °
(ff - Y4 l{g, =G CL; Ly 3=yl %
i e A ! T i )
N o
& I
L”Cl'
Ly z‘llo)
Lﬂal
- __L__ & i
L
L/(!.[ Ly /—I/—A’
A ] {y-— )= le 27— =al
C 20~ Cy 20y CLaC+ Ge=ll Ll -0 Ly ( +LA’) L t Y '
. . ot Lot
CortnCn b usCat e Lz=£££ﬂ“’*in(“§£)”‘/—u Lusjogrta
9, = 0 wnCy 2 ol ol LyLn X
gy = & el (C+ UG Gy g, = A emC Z s _~~-—L—'(‘—2»«-)¢ Lita
? ‘ ‘ YRV Y I
G V= oGy 9p * T iy Poamhe e o
1 !
, . , ~ : . e o0 A
Fig. 22-—Twao-pole filter with series capacitive wyy b
coupling. fig. 24—Two-pole filter with series inductive
coupling.
Gy Ch
SRR § AU | S
| gt T ¢ 9 Ly Ly
Sy TG, Ly v, — Ifmm\w 6O
= ; i

‘El [ VJ}‘Q, T'l: G ;} [7 :l:Cu {i 7y 3’2

g AT

/f / i“\ k‘\;,"" L ® /'ilal

/ j" I ! ‘\}‘j{/lrm <L 1ot
ERAR
,,"] J’j p/ f\\\'*:l\'\

. . Lolpt Lplpidal
A et B, [-1‘/,”1:/‘ . Ly = LeboTtalm T tmt A

Lxim Lyl Lotln 7

G, = /o= Labotlolutlols

4 Ly ® i S
. 2
= ] L2 . Lop?
[ L. S S ..

UptLalllmtin Lals

gy = ey

9y 2 ey

o, 4 Col -
Fp = oyl £z e 3 J;'——;f o= (/P 2 way s _____,%_-_L.i)f...,‘_. = Lo
coe L i, Co CE 0 v Ll Lk Ll
K g Lic2 oy
Fig. 20 .. -peas Blter with shunt ca Fg. 25-—Two-poie filter with shunt  inductive
coupfing. coupling.

76 ELECTRO-VE(HHOLOGY | JBNE 1964



Figs. 22 and 23 illusirate methods of capacitively
coupling two resonant circuits. In Figs, 24 and 25,
methods of inductively coupling the same circuits
are shown. The three capacitors in Fig. 22 cun be
transformed into the T configuration of Fig. 23 by
using the well known delta-star transformation. A
similar transformation may be used for the induc-
tive coupling networks in Figs. 24 and 25. Formu-
las to facilitate such transformations are shown in
Fig. 26.

A {wo-pole filter with magnctic coupling between
the first and second resonant circuits 1s shown in
Fig. 27. From transformer theory, we know that
two different values of the coupling coefficient can
result, This results from the [act that the sign for
mutual inductance, M, can be positive or negative
and depends upon the polarity of the secondary
winding. The value of y in IFig, 21 can therefore be
cither positive or negative,
pure inductive, pure capacitive, or cven pure mag-
netic coupling, we have a mixture of couplings,

This may be due to such tactors as the presence of

unavoidable distributed capacitance between the
coils, Even in such cases, the L,umal equivalent
schematic in Fig. 21 is still valid since one type of
reactance will g)cncrdll) predominate in each specific
frequency range. When y is resonant in the proxim-
ity of the passband, one no longer has a two-pole
filter, and this case will therefore not be considered
here.

Formulas are shown in Figs. 22, 23, 24, 25, and
27 for the calceulation of element values, Also
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Fig. 26—Equivalent schematics for various cou-
pling configurations. Element values are given in
a form suitable for performing transformations
from one configuration to another.

Very often, instead of

shown are the corresponding amplitude-frequency
response curves. From these curves one can sec in
which direction the passband deviates from reso-
nance. The effects of coupling on 1he center fre-
quency and insertion loss of the filter are also evi-
dent. With increased value of coupling, insertion
loss becomes lower. In the proximity of critical cou-
pling, the bandwidth becomes larger and, finally,
with a further increase in value of coupling, ripples
in the passband will appear. In the case of the mag-
netic coupling shown in Fig. 27, the cenler fre-
quency remains constant. In the case of the capaci-
tive coupling of Fig. 22 and the parallel inductive
couphm7 of Fig. 25, the center {requency goes down,
and in the two remaining cases it goes up.

Filter Transtormaltions

As was previously indicated, low-pass filters,
through appropriate frequency and network trans-
formations, can provide information for bandpass,
high-pass and band-reject filters

To transform low-pass filters into high-pass fil-
ters, it is necessary to use the frequency transforma-

tion

I
Sup = Qp

The normalized cutoff’ frequency of the high-pass
filter is equal to that of the low-pass filter.

Qemry = Lepy = 1
The resulting transformation of elements is given in
the first two lines of Table 1V.
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Fig. 27—Two-pole filter with magnetic coupling.
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With the frequency transformation

9 -a <y - .i)
Y

where v is the new normalized frequency, the fre-
quency characteristics of the low-pass filter will be
transformed into bandpass charactenistics.  The
normalized [requency of the low-pass filter, {1, cor-
responds to two frequencies in the bandpass charac-

teristics v, and 7)]- = vy_,, which are geomeltrically

.
symrmetric since
v= =y
The transformation of the cutofl’ frequency can
be made with the use of the expression

Q.= 1 =aly, — v_.)

from which the constant of transformation, a, can
be determined.

