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2 
CALCULUS OF EXTREMA 

AND SINGLE-STAGE 

DECISION PROCESSES 

Many problems in modern system theory may be simply stated as extreme 
value problems. These can be resolved via the calculus of extrema which is 
the natural solution method whenever one desires to find parameter values 
which minimize or maximize a quantity dependent upon them. In this chapter 
we will consider several such problems, starting with simple scalar problems 
and concluding with a discussion of the vector case. The method of Lagrange 
multipliers will be introduced and used to solve constrained extrema problems 
for single-stage decision processes. A brief discussion of linear and nonlinear 
programming will be presented. Multistage decision processes, which can 
be treated by the calculus of extrema, will be reserved for a variational treat
ment which will result in a discrete maximum principle. Much of the work 
in this chapter is very basic, and a selection of only references [1] through [5] 

r of direct interest to the systems control area is given. 

2.1 Maxima and minima (scalar process) 

A real functionf(x), defined for a scalar x = a, has a relative maximum 
or a relative minimum j(a) for x = a if and only if there exists a positive 
real number a such that, respectively, 

Af=f(a +Ax)- f(a) < 0 
9 

(2.1 -1) 



or 
A!=f(ot +Ax)- f(ot) > 0 (2.1-2) 

for all Ax = x- a such thatf(a + Ax) exists and 0 < I Ax I < S. Further, 
if df(x)fdx exists and is also continuous at x =a, thenf(ot) can be an intel'ior 
maximum or minimum only if 

df(x)l = 0 (2.1-3) 
dx x=« 

If f(x) has a continuous second derivative for x = ot, the nature of the 
extremum at x = a can be detcrmfncd. The following well-known procedure 

f(x) 

I 
I 
I 

~---~--~~~X 
x1-d x1 x1+d 

(a) 1 r ~ 
f(x) = J21TuexpL(x-x1)

212o' 2
j 

For x in the interval: (-oo,oo) 
f(x) has on absolute maximum 
at x=x1• 

~--------*a--------~x 

(c) 
/(x) = eKu(x) 

For x in the interval: [O,o] 
/(x) has on absolute minimum 
at x = 0, and on absolute 
maximum at x=o. 
For x in the interval: [0, +co] 
f(x) has on absolute minimum 
at x=O. 

0 
(b) 

f(x) = ex[u(x)-u(x-aU 

For x in the interval: [O,a) 
f(x) has on absolute minimum 
a! x = 0, and on absolute 
maximum at x =a- & where & is on 
arbitrarily small positive number. 

f(x) 

(d) 
f(x) = x2 (2 -xl 

For x in the interval: (-oo,+oo) 
/(x) has o relative minimum at 
x = 0, and a relative maximum at 
x=4/3. 

Fig. 2.1-1. Illustrations of extrema. 

i 
t 

can be used for the determination of the extrema of a giv( 
y =f(x). 

!alar function 

1. Differentiate y with respect to x. 
2. For each value of x, determine the specific values of a which satisfy 

the equation dyfdx = 0. 
3. Test to see what kind of extrema the function has for each value of a 

thus obtained. This we can easily accomplish by the second-derivative 
test in which we substitute each value of a into the second derivative 
of y with respect to x and apply the following rule: 

} 

> 0 then y has a relative minimum 

If ~~ < 0 then y has a relative maximum 

= 0 then y has a stationary point 

(2.1-4) 

4. Evaluate the actual value of the extrema by substituting each value of 
a obtained into f(x). 

There are three different types of extrema possible. If a value of a can be 
found such that f(a) is an extremum for all x throughout its domain of 
definition, f(x) is said to have an absolute extremum. If a value of a can 
be found such thatj(a) has an extremum throughout a bounded neighbor
hood of x, f(x) has a relative extremum at x = ot. If f(x) is defined only for 
a limited range of values of x, and if f(x) has an extremum at either boundary 
of x (with respect to all the valuesf(x) has for all values of x contained within 
the limited range of x), then f(x) has an extremum at its boundary. These 
different types of extrema are illustrated in Fig. 2.1-1. We will have oppor
tunity to apply these concepts to parameter optimization of control systems 
in Sections 8.2 and 13.3-1. 

2.2 Extrema of functions of two 

or more variables 

The extrema-finding technique can be extended to include functions of 
more than one variable. Suppose y = f(x 11 x2, ••• , X 11) = f(x). A procedure 
similar to the previous one is used, using partial derivatives instead of total 
derivatives. A simple example will illustrate the procedure to be followed. 

Example 2.2-1 

Let us consider the maximization of 

1 
y(x) = (x1 - 1)2 + (x2 - 1)2 + 1 



'"".a..a.n.l.-, M 

where x1.' is '1 to indicate transpose of the column vector x. t Following an 
extended versiUn of the foregoing scalar procedure, we take the partial derivatives 
of y with respect to x1 and x2 and set them equal to zero to obtain: 

O)' ( -l)(2Xt - 2) 0 1 
axt = [(Xt - 1)2 + (xa - 1)2 + 11 2 = ' a1 = 

IJy (-1)(2x2 -2) _
0 1 axa [(x, - 1)2 + (x2 - 1)2 + lP - ' a2 == 

Thus, since a1 = a 2 = 1 are the only extrema, and since a simple computation 
shows that the second derivatives are nonpositive at this extrema, we see that 
we have a maximum at the point x1.' = [1, 1]. 

Example 2.2-2 

Let us now suppose that the allowable range of x is constrained such that 
lx11 s-! and lx21 s t• It is desired to find the value ofx which yields a maximum 
for the y = f(x) of Example 2.2-1 in the allowable or admissible range of x. 
This region of state space is also shown in Fig. 2.2-1. From this figure, it is 
apparent that, for this simple problem, y = /(x) has an extremum (maximum) 
somewhere on the boundary of the admissible range for x, in fact precisely at 
xT = [-!, H This is a very simple example of optimization with an inequality con
straint. We will have considerably more to say about this very important type 
of constraint when we consider dynamic systems and the calculus of variations. 

Example 2.2~3 

A slightly more difficult problem arises if the allowable range of x is con
strained such that the Euclidean norm of x equals one. Symbolically, this means 
that 11 x 11 2 = xTx = xi + x2 + ... + xl. = (x, x), Since the dimension of the 
example that we are considering is two, the Euclidean norm squared becomes 
llxW =xi+ x~. 

One approach to the problem is to solve for x1 in terms of x2, then solve for 
y = f(x) in terms of x2 alone, This will then allow us to use the standard scalar 
procedure. From the given constraint on the length of the Euclidean norm, we 
have x 1 = (1 - xD112, Substituting this into the expression for y(x) of Example 
2.2-1, we find that 

1 
y(x2) = (±~- 1)2 + (x2 - 1)2 + 1 

where y(x2) has the given constraint imbedded into it. The next step is to differ
entiate this expression with respect to the remaining variable, X2, and set the 
result equal to zero. This yields two solutions. The second-derivative test shows 
that a maximum (which is easily shown to be an absolute maximum) occurs at 
xT = [0.707, 0.707] and that an (absolute) minimum occurs at xT = [ -0.707, 
-0.101]. 

We note that, in the absence of the equality constraint, this problem has no 

t Appendix A contains a brief presentation of vector matrix notations and vector matrix 
calculus. 

• ,j 

EXTREMA OF FUNCTIONS OF TWO OR MORE VARIABLE~ 13 

Y(x) 

Circles of constont Y(x) 
-{hLf.fh4~=,__....._ x2 / 

For ony allowable range 
of x maximum occurs 

~ ol this point 

_.---.-..-=- - 1 Absolute moximum 
_ _ occurs here, 11x112:::1 

I I 
: I 

---;1----+---t-+.-;:::---- x2 
0.707 1.0 

(c) 

(b) 

Fig. 2.2-l(a) y(x) = 1/[(x1 - 1)2 + (x2 -1)]2; (b) Top view of Fig. 2.2-1a 
showing the region defined in state space by jx11 21/2; jxa/ 2 1/2; 
(c) Top view of Fig. 2.2-1a showing the region of state space defined by 
llxW 21. 



~ __ --··-·-~· ... v "'"'i"'"H.Y ~;omnraJnts 
of this type, namely II x 11 2 ::;;; 1 and II x W < 1. The first constraint set is closed 
(and conve \nee it includes the boundary II x 11 2 = xi + x~ = 1. The second is 
open (and CUJJvex) since it does not include the boundary. It is generally quite 
difficult to work with constraints of this form. One method, satisfactory in quite 
a few problems, is to ignore the constraint and find the maximum (or minimum). 
If this turns out to be interior to the boundary of the constraint set, we have the 
solution. If the maximum (or minimum) occurs outside the boundar-y, the inequal
ity constraint is treated as an equallty constraint, and a solution ls found with 
this constraint. Another method, to be discussed later, is to convert the inequality 
constraint to an equality constraint. Figure 2.2-1 illustrates salient features of 
these examples, 

2s3 Constrained extrema problems
lagrange multipliers 

An alternate approach to extremizing a function (i.e., find those values of 
the independent variables which cause the dependent variable to have an 
extremum) with given constraints or accessory conditions is to make appro
priate adjustments on the independent variable by using an adjustable 
multiplying parameter, commonly called a Lagrange multiplier. The proce~ 
dure is to form a new function by adjoining the given constraint to the 
original function. This new function, then, is extremized, by means of the 
previously developed method. We will solve an example first by the more 
straightforward, but often more cumbersome, procedure. and then by using 
the Lagr.ange multiplier. Considerably more justification for the Lagrange 
multiplier procedure will be provided in the next chapter on variational 
calculus. 

Example 2.3-1 

A tin can manufacturer wants to maximize the volume of a certain run of 
cans subject to the constraint that the area of tin used be a given constant. If a 
fixed metal thickness is assumed, a volume of tin constraint implies that the 
cross-sectional area is constrained. 

The defining equations for this problem are: 

Volume= V(r, I) = 7tr2l (l) 

Cross-sectional area = A(r, I) = 27tr~ + 27trl = A 0 (2) 

Our problem is to maximize V(r, I) subject to keeping A(r, I) = A0 , where A 0 is 
a given constant. The same approach can be used here as in Example 2.2-3. We 
solve for I in terms of r (or if preferred, r in terms of I) and then express the 
volume as a function of r alone, noting that the constraint on the cross-sectional 
area is now imbedded into the expression for the volume. We then examine the 
first and second derivatives to discern the character and location of the extrema. 

l 

j 

'r 

Method 1 

From Eq. (2) we have 

l _A -.!!..o """--==.27t:.:.;r:....2 

=- 27tr 

By substituting Eq. (3) into Eq. (1)1 we obtai~-.rX '> 

V(r) = ; Ao -p 1T Jt 

We differentiate Vwith respect tor and set the result equal to zero to obtain 

d~~r) = 1• - 37tl·2 = 0, r = JfiP-
We now substitute Eq. (5) into Eq. (2) and solve for/: 

l = {fA, 
VTir 

(3) 

(4) 

(S) 

(6) 

It is interesting to obtain the optimum length-to-radius ratio. In doing this, we 
see that, to get maximum volume, we make the length of the tin can equal the 
diameter, keeping cross-sectional area equal to a given constant. 

Method 2 

By using the Lagrange multiplier, we again want to extremize (maximize) 
the volume V(r, I) subject to the constraint A(r, I) = A0 • First we form the ad
joined function 

V'(r, I) = V(r, I) + i\[A(r, I) - A.J 

where i\ is the Lagrange multiplier. In terms of the parameters of the tin can, 
this expression becomes 

V'(r, I) = 7tr2
/ + i\[27tr2 + 27trl - A0 ] 

We take the first partial derivative with respect to each of the variables and set 
each result equal to zero. Thus we obtain 

oV'(r, I)= 7tr2 + i\27tr = 0 r = -2i\ 
at ' 

oV'(r, I)= 27trl + i\[47tr + 27tl] = 0, I= 2r 
or 

We now evaluate i\ subject to given constraint, A(r, I)= A 0 or 

A0 = 27tr 2 + 27trl 

In terms of the obtained values of r and /, this becomes 

A0 = 27t(4i\2) + 27t( -2i\)( -4i\) 
so 



r=2 rx;, 
V'fitii 

I= 4 JA;' 
V'I4ir 

We note that the negative square root is selected for 1\, to maker and I physically 
realizable quantities. We further note that the length-to-radius ratio is the same 
as obtained by the first method, as it well should be. 

2.4 Vector formulation of extrema problems
single-stage decision processes 

Considerable notational simplification occurs if functions of more than 
one variable are written in state vector notation. Thus a scalar function of 
several variables which is to be cxtrcmlzcd 

(2.4-1) 

may be written as 

J = (}(x) (2.4-2) 
where 

(2.4-3) 

For the majority of systems problems, it is convenient to distinguish 
between control vectors and state vectors. We generally desire to find a 
control vector, u or u(k), or u(t) if we have a multistage or continuous process 
which minimizes or maximizes some scalar index of performance of the 
system. This performance index will be called J. Possibly the simplest single
stage decision process with equality constraints is to minimize or maximize 
the scalar index of performance 

J = (}[x, u] 

subject to the equality constraint 

f(x, u) = 0 

where x is an n vector 

u is an m vector 

fis an 11 vector function 

fT(x, u) = [};(x, u),J;.(x, u), ... Jn(X, u)] 

(2.4-4) 

(2.4-5) 

(2.4-6) 

(2.4-7) 

(2.4-8) 

The solution proceeds as follows. We adjoin Eq. (2.4-5) to Eq. (2.4-4) 

{ 
! 
I 

I 
I· 

! 

I 

~ 
I 
~ 
I 

I 
I 
I 

I 

' 

With a vector Lagrange multiplier in order to form a scalar r 7tityt which 
we will call H(x, u, .It). 

H(x, u, i\) = ()(x, u) + i\Tf(x, u) (2.4-9) 

.\.~"=[A.,, A-z, ••• , A.n] (2.4-10) 

We now adjust x and u such that His a maximum or minimum. This requires 
an 8fJ a 
- = - + -f~"(x u)ll = 0 
ax ax ax ' (2.4-11) 

an ao a - = - + -fT(x u)ll = 0 au au au ' (2.4-12) 

where 

[oll]''l [all fJH aH] 
-au = au,' aug' . .. 'aum (2.4-13) 

Thus 13H/ou may be interpreted as the gradient of H with respect to u, which 
is commonly designated Vufl. Also, 

i!._F(x u) = 
ax ' 

aj; aJ;. a r,, 
ax, ax, . . . a'x, 

oft afn 
ax,. ax,. 

(2.4-14) 

It should be noted that Eq. (2.4-14) is similar to the transpose of the Jacobian 
of a vector 

of,. 
ax I 

af, r of,. 
axn ~ ax,. 

(2.4-15) 

. I 1 . • wtt 1 at east two tmportant differences: af(x, u)/au need not be square and 
is a matrix rather than a determinant. In order that J be an extremum, not 
only must 

an _
0 au - (2.4-16) 

but also the second variation of H must be greater than zero for a mtntmum 
or less than zero for a maximum (see second-derivative test, Section 2.1.) 

tThis scal_ar quantity, the Hamiltonian, has a number of very interesting properties 
that will be mentioned in later chapters. 



7 

I 

Chapters 3, / jld 13 will provide us with considerably more information on 
the second vu ... ttion than we present here. To see what this constraint on the 
second variation of H means, in terms of the necessary conditions required 
for making J(x, u) have an extremum, let us now formulate the second 
variation of H(x, u, /\). The first variation of H(x, u, .i\.) is 

SH = ( 8H)-r 8x + (8H)-r 8u ax au (2.4-17) 

which is the linear part of 

AH = H[x + 8x, u + ou] - H[x, u] (2.4-18) 

To get the second variation of H, denoted 82 H, we take the second-order 
part of the expansion of Eq. (2.4-18) in a Taylor series about 8u = 0, 
8x = 0 to obtain 

82H = .lax7'{[!. ~H] 8x + [!. aH] Su} 
2 ax ox au ox 
+ .laur{[~ an]r ax+[!. aH au]} 

2 .au ax au au 
In more compact notation, this becomes 

If we define 

Eq. (2.4-20) reduces to 

a an] 
au ax [8x] 
8 8H au 
8uatl 

I a an 
ox ox 

P-
-l[~~H]r au ax 

a aHl au ax 
a oHj 

8u au 

(2.4-19) 

(2.4-20) 

(2.4-21) 

(2.4-22) 

which is recognized as the standard quadratic form. A positive definite 
quadratic form is defined as one for which 8zrp 8z > 0 for all nonzero 8z. 
A positive semidefinite matrix, P, is defined as one which has the property 
that azrp 8z > 0 for all nonzero 8z. In a similar fashion, negative definite 
and negative semidefinite quadratic forms and matrices are defined. Section 
1.23 of Appendix A delineates a method which we can use to discern positive 
definiteness of a square matrix. Thus we can state the two necessary condi
tions,[4]:>tor J(x,u) to have an extremum in a given interval of x for convex 
or concave J(x,u). If J(x,u) is not convex or concave, the second condition 
is only sufficient, and a quantity known as the bordered Hessian must be 
used to obtain the second necessary condition. 

I. The following vectors are zero: 

oH _ 0 • 
ax- ' 

II. The following matrix 

l
& aH 
ax ax 

[!_aH]'f 
au ox 

:u(~~)J 
aaH 
au au 

. {positive semidefinite for a minii?um along f(x, u) = 0 
18 negative semidefinite for a maxmmm along f(x, u) = 0 

A sufficient condition for a function to have a minin~m:1 (maxim~~1) 
given that the first variation vanishes is that the second vanat~o.n be pos1t1Ve 
(ne ative) where the first variation vanishes [ 4). These condition~ are ~en
eralg and need be modified only if the possibility of a singular solutiOn ex1sts. 

Example 2.4-1 
Suppose that we have a linear system represented by 

f(x, u) = Ax + Bu + c = 0 

and wish to find the m vector u which minimizes J v. T If) '! 
J(x,u)=Hulih+tllxllb ,_ 

h A 
· x n matrix B is an 11 x m matrix, x, c, and 0 are 11 vectors. 

w ere IS an n , . · rt x and 
R and Q are positive definite symmetric matrices of d1mens1ona 1 Y m m 

n X ;~e Hamiltonian function is formed by adjo~ning t~e co~t function to the 
given constraint via the Lagrange multiplier techmque wh1ch giVes us 

H = tuTRu + tx'fQx + ?~,T[Ax + Bu + c] 

In order to minimize J, it is necessary that 

oH = Qx + AT'JI. = o, oH = Ru + B'f'JI. = 0 ox ou 
h r , is to be adj'usted so that the given equality constraint is satisfied, or _ _1 

.. 
\ 
J 

w e e"' -\ -1 1 -l 
-1 Ax + Bu + c = 0 -I ( R + f3 A- TQ A b) (3. )\, cJ /)( 

u.:::-1( B'( .L\Q-'0-r--rr3R-'e,'~) c:::- nl 
Thus we find that ,., ,({ 

-w=--(R-+-~~~_,.J~-t ~1::8~:=~c , vv-ft!:tJ~;_~"-
. the 

0 
timum u vector. We-J;~etiee-cthat-it-is-necessarrthat"t~tr"lnvers~of.<",<\" 

~:d.er--Ior-the-u-vectorto-extst. 'ft)"::tlfec1C1f this solution does m fact 
cause J(x, u) to have a minimum, we find the second variation a~d c~eck the 
necessary. condition II given earlier. From Eq. (2.4-y9) and the specifications for 

this problem, we have 
tO 

'f}J = .!_[l}x'f 8url[Q 
2 0 



}"[; f;:;, >14]] I' " " -

For J(x, u) i )Ve a minimum, fl2J;;::::: d, .t-h<W~ Q tlnd R 1'l'i'm't be non-negative 
definite. Si-fll:.v rh::is--is-given-in-thc...sta~cni~f-thc.problem, .. the. solution,if·it 
exis.t.S.-do.~minin:ize,J(x,·u). /lj)/f{,fr l'e0uin?l11e"r1t ;~ oh1aiYJed.bp nrt'"J-· 

1{,at-tl•ef,,st VMrA1tOit of {(,!.f)" o ~i(!Jds AJ":v~ BJU::::-o (t..M.ot 

Example 2.4-l .;} i 'i di..JJv{.-qLC ('J'J(f. (/JL(.C44.a;1d', > 6·&l j'y '7 o 1 J-;{,.:J: ~ 
Suppose that we wish to minimize the cost function R t- 6 T A- 1 Q 1-l /3 ~P..o. 

subject to the constraint 

J = 1-11 x lib '(:lt~:H.fr'r,..e d.P6.c:n0tR , 

X+ b11 + C ""'0 

where the scalar control is bounded such that Jul ::::;; 1. 
This problem can be solved without the magnitude constraint on the control 

with the result (from the last example) 

U = -(bTQb)-lbTQC 

If I u I obtained fl'Om the foregoing problem is less than 1, we obtain what is called 
a singular solution. This is so because the H function is linear in the control 
variable and fJH/fJu = A.Tb = 0 is the equation for a stationary point which may 
well be a minimum. If bTQb is positive definite, it is at least a local minimum. 
If the value of 11 obtained is within the boundary. that value solves our problem. 

:J- · ~~~Jl~~-~E.£[_J_I_!_~~a~l1i_t_!l~...Jbe!l.J.,_J~Q!LfoE._u 
. {must be on the boundary, This type of problem is of concern in optimal control 

.r .. . '~ t~nd will ~idered in some detail for dynamic processes. 
') I .:Jl 
"vV"'Jixample 2.4-3 [2] ) 

~ · Suppose that observations of a constant vector are taken after being corrupted 
,.. I with noise. Symbolically, we,express this as 

z:.=Hx+v 

where z which is composed of observed numbers is an m vector, H is an m x n 
matrix, x is an n vector, and v is an m vector representing measurement noise. 
It is desired to obtain the best estimate of x, denoted i., such that 

J= ~liz- Hi ilk·• 
is minimum where R is a sy,mmetric positive definite matrix. We accomplish 
this by setting · 

81 = HTR- 1(z- Hi)= 0 at 
Thus to obtain the best least-square error estimate of x we have 

i = (HTR-1H)-1HTR-1z 

One of the simplest cases of interest occurs when we take m estimates of a scalar. 
In that case it is reasonable to take H as a unit vector of dimension m or, in 
other words, a column vector of 1 's, and R as the identity matrix. For this sim
plest case, we have for the "best" estimate of x 

HTz 1 "':, 
i =m= m t;zt 

j.·· 
I 
~ 

I 

'i 

J 
I 

·I 

j 

j 

1 

· which is the well-known expression for tho average of' a num' lf observations. 
Another interesting case occurs when we have computcu .• for r measure

ments and someone gives us an additional measurement. A great deal of effort 
would be involved in multiplying and inverting HTR- 1H if His, say, a 1000 by 
20 matrix. To repeat this procedure for a new 1001 by 20 matrix would probably ; 
be prohibitiVe of computer time, particularly if "on .. Ji!)e" computation is a require- , 
~·We are thus l~!!J.Q.§~!~ .. !!Jl.OlutioiW1J[cllaifowsus~tiiadd_th~.tJe.w_measure· 
me~ wi_~~~ati~g· ~he ~ntire c~lcu,~t.ion~ t-~~tho_d~~hi~h allo'Ysus to ~o 
trus 1s called a recursive or sequentml5:sJ1t;natton \~~J!l~_,_})uch schemes are of 
c-onsillcl'ifble'"in'\portut\te hi modern system theory and will be explored in much 
more detail in Chapters 10 and 15. 

f.ssumc a set of measurements is represented by 

z=Hx+v 

Zt hu ht2 htn X1 VJ 

z2 ,21 x2 v2 
z= + 

z,. lzml limn x" v,. 
where i,. is given by (HTR-IH)-1HTR-1z. Now suppose that we obtain an addi
tional measurement such that we have 

[--~-·] = [~] [im + Ax] + [-~--] 
Zm+l h Vm+! 

The problem now becomes one of obtaining the best estimate ofx, im+t, such that 

is minimum; Following a procedure similar to the previous one, we find the best 
estimate of x is 

where for convenience we will now assume that the matrix R is an identity 
matrix. This amounts to placing equal weight on each measurement. A recursive 
scheme may be developed by the use of the matrix inversion lemma [2, 3]. We 
recall that 

If we define 



then the r 1
1x inversion lemma 

Prr..rl = Pm- P111h[h7'Pmh + 1]-lJtTP111 

which will be developed in Section 10.4-1 in a more general form, yields for the 
recursion formula 

im+l = Pm+t[l-Fz + llZm+tl 
= P,.HTz + PmhZm+i - P 111h[ltTP111h + 1]-lbTP111[HTz + hzm+tl 
= i 111 + P,.h[h7'P 11,11 + 1]-1[zll,+l - hTi-111] 

Thus the new estimate is equal to the old plus a linear correction term based 
on the new data and the old P111 only. Pol' 111 estimates of a scalar x with Has a 
unit vector of dimension m, we have 

P;;;• =m, 1 
Pm+l =~1' m-, 

which is, of course, the expected answer in this simple case. 

2.5 Linear and nonlinear programming 

The previous section contains several examples of what are commonly 
called nonlinear programming problems. ~~ically, the nonlinear program~ 
ming problem is concerned with the cxtremization of a continuous err~ 
Cntiablc function of n nQJJOegativ~ var' bles 8 x x ~·~ = B(x) su6Ject 
i-;-m inequality constraints A,(x) < 0, i = 1, 2, ... , m. Figure 2. - illus
'trates some basic ideas in a nonlinear programimng problem. In nonlinear 
programming, the e function is called an objective function-the function to 
be extremized. In this book we will commonly call such functions cost 
functions. 

As we have seen, ordinary calculus methods may be used to find the 
extremum of unconstrained functions. If ordinary calculus is applied to 
extremize 8, and if the resulting optimum vector x lies entirely within the 
constraint set A, < 0, and if x1 > 0, then that value of x solves the optimi
zation problem with the constraint. We have seen examples of this in Section 
2.2 and Example 2.4-2. If the optimum value of x computed by extremizing 
() is outside the constraint set A < 0 then the optimum value of x lies on the 
~!X o.L!h_e constraint set. If we knew w 1ich one o t e m constraints 
A determined the optimum, then we could apply the Lagrange multiplier 
method and usc an equality sign for that particular constraint and ignore 
the other constraints since the optimum x will be on the boundary of one of 
the known m inequality constraints. In general, we find it necessary to exploit 
each of the inequality constraints to determine which one of the inequality 
constraints to use. It is possible that more than one of the m inequality 

constraints will detet·minc the optimum x as illustmted Fig. 2.5-1. We 
should remark that, in the typical nonlinear programming problem, the 
functions A are convex, which insures that the possible region for an optimum 

. 8=1 8=2 8=3 8=4 x, 
(b) 

8=1 8=3 8=5 8=7 
(c) 

Fig. 2.5-1. Illustrations of nonlinear progmmming (a, b, c) and linear 
programming (c). 



xis also cor 
1 

Also, ()is convex if minimization is required and concave 
if maximizat11.,.! is required. This requires that any locill optimum is a global 
optimum of the cost function in the possible region of a constraint A, [4]. 

A special case of the nonlinear rogramming problem is the linear pro· 
gr~..l2[QJ ~nuWlc.lLoccur.s-w.b.e._n the e an~U.\J)J!l~.:!!nea:f1n 
~lie n vector x. I!)JJl~lll:ed.-thaL o ti.mum value o~ x lies 
ontlieoomrdary of two or more cleme~_o_L t~~~!!!!.~~~~n~tramt ~~t 
A{X) < o. Clearly, fhemajor problemlS'fo decide which Q.~~!, This 'is a state~~· 
ment of the gencrm-th1ear~progi'amining~pro6feffi. Of severaCmeth"ods' 
'aVailable forso1v1ilgtilepf'Oblem, the mosf"usecCn1ethod appears to be the 
simplex method [5]. In order to use the method, certain restrictions must be 
applied. The variables x1 must be nonnegative, the constraints A1 must be 
linear equalities, and the cost function must be minimized by the optimum x. 

We may transform the general problem of li~gramming, that of 
maximizing the cost function (objective function) 1 ______..~ " 1-\"fl'l' 

-(''·t I ~· 
J ).J (/'..' 