If the upper and lower cutofl’ frequencies f, and
/S, are normalized with respect to the reference
frequency f,, where

Jo = NIT,
then Ry
y. = S ]/l. _ b
‘ fb Al , yj.—c' Y_e /

AR SRR AN
The normalized frequencies in the stopband such
as {2, can be obtained in a similar way,

Table IV—Filter Transformations

Q= aly, = v.4)
and the relationship between the passband and the
stopband limits is

’YJ - ’YV:

Ye = Yoo

The normalized bandpass frequency v, can be found
from values of @ belonging Lo the low-pass filter

T T 2a 2a

Low-pass to bandpass network-element transforma-
tions are summarized in Table IV,

Similar relationships are valid for the low-pass to
bandstop transformation. They are given by the
equations |

Q, =

5

,yj'V

0§ =
afy - —
(-3
and ——
S VT
T TR0 Za(l,
where v = 1,2, The set of formulas and the ele-

ments involved in this transformation are given in
Table 1V,

The network components given in Table 1V, ob-
tained after transformation, and also the normal-
ized {requencies Q, v,, may be used to translate a
network to a desired [requency range (by choice of
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/,) and a desired impedance level (by choice of R)).
For low-pass and high-pass filters f, = /.(8.).
For bandpass and band-teject filters,

Sy = fS
Rh
b= 5

|
C‘ TR
b 2w R,

Realization and Narrow-Band Approxhimation

The direct, conventional low-pass to bandpass
transformation, while correct theoretically, is not
always justified practically, The element values may
be too small or too large. The parasitic capacitance
to ground cannot be taken into account and there-
fore may distort the response. The node between a
capacitor and a coil in a serics arm becomes very
sensitive to stray capucitance at some frequencies,
and the quality of the series arm has to be very high
in order to produce a low level of insertion loss in
the passband. 1t is therefore desirable to simplify
the network realization in order to remove the
selectivily from the series arm, and to substitute
added selectivity in the parallel arms.

The conventional transformation for a third-
order low-pass filter to a bandpass realization re-
quires three coils and three capacitors.  Essentially
the same kind of response curve can bhe realized,
however, with three parallel resonators coupled
together by mutual inductance, by capacitors, by
inductances, or by inductances and capacitances as
shown in Fig, 28.

Variation of the coupling reactances with f{re-
quency causes the response of the filter to be non-
symmetrical, although a close approximation of this
effect may be taken into account. The original
schematic with three coils and three capacitors will
theoretically puarantee the ideal polynomial re-
" sponse. The schematic with coils or capacitors in
the serics arm is only a narrow-band approximation
and realizes the transformed theoretical low-pass
filter response only for a limited bandwidth. Never-
theless, good accuracy is maintained over a wide
range (20 per cent) of center {requency. The design,
‘almost by necessity, must usc coupling circuit termi-
nology, especially {or microwave-frequency filters
where the resonators are realized in the form of
cavities,

For wideband filters, especially at low frequencies
where a lumped-element technique could be used,
the direct transformation is useful. It does not
create too much of a problem except that the num-
ber of bulky and expensive coils (especially at very
low {requencies) will complicate the realization.

M. Dishal has devised a synthesis procedure for
the dissipative (non-ideal) bandpass filter. [2] His
method is equally good for wideband and narrow-
band types and has proven to be practical for the
design engineer, Dishal uses a 3-db bandwidth
normalization and normalized coupling. The mini-
mum number of resonators may be obtained from
equations or from curves. After the number of
resonators is determined, the components can be
found. To obtain the first resonator for the narrow-

band type of schematic shown in Fig. 28, the O fac-
tor at the first node 1s selected. This means that the
source resistance determines the first-node induc-
tance and capacitance. For vl value of
percentage bandwidth, the ratio of coupling to
shunt elements is approximately reciprocal to per-
centage bandwidth and is very small.  Physically,
this means that capacitor coupling is not always
realizable and one must sometimes employ mutual
inductive coupling. After having determined the
number of resonators, type of coupling and input
0, the vemainder of the circutt elements are nigidly
determined by a step-by-siep design procedure with
known values of loaded O, k, and A4,

To obtain the results predicted by theory, the un-
loaded @ of each clement must be greater than a
certain minimum.  For internal reactances of low-
pass filters, this minimum @ is ¢,.; for internal
resonators of bandpass circuits it is q, (/. /bw, ).

A design example iltustrating the use of Dishal's
method is given in Appendix 5.

Goaery

Phiysical Problemis of Fitter Besign

Since coils and capacitors are stll the most com-
monly used passive network elements, and we are
concerned with filters handling a large amount of
reactive power, our attention must be directed
towards utilizing the best reactive clement.  This
may be a coil with a ferramic core, a coaxial reso-
nator, a helical resonator, a waveguide or a crystal
resonator, depending upon the application,

The importance of the physical aspect of power

i
§
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transformation inside a reactive network should be
emphasized. For each watt of power dissipated in-
side of the filter, the reactive power may be as high
as 10,000 volt-amperes. This ratio of dissipative (o
reactive power requires that the Q of the compo-
nents be at least 10,000, Even with such a large O,
half of the input power will be lost at the 3-db point.
Good-quality conventional coils can be made with
practical values of @ no higher than 500. The prob-
lem, therefore, is to concentrate reactive power in a
few high-quality elements and to make these filter
elements convert most of the reactive power con-
centrated in the repion of the cutolfs,

When the amount of reactive power circulating
inside a two-terminal network is known, the value
of reactance below or above resonator frequency
can be determined. This value is proportional to the
algebraic difference between magnetic and electric
power. The sum of the reactive power in the reac-
tive dipole, on the other hand, determines the sharp-
ness of the reactance variation of the same network.
For a reactive four-terminal network, the total reac-
tive power is proportional to the group delay. The
group delay can therefore be interpreted as a meas-
ure of the efficiency of energy transmission. This
efliciency is defined by the ratio of transmitted real
power to the reactive cnergy required by the real-
power transmission. In minimum phase networks
{practically all types of filters), the atlenuation and
phase are interdependent, Thus it can be concluded
that, in minimum phase filters, the required con-
version of reactive power may be found from the
attenuation curve or curve of selectivity. In the
region of the cutofls the converted reactive power
assuines large values. If the response curve is very
sharp, the network must balance this reactive power
so that magnetic and electric power will circulate
(exchange) inside the filter and not reach the load.