J = arx --r r (2.5-1) 0to! i.e-)~ '?.~ ~ "'S) 
~ u~ ~2.5-2) 

with the m inequality constraints 

Bx<c 

into the restrictive form for the simplex method. Any number can be written 
as the difference of two nonnegative numbers. For instance, if X1 has no 
restrictions on its sign, we may let 

Xn+l > 0, 

This insures the nonnegativity of the variables. Unfortunately, every sub
stitution of this type replaces one variable (x1) by two variables (xn+l and 
Xn+ 2). If the original problem formulation contains inequality constraints, we 
convert them to equality constraints by the introduction of nonnegative slack 
variables. For example, if we had the constraints 

2x1 + 4x2 + X3 > 5, 6x1 + X 2 + Xa < 4 

we would introduce the nonnegative variables x4 and X5 to obtain equalities 

2x1 + 4x2 + X 3 - X 4 = 5, 6x1 + X 2 + Xs + X5 = 4 

The variables x4 and x5 "take up the slack" in the inequalities and are called 
slack variables. Again, we increase the total number of variables to be 
considered. The linear programming problem may now be solved by the 
simplex method. 

Since we are to be much more concerned with optimization in dynamic 
systems than static optimization, we will not develop the many theorems of 
linear and nonlinear programming. References [4] and [5] contain thorough 

I 

J 
j 

discussions of both of these topics. We will consider nun al methods for 
the optimization of single-stage decision processes in Section 13.3-1. 

The extrema-ilnding techniques of this chapter, although quite sufficient 
for many different situations, will not, in general, allow the solution to many 
problems associated with control systems. Whereas the previously discussed 
techniques deal with methods for extremizing functions of one or several 
independent variables, in control-system design, we are typically concerned 
with extremizing certain types of functions whose independent variables are 
actually other functions. This type of function is called afunctional. Although, 
as we might expect, many of the basic approaches for extremizing func
tionals are similar to those for extremizing functions, the end results are 
sometimes quite different. The solution to a given problem in extremizing 
a given function of one variable is, perhaps, a number associated with a 
coordinate point, while the analogous solution to a functional problem is 
a nuinber associated with a function. The body of mathematics developed 
for extremizing functionals is variational calculus. This subject is at the 
very heart of optimal control theory and is a subject that we will explore in 
some detail throughout the remainder of this text. 
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PROBLEMS 
v' 

0 1. Find u such that 

J = x2 +u2 

is minimized subject to the equation 

xu= 1 

Use the Lagrange multiplier technique as well as the basic method. 
2. Discuss the singular solution problem where x is a two vector. 

0~-3. Find x6 for a set of measurements where z = Hx, where 



1.01 0 

2.03 0 

3,00 
H= z= 

3.05 1 

1.95 0 1 

0.97 1 0 

4. Now suppose that an additional measurement 

Z7 = 3.0; hT = [J, 1} 

is taken. Compute x1 by the smoothing method and the matrix inversion lemma 
method. Compare the effort involved via each method. 

5. Verify the matrix inversion lemma if 

P~ 1 = Pi:·' + hh1' 

Pr+l = Pr- P7h(h1'P7h + 1)-1h7'Pr 

by showing that 

Pr~tPrtt =I 

6. From Eqs. (2.4-14) and (2.4-17) calculate the third variation of H as given in 
Eq. (2.4-9). 

7. Find the maximum value of 

8(x) = xr + x~. 
subject to the inequality constraints 

,,g, Find the maximum value of 

(x1 - 4)2 + x~ < 1 

(x1 - 1)2 + xt::;; 4 

J 7 x, + x2, 
subject to the constraints 

x1 + ix2 ::;;; 1 

~XI+ X2 < 2 

I d {or· --/(1e 
9. Two o..l+erncde CApresSiDfiS were c{eve are " 

optll'l\1-l.ll~ (,( Ve<-10'( of &ot;trle ( 2. 4-1). s/Jow -HtAt- ..fhe li,\)"1) 

~fressions o.re GJu:11r..f.ertt CLnr) --fl,~.._f -fh-e fr·r~-t 

Sohdiol't will L-e -<2..o.A-ier +o ;,n,:::>letue~t"t Cot''{;~A1ionq 1/j-

1-f +he o{:/lrUl )iOH . ..- oJ LA i5 /owvY di.a,~-·~ J-t_.,:.f.. of )( · 

3 
VARIATIONAL CALCULUS 

AND 

CONTINUOUS OPTIMAL CONTROL 

In this chapter we will introduce the subject of the variational calculus 
through a derivation of the Euler-Lagrange equations and associated trans
versality conditions. The existence of the definite integrals defining the cost 
function is assumed, and it is further understood that minimizing (maxi
mizing) functions are to be chosen from the set of all functions having 
continuous second derivatives on the time interval under consideration. In 
addition, we will assume that the integral of the cost function is at least twice 
continuously differentiable. Thus, this chapter will deal with most of the basic 
concepts necessary for solving the types of variational problems commonly 
classified as control-system problems. Several such examples of continuous 
control problems will be solved. Many of the restrictions posed here will be 
removed in the next chapter. 

3.1 Dynamic optimization without constraints 

We will now examine a functional of the simple form where t. and t1 
are fixed · 

I
t, 

J <x> = cp[x(t), x(t), t] dt 
t, 

(3.1-1) 

27 



Problems of temization of this functional fot·m are sometimes called 
Lagrange problems. These include the Bolza problem 

'

It fit J'<x) = O[x(t), t] + ~[x(t), x(t), t] dt 
t, t, 

The inclusion is apparent if Eq. (3.1 ~2) is rewritten in the form 

f
it 

J 1<x> = A [x(t), x(t), t] dt 
. e. 

(3.1-3) 

where 

A[x(t), x(t), t] = <fl[x(t), x(t), t] + .fte[x(t), t] (3.1·4) 

We would now like to find an x(t) such that the given J<x> is extremized 
(i.e., maximized or minimized, depending on the given physical problem). 
This x(t) is called an extremal, and only an extremal can cause J<x> to have 
an extremum. We will assume that we know the correct extremal curve; 
denoted x(t). Thus we can write the expression (3.1-5) for a family of curves, 
starting at t = to and ending at t = t" which includes the extremal curve 
x(t). 

x(t) = x(t) + e7J(t) (3.1-5) 

where '1'/(t) is a variation in x(t) and e is a small number. A plot of J<x> 
versus e for various choices of 'f/(1) might appear as shown in Fig. 3.1-1. 
It is obvious that at e = 0, all curves arc minimum since 

x(t) = x(t) l.=o 
Thus on the extremals we have 

(3.1-6) / 

J<x> 

0 

oJ<x>j = o oe •=0 
(3.1-7) 

independent of the value of 'I'J(f) 
chosen. Strictly speaking, the solution 
obtained from Eq. (3.1-5) could cause 
J<x> to have a maximum or minimum 
or be a stationary point. The con
dition for a minimum is that 82J/8e2 

be positive at e = 0 independent of 
f" 'f/(1). However, in most physical prob-

Fig. 3.1-1. Minimization problem of lems, it is apparent that if a solution 
variational calculus. to Eq. (3 .1-7) exists, it will be a solution 

which minimizes (maximizes) the inte
gral, J<x), as desired. Now we can extremize Eq. (3.1-1) by using Eqs. (3.1-5) 
and (3.1-7). By differentiating Eq. (3.1-5) with respect to t, we obtain 

x(t) = ~(t) + ei](t) (3.1-8) 

I 

If we substitute Eqs. (3.1-5) and (3.1-8) into the given ( 
we then have 

tional (3.1-1), 

f
it 

J <x> = cp[.~(t) + e?J(f), .*(t) + eij(t), t] dt 
I, 

We should note that 

lim J(x) = J(x), 
•=O 

lim x(t) = x(t) 
e=O 

Therefore, to find the extremals of J<x> we now use Eq. (3.1-7)t 

aJ<x> I = flt{'t)(t) ap(x, ~. t) + r,(t) ap(x, .~. t)} dt = o 
0€ t=O t, OX {)~ 

or 

o = f' '1'/(t) ocf>(x, ~. t) dt + fir iJ(t) ap(x, ~. t) dt 
4 ~ 4 ~ 

After simplification Eq. (3.1-10) becomes,t 

o = s:~ 1')(t) [~t _ tt ;: J dt + ;: 7](1) 
1
:: 

(3.1-9) 

../ 
,/ 

(3.1-10) 

(3.1-11) 

Since Eq. (3.1-11) must equal zero independent of the value chosen for 
'1'/(t), we have 

~1~~- (3.1-12) 
\ 

~ ~ 8*17(t) = o, a.x for t=ta,tr (3.1-13) 

tThe following is given without proof: If u = f(x, y, z, , .. ) is a function of several 
variables, each of which is a differentiable function of r, v, w, ... , then u as a function of 
these new independent variables, is differentiable, and the following chain rule applies 

ou _ ouox ouoy 
or - ax 8r + ay Fr + ... 
~=~~+~~+ ov oxov oyov .•• 

tApplying the formula for integration by parts, which is 

by letting 

we have 

J: u dv = uv f: - J: v du 

o¢ 
ll = -:;, 

ox 
do¢ 

du = -;:dt dt ox 

dv = n(t)dt 

v = n(t) 

f tr . o¢ o¢ 'tr ft' d o¢ 
e, 1J(t) a~ dt = 1J(t) a~ e, - t, 1J(t) di a.R dt 



These relatione' · •s follow as a consequence of the following lemma. 

1
. If x(t) is co ..... 1uous on the closed interval t E [t l> t 2] and if J:: x(t)1}(t) dt 

l =' 0 for every 1}(t) contained in [t 1, t 2] such that 'YJ(t 1) = 'r}(t 2) = 0, then 
x(t) = 0 for all .t in [1 11 t 2]. ProQf of this lemma is given in reference [1]. 

J.,. D These two very important relationships form a good foundation for 
' solving variational problems. Equation (3.1-12) is commonly known as the 
~ \ Euler-Lagrange equation and Eq. (3.1-13) is the associated transversality 

"condition. These equations specify a two-point boundary value differential 
equation which, when solved, determines ~ in terms of a known cf>. 

3.2 Remarks on transversality conditions. 

The various forms and uses ofthe transversality conditions will be covered 
in some detail in this chapter. We do this because these conditions are among 
the hardest things to correctly formulate for any variational problem, and 
they are generally different enough for each problem to warrant comment. 

We will now examine Eq. (3.1-13) and tabulate many of the possible 
combinations for which this equation holds. In each case, t a and t 1 are fixed. 

I. Fixed Beginning-Terminal Points 
In this case we fix x(t0) and x(t1). Thus every admissib~t.io5' ;-,_ 
must pass through these fixed points. Therefore from Eq(Q2~~)).v\V1 J 
see that we must require that 7J{to) = 'YJ(t1) = 0. In this case the 
correct boundary conditions are the specified x(t.) and x(t1). 

II. Variable Beginning-Terminal Points 
We now consider that x(to) and x(t1) are variable or, in other words, 
not constrained. Therefore from Eq. (3.1~13) we have (since 7J{t) can 
be arbitrary at the end points) 8#8~ = 0 at t =to and t = t1• When 
this particular situation results, the boundary conditions are called 
the natural boundary conditions. 

III. Variable Beginning-Fixed Terminal Points 
In the case where x(t a) is variable and x(t 1) is fixed, we must constrain 
'l}(t 1) to be zero but can allow any (admissible) 'l}(to). Therefore _from 
Eq. (3.1-13) we have the two-point boundary conditions 8cf>/8x = 0 
at t = 10 , and 7](11) = 0, which means that the other boundary 
condition is the specified x(t r ). 

IV. Fixed Beginning-Variable Terminal Points 
For x(t0 ) fixed and x(t1) variable, a situation which often occurs in 
optimal control, we have from Eq. (3.1-13) that (since 7](11) is 
arbitrary) the two-point boundary conditions are the specified x(to) 
and 8#8~ = 0 at t = t1• 

With this tabulation, the analysis of the scalar Lagrange problem (which, 

as previously mentioned, includes the scalar Bolza problc· ':s nearly com
plete. Figure 3.2-1 illustrates graphically the essence of thb .abulation. 

(b) Case ll 

x(t) x(f) 

(c) Case ill (d) Case IV 

Fig. 3.2-1. Various combinations of end conditions. 

3.3 The second variation: sufficient conditions o-ft 
1 

. 

for (weak) extrema ~~( ~ ~~ 
~ l>l!lll>iiiii¥w ;:mamm••t• 

Until now, in the study of extrema of functionals we have only con
sidered a necessary condition for a functional to have a relative or weak 
extremum. This was, of course, the condition that the fir;t variation vanish. 
futhis section, we shall be briefly concerned with sufficient conditions for a 
function to have extrema and shall thus introduce the second variation. The 
next section on examples will illustrate the application of the second variation 
in a particularly simple case. 

To establish the nature of an extremum, it is necessary to obtain 82J/8e2 

evaluated at e = 0 from Eq. (3.1-1) under the conditions of Eq. (3.1-5). 
This is 



&2J<x>j : 'r{··~2&2cf>(~~~.t) + 2.,a2p(~.~.t) + ·2a2p(~.~.t)} dt 
0€2 •=0 u t. 'I OX 2 'I'J·t 0~0$; 1) ()~2 

(3.3-1) 

Applying integration by parts and the tQ_J.1$Versality conditions [Eq. (3.1·13)] 

we h5 ~ "'~.;\~ -- < J ~~ 
~ ~ 2 fe' . fJ2p(~. ~· t) dt = -o~f~'{j_ a2p(~. ~. r)} 2 dt' (3.3-2) 

r a t, 7}1} ()~()~ t, dt 0~ ()~ 'I] \ 
? .h~ 

~ . ~ 
' ~hus the second variation of J becomes 

()2J<x! I = Je'{n2[()2(~. ~. t) - d ()2p(~, ~· t)] + . 2 ()2¢(~, ~. t)} dt 
&e 2 •=0 ,, ., a~z Tt a,~ a~ 77 8~2 

(3.3-3) 

To establish a minimum (maximum) of J, the first necessary condition is 
that &J/oe = 0 at e = 0 independently of the variation 7J(t). The second 
necessary condition for a minimum (maximum) is that the second derivative 
of J with respect to e, evaluated ate = 0, be equal to or greater than (equal 
to or less than) zero. Sufficient conditions for a weak minimum (maximum) 
require that the derivative be positive (negative). All of this must, of course, 
be true independent of the variation 'l](t) and need only be true .along the 
optimal "trajectory," x(t). 