These considerations provide a physical explana-
tion of the difficulty encountered by the designer
when he trys to obtain good matching near cutoff
frequency. The absolute value of the difference be-
tween electric and magnetic power is an appropriate
criterion for good matching.

Physical Elements of the Filter. The main ele-
ments of a filter are reactances: lumped capacitance
and lumped inductance. It is possible to design
some filters by using only capacitors and resistors.
This combination is especially useful in the case of
active networks or aclive filters. Regular passive
filters require both types of reactance.

The simplest low-pass filter has two arms as
shown in Fig. 29. The series arm has an inductor
and the shunt arm a capacitor. In the case of a
simple high-pass filter, the series arm consists of a
capacitor and the shunt arm consists of an inductor
(Fig. 30). An example of the simplest bandpass
filter is shown in Fig. 31.

To a first approximation, lumped inductance and
capacitance can be considered as pure reactances,
but closer investigation reveals that losses and reac-
tive impurities are also present. The ordinary in-
ductor at relatively low frequencies is wound on a
magnetic core (powder iron or ferramic); other in-
ductors are simply single-layer solenoids wound on
a nonmagnetic coil form. In both cases, although



the losses are very low in cornparison with the value
of reactance, they cannot be neglecled, especially
when one designs a very-parrow-band filter or de-
sires a very sharp response curve.,

Losses tend to decrease the rate ol altenuation
rollofl, increase the atienuation within the pass-
band, and, in certain cases, prohibil the realization
of very-narrow-bandpass filters. The parasitic effect
of distributed capacitance across the coil or series
lead inductance in capacitors is damaging in an-
other respect. In the low-pass filter, purasitics will
create the effect of a parallel resonant circuit instead
of a coil. The filter may thus provide unexpected
rejection al ceriain frequencies in the stopbaud, or
even in the passband, if the self-resonant frequency
of such a coil is sufliciently fow, Parasitic reactance
in the lumped components produces distortion of
the amplitude response and may destroy the net-
work response altogether if not neutralized or
properly taken into consideration,

Equivalent circuits for an inducior and a capaci-
tor are shown, with impurities taken into account,
in Fig. 32, The conventional measure of the quality
of any reactance is the quality factor @ which de-
scribes how many times the reactance of a coil or
capacitor is grealer than the resistance. The most
common value of ¢ in the conventional inductor at
radio frequencies is 50-300. The Q factor for the
capacitor at the same {requency is usually higher:
500-5000. The higher these values are, the better
the filters that can be designed. Figure 33 illustrates
the effect of the @ factor on the shape of the re-
sponse of a bandpass filter.

The demand for quality factor in ordinary lumped
compotients, especially coils, has intensitied re-
search to find some substitute for the inductor and
capacitor, Historically, the first and most successful
substitute was the piezolectric crystal; next were
magnetostrictive components and electromechanical
devices. Lumped clements are the oldest filter ele-
ments, and they remain the most widely used at low
frequencies.

Experience proves that, for example, a very good

o v Y T

S

bandpass filter can be made when ils components
have a @ factor not less than 20 to 25 times f,/Af
where [, is the center [requency of the filler and
Af is the bandwidth (passband). For the same
bandwidth and attenuation characteristic, the filter
with the lowest center {requency will need the lowest
quality factor. If, for example, f, = 10,000 cycles
and A /= 3000 cycles, the @ faclor cannot be less
than 66. When an element that meets these specifi-
cations is used, a very good bandpass (ilter can be
designed for a commercial telephone signal, i the
frequency f, = 150,000 cycles and 4/ = 3000
cycles, the ¢ faclor has to be greater than 1000.
Even the best coils with ferramic core material can-
not provide a @ factor greater than 600, and, there-
fore, a conventional element cannot be used in such
a filter.

Crystal Fliters

The equivalent schematic of a piezoelectric reso-
nator is shown in Fig. 34. There are three reac-
tances in this first-approximation schematic. L and
C are the motional parameters and C, is a capaci-
tance across the crystal which can be considered a
parasitic parameter. The piezoelectric resonator
has a very high @ factor, at least several thousand,
and it is very stable with time and temperature con-
ditions. With such resonators, filters having any
desired selectivity and extremely small bandwidths
can be designed and buiit,

The piczoelectric crystal exhibits some unpredict-
able and undesirable modes of oscillation, which is
a very scrious limitation of ordinary crystals. Some
of these spurious modes are very close to the funda-
mental {requency. Another limitation of the device
is that the ratio between the parasitic capacitance
and motional capacitance cannot be made less than
a certain value. This value determines the possible
bandwidth of the filter. In the low-frequency range
(up to 200 kc), this bandwidth can be no more than
about 10 per cent. At higher frequencies the per-
centage bandwidth will be less and less, and at
30 Mc it can be only a [raction of one per cent even
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when all supplementary measures are taken into
consideration,

Because of such factors as spurious oscillation
and small physical crystal size, crystal resonators
do not operale satisfactorily at very high frequen-
cies. Coaxial and helical resonators arc generally
used at these frequencies.

The most efficient use of the quartz crystal is ob-
tained under the following conditions:

e The quartz crystal dissipates the largest part of the
reactive power converted at cutofl {requency.

& A high-quality stable quartz resonator in a ladder
schematic produces the critical (and sharpest) attenuation
response pole.

e The bandwidth of the network involved is as large as
possible.

Simultaneous satisfaction of these three require-
ments was impossible for a long time, but Fig. 35
tHustrates a solution now available. Here, a filter
used for carrier communication has been designed
by using network transformations, The section
shown in Fig. 35(a) produces a sharp pole at f; and
another pole, less shurp, at f,. The transformed
network using a quartz crystal is shown in Fig.
35(b). Both networks are identical il certain condi-
tions are satisfied.  Pole f, [Fig. 35(a)] must be

placed so that the input impedance from the right
side of the nelwork becomes zero at frequency f|.
In other words, the series combination of the two
parallel networks (L,C, and L;C,) must have
series resonance at f,. In addition, the input im-
pedance from the right side of Fig. 35(b) must have
a pole at frequency f5; i.e., the series and parallel
reactances of f, must produce a pole.

In Fig. 35(a) the sharpest pole is produced by
L,C,. In Fig. 35(b), the sharpest pole is produced
by L1C4. The calculated ratio C,/C, is very larpe,
and additional capacitance may be added, il de-
sired, since the capacitance ratio of an x-cut quartz
crystal is only about 140, The capacitance ratio
C,/C;(C,/Cy) is, to a first approximation, in-
versely proportional to the distance between the
pole frequencies f, and f,. The distance between

Jy and [, could be several times larger than that

shown in Fig. 35(a) since a practical ratio belween
parallel and series capacitance is about 200. With
mcreasing bandwidth the ratio becomes more un-
{avorable; for a bandwidth of 60 per cent the ratio
is still good, but between 60 and 90 per cent the
ratio C,/C_ is so small that the quartz can no longer
be used,

A typical arrangement for inserting a crystal in a
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ladder filter i1s shown in Fig. 36; Fig. 37 is the cor-
responding reactance diagram. The crystal provides
a trap for the energy around its resonant frequency,
/.. This results in zero transmission through the
filter at f_ (the peak of attenivation in the filter). The
same crystal will also provide two parallel reso-
nances, one below f, f,, and the other above f,, /,.
Since f, is in the stopband, its presence will tend to
decrease the attenuation. The addition of one par-
allel resonance in the series arm of the ladder filter
can eliminate the effect of one parallel resonance in
the crystal. The high-quality series resonance of the
crystal can then be used for the filler without being
deteriorated by undesirable phenomena.

Figure 38 shows an equivalent circuit which ac-
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Fig. 40—Filter section, with equivalent crystal
resonator, having peak attenvation on the high-
frequency side of the passband.

counts for a piezoclectric resonator. The problem
of realization reduces itsell to that of modifying a
conventional LC network in such a way that the
schematic of Fig. 38 is obtained.

A design procedure which finally results in the de-
sired modification is given in Fig. 39. Here the
original schemalic is represented in ladder form.
Two sections with different peaks ol atlenuation
(/. and f,) are to be connected. The design proce-
dure follows the steps shown in Fig. 39, The cle-
ment across the line in the center of the final net-
work is a nonconventional dipole which produces
an unusually sharp peak of attenuation.

A filter section which produces a peak of atlenua-
tion on the high-frequency side of the passband is
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Fig. 41—Filter section, with equivalent crystal
resonator, having peak attenuation on the low‘
frequency side of the passband.
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shown in Fig. 40, along with the appropriate design
formulas and response curves, Similar information
on a filter section which produces a peak of attenu-
ation on the low-frequency side of the passband is
given in Fig. 41, w

Appendix 1-—Basic Filter Relationships

The usual operating conditions for a filter are shown in
Fig. 1-1 where R, and R, are pure resistances. A relation
between the power P, dissipated in the load resistance
R, and the output voltage is
% 2
P, = =%

R,
The maximum power P,, that can be delivered by the
signal source
s 2
P, = Vs
m
4R,

leads to the definition of the effective transmission fac-

tor H:
P
H = 1/—' (2)
PZ

The natural Jogarithm of # is called the eflective trans-
mission constant; g = In 4. lts real part, In| H |, is the
eflective altenuation a, and its imaginary part j § H, is
the effective phase angle b.

(1)

g =a+jb=Wm|H|+j¢H _
Vu RZ
—ln—é—l';z‘f"lﬂ-‘*R—l (3)
H = ¢f

The attenuation a is expressed here in nepers. The analo-
gous expression in decibels is

A = 20log,| H,db

The effective attenuation can never become negative, The
voltage insertion loss is equal to the effective attenuation
when R, = R,.

A relation between the input impedance Z of the four-
terminal network and the resistance R, which represents

the source impedance, defines the input refiection factor p.
p o= (4)

A non-zero reflection factor signifies physically that the
maximum deliverable power P, is not being transmitied
through the network to the output since a portion Pris
being reflected.  Thus, the definition of the reflection
constant, g,, is

g, =a, +jb, = In % = In fP’—” (5)
where a, is ccho attenuvation and b, is the corresponding
phase angle.

Let us assume that input impedance of the filter is Z
and the source impedance connected to the filter is £
(Fig. 1-2). When Z = R = |, the voltage ¥ across the
filter will be V' = V_ /2 where V is the source vollage.