We can rewrite Eq. (3.3-1) as the quadratic form integral 

[
o2p(-~. ~. t) o2cp(.\;, ~. t)J 

o2J(x) 1 J1' . ax
2 

a~ aft [r;(t)J 
8€2 •=0 = t, [?J(t)?J(t)] o2p(~. J;, t) a2p(x, fc, t) iJ(t) dt 

ax afc afc2 
(3.3-4) 

If the matrix in this expression is at least positive (negative) semidefinite, 
we have certainly established a minimum (maximum). Alternately, from 
Eq. (3.3-3) we are assured that the second derivative is equal to or greater 
than zero if 

(3.3-5) 

.. and 

(3.3-6) 

For many problems in which we will have interest, the foregoing conditions 
are fulfilled, and we can establish necessary and sufficient conditions for a 
minimum. It is still possible, however, for Eq. (3.3-1) or Eq. (3.3-2) to be 
greater than zero even if the requirements of Eqs. (3.3-4), (3.3-5), and (3.3-6) 
arc not satisfied, since 7](1) and iJ(t) are not independent of one another. 

Complete exploitation of this point is beyond the intent o1 js chapter. 
Chapters 5 and 6 of reference [1] provide an excellent and readau•\l discussion 
of the necessary and sutncient conditions for a minimum. We will return 
again to this point in Chapter 4. We must again emphasize here that we are 
establishing conditions for a relative extremum, sometimes called a weak 
extremum, which may or may not be an absolute extremum. In Section 4.1 
we will discuss some requirements for an absolute or strong extremum, 

Example 3.3-1 

We desire to find the curve with minimum arc length between the point 
x(O) = l and the line t 1 = 2. 

The first step toward solving this problem is to formulate the functional 
J<x>. If we define the differential arc length as cis, the functional we desire to 
minimize is easily seen to be 

J<x> = J: ds 

, with associated boundary conditions 

x(t = 0) = 1, x(t = 2) =open 

Noting that for a differential arc length 

(ds)2 = (dx) 2 + (dt)2 

we have 

~~ = [1 + ,i2]1/2 

By substituting into the given cost function, we obtain 

J<x> = J: [1 + x2]1/2 dt 

Upon referring back to the functional defined in Eq. (3.1-1), we see that 

,P(x, x, t) = [1 + .X2]'12 

The Euler-Lagrange equation for this problem is therefore 

and thus we obtain 

Upon integrating, we obtain 

ocf> _!!..~ = o 
ax cit a~ 

-ci[ ~ J- 0 
dt (1. + ~2)1/2 -

~ 
A = c = constant, 

(1 + ),;2)1/2 

Thus we see that the extremal curve is given by 

x(t) =at+ b 



Therefore, '· 
straight lin~... 

shortest distance between a point and a straight line is another 
I 

We obtain the particular solution by properly applying the transversality 
equation to the given boundary conditions. We note that this problem falls into 
situation IV, i.e., fixed beginning-variable terminal point. Thus, x(t .) = x(O) = 1 
and 

at t = 2 

or~= 0 at t = 2. 
Differentiating the solution for~ with respect to t, we have ~ = a, and using the 
trnnsversality conditions we obtain a = 0 and b = 1. Therefore, the extl'emal 
curve satisfying the given boundary condition and minimizing the given arc 

length is x ~" 1. 
To mathematically demonstrate that we have obtained a minimum ratllel' 

than a maximum or stationary point, it is necessary to show that the second 
variation, represented by Eq. (3.3-3), is greater than zero. The pertinent terms 

in Eq. (3.3-3) are, for this example, "' _1.--: \ 
!!1 _ i)2cp .~ 1 ~ :::t }/ ~ 
&.~ a.i- o, 8~2 ~ (1 + .:?~lii .•. ~~ ( H o) ] 0 

Since ~ = 0 is the extremal solution, o2cp/8~2 is always greater than zero. Thus 
the second variation is greater than zero, and we have indeed established a 
minimum. Physically this was, of course, evident from the start. 

Example 3.3-2 
We desire to find the equation of the curve which minimizes the functional 

(boundary conditions unspecified) 

J<x> = J~[~x2 + xx + x + x] dt 

The Euler-Lagrange equation for this problem is 

x+1-x-x=0=1-x 
By integrating directly, we obtain the solution to this equation: 

t2 
x(t) = 2 + C1t + C2 

To determine C1 and C2 we must now apply the transversality equation to 
the given boundary conditions. Since this is a variable beginning-terminal 
point problem, situation II is used, which is the natural boundary condition case. 

ocp = x + x + 1 = 0, for t = 0, 2 ox 
Therefore, from the solution for x and its derivative, we have 

()-I. t2 ai = t + C1 + 2 + C1t + C2 + 1 = 0, for t = 0, 2 

We can now solve for C1 and C2 from the simultaneous equations 

c1 + C2 = -1, 3c1 + C2 = -s 

l. 

to obtain cl = -2 and c2 = 1. Therefore the extremal CUC1 

the given boundary conditions, is 

tg 
x(t) = 2 ~ 2t + 1 

which satisfies I . 

The act.ual value of the extremum is obtained when w~e_........,.....·~u~te into the given 
cost function and carry out the integration to obtai l '-? .-r, 

3.4 Unspecified terminal time problems 
"1 

By slightly changing the cost function given in Eq. (3.1-1) we obtain a 
very useful problem formulation; it is called an unspecified terminal time 
problem and, as will be apparent later, leads to the "minimum time" problem 
of optimal control. The basic problem is one of minimizing a given cost 
function where 11 is unspecified subject to the constraint that the final state 
of the system be specified by a prescribed terminal line or, in higher-dimen· 
sional problems, terminal manifold. 

The cost function generally contains terms representing energy expended, 
distance traversed, elapsed time, and so forth, which may appear singly 
or in combination. The original state of the system may be specified or 
unspecified, and the terminal line or manifold may be time-varying or 
invariant. 

The approach used here will be general enough so that any of the fore~ 
going specifications can be included in the solution of a specific problem. 
A graphical illustration of a variable terminal time problem is given in Fig. 
3.4~1. Instead of calling J(x) a functional, we will now use the systems 
control terminology, cost function, which for this problem will be given by 

I
t, 

J (x) = cp(x, x, t) dt 
t, 

(3.4-1) 

where to is known, t1 is unspecified, and x(to) may or may not be specified. 

... 
x(t) 

Fig. 3.4-1. Illustration of .variable terminal time problem where 
x(t 1) = c(t 1). 



We should note tnat tor tne promem snown m ng • .J.'t-1 w~;; 11m1<u i:>l<u .. , 

x(t
0
), is specific(· 

1
hough, in general, as previously stated, it need no~ be. 

As before, ~~~ J is the required curve, here referred to as the optimal 
system trajectory. A family of curves, which includes the optimal trajectory 
~(t), starting at to and ending at t 1 is given by 

x(t) = ~(t) + e7Jx(t) (3.4-2) 

with time derivative 

x(t) = ~(t) + eiJ,(t) (3.4-3) 

where 7J,.(t) is a variation in x which depends on t. 
Since the terminal time is unspecified, it must be treated as a variable 

and, therefore, must be examined to see if perhaps there is a ~nal time, 11, 

which is optimal. We will therefore define a family of final ttmes, one of 
which is the optimal final time f1 : 

t, = f, + €'f}t(t,) (3.4-4) 

where 7]1(1 1) is a variation in t 1• • • 

Our first step in minimizing the cost function, Eq. (3.4-1), ts to substitute 
Eqs. (3.4-2), (3.4-3), and (3.4-4) into it, which gives us 

f
tt+eq,(lt) • 

J <x> = </J[~(t) + e'f}x(t), ~(t) + ei]x{t), t] dt 
4 . 

(3.4-5) 

We now set oJfoe = 0 at e = 0 and obtain 

8'1 = o = ft'{rJit) ~ + iJ,(t) ~} dt + 'f/t(t1)</J[~(i{), ~Ci1), i1] (3.4-6) 
0€ t=O 10 U,.\, O.X 

Integrating a portion of Eq. (3.4-6) by parts, we obtain 

f
7
' 'f}x(t)[qp_- dd ~] dt + 'l}z ~ltr + 'f}t(fl)<fl[~(tr), ~(Jf), r,] = 0 (3.4-7) 

to a~ t ox a~ l=l, 

At the terminal time, the ter~inal l~ne, C(t~or, .in higher dimension.s, 
terminal manifold and the optimal traJectory x(t) mtersect, as shown 111 

~\ ' -- ....____,_ 
· Fig. 3.4-1. Therefore, using Eqs. (3.4-2) and (3.4-4), we have 
o') \.) /\ 1\ 
~ <.S -Wt + e7J,(tr)] + erJAir + e?J,(tr)] = C[tt + e?J,(t,)] (3.4-8) 

We take the partial derivative of this equation with respect to € and evaluate 
it ate= 0 to obtain 

7Jt(f1)~(f1) + ?J,if1) = ?J,(f1)C(f1) 

where ~(t) = o~Jot and C(t) = oCjot at t = fr. Thus 

'f}re(lr) = ?]t(ii)[C(il)- ~(il)] 
By substituting Eq. (3.4-10) into (3.4-7), we have 

(3.4-9) 

(3.4-10) 

f 

J , (t) l~- .. ~J dt + . (f )~[C(l) - ~(l )] U'fl-"\'1}• .~~1 11• 1!1 '• .,,. a~ ({i a~ 'f/t 1 l 1 1 a~(t, 1 

· + ¢[x(t1), ~(t/), f.rl} - ?Jlt) ~~ = o ax t=t, 

(3.4-11) 

Remembering that Eq. (3.4-11) must be identically equal to zero independent 
of the variations, we see that the first requirement for the solution to our 
problem (the second variation must also be non-positive) is that 

q_p_ - d q_p_ - 0 ox ({i ox-

7/t(t)[(c -(~)~ + cf> J = 0, 

// 'f}x(t) ~c/J = o~f. for t = to 
81 ~~ ~ 

(3.4-12) 

for t = f1 (3.4-13) 

(3.4-14) 

We recognize that Eq. (3.4-12) is the familiar Euler-Lagrange equation 
while Eqs. (3.4-13) and (3.4-14) comprise the transversality conditions for 
this problem. As before, there are four different relationships obtainable 
from the transversality conditions, but since they are so similar to those 
discussed previously, the details of these relationships are left as an exercise. 
We note that the " notation has been removed fr~'1§-!_Qd-12)_!.ht9Ugh_ 
{3.4-14) for convenience. Let us now attempt to apply our results to a simple 
problem. 

Example 3.4-1 

We wish to minimize 

J<x> = r [1 + ,X2]1/2 dt 

with x(O) = 1 such that x(t1) = C(t1) = 2- t1. 

We should recognize that the cost function is actually the arc length, which 
means that the distance between a point and a line is being minimized. Application 
of. the Euler-Lagrange equation yields the optimal trajectory x =at+ b, 
as in Example 3.3-1. To evaluate the arbitrary constants a and b, we make proper 
use of the transversality Eqs. (3.4-13) and (3.4-14). Here we specify x(O) = 1; 
thus 'f/,.(10 ) = 0. And since t 1 is unspecified, Eq. (3.4-13) becomes 

. a¢ 
(C - .X) ox + cp = 0, at t = t1 

Thus we obtain x = 1 at the unspecified terminal time t1• From the solution to 
the Euler-Lagrange equation and the specified initial condition, we have 
x(t = 0) = 1; so we must have b = 1 and x(t = t 1) = a = 1. Therefore the 
optimal trajectory is x(t) = t + 1, and the final timet 1 is t 1 = i· Salient features 
of this problem are indicated in Fig. 3.4-2. An interesting fact here is that the 
optimal trajectory intersects the terminal manifold \lt right angles. In general, 



x( 

x(O) 

Fig. 3.4-2. Illustration of variable terminal time variable end point 
problem, Example (3.4-1). 

the optimal trajectory will always be nontangent to the terminal manifold. 
This nontangency condition is, in fact, called the transversality condition. 

3.5 Euler-lagrange equations and transversality 
conditions-vector formulation 

The previous results can be easily generalized to include scalar cost 
functions in n-dimensional variables via the state-space approach. That is, 

we desire to minimize 

r
tr 

J<x) = cp(x, X., t) dt 
• t, 

(3.5-1) 

where x is the system state, an 11 vector such that x"' = [x11 X2, ••• , Xn]. to, 

the starting time, is generally specified (it may not be); x(to) may or may not 
be specified; x(t1) is specified by a given terminal manifold denoted C(t1).t 
As before, the terminal time t1 does not have to be known. After following 
a procedure quite similar to the scalar one, we have, after setting oJjfJe at 
e = 0 and dropping the " notation the requirement that among other things 

t ~ 7'(t)[~ - ~ ~t] dt = 0 (3.5-2) 

be true independent of rJ(l). This leads to the requirement that 

ocf>- !!_~ = o ox dt ox (3.5-3) 

tin general, all the states of x(t) need not be specified at the terminal time. If this is 
in fact the case for a given problem, great care must be exercised in applying the equations 
derived for transversality conditions in this section. This point will again be stressed at an 
appropriate time in the next chapter. 

I' 

which is simply an extended version of the Eulcr-Lagranr 
associated transvcrsality conditions are given by 

auation. The 

7)';.fi_ = 0, at 1 = '• (3.5-4) 

pfJc/J + -I. - 0 t 7Jx0;,. "'t '~-'- , a t = t1 (3.5-5) 

where 7Jt can be related to ~x by an equation obtained exactly as Eq. (3.4-8) 
was obtained " 

J \:--~~ 
(3.5-6) 

Although the notation of this section may appear somewhat cumbersome, 
in an actual problem it is not, as the next example shows. Usc of the 
Lagrange multiplier technique, as in the ~will alleviate some of 
the burdensome notation. 7 

Example 3.5-1 
~ ~." ~. 7 .. v--J 1,, 

We desire to find the transversality conditions for the minimization of 

Itt 
J = cp(x, :i, t) dt 

t, 

such that x(t 1) = C(t 1), where CT(t) = [c1(t), O, 0] and xr = [x~o x 2, x 3], x(/0) = X00 

with /0 specified and t 1 unspecified. The Euler-Lagrange equations are 

a¢ _ !!_ a~ = o, a¢ __ !!_ a~ = o, ocf> _ !!_ oc? = 0 
OX! dt ax, ox2 dt ox2 OXa dt OXa 

with associated boundary conditions, x(t 0 ) = X 0 , which represents the initial 
condition for the two-point boundary value problem, and ,,\ \ , l '( 

_ a¢ cf> x: r t) • c t1 ~ _,, ,..-- + ~ = 0, x2(t) = 0, x3 (1_).-=-14..__ at t = t1 - -
ux, '-I .x, ....__---- '· \"I I 

Although it may seem that all unspecified terminal time problems may now 'It J 

be worked by mere substitution into the derived relationships, Eqs. (3.5-3) \j1 
through (3.5-6), this is not the case. Many problems do not fall precisely into 
a form which allows direct use of our derived formulas. When this type of y,' 
problem is encountered, a good procedure to follow is to derive the transversality 
condition for the particular problem. An example demonstrating this type of Y. L 

approach follows. \,______ -7 (; 
\X( 

Example 3.5-2 

We wish to find the transversality conditions for the minimization of 

ft, 
J = cp(x, :i, I) dt 

t, 

such that llx(t1)112 = 1, where xT = [x1x2], with specified starting time t0 and 
terminal time t 1• Thus, we would like to reach the region of sta tc-space specified 



by xi + x; = 1 J specified terminal time t 1 given the state at the start.ing time 
t0 , denoted by x(/0 ). 