For this condition V¥ — V,/2 = 0. I Z » R, then

v v
Vo= =0 |y . e
(- %)

where
Vv
Vo~ 25 0
2
and we have the ratio
v,
2 v, v,
vy - v, Z
Vo o y = _ ¥
2 2 o l Z [
1 + Z Z+1 _ 1

T 2Z-t=-Z Z-1 p

The ratio between the reflected power and the power
dissipated in the load resistance (P,/ P,) is used to define
a characteristic factor (g, ) where

) ]
& = 4, +jbk=lr\7=ln 7, (6)

Here a; is the characteristic attenuation, and b, is the
characteristic phase angle.
Equations (2), (5) and (6) are related as foliows:

e S i
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a, nepers [2)

0.000 0.000
0.005 0.101
0.010 0.142
0.015 0.175
0.00 Q.00
0.05 0.32
0.10 0.47
0.15 0.59
0.20 0.70
1.00 2.53
1.26 3.34
1.50 4.37
1.75 5.67
2.00 7.3
2.50 12.1
3.00 20.1
3.50 33.1
4.00 54.6




20 1 .G 13.85
25 1.36 11.7
50 0.55 4.77
11| - lg e
2
B
» P,
|D|? = *I;—" = %
2
,1,[[),2 - ela—2ue - ID‘Z - eZa,\,

where @ — a, = a, is in nepers, and D is the filter dis-
crimination factor.

[tis seen that the effective attenuation a is equal to the
sum of the echo attenuation a4, and the characteristic
attenuation a,.

a = a, + a,, nepers o
A=A, + A, decibels

If the filter consists of reactive circuit elements, no
power can be dissipated within the four-terminal network,
Since R, and R, are assumed to be pure resistances, all
power values under consideration are effective values,
and the difference between the maximum deliverable
source power £, and the reflected power P, must be equal
to P,, the power which passes through the network and
arrives at the output load. According to Eq(7),

[ 2,1
¥

|

i

[ P,l - 1r]
[P, = 1Pl + 1P|

I

. (e»2a + e—ZuE)

For filters with lossless elements, every value of efl-
fective attenuation a corresponds to a certain value of
echo attenuation-according to the relation:

e—20+e-lae=’Tlil+'p‘Z=1
Lt [Hpl = LH] ®
from which it follows that
|H1? =1+ |D]|? ©)

In order to avoid the use of absolute-value notation, we
will equate | D2 = D? where D is the filter discrimina-
tion factor.

]/P —
D=‘/€2"~—l= mP Pz
2

Table A gives the numerical relationship between at-
tenuation a, in nepers, and the filter discrimination factor
D. D is a function of effective attenuation and increases

from 0 to « when the value of attenuation grows in the
same direction (from 0 to «).

a=InV1+ D,
or
A = 10log, (1 + D?) (10)

Equation (7) also yields
a = ln\ | — [)2 = ln \/l _ e*?()t.

or
A = —10log,,(1 — p?) (1

Table B gives the numerical relationship between valucs
ofp,a,and 4,.

The effective transmission factor 4 and the filter dis-
crimination factor I are both functions of the frequency J,
or the angular frequency w = 2w /. Both H and D are
needed for the determination of quantities such as im-
pedance and admittance which fully characterize the
four-terminal network and from which the circuit element
values can be derived.

Appendix 2--Use of the Complex Frequency
Plane in Filter Design

Real networks operate with real voltages and currents
which are functions of time, but the idecalized mathe-
matical models involved in polynomial synthesis operate
with fictitious currents and voltages which are neither
real nor functions of time. In such models, these param-
eters are functions of the complex variable 5. In order to
obtain real currents and voltages from complex values,
certain mathematical transformations have to be used.
While the mathematical model has no resemblance to
reality, it greatly simplifies prediction about the be-
havior of the actual networks.

A points = ¢ + jw in the § plane may be represented
by the product of a sinusoid and an exponential ¥ = €' .
sinw!. If ois ncgative, the amplitude of v decreases ex-
ponentially with time; if v is positive, ¥ increases expo-
nentially. This behavior can serve as a description of the
complex frequency s. A complex response function R(s)
of any network can be described as the ratio of any cur-
rent or voltage in a network to any other, and all response
functions are thus ratios of polynomials in s (complex
frequencies).

(12)

where P(s) and Q(s) are polynomials.
Any polynomial can be written in terms of its roots.

P(s) = as" + bs" ! 4 es" 2 4 o 4 es + S

=a( —r)E —r)E —r)-—-r,)
where 7, 75,75, -+, 7, are the roots of P(s). The poly-
nomials in Eq (12) can be factored and written in the [ol-

lowing form:

6= p)G = p)(s = p,)
= q)ls—q)(s—-4q,)

R(s) = A

where p,, p,, elc. are the roots of P, and ¢,, q,, etc. are
the roots of Q(s). The constant factor A (the ratio of the
coeflicients) serves only to change the amplitude of R(s)
but has no bearing on the form of the response. When-
ever s = p,, R(s) becomes equal to zero; these specific
values of s are called zeros of the response. Whenever
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§ = ¢, R(s) becomes infinite; these particular values of s
are called poles of the response. No matter how com-
plicated the response function is, it can be expressed
uniquely in terms of its poles, zeros and a constant multi-
‘olier. The number of poles and zeros is exactly equal if
the poles and zeros at infinity are included. The simplest
possible filter has only a single pole and hence only a
single zero.

The pole-zero concept is very useful, because it permits
the response to be expressed in analytical form. For a
passive network the poles of the transfer function must
always lic to the left of the imaginary axis. They cannot
lie on the imaginary axis except as an approximation.
Poles on the imaginary axis do not physically exist for
passive networks; they would correspond to a tank cir-
cuit with infinite quality factor. Only in an active network
can a pole lie on the imaginary axis.

If the filter consists of a finite number of lumped linear
clements, it can be expressed with the help of three real
polynomials, £, P, and F.

E. ., E+F
H=piZn=FF

Here H is the coefflcient of effective transmission and
Z,, is the normal input impedance. Furthermore,

(’2“ = 1 + [)2

where g = In H is the effective attenuation of the filter,
and D = — is the filter discrimination function.

For a reactive network the polynomials are related in
the following way:

E(s)E(~5) = P(s)P(=s) + F(s)F(-s)  (13)

If polynomials P, E, F" are known, it is possible to find
all the elements of the network, and to determine its
schematic arrangement.

The problem of synthesis consists in finding a filtering
system which has the minimum number of elements es-
sential for effective attenuation but which does not have
more than the given a,,, in the passband nor less than
the given a;, in the stopband. This problem can be
separalted into three parts:

1. Finding the best approximation of the given requirements
in the form of a rational function D = F/P.

2. Determining the polynomial £(s) by Eq (13).

3. Determining the filter system according to the polynomials
P EF.

The roots of E(s) equal the roots of the system’s char-
acteristic equation and correspond to the frequencies of
the free oscillations which may occur in a charged net-
work during transition processes. Therefore, we will
call £(s) the characteristic polynomial of the network.
Since in a passive quadripole network the free oscilla-
tions should be damped, the real part of the roots of £(s)
should be negative. This condition makes it possible to
determine the polynomial £(s) by the known roots of the
right-hand part of Eq (13). All the roots with a negative
real part correspond to polynomial £(s), and those within
a positive real part correspond to polynomial E(-—s).
Thus, the whole problem boils down to finding the roots
of the right hand part of Eq (13). When the number of
pairs of complex roots exceeds three, calculations become
very complicated.

Appendix 3—Simplest Polynomial Filters

The first filter network shown in Table Il is known as
a first-order filter.
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The effective transmission factor H, which defines the
behavior of this filter network, is

or simply
H =1+ joCR

The presence of j in this cxpression shows that there is a
phase shift introduced by the use of the filter.
The effective attenuation in decibels is

A = 20log | H| = 10log(l + @?C?R?)

Second-Order Filters. For the second-order filter shown
in Table M1, the quantity A will be

H=l+jm<C R\R, + L )

R + R, R +R,
R

2 2
- WO 2
W Rl ¥ R2

This expression can be made to look simpler by substi-
tuting
R\R,

- = R
R, + R, ’
R + R, = R,
and
R,
I = K
R, + R,
Thus

H=1+jo <CR,, + i) — w)LCK
RJ
To obtain the expression for effective attenuation we must
climinate j by multiplying by the complex conjugate:
L

2
THI? = 1+ o [(CRF + 73—> - 2'LCKJ + W L2C2K?

The effective attenuation is
A= 10log| H|?

The transmission factor // can be more compactly ex-
pressed in the form

JHI? = 1 + aw? + Bo*

where a and 8 may be chosen so that we get a Butterworth
or Chebyshev response as desired. Mathematically, a
Butterworth response is simply | + w? which means that
for n = 2 the value of a must be set equal to 0. This
being the case,
A = 10log(l + &'L2C*K?)
where
CR, + L 2LCK
P Rs

Third-Order Filters. Adding one more capacitor to the
previous circuit results in the third-order filter (see Table
[11), for which the transmission factor 4 becomes

. L
H =1 +1w[(Cl + CR, + FSJ

— 2 (CR, + CyR,) — jo’LC,C,R,
5

The absolute value can be found by the same procedure
we used before.




. L}?
[HI? =1 + w‘)‘{l:(C‘ + CR, + —E}

3

R

S5

_2L(C\R, + CZRz)}

LYC, R, + C,R,)?
+(04{ (IIR2 22)

L
_ ZLCICZ{(Cl + CZ)R,, + }—]R,}

+ @®L2CPCPR)}
H? = | + aw® 4 Bo* + vu®
Here o and f must be set equal to 0,

The response of the third-order Butterworth filter is
then expressed by

A = 10log(l + @"L’C2ClR2)

Chebyshev Polynomials. The equation for the all-pole
(transfer function) filter always takes the general form

2n

[H|? = ay + a,0? + a,0' + - + a,w

where n is the order of the network and a,, a,, a, depend
on the resistances, capacitances and inductances. Most
low-pass filters have no attenuation at zero frequency;
in such cases the term a, is unity.

For the second-order filter, the Chebyshev polynomial
to consider is that of the fourth order:

C‘Zn(”) = C‘4(Q) = 894 - 8(22 + 1

For this polynomial it is noted that at

Q=0 C,0) =1

Q=1 C, (1) =1

Q=071 C,071) = —1

Q> | C,(Q > 1) increases rapidly

For all positive values of © less than unity, the approxi-
. mating function
2
1+ €

will lie between 1 and 1 — 2¢, and the maximum attenua-
tion in the passband is

A = +£10log(l - 21)

If the value of the ripple a_, is 1.25 db, the correspond-
ing tis 0.125. The approximation function becomes

I - 0125 + 012580 =802 + 1) =1 — Q2 + @4

L= 14 1C,(R) <whcret =

Using | H |? for the second-order filter as given above,
and taking R, = ,sothat K = |, we have

FH|? = 1 + w[(CR)* = 2LC) + w*'L*C?
Comparing this with
1 - Q2+ 0
we see that for identity the following relations must hold:
Q= wiric?
Q! = 2LC - C?R})w?
(2LC - C’RHw?
L = CR?

€

)
~
9]
i

The third-order filter is related to the Chebyshev poly-

nomial of the sixth order, C¢(Q). For @ = I, C () =
—1, so that we consider

I+ 1+ 1Cy ()

which oscillates between 1 and | + 21,
have

Therefore, we

I+ 18192 — 4810 + 32400

Fort = 1/16, which corresponds to +:0.25 db, the condi-
tion for Chebyshev response becomes

W L2CPCPR? = 2Q°
20'LC CHC, + CHR, = 391
w0l (C, + C,)*R? = Q2

We can see that, even in its simplest forms, the equations
become very cumbersome,

Appendix d—Attenuvation of Zobel Filters

Insertion-loss formulas for Zobel filters are obtained
with the following equations. For one, two, or threc pi
scctions,

+D = —-Q[(l L) —75 ~—Z]§} (14)
+D = —QQ2 - 492)[(1 - 0% —} - iR] (15)
=D = —Q3 - 429 (1 - 4Q?)