The transvcrsality conditions are, from Eq. (3.5-4), 

at t = t1 

As before, we assume that x(t) = t(t) + e'l}x(t) where xis the optimal trajectory. 
For this problem, this relation in component form becomes x1 = x1 + €'1'/x, and 
X~ = x2 + €'1'/xo• Substituting these results into the given terminal manifold, we 
obtain 

(x, + e'I'J.,Y + <x2 + t::'/}.,,)2 = 1, at t = t1 

Taking the partial derivative of the foregoing equation with respect to e and 
then setting e = 0, we have 

X1'f/ . ., + X2?J.ro = 0, t = t1 

We thus see that the specification of the terminal manifold 

xr(t,) + x~(tl) = 1 

leads to a Jin~ar relationship between '1'/.,, and "7 ... at the terminal time. If we com· 
bine this relation with the previously stated transversality condition, we obtain 
for one of the terminal boundary conditions 

ocp x2 _ acp _ 
0 ax, Xt OXz- I 

at t = t1 

Therefore the two boundary conditions at t = t 1 are 

x1(t1) + x~(l1) = 1 

__M_ x2(t1) _ __M_ = 0 ax1(t1)x,(t1) ax2(t1) 

Thus for a given cp(x, x, t), we can resolve this problem completely by solving 
for the optimal trajectory through the Euler-Lagrange equations and the appro
priate boundary conditions which we have just obtained. 

3.6 Variational notation 

Much of the notation in the problems that follow can be considerably 
simplified if variational rather than differential notation is used. We wish to 
minimize (for t 0 and t 1 fixed) 

f
t, 

J = cp(x, x, t) dt 
t, 

(3.6-1) 

We assume, as in Section 3.1, that both x(t) and x(t) are representa\>le by a 
family of curves 

x(t) = x(t) + e'll(t), x(t) = ~(t) + e~(t) (3.6-2) 
' 

where x(t) is the optimal (extremal) curve and 11(1) is a variation in x(t) 

depending upon t. We substitute Eq. (3.6-2) into Eq. (3.6-1 .!td expand 
~b(x, x~ t) in a Taylor series about the point e = 0. · 

' ~ 

cf>[x(t) + ~n(t), ~(t) + e~(t), t] = cfo(x, ~~ t) + ~ en(t) + ~ e~(t) + H.O.T. 

(3.6-3) 
where H.O.T. is used to indicate higher-order terms in 'l(t) and ~(t). · 

If we now let 

A.J = J(x +en>- J(x) 

we can write 

' A.J d f11
{<f>[x(t) + €'11(!), ~ + eiJ, t] - cp[x(t), ~. t]} dt 

t, 

= s:: {~ e11(t) + ~ e~(t) + H.O.T.} .dt ( l_ 

(3.6-4) 
( ) 

Now we define the first variation of x(t) and x(t) as 

e11(t) = ~x, ei}(t) = ~x (3.6-5) 
Thus 

A.J- ~"~x + . ~x + H.O.T. dt ·- fe' [o.P. ~ . J 
t, uX OX 

(3.6-6) 

Since the variation plays the same role in variational calculus as the differen
tial in standard calculus, we use the property of linearity, ~ 
the first variation of J, ~J t lin art '-I::..J, is 

~J= f]~~x+~~x]dt (3.6-7) 

A necessary condition for an extremum at x(t) = x(t), i.e., e = 0, is that 
the first variation of J, ~J, be zero. Applying this to Eq. (3.6-7), along with 
the minor simplification of integrating by parts and dropping the " notation, 
we obtain 

fe'[oc/J _ !!_ ~] ~ l'=t, _ 
t, OX dt OX ~X dt + OX ~X t=t, - O (3.6-8) 

For Eq, (3.6-8) to equal zero independent of the variation ~x, we must have 

~ - !!_ ~ = 0 (3.6-9) ox dt ox 
oc/J -~~X- 0, 
uX 

for t = 10 , t1 (3.6-10) 

We note that Eq. (3.6-9) is 'the Euler-Lagrange equation and Eq. (3.6-10) 
is its associated transversality condition. 



In a similar n )et·, it is also easy to show that the second vadation of 
Eq. (3.6-1), written ?3 2

/, is 

~Nc~ ~ J::{<Sx)t~~~ a~-~~] +(8x)2 ~}dt (3.6·11) 
where the second variation is now defined as the quadratic part of Eq. (3.6.6) 
or twice Eq. (3.3-4). As previously stated, the interpretations of the second 
variation are that S2J> 0 implies a minimum of J and S2J ~ 0 implies a 
maximum of J. A quadratic form integral similar to Eq. (3.3-4) also follows 

directly. 

3o7 Dynamic optimization with equality 
constraints-Lagrange multipliers 

A constrained optimization problem may require extremizing a cost 
function of the form 

J
tr 

J = cp(x, i, t) dt 
t, 

(3.7-1) 

subject to the equality constraint 

A(x, i, t) = 0 (3.7-2) 

where x7' = [xl> x 2, ••• , x11] and AT= [A1, A2, ••• , Aml with m ~ n. It can 
be shown that the solution to this problem is the same as that obtained by 

extremizing 

f
tr 

J' = [cp(x, i, t) + ;V(t)A(x, i, t)l dt 
t. 

(3.7-3) 

where 'Af = [A.1, A.2, ••• , A,m] is the vector equivalent of the Lagrange multi
plier discussed in Chapter 2 [4). 

To illustrate the development of the Lagrange multiplier, let us consider 
a special case where x is a two vector. Suppose that we wish to minimize 

J = ftr cp(x1, x2, .X~> x2, t) dt 
t, 

subject to the constraint (with fixed end points) 

A(x" x2, t) = 0 

(3.7-4) 

(3.7-5) 

We will use the variational notation just developed to establish a method for 
treating the given equality constraint. To establish a minimum, it is necessary 
that the first variation of Eq. (3.7-4) be zero, that is 

SJ = ({sx{~- ft :tJ + sx{;!- ft ~]} dt = o (3.7-6) 

If Sx
1 

were independent of Sx2, we could simply set each term of Eq. (3.7-6) 

equal to 0. Since the constraint provides a dependence on x1 ancl '"?.• we must 
take the given constraint into consideration. Taking the vm )n of Eq. 
(3.7-5) we have 

(3.7-7) 

It also follows that, for any A.(t), we may multiply Eq. (3.7-7) by A.(t) and 
integrate so that 

ftt ( [&A 8A J A. t) a-Sx1 + a-8x2 dt = 0 
I, uX1 uX2 

(3.7-8) 

If we add Eq. (3.7-6) to Eq. (3.7-8) we obtain 

o = J
1

'{sx,[~ - .!!. # + A. BA J + 8x2[~ - .!!. ~ + A, a A]} dt 
. t, 8xl dt ax, ax, 8x2 dt ox2 ax2 

(3.7-9) 

We will now adjust A, so that the term within the first brackets under the 
integral is zero. It also must follow that, since Sx2 is arbitrary, the term in the 
second brackets under the integral is also equal to zero. It is apparent that 
we would have obtained the same results had we reformulated the given 
problem by adjoining to the cost function the constraint via a Lagrange 
multiplier as in Eq. (3.7-3) and used the Euler-Lagrange equations on this 
cost function. The resulting Euler-Lagrange equations would then be solved 
subject to the equality constraint of Eq. (3.7-2). 

Example 3.7-1 

We are given the differential system 

0 = u(t) 

which may be interpreted as the moment of inertia of a rocket in free space, and 
we desire to minimize 

such that 
8(1 = 0) = 1, 

iJ(t = O) = 1, 

8(t = 2) = 0 

iJ(t = 2) = 0 

To cast this problem in state space notation, we let 

x1(t) = 8(t), x1 = x 2(t), x2 = u(t) 

Now the differential system can be represented by 

x = Ax(t) + bu(t) 

where 

A=[~ ~]. bT = (0 1) 



When we apply 1(3.7-3) (u(t) is treated as another state variable, x3}, the prob· 
lem becomes one of minimizing 

J = J: {iu2(t) + }I.T(t)[Ax(t) + bu(t) - i]} dl 

= s: {tu2(t) + ].,t(l)[x2(t}- x.J + ].,2(/)[u(t} - x2]} dt 

The Euler•Lagran~e equations yield 

;\_1 = 0, ;\,2 = -A.t(f), 

The final solution is obtained by means of the given differential relationships 
and boundary conditions, and it is 

Xt = !t3
- {12 +I+ 1, X2 = W- ~~ + 1, U = 3t-! 

This system, along with a plot of the system trajectories, is shown in Fig. 3. 7-l. 

fJ(f)= 3t -7/2 = u(f) 

e= x,(t) 

Fig. 3.7-1. Block diagram, optimal control and state variables for system 
of Example (3.7-1). 

Example 3.7-2 Linear Servomechanismt 

Suppose that we wish to minimize 

J = ~ J1
'1l u(t) lliw> +II x(t) - r(t) llb<t> dt 

lo 

for the general time-varying system specified by 

i = A(t)x(t) + B(t)u(t) 

tA considerably more detailed treatment of this problem will be given in Chapter 5. 

\, 

with x(t0) = X0 as the initial condition vector. r(t) is the desire .1lue of the 
state vector x(t). As before, it is necessary to assume that all matric~.:~ and vectors 
are of compatible orders. We adjoin the differential system equality constraint 
to the cost function by the Lagrange multiplier to obtain 

J' = ft' H II u(t) llit(t) + ! u·x(t) - r(l) llb<t) + 11/'(t)[A(t)x(t) + B(t}u(t) - i]} dt 
t. 

The exact nature of the cost function used depends upon the particular 
problem being solved. Therefore R(t) and Q(t), both penalty-weighting matrices, 
are generally chosen with regard to the physical conditions present. We also 
assume that both R(t) and Q(t) are symmetric, since there is no loss in generality 
by doing so. The control vector, u(t) is treated just as if it were a state vector. 
Then we apply the Euler"Lagrange equations, which in this case are 

where 

<I> = iII u(t) llh<t> + ! II x(t) - r(t) llb(t) + )\.T(t)[A(t}x(t) + B(t)u(t} - i] 

Thus 

~~ = Q(t)[x(t) - r(t)] + AT(t)11.(t), 

88~ = R(t)u(t) + BT(t)11.(t), a<IJ = o au. 

o<IJ ax = -11.{1) 

The Euler-Lagrange equations for this problem become 

), = - AT(t))\,(t) - Q(t)[x(t) - r(t)], u(t) = -R-1(/)BT(t)}..(t) 

Since x(t 1) is unspecified, the transversality condition at the terminal time yields 
).,(t 1) = 0. This solution can be block"diagrammed as in Fig. 3. 7-2. We note that 
the solution for the optimal control requires that R(t) have an inverse. Also, certain 
other requirements must be met to insure a minimum of the cost function; 
specifically, R(t) and Q(t) must be nonnegative definite to insure a nonnegative 
second variation. Thus we see that R(t) must be positive definite. 

Although it appears that we have solved the originally stated problem, there 
are still some further refinements which are highly desired. Since the state of the 
system is specified at t "' we are given x(t 0), while the adjoint operator Mt) is 
specified at the terminal time, }..(t 1) = 0. What we, in fact, have to do is solve 
a two"point boundary value problem (TPBVP), something which, in general, 
cannot always be done without recourse to electronic computers. In this partic
ular case, since the differential equations are all linear, superposition can be 
invoked and a closed-form analytical solution obtained with great difficulty. 

If we let r(t) be either a constant vector or the null vector, the foregoing 
problem reduces to a regulator problem. The treatment of the servomechanism 
problem can be made more general if we assume that indirect state observation 
is made available to us, that is, for the system 

x = A(t)x(t) + B(t}u(t) 



;\(I) 

Fig. 3.7-2. Block diagram of a possible solution to the servomechanism 
problem. 

we can obtain directly only 

z(t) = C(t)x(t) + D(t)u(t) 

The procedure and results arc quite similar to the ones obtained in this example 
except that requirements on observability and controJlability, to be discussed in 
Chapter 11, are present. 

To solve this two-point boundary value problem, we must require a know
ledge of r(t) for all time in the closed interval t 0 to t 1 or, in shorthand notation, 
VIE [t 0 , t 1 ]. Since a two-point boundary value problem must be solved before 
we can determine the optimum control for this problem, it is clear that a closed
loop control has not been found. After we have formulated the Hamilton-Jacobi 
equations and the Pontryagin maximum principle, we will have a great deal 
more to say about this important problem. 

3.8 Dynamic optimization with inequality 

constraints 

In many physical problems of interest to the control engineer, there are 
various inequality constraints on the control vector. For example, the 
maximum thrust from a reaction jet is physically limited as is the maximum 
input reactivity in a nuclear reactor. When inequality constraints are present, 
it is necessary that we consider them in determining optimum system design. 

Thus we are faced with minimizing a cost function of the f 

I
t, 

J = cp(x, X., t) dt 
t. 

with equality constraints of the form 

A(x, X., t) = 0 

and inequality constraints of the form 

r ... tll :::;; r(x, X., t) :::;; r ..... x 

(3.8-1) 

(3.8-2) 

(3.8-3) 

When the inequality constraint involves the control vector, the control 
vector which satisfies the constraint conditions is called an. admissible 
control vector. One technique which is generally satisfactory for resolving 
the contml inequality constraint problem consists of converting the inequality 
constraint to an equality constraint. It can be easily demonstrated that the 

1 

equations h;f -1-L'~ ,· s ,~,-~~-
(rmnx; - rt)(Pt - rmtn t) = ry~, i = I, 2, . . -:7 (3.8-4) 

are equivalent to the constraints of Eq. 3.8-3 sin ach term on the left 
side of Eq. (3.8-4) must be positive, reach negative and thus have a positive 
product. Thus the inequality constram s een converted to equality 
constraints and may be treated as such. Lagrange multipliers are then used 
to adjoin the equality and inequality constraints to the cost function, Eq. 
(3.8-1), and the Euler-Lagrange equations applied.t The technique can best 
be illustrated by an example. 

Exam1>le 3.8-1 

Let us consider the same plant dynamics as in the previous example 

.X1 = x2(t), .X2 = u(t) 

ditions x {1 0 ) = X0 and xz(t 0 ) = V0 • The problem is to find the 
contn_?l wl 'ch maximizes x,(t1), for fixed tf> subject to the boundary condition 
equa:1ity constraint that x2(t 1 = v 1 and the inequality constraint on the scalar 

/./c.ontrol Umtn < u < unlflx• We convert the inequality constraint to an equality 

b 
constraint by introducing a new variable a(t) and replacing the inequality 
constraint by 

.•. _C.! . I I I 

~ ~....,.... ~ "'~ (u - llmtn)(llmax - u) - a 2 = 0 

-'AI.{.~ Thus the problem may be recast as one of~_,..ii1.....,im-.,-iz...,.in_g_J_= ___ x_1--:-(t~1Dsubject to 
the equality constraints 

x1 = x2(t), 

X2 = u(t), 

x1(f0) = X 0, x1(t1) =open 

X2Cto) = Vo, x2Ctr) = Vr 
(u - llmin)(llmnx - u) - d. 2 = 0 

tChapters 4, 13, and 14 will consider more varied aspects, theoretical and computa
tional, of the inequality constraint problem. 



The cost f ~ion with the adjoined Lagrange multiplier becomes 
J~- -~--

J' = ( x,(to) + ft' -x, + i\.,[x2 - x,] + i\.2[u - .\'21 
t • 

.,... '{,(t~) ~ + i\.a[(lt ~ llonln)(llmnx - 11) - a2] dt 
The Euler-Lagrange equation 

d
d a~> _ ac~> = o, 
t ax ax 

with 

ci> == i\.,[x2 - x,] + i\.z[ll - x2} + i\.a[(u - tlmtn)(llmax - 11) - <X2) - x, 
·yields 

li., = 0, ;\.2 = -~-1 
0 = -i\.2 + i\a[211- Umax - llmtnl, 0 = ai\.a 

Application of the natural boundary condition equation (transversality con· 
dition) to determine the single missing terminal condition on x1(t1) yields 

a~, = 0 = -1- i\l(tr) 
axl t-~ . 

Thus we have arrived at the two-point boundary value problem whose solution 
determines the optimal state and control variables. This TPBVP is 

X1 = X2(t), x,(t0) = Xo 

X2 = U(t), X2(to) = Vo 

li.l = 0, i\l(t,) =. -1 
li.2 ~= -i\t(l), x2(tr) = v, 
a(t)i\3(t) = 0 

i\2(1) = i\a(t)[2u(t) - llmax - Umtn] 

ct2(t) = (11(1) - tlmtn)(Umax - U(t)] 

This TPBVP is nonlinear because of the last three coupling equations above 
and is quite difficult to solve without recourse to a computer. In a usual version 
of this problem, llmtn = -1 and Umax = + 1. In that case, it is possible to show 
that a(t) = 0 and 

where 
u(t) = -sign i\2(t) 

sign i\.2 = 1 

sign i\.2 = -1 

This does not, however, change the nonlinear nature of the two-point boundary 
problem. In a later chapter we will devote considerable time to various gradient 
methods, Newton-Raphson techniques, and other computational techniques for 
solving nonlinear two-point (and multipoint) boundary value problems. 
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PROBLEMS 
v' 

' 1. A linear differential system is described by 

i =Ax+ Bu 
where 

A=[~ ~]. 
Find u(t) such that 

J=if:iluWdt 

is minimum, given x7'(0) = [1, 1] and x1(2) = 0. 
' 2. Find the conditions necessary for minimizing 

flt 
J = O[x(t r )] + cp(x, x, 1) dt 

t, 

v given x(t 0) = x 0 and g(x, x, 1) = 0. 
' 3. Use the results of Problem 2 to find the controlu(t), which minimizes 

' 

J = ~ x2(2) + i J>2 dt 

such that x = u(t), x(O) = 1. 
4. A linear system is described by 

X= -X+ u, x(O) = 1 

It is desired to minimize 

J = t J: (x2 + u2) dt 

A feedback law is obtained if we let u(t) = ax(l) where dafdt = 0 such that 
t/ a is a constant. Find the equations defining the optimum value of a. 

'- 5. Find the differential equations and associated boundary conditions whose 
solutions minimize 

flt 
J = ·} 0 11

2 dt 



for the diffen~ntial system described by 

with end points given by 

x1 = -x~ + x2 
x2 = u 

x1(0) = x2(0) = 0 
xY(t1) + x!{t1) = t} + 1 

6. Find the \'alue of u which minimizes (for t 1 unspecified) 

J = J:' [a + u2(t) + x2(f)] dt 

for the differential system 
/ x = -x(t) + u(t), x(O) = 1, x(t1) = 0 

' 

7. A linear second-order differential equation is described by 

x1 = x2(t), x1(0) = 1 
-*2 = u x2(0) = 1 

Find, by use of the Euler-Lagrange equations and transversality conditions, the 
optimal controlu(t) which minimizes: ....,/"' 

~ (a) J = J: u2 dt, 

(b) J = { u2 dt, 

(c) r J = 
0 

u2 dt, 

(Also determine t1 and x1(t,).) 

(d) 

(e) 

f
t, 

J = 0 //2 dt, 

- ~ ( f~t) -) 
LA ~ . __. t):\ wtJ )3 

/ J-( 1 .-~oY}t>) J 
/lA / I 

x1(l) = x2(1) = 0 

x1(l) = 0 

x 1(t1) = c(t1) = - t} 

x 1(t1) = c(t1) = -t}, x2(t1) = 0 

4 =· ~-c--r*t-->. 
For all cases, sketch both the optimal system trajectory x(t) and the optimal 
system control u(t). 

8. For the fixed plant dynamics given by 

x=u 
determine the optimal closed-loop system which minimizes 

J where i(t) = 1 - e-1• 

J = !- J: {112 + (x - i)2
} dt 

9. For the fixed plant dynamics given by x = u(t), x(O) = x0 , determine the optimal 
closed-loop control which minimizes for fixed t 1 

J = !-sx2(t 1) + i J~' 11
2 dt 

where s is an arbitrary constant. Do this by first determining the optimum 
open-loop control and trajectory and then let u(t) = k(t)x(t). 

4 
THE MAXIMUM PRINCIPLE 

AND 

HAMILTON-JACOBI THEORY 

In the previous chapter, we formulated many problems in the classical 
calculus of variations. A derivation of the Euler-Lagrange equations for 
both the scalar and vector cases was presented. We discussed the associated 
transversality conditions and some of the difficulties which we may encounter 
if inequality constraints are present. Several simple optimal control problems 
were stated and solved. In this chapter we wish to reexamine many of the 
problems presented in the previous chapter and obtain more general solutions 
for some of them. In addition, we will develop methods for handling some 
problems which could not be conveniently formulated by the methods in 
the previous chapter. 

To these ends, we will present the Bolza formulation of the variational 
calculus using Hamiltonian methods. This will lead us into a proof of the 
Pontryagin maximum principle and the associated transversality conditions. 
We will proceed then to a development of the Hamilton-Jacobi equations, 
which are equivalent to Bellman's equations of continuous dynamic pro
gramming. Finally, we will give briefmention to some limitations of dynamic 
programming. Examples to illustrate the methods will be presented. We 
will reserve the next chapter for a discussion of some of the many problems 
which we can formulate and solve using the maximum principle. 

In order .to fully develop our approach to optimization theory where 
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the terminr ~1e is not fixed and where the control and state vectors are 
not necessaruy smooth functions, we must consider in more detail the first 
variation for such problems. 

4.1 Variation of functions with terminal times 
not flxed-the Weierstrass-Erdmann conditions 

In this section, we will consider problems which arise when the terminal 
(or initial) time is not fixed (unspecified in the problem statement). We must 
reexamine our concept of a variation in order to accurately treat problems 
wherein the terminal (or initial) time is not fixed if we are to use the powerful 
concept of the first variation. We thus wish to consider the extremization of 

f
tr 

J = <P[x(t), i(t), t] dt 
. t, 

(4.1-1) 

where all admissible trajectories are smooth and where the terminal time is 
not fixed. We define a variation SJ as the part of 

A.J = J[x + h, tf + otf]- J[x, t,r] (4.1-2) 

which is linear in b, h, ax, ax., and of f• Since both X and t f vary, it is appro
priate to consider the variation ax as 

ax (tf) = h(t.r) + i(tf) Stf (4.1-3) 

For the cost function, Eq. (4.1-1), we find that 

ftrHit , ft' 
AJ = <P[x(t) + h(t), i(t) + h(t), t] dt - <P[x(t), x(t), t] dt 

t, t, 
(4.1-4) 

By taking the linear terms in this equation and performing an integration 
by parts, we obtain the first variation ast 

(jJ = <J>[X(f ·) X(/ ) f ] {jf + bT(f ) ocf.>[X(t f), X(t f), f tl 
J ' f' f f r oi(tf) 

+ f1
' hT(t) {ocf.> - !!_ 0~} dt 

l, ox dt ox 
where, for convenience, we assume that h(t 0) = 0. Using Eq. (4.1-3), the 
first variation becomes 

SJ = .{cf.>[x(t ) i(t ) t ] - X.T(t ) ocf.>[x(t r), i(t r), t rl} ()t f , f , f f ax.(t 
1

) r 

+ a T(t ) oct>[ x(t f), i(t r), t 1] 
x f . ox(tf) (4.1-6) 

+ f1
' bT(t) {o<P - !!_ o~} dt 

t. ox dt ox 
tit is not correct to call h(t) the first variation if the terminal time is not fixed. This 

does not alter any results if differential notation, x(t) = i(t) + •7J.,(I), and tf = ir + <1/f 

are used. It would, of course, be correct to use the symbol 8x(t) = h(t), where 8x(t) is the 
vafiation in x only and does not include a variation in terminal time. 

In much of our work, it will be convenient to define a qu 
Hamiltonian, by 

ty, called the 

-~~(t), A(t), t] =<I>- X,T ~~=<I>+ X,TA, (4.1-7) 

? where. th~iltonian i::ot ~ function ~~). x(t) and A(t) a;e .called the 
\.. canomcal vanables. In terms onne--Ham1 oman, the first vartahon of Eq. 

(4.1-1), which is Eq. (4.1-6), becomes 

8J = -axr(tf)A(tf) + H[x(tf), 7\,(tf), tf] 811 

+ ft' bT(t) {oH + dA} dt 
I, OX dt 

( 4.1·8) 

To establish a necessary condition for a minimum, it is necessary that 
the integrand in Eqs. (4.1-6) and (4.1-8) vanish and also that the trans
versality condition, as obtained from Eq. (4.1-8) 

-8xT(tf)l\,(tf) + H[x(tf), 7\,(tf), tf] 8tf = 0 (4.1-9) 

be satisfied. 
Thus far in our development we have considered functions with "smooth" 

arcs. Let us now consider the problem of minimizing the cost function 

J = J~ x 2(2 - x) 2 dt 

subject to 

x(O) = 0, x(1) = 1 

Physically, it is clear that the absolute minimum for J is 0 and that this is 
obtained for 

x(t) = 0 

x(t) = 2t- I 

t E [0, {] 

t E ({, 1) 

which is certainly a solution to the Euler-Lagrange equation for this problem 

x2 x + xx2 
- 4x = 0 

There is one disturbing feature about this solution, however, in that the 
optimum x(t) has a "corner" or discontinuous first derivative which gives 
rise to formal difficulty since xis contained in the Euler-Lagrange equations. 
Certainly, though, this particular function x(t) is smooth in a piecewise 
sense, or piecewise smooth. We will define a function as being smooth in an 
interval of time if it is continuous and has a continuous time derivative in 
the interval. A function is piecewise smooth if it is smooth except for, at 
most, a finite number of points. We may examine further the special require
ments imposed by this "corner" by considering the Weierstrass-Erdmann 
conditions [1]. 

The Weierstrass-Erdmann corner conditions furnish us with the require
ments for a solution at corners or jumps in the extremal curve. In all of our 
work thus far (except Section 3.8), we have considered functions defined for 



smooth ar pd thus have allowed only smooth solutions of the associated 
variational .Problems. The Weicrstrass-E!'dmann conditions extend the 
class of admissible arcs to .include those which arc only piecewise smooth. 
Sp~cificafu, we wishJQ_Jin~!~lcli_Q_i~ ~(t) among ~!!J}!!1ctions x(l) which 
are continuously differentiable for t E (a;-b]~-except at some-point c e-cii;b), 
and which ~~b_oun(iary:£_ofiQ}JtQ_nssuc11tiiiit1fie-fUlfc1fonai 
.. -__......-- ~--..... -~~-~--~---' , __ .. ··------·-· --.--

J(x) = s: CJ>(X(/), X(t), /] dt (4,1-10) 
- - ------.z....___--~·-----~· -- -·- -' -- - ·-· 

l1as a~~tr.£!!l.!.!.l!~_!t is of course clcai' that, for t E [a, c] and t E [c, b], the 
function x(t) must satisfy the Euler-Lagrange equations for a minimum 

!}_ o<I> _ M> = 0 
dt ax. ax (4.1-11) 

We may rewrite the cost function as a sum of two cost functions: 

J(x) = J: ~[x(t), i(t), t] dt + J: ~[x(t), i(t), t] dt 

,= J,(x) + Jlx) (4.1-12) 

SJb) -""' ()xT(a) 8~[x~J:c:?), aJ 

+ {~[x(c), i(c),c]- :iT( c) a<I>[x~l(~(c), c]} Sc (4.1-13) 

+ ox7'(c) a~[x(c!, :i(c), c] + f" h'~'(t) {8<P- ~ 8~} dt 
ax(c) " ox dt ox 

Since x(t) satisfies the Euler-Lagrange equations for an extremal and since 
ox(a) = 0, we have 

oJl(X) = OXT(T) o~[X~l<:t), r) 

+ {<t>[x(T), i(T), T] _ x.r(T) 8<P[x~l(~(T), T]} 87 . (4.1-14) 

(for , = c - 0) 

In a similar fashion, we can show that the first variation for the extremal 
solution of J2(x) is 

oJ. (X) = _ OXT(T) a~[X(T~, X(T), T) 
2 

. ax(T) 

_ {~[x(T), :i(T), T] _ ir(T) 8~[x~l(~(T), T]} 87 (4.1-15) 

(forT= c + 0) 

i 

i 

In order to obtain the extremum, the extremal solution mu 

SJ(x) = SJ1(x) + SJ2(x) = 0 

Thus 

~tisfy 

(4.1-17) 

<I>- X.'l' (;Jcp I = ci.>- X.T 8<I> I (4.1-18) . ax. t~c-0 ax t=C+O 

since ox and St1 arc arbitrary. These requirements, Eqs. (4.1-17) and (4.1-18), 
are called the Weierstms.s-Erdmann corner conditions and must hold at any 
point c where the extremal has a <;orner. If we use the Hamiltonian canonical 
variables 

11 = ci> - i'1' ~i = ci> + i\li (4.1-19) 

A=-~: (4.1-20) 

we immediately see that the Weierstrass-Erdmann conditions simply require 
Hand It to be continuous on the optimum trajectory at all points where there 
are corners. 

It is possible to generalize the Weierstrass-Erdmann corner condition in 
terms of the Weierstrass E function, defined as 

c~f E= {~ctJX,t)-~(x,i,t)-(X-xY~i} >O (4.1-21) 

where o~fox is evaluated at the optimum solution vector x(t) and X is an 
admissible vector, one which satisfies all constraints. This provides us with 
necessary conditions for an extremum under constrained conditions [1, 6]:1' 

In the next section, we will examine, among other things, minimum time 
problems for problems where the extremal arcs or trajectories are smooth 
but where the terminal time is not fixed. Thus we will need to use the expanded 
variational notation presented in the first part of this section. Then we will 
consider the important case in optimal control where the admissible control 
and state variables are restricted. We will then use the Weierstrass E function 
to develop a maximum principle. In this work we will find it necessary to 
interpret the vector x in this section as the generalized state vector, which 
includes the control vector. 

4.2 The Bolza problem and its solution 

We will introduce the Hamiltonian approach to the solution of variational 
problems by considering the Bolza problem of the variational calculus and 

tCcrtain other conditions arc also required, such as absence of conjugate points. 
References [1], [6], and [11] provide much elaboration on this point. 



several extet is. We shall see that the 1·esults obtained are similar in many 
ways to the results of the Pontryagin maximum principle which we will 
present in the next section. Our approach to this sectior1 will be, as before, 
to employ classical variational techniques. 

4.2·1. Continuous optimal control problems-fixed beginning 
and terminal times-no inequality constraints 

We are given a nonlinear differential system operating over the fixed 
interval t E [10 , t1] of the form 

x = f(x, u, t) (4.2-1) 

where x(t), the n vector state variable, is determined by u(t), the m vector 
control variable, and the initial condition vector 

x(t.) = x. (4.2-2) 

Actually, the statement that all components of the n-dimensional state 
vector are fixed at the initial time, /0 , is a bit restrictive, although it is 
generally true for optimal control problems. However, in the state and 
parameter estimation problem, not all of the components of the state vector 
are specified initially. Thus a more general" statement of the specified initial 
conditions is 

where m0 is an r vector. In a similar fashion, some of the terminal states may 
be specified. In this case, we may findt 

N(t1)x(t1) = n1 (4.2-4) 

where n1 is a q vector, q ~ n. 
We will return to a discussion of this point momentarily. But now we 

desire to determine the control u(t) such as to minimize 

-1:4 t l!=tt ft' 
lt} O.t t C <\> A J = O[x(t), t] + <f>[x(t), u(t), t] dt ( 4.2-5) 1- \ t=t, t, 

IX We use the method of Lagrange multipliers discussed in the last chapter 
\t to adjoin the system differential equality constraint to the cost function, 

tO) which gives us 

J = O[x(t), t] 1:::: + s:: (<f>[x(t), u(t), t] + ;V(t)(f[x(t), u(t), t] - i]}dt 

(4.2-6) ,V(Y?,...Q_ 
' Jv" . 
~ We define a scalar function, the Hamiltonian, as 

H[x(t), u(t), ll(t), t] = <f>[x(t), u(t), t] + /V(t)f[x(t), u(t), t] (4.2-7) 

•These are, of course, still not the most general statements for the initial and terminal 
manifold. 

tThese are, of course, not the most general statements for the terminal manifold. 

I 
l 

I 

Thus the cost function becomes 

J = 8[x(t), t] ll=tr + J11 
{H[x(t), u(t), 1\(t), t] - 1\T(t)i} dt (4.2-8) t=t, t, 

If we integrate the last term in the integrand of Eq. (4.2-8) by parts, we obtain 

J = {O[x(t), t] - 1\T(t)x(t)} lt=t, + f' {H[x(t), u(t), 1\(t), t] + ~Tx(t)}dt 
...... ________ t ~ t. t, - J---

(4.2-9) 

We now take the first variation of J for variations in the control vector 
and, consequently, in the state vector about the optimal control and optimal 
state vector. This gives us 

SJ = {iJxT[:!- 1\ ]} /:::: + ( {BxT[~~ +"A J +BuT[~~]} dt 

i \l ~ ~ (4.2-10) 

A necessary co ition for a minimum is that the ~iatiof in J vanish 
for arbitrary ~ations Bx and Bu. Thus we have as the ecess~ry condition 
for a minimu the very important relations I 

BxT[~!- 1\ J = 0, for t = t., t1 (4.2-11) 
iN"·((.(, \·l ') 

1.. = - ~~' -~v-* ==-~~~·-~~~2~ ~~ (4.2-12) 
' t l:H e..p oH = 

0 
"""-~--..,j ··1·ij- o"' · 

au ~ (4.2-13) 

Since Eqs. (4.2-3) and (4.2-4), or alternate and perhaps more general 
expressions for the terminal manifold, may interrelate the components of 
the vector variation 8x at the terminal time, and since an initial manifold 
may interrelate the components of the vector variation lJx initially, Eq. 
(4.2-11) is the general statement for the transversality condition for the 
problem treated here. For a large class of optimal control problems, the 
init.ial state of the system is specified but the terminal state is unspecified. I.., 

---~-tha~~lds the transversality conditions_ as, ;JJ. .. , ~ o-'( 
( tilt,t.~ ~(h'l-;., x(t

0
) = x;,) 1\(t) = M[x(t,), 1rl _, ~ (4.2-14) •. ~., .f{ 

\ )lt..M, ~~ ,o ~ 1 ax(t1) =) ~ 
..... - si~ce··ax©·,;;;,-0, x(t0) is fixed, and 8x(t1) is completely arbitrary. In another o> 

broad class of problems x(t0) and x(t 1) are fixed. In this case 8x(t0) and Bx(t 1) 

must be zero, and x(t0 ) and x(t1) are the boundary conditions for the two-
. point boundary value problem. For many estimation problems, neither 

J£Uo)j,.or. x(tr) are fixed (specified)~ case, ~.2-11) yieldQ~ 1 
l_(~ = 0 as oundar conditions for the roblem since 8x(t.) and " 

a·x(t;rare arbitrary. In .still another case, we might have x(to) = x., 0 = , -



and II x(t,: b 1. In this event, it is easy for us to show that the final 
transversality conditions are obtained if we solve the two scalar equations, 
each in n variables. 

. axT(t1)x(t1) = 0, ax2'(t1)'A(t1) = 0 (4.2-15) 

We now give a more general and precise interpretation to the trans
versality conditions. For the general case where the initial manifold is 

' 
M[x(to), 10] = 0 ['L -~~ .... Is;. "- (4.2-16) 

.~.:.....v~~{ ~· 
N[x(t1), t1] = 0 ~ -\,-~ '' (4.2-17) 

and the terminal manifold is 

f. v-<.hov \ 
we adjoin these conditions to the() function by means of Lagrange multipliers, 
e and v and obtain for the cost function 

J = ()[x(t), t] c:: -eTM[x(t0 ), 10 ] + ;vTN[x(t 1), t 1] 

(4.2-18) 
+ r {H[x(t), u(t), i\(t), t] - J\}'(t)x} dt 

We now apply the usual variational techniques to obtain for the trans
versality conditions at the initial time: 

M[x(t), t] = 0 f = fa (4,2-19) 

Then initial conditions are obtained from this, with r parameters to be found 
in Eq. (4.2-19) such that we satisfy the .r conditions of Eq. (4.2-16). In a 
similar fashion, the terminal condition is 

i\(t ) = oe + (oN7')v 
1 ox ox ' N[x(t), t] = 0, t = t, (4.2-20) 

n terminal conditions are obtained from this with q parameters v found in 
Eq. (4.2-20) such that the q conditions of Eq. (4.2-17) are satisfied. 

The n vector differential equation obtained from Eq. (4.2-12) will be 
called the adjoint equation. Equation (4.2-13) provides the coupling relation. 
between the original plant dynamics, Eq. (4.2-1), and the adjoint equation, 
the A equation of Eq. (4.2-12). This coupjing equation was obtained from 

It, { ./ oH \ } ~ \~~;w- ;...., 
8J= ... + :au'~'- +I ... dt 

t, \. ou .~ \~ .. ;t ... ,Ill l · 

and it is important to note that au mu;t)e-~mpletely arbitrary in order for 
us to draw the conclusion that oHfou = 0 ·to obtain the optimal control. 
For the problem posed here where the admissible control set is infinite, 
au can be completely arbitrary. Where the admissible control is bounded, 
au cannot be completely arbitrary, and oHfou = 0 may not be the correct 
requirement. We will have more to say about this later. The solution we have 

obtained for this problem is a special case of the Po; ~ hgin maximum 
principle. 

It is also interesting to note that, since H = </> + IVf, we may compute 
the total derivative with respect to time as 

~=~+iT[~~+ (~~)A J + u'~'[~! +(~~)A J + ATf +A'~':: 
(4.2-21) 

but from Eqs. (4.2-12) and (4.2-7), we have 

A= _oH = _ocf> _ (ofT);t 
ox ox . ox (4.2-22) 

and from Eq. (4.2-7), 

oH = ocf> + (ofT)A ou ou ou (4.2-23) 

Thus, since i'~'i = ;\,Tf, Eq. (4.2-21) becomes 

~~ = ~t + ]t_T:: + g'l'~: (4.2-24) 

We see that, if cp and fare not explicit functions of time, the Hamiltonian 
is constant along an optimal trajectory where oHfou = 0. It can be shown 7 

..__that this is always true along an optimal trajector , even if we cannot re · 
?_Hfou = 0. We w1ITina e usc o this fact in a later development. ' 

In order that J be a minimum, the second variation of J must be nonnega- '' 
tive along all trajectories such that Eq. (4.2-1) is satisfied. Therefore we need 
to compute the second variation of J in Eq. (4.2-9) and impose the require
ment that the variation of Eq. (4.2-1) is zero, or that 

ax.- (~)ax- (i)au =0 (4.2-25) I 
Applying this condition and taking the quadratic part of the Taylor series 
expansion of J(x + ax, u + au)- J(x, u), Eq. (4.1-4), we have for the 
second variation 

'f32J = 21 [ax'~'~2~ ax] lt=t, 
uX t=t, 

_!_ Jtr [axT au'~']l~~ :u ~~J[ax] dt (4.2-26) 
+ 2 t, [}__ oHJT o2H au ...- < ( 

ou ox ou2 J '· 
and this must be nonnegative for a minimum. This will be the case if the j 
n + m square matrix under the integral sign and o20fox 2 are nonnegative _ 
definite. 



"'" 

Example 4.2-.~o. 

We are given the differential system consisting ot three cascaded integrators 

x1 = x2 x1(0) = 0 

X3 = U x3(0) = 0 

We wish to drive the system so that we reach the terminal Inanifold 

xKl) + x~(l) = 1 

such that the cost function 

J = i f:U2 dt 

is minimized. The solution to the problem proceeds as follows. We compute 
the Hamiltonian from Eq. (4.2-7) as 

H = iu2 + X1x 2 + X2Xa + A.au 

and determine the coupling relation, Eq. (4.2-13), 

aH 
0 

. 
au= = u + Xa 

and the adjoint Eq. (4.2-12) 
. an 
A.,=-- =0 ax, 
. an 

)\,2 =--=-A., ax2 
. an 

Xa = - ax3 = -A.z 

From Eqs. (4.2-17) and (4.2-20) we see that the transversality condition at the 
terminal time is 

xf(l) + x~(l) = 1 

A(l) = ()() + (aNT)v t = t1 ax ox ' 
where 

Thus 

]1.(1) = [~:~~~] =:[~::~~~:] 
;>.,3 (1) 0 

Thus the problem of finding the optimal control and associated trajectories for 
this example is completely resolved when we solve the two-point boundary value 
problem represented by 

Xa = Xa 

Xa = -A.3 

;\,1 = 0 

ii.a =-X, 

'i.a = -A.a 

x2(0) = 0 

X3(0) = 0 

A.,(l) = 2x,(l)v} xi( I) + x~(l) = 1 
A.2(1) = 2x2(1)v 

A.3(1) = 0 

Although the six. first-order differential equations represented above are per
fectly linear and time invariant, the solution to this problem is complicated by 
the nonlinear nature of the terminal conditions. We shall discover various itera
tive schemes for overcoming this difficulty in later chapters. 

4.2-2. Continuous optimal control problems-fixed beginning 
and unspecified terminal times-no inequality constraints 

The material of the previous subsection may be easily extended to the 
case where the terminal manifold equation is a function of the terminal time 
and the terminal time is unspecified. For convenience, we will assume that 
the initial time and the initial state vector are specified. Solution may then 
easily be obtained for the case where the initial time and initial state vector 
are unspecified. Therefore the problem becomes one of minimizing the cost 

·function 

J = 8[x (t,), t,] + r cp[x(t), u(t), t] dt 

for the system described by 

i = f(x(t), u(t), t], 

(4.2-27) 

where /0 is fixed and where, at the unspecified terminal time t = t 1, the q 
vector terminal manifold equation 

N[x(t1), t1] = 0 (4.2-29) 

is satisfied. It may be noted here that the terminal manifold line, x(t1) = c(t1), 

of the previous chapter becomes here N(x(t1), t1] = 0 which is more general. 
We adjoin the equality constraints to the cost function via Lagrange multi
pliers to obtain 

J = 8[x(t1), t1] + vTN[x(t1), t1] + J:: [cp[x(t), u(t), t] (
4

.
2
_
30

) 

+ .:V(t)[f[x(t), u(t), t] - x]} dt 

As before, we define the Hamiltonian 

H[x(t), u(t), 1\.(t), t] = cp[x(t), u(t), t] + J\.T(t)f[x(t), u(t), tJ 

and integrate a portion of the cost function, Eq. (4.2-30), to obtain 

J :;= O[x(t1), t1] + vTN[x(t1), t1]- J\.T(t1)x(t1) + ;V(to)x(to) 

+ J1
' [H[x(t), u(t), i\(t), t] + ~/x(t)} dt 

t. 