R VA
. — QY — _ Zrx 1
[(1 0 R} (16)
Equation (14) describes the filtering function for a single
pi section while Eqs (15) and (16) refer to two and three pi
sections, Inecachcase,2 > Z_/R > |.

The corresponding expressions for T sections are

z R
D= Q|1 - @)=L - 17
+ [( )R ZTJ (17)
z R
D= Q@2 - 401 - Q) ==L - 18
* ( ,)[( )R ZJ (18)
;».D=9(3-492)(1'~492)

Equation (17) gives the filtering function for a single T
section; Eqs (18) and (19) give the functions for two- and
three-section T filters.

These expressions describe the peaks and valleys of
attenuation in essentially the same way as the familiar
curves of the Chebyshev filter with one important ex-
ception. The values of the ripples are not equal.

T R R

R T

BT ST
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Fig. 4-2—Passband insertion loss of the low-
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Fig. 4-3—Typical filter specification and Zobel
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Fig. 4-4—Effective attenustion of the Zobel
filter as a function of frequency and design re-
sistance.
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For the case of the two m-derived sections shown in the
circuit of Fig. 4-1, Saraga gives the following formulas: {1}

U = L - ny A+ m, ) Q (20)
R b+ om iy, 02— - P
I+ mym,
S S
X, 1 mym L+ mym
poo el XM LTI RO 3}
R ny 4 i, Qs - 1)

Here R is the design resistance of the filter sections, R is
the resistance of the gencrator and load, m and m, are
the #i values of the two Zobel sections, X, &, are the
series and diagonal arms of the equivalent lattice, r =
R/R,,and Q = f/f., wheref,is the cutofl frequency.

The insertion loss in terms of the lattice reactances is
given by

A = 10log |1 Uv_N_ 1010g(l + D? 2
= 101og |1+ (F25) | = 1010s0 + DY) @22

The quantity D can be computed directly from Eqs (20)
and (21).

=y A+ my) A+ mymy)
r(l — mP)(l — my?)

Qe - (1 - rz)][szl oL J
(23)

L 4+ mym,

I l
Q2 - ) - —
< 1~ m,2>< 1 - mf)

Equations (22) and (23) give the location of the poles and
zeros. The two peaks of attenuation appear in familiar
form as the two factors in the denominator or when
U = Vin Eq (22). It should be noted that for r < I
there are two finite zeros in the passband, one determined
by the product of the m values and the other determined
solely by r (the ratio of the design resistance to the ter-
minating resistance). For unity ratio, when load resist-
ance and design resistance are equal, the second passband
zero moves back to zero frequency. The expression for D
shows that if either m, or m, is given the valuc of unity,
then the corresponding peak of attenuation moves to in-
finite frequency. For two constant k sections, both m’s
are equal to unily and the passband zero determined by
the m’s occurs at 0.707 times the cutoff frequency. The
most interesting possibility indicated by Eq (23) is that
of controlling the passband ripple by proper choice of the
design resistance (relative to the terminations), The zero
determined by r can be located frecly without regard to
the other design constants at the point in the passband
which gives the minimum ripple. This is the point which
makes the two ripple peaks of equal amplitude. In Fig.
4-2 the solid curves show the single passband zero and
single ripple occuring when the load and source have the
same resistance. The dashed curve shows what happens
when the terminated resistances are increased 20 per cent,
corresponding to r = 0.833 for this particular design.
A second passband zero is brought in at 1 — 72 or at
0.553 times the cutoff frequency. This reduces the ripple
amplitude by more than 3 to 1. As the termination re-
sistance is made greater than the design resistance, the
two ripples can be made equal and the amplitude reduc-
tion is then more than 4 to 1. The passband ripple can be
controlled by selecting the terminating resistance in much
the same way that the stopband peaks and valleys can be
controlled by choice of the m values.

The filter specification is shown in Fig. 4-3 in terms of
maximum passband ripple and minimum stopband loss.
The optimum design in this case (for a given width of the
transition region) is the one for which the two m values
are selected to give equal stopband minimums (valleys)




and the design resistance is selected to give equal pass-
band ripples. The cutoff is indicated as f; and the start of
the stopband is /5.

In the case of the Zobel filter with three constant X
sections,

= (30 + 169* + 16Q°%)r

~ (30 - 1997 + 3205 — 1697) -;1;

= 003 - 400 - 492)[(1 - 0Y) _i - r] (24)

When one of the factors in Eq (24) disappears, the value of
D vanishes, and with it vanishes the affective attenuation.
In the case of a pi-section filter, one zero will be at

1
-0y = 5=
(1 ) p r=20
For the T-section filter one zero will be at
(1 - Qr ~ 71 = 0,00 R, = RV -

The second zero will be at € = 0 independent of the load-
ing resistance. The third zero will occur when

Q = VI = +0.5
4
‘/:j - 1087

also independent of load resistance.

It is possible with the aid of Eq (24) to calculate attenu-
ation as a function of normalized frequency for diflerent
values of load and destgn impedances.

From Fig. 4-4, it is evident that, for the lower part of
the passband, the best ratio for Z /R is 1.1. In the upper
part of the passband the best ratio is 1.5, For practical
reasons, only a single value of this ratio can be used.

and

Appendix 5—Synthesis Procedure for Non-Ideal
" Bandpass Filters

Let us assume that the following filter specification is
given:

Input and output impedance = 50 ohm (voltage source).
Passband is maximally flat (no ripples).