(4.2-31) 



We agait )m the first variation by letting 

x(t) = i(t) + h(t), u(t) = O(t) + 8u(t), t1 = f1 + St1 (4.2-32) 

and then we form the dilfcrcncc J[x, u, ttl -- J[i, 0, f1] and rclai11 only the 
linear terms. Thus we have, after dropping the " notation for convenience, 

8J = 8t1 {H[x(t1), u(t1), .l\(t1), t1] + ~~} 

+ 8xr(t,){~~- .1\(11)} (4.2-33) 

+ J:: {~tr(t>[~: + X J + 8ur(t>[~]} dt 

where 

(4.2-34) 

We must set this first variation equal to zero to obtain the necessary condi
tions for a minimum. Therefore, the equations which determine the optimal 
control and state vector are 

H = cp[x(t), u(t), t] + .1\T(t)f[x(t), u(t), t] 

~~ = i = f[x(t), u(t), t] 

oH = -X = 8F[x(t), u(t), t] .1\(t) + op[x(t), u(t), t] 
ox ox 8~ 

oH = O = op[x(t), u(t), t] + ()fT[x(t), u(t), tJ A.(t) 
au au 8u 

(4.2-35) 

(4.2-36) 

(4.2-37) 

(4.2-38) 

These represent the 2n differential equations for the two-point boundary 
value problems. The conditions at the initial time are 

X(to) = Xo (4.2-39) 

whereas those at the final time are 

'A t = ae _ ~ [ oN7
' J 

( ,) ox(t,)- ox(tr) + ox(tr) v 

N[x(t1), t1] = 0 

and 

(4.2-40) 

(4.2-41) 

(4.2-42) 

Equation (4.2-40) provides n conditions with q Lagrange multipliers to 
be determined. Equation (4.2-41) provides q equations to eliminate the 
Lagrange multipliers, and Eq. (4.2-42) provides the one additional equation 
which we must have to determine the unspecified terminal time. 

Example 4.2-2 

For the first-order single integration system 

X = II, .v(O) = 1 

we desire to find the control u(t) which makes x(t1) = 0, wh<:rc t1 is unspecified, 
such as to make, for specified values of a and (3, 

J = t~ + !(3 J~ u2 dt 

a minimum. For this problem 

0 = t~, H = ~(3u2 + A.u 

The canonic equations are 

x=u=-~• i=O 

with the boundary conditions x(O) = 0, x(l1) = 0, where we determine the final 
time by solving Eq. (4.2-42) which becomes, for this example, 

- A.;<j;) +at';-'= o 

The solutions to the canonic equations are 

x(t) = - A.~r)~ + 1, A-(1) = A.(lr) 

But since x(lr) = o; It= {3A.-'(It), and in the particular case where (3 =a= I, 
we can easily show from the a foregoing that A.(tt) = +(2)1

' 2, which determines 
the solution to this example. The optimum control is u(t) = -A-(1) = -2112. The 
corresponding trajectory is x(t) = 1 - 21' 21, with It = 2-1/2, 

Example 4.2-3 

A problem which will be of considerable interest to us later will be the 
"minimum time" problem. In that case 

O[x(ft), ft] = t~o cf> = 0 

and we specify the optimal control and corresponding trajectory by solving Eqs. 
(4.2-35) through (4.2-38), which become 

H[x(t), u(t), A.(1), 1] = :.\.T(1)f[x(1), u(t), 1] 

~~ = i = f[x(t), u(t), t] 

aH = -A. = afT[x(t), u(t), t] A.(t) 
ax ax 

aH = 0 = afT[x(1), u(t), t] A.(t) 
au au 



with the boo· IY conditions specified by Eqs. (4.2-39) through (4.2·42) 
X(fo) = Xo 

oNT 
'A(t,) ""' 8x(t

1
) v 

N[x(t1), t1] = 0 

H[x(t1), u(t1), t1J = -1 -:- (88~;)v 
In many cases, the system is brought to rest at the unspecified time, and the 
terminal manifold is the origin, so that 

N[x(t1), t1] = x(t1) = 0 

Then the foregoing expressions reduce to 

x(t1) = 0 

H[x(t1), u{l1), 'A(t1), 11] = -1 

If the Hamiltonian i~ not an explicit function of time, Eq (4.2-24), which 
applies here as well, yields dH/dt = 0; therefore, for this minimum time problem 

H[x(t), u(t), 'A(t), t] = H[x(t), u(t), ;a.(t)J = -1 

It should be emphasized that we are not solving the usual minimum time 
problem since we have imposed no inequality constraints on the control (or 
state) variables. An alternate version of this problem would be to consider 
(J = 0 and rp = I. This changes the Hamiltonian for this particular problem, 
but it certainly does not change the optimal control and state ve.ctor, as the 
reader can easily verify. 

4.3 The Bolza problem with control and state 
variable inequality constraints-the Pontryagin 
maximum principle 

In the prior work in this chapter we treated the Bolza problem with no 
inequality constraints present on either the control or the state variable. 
We found for example that a minimum of 

J = 8[x(t1), t1] + s:~ ¢[x(t), u(t), tJ dt 

for a system described by 

i = f[x(t), u(t), t], X(t0 ) = X0 

with t0 and t 1 fixed may be obtained if we define a Hamiltonian as 

H[x(t), u(t), ;\(t), t] = <J>[x(t), u(t), t] + ;tr(t)f[x(t), u(t), t] 
and set 

aH . 
a,;t = x 

I 

an~_ -t 
ax- Ill 

aH =O au 
If the admissible control vector is unrestricted, then the first variation of 

u(t), 8u(t), is also unrestricted, and in that part of Eq. (4.2-10) which reads 

ftr [8u(t)Y[8HJ dt + · · · = 0 
t, au 

we are free to set oHfou equal to zero. Sections 4.1 and 4.2 describe a special 
case of the maximum principle where this is possible. In many problems, 
inequality constraints on the admissible control vector (the maximum thrust 
from a reaction jet is limited, for example) are present, and we must there
fore take this into account if we are to determine a realistic control strategy. 
If u(t) is constrained, 8u(t) may not be allo~d to be completely arbitraJ:y, 
and th~fure we may not .W general set oH!ou - j}. Aiso, certain re~ions 
~f the state space may be prohibitep~,..and we .must deternline an "oi1timU!1}

0 

control such that the state x(t) does not enter ti1eforbldden regions. We 
examined a portiOn orffits pro5Iem ifi""Cfi'apter 3-and· found that we"" could 
handle inequality constraints by converting them to equivalent equality 
constraints. In this section, we desire to find the state and control vector 
such that the cost function 

J = &[x(t 1 ), t 1] + J:: (p[x(t), u(t), t] dt 

is minimized subject to 

(a) then differential system equality constraints 

i = f[x(t), u(t), t] 

(4.3-1) 

(4.3-2) 

(b) the q end point equality constraints (q < n) at the terminal time 
(which may be unspecified) 

N[x(t1), t1] = 0 (4.3-3) 

and the initial condition equality constraint 

X(to) = Xo (4.3-4) 

where we assume that t0 is fixed and x(/0) is known. Actually, /0 does 
not have to be fixed and the initial condition constraint can be 
M[x(t0), / 0] = 0, as was the case in Section 4.2. The required modifi
cations to treat this case are small since the results are so similar to 
the variable end-point and variable end-time case. 

(c) The r admissible control inequality constraints (r::;: m) 

g[x(t), u(t), t] ~ 0 (4.3-5) 



Where we will find it necessary to impose the requil·ement that the 
rna 18gf8u be of maximum rank whenever g = 0. 

(d) The s inequality constraints (with no control component in the 
constraint) expressing tho forbidden region of state spnce 

h[x(t), t] ~ 0 ( 4.3-6) 

which does not satisfy the maximum rank test in (c). 

As is apparent, we have formulated a rather formidable problem in the 
variational calculus. We will solve the problem in such a fashion that we 
obtain the Pontryagin maximum principle [2, 3, 4, 5]. However, due to a 
slight change in the original problem statement, a more appropriate name for 
the result of our development would be the Pontryagin minimum principle. 
Our development will be patterned after that of Berkovitz who has unified 
many of the approaches to the optimal control problem [6, 7]. We will first 
consider the case where the inequalities of part (d) on the admissible regions 
of state space are not present and wiii then modify our maximum principle 
and associated transversality conditions to include this important case. 

4.3-1. Tbe maximum principle with control variable Inequality 
constraints 

We now wish to derive the first necessary condition for a minimum of 
the proplem just posed, except that we will assume that there are no bounded 
state v~riables. Thus we are considering the first three of the four constraints 
just mentioned. Constraint (c) is very similar to the inequality constraint of 
Section 3.8, and we now find it desirable to expand upon that method of 
treating an inequality constraint~ 

We are given the inequality constraint 

g[x(t), u(t), t] > 0 ( 4.3-7) 

We may convert this inequality constraint to an equality constraint by 
writing for each component of g either 

(i1) 2 = g1[x(t), u(t), t], z,(t.) = 0, i = 1, 2, ... , r ( 4.3-8) 

or 
(y1) 2 = g1[x(t), u(t), t] i = 1, 2, ... , r ( 4.3-9) 

It is apparent that either of these two equations force g1 to be greater 
than or equal to zero since (i1) 2 and (y1)2 must certainly be greater than or 
equal to zero. This technique was apparently first proposed by Valentine (8] 
and extended by Berkovitz [6]. It is quite similar to the penalty function 
technique of Kelly [9] as we shall see in our chapter concerning the gradient 
and second variation methods for the computation of optimal controls. 
The choice between Eqs. (4.3-8) and (4.3-9) will depend largely upon the 
particular computer (for an analog computer, Eq. (4.3-8) is generally easier 

to implement than Eq. (4.3-9)) and the particular computr Jal algorithms 
used (for the quasilinearization method, Eq. (4.3-9) is con~ ..... erably simpler 
to use than Eq. (4.3-8) and also results in less computer solution time). 

Example 4.3-1 
It is quite easy to see that the constraint used here includes, as a special case, 

that considered in Section 3 .. 8. ,For example, if we require for a scalar controlu, 
llmln sus lln;nx. then we may write 

g 1(x(t), u(t), I] = U10nx - II ~ 0, g2[x(t), u(t), t] = II - Umin ~ 0 

and we convert these inequality constraints to equality constraints by writing 

for which 
(YJY2)2 = (uiii!IX - 11)(11 - llnlin) 

which is.precisely the constraipt used in Section 3.8. 
For the problem at hand, we adjoin, via the Lagrange multiplier, con~ 

straints (4.3-2), (4.3-3), (4.3-4), and (4.3-5) to Eq. (4.3-1) to obtain 

J = O(x(t1), t1] + e[x(t.)] + V 1'N[x(t1), t.r] 

+ J:: {H[x(t), w(t), lt(t), t]- ;tr(t)x (4.3-10) 

- rr(t)[g[x(t), w(t), t] - z2
}} dt 

where 
(4.3-11) (z2)T = [zi, zt zi, ... , z~) 

H[x(t), w(t), A(t), t) = cp[x(t), w(t), t] + ;\_T(t)f[x(t), w(t), t] (4.3-12) 

w = u(t), w(t.) = 0 (4.3-13) 

We may now apply the Euler-Lagrange equations to the above cost 
function or take a first variation of it in order to obtain the necessary condi
tions for a minimum. It is thus convenient to define a scalar function <I>, 

the Lagrangian, as 
<I>[x(t), x(t), w(t), lt(t), r(t), z(t), t] = H[x(t), lv(t), lt(t), t] (4.3_14) 

- ;\_T(t)X - I'T(t)[g(x(t), W(f), f) - Z2
} 

We will use the Euler-Lagrange Eqs. (3.5-3). Since there are no w(t) and z(t) 
terms in Eq. (4.3-14), we may write the Euler-Lagrange equations as 

!!__ a<I> _ o<I> = 0 c 4.3-15) 
dt ox ox 

!!__ o<I> = 0 (4.3-16) 
dt Ol'v 

!!__ a<I> = o ( 4.3-17) 
dt oz 



I 

Each piec ;-;e continuously differentiable solution of the Euler-Lagrange 
equations ( 4 ... H 5), ( 4.3-16), and ( 4.3-17) will be called an extremal curve or 
an extremal trajectory of the associated variational problem. It can be shown 
that the function <I> need be only piecewise smooth, and thus the Euler
Lagrange equations require that every arc of the extremal trajectory on which 
the first derivatives of <I> have no discontinuities be a solution of the Euler
Lagrange equations. The corner condition will answer our questions concern= 
ing what happens at possible points of discontinuity of some of the deriva· 
tives of the state or control variables. This corner condition will ensure 
continuity of the state and control variables by forcing o<I>/oi. to be zero 
everywhere since it is zero at the terminal time. 

The transversality conditions for this problem are obtained in the usual 
fashion.as explained in Chapter 3 and the previous three sections. For this 
probleq1, theY, are easily shown to be. Eqs. (4.3-3), (4.~), and 

fJt1; ()() (&NT) + ~ ~T €l 0 {/f 't/ 81, + at, v '~"-\_!y , / 1or t = t, 

!(/1i :! + (8~T)vE)it = o,~r t = t1 
Also, we have for the final transversality condition . 

=0, for t = tr 

2rrir 
which allows us to write because of Eq. (4.3-17) 

a <I> 
OZ = 0, V t E [t0 , t f] 

Since when f( =/= 0, ;, = 0 = g1 , and when l 1 =I= 0, r, = 0 
r,z1 =0, i=l,2, ... ,r, \jtE(to,t1] 

Also, with similar reasoning, we have 

aw ow= 0, Vt E [to, tr] 

(4.3-18) 

(4.3-19) 

(4.3-20) 

( 4.3-21) 

We shall now introduce the Hamiltonian formulation and use the 
Weierstrass condition to obtain the Pontryagin maximum principle. From 
the definition of <I>, Eq. (4.3-14), Eq. (4.3-15) yields 

~=_an L ogTr 
ox I ox 

Equation (4.3-16) with the definition of cf>, Eq. (4.3-14), gives us 

oH- ogT r = o 
o''v ow 

(4.3-22) 

(4.3-23) 

and in a simiiar fashion, Eq