I db bandwidth = 8.4 mc¢ = bw (passband width)

40 db bandwidth = 35mc = bw (stopband width)
Center frequency, f, = V//f; = 100 Mc

A solution follows:

1. bw s/bw, = 35/8.4 =
form factor)

2. voltage ratio in the passband = 1.122/1

3. voltage ratio VP/ ¥, corresponding to 40 db =

417 = Afyoqp/ DS\ gp (the response

100/1

The number of resonators required is 3.54 (calculated
from Cited Reference {3]), so four resonators will be used,
as shown in Fig. 5-1. The number of resonators can also
be found with tables if the amount of ripple (in ¥,/ V) is
known, and the 3-db bandwidth is determined from the
appropriate lower set of curves of Cited Reference [3],
pp. 193-198. With known bw,,, the next step is to find
bw,/bw, 4, and, using the same ripple factor, to find the
attenuation in the stopband (bw,) from the upper set of
curves which belong to the filter of given complexity.

The ratio bw,/bwyy, = 0.84 corresponds to bwyy, =
10 Mc. For the ratio bw,yy, /bwsg, = 3.5 and zero db
ripple, we find that four resonators will provide approxi-
mately 40 db rejection.

The necessary constants for a network having no peaks
of attenuation and a transfer function with four poles
have been tabulated. [3] The flollowing constants for the
case of equal resistive terminations are obtair.d from that
tdbuldtlon

g3 = 26, g, = g4 = 0.776
ki, = kyy = 0.840; kyy = 0.542
Note that the filter has a physical symmetry relative (o
the center of the structure which is characteristic of all

filters of the Chebyshev family. Minimum unloaded @
of the two internal resonators will be

Jo
5y

To estimate insertion loss in the passband of the filter to
be constructed the following procedure has to be used:

= 260

Q min2,3 = 923

e Measure the actual Q of the resonators on the ) meter.
e Obtain the value of ¢, from the table, [3]

& Calculate Qmm ain fo/“\jldb

o Determine the coefficient, u = Q/Q

e Using the curves given by Fubini .md (Judhnmn determine
the insertion loss for the number of resonators used. {4}

In the problem above the coeflicientu = 10, and from the
curve the insertion loss is found to be 0.9 db.

The required @ of the first resonator may be obtained
by choosing such values of the nodal inductance and
capacitance (in the case of capucitive coupling) that the
generator resistance produces the desired Q,. The al-
ternative mecthod is to use the transforming circuit to
couple the nonresonant generator to the first node. For
most applications this technique is advisuble because it
allows a choice of values of L and C that arc easily real-
ized in practice. A reasonable value of inductance for the
filter designed to operate at 100 Mc is about 0.075 uh,
This value will be used for all coils, which will, by the
same token, require a nodal capacity of 33.8 pfin all cases.
If capacitive coupling is used, these elements and the
shunt capacitors can be calculated as foliows.

ELECTRO-TECHNOLOGY | JUNE 1964 ég



ey

C2 Ga C23 Css  Cp
{ it I i1 I
\ A [ N A

Fig. 5-3—Final four-pole filter design.

40
35 /
30 Chebyshev —
25 / N
“ R 3-db ripple
ha o
< N
Q’g 20 | /I~db ripple__ |
G
o
5 /////O.S-db ripple
o // /|
A
58— — _—
”__,M Butterwvorth
7 0-db ripple
o l
o] 2 4 8 3 10

Number of resonotors

Fig. 5-d—Helative minimum unloaded 4  for
Butterworth and Chebyshev filters. O is the un-

loaded O for which the loss is infinite. A\F/f, is
the relative bandwidth.

Cpy = k(A f50/0) VECy
(The C’s with subscript Roman numerals designate node
capacitors.) C|, = 0.84(10/100)33.8 = 2.48 pf. The first
nodal capacitorissetat 338s0 C, = C;, — C}, = 31.32.
Cos = k(A /fo) \/CHCE = 1.3

where VC,C;; = V/C,,Cjand so ony C; = 33.8 pf.

C, = 33.8 — 1.83 — 2.48 = 29.49 pf
Cy = Cpy = 248 pf
C.= C, = 29.49 pf
Cg= C, = 31.32pf

QO ELECTRO-TECHNOLOGY | JUNE 1964

The circuit design for the filter calculated above is
shown in Fig. 5-1. The design is considered complete
except that the proper transformation of the generator
impedance and the first resonator has to be done to pro-
duce the required quality factor in the first resonator.
The same transformation has to be performed with the
last resonator. The most practical transformation for the
above case is shown in Fig. 5-2. The shunt capacitor may
be used to absorb the distributed capacitance usually as-
sociated with the input and output circuit. The trans-
forming circuit can be calculated in the following fashion:

LI PALF:
CZ Rl
C C,
172 _
C + G, ¢

where R, is the transform value of R, required to produce
the specified Q. Incidental coil dissipation (neglecting
capacitive losses) is accounted for in the following way:

1 1 1

= =+
R R, Q0.X,

In this equation R is the value of nodal shunt resistance
required to obtain the specific ¢,,. The output trans-
formation is similar to the input transformation, and the
final circuit of the completed filter is shown in Fig. 5-3.
Fig. 5-4 shows the relative minimum unloaded @ for
Butterworth and Chebyshev filters.
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IF THE JSladp =1 NGRMALIZBATION IS
EMPLOYED, IT /1S NOTED THAT THE
40Jb ATTENVATION CRITERIA ts NoT
quiTe MET @ JSl=,.¢8 For n="7.
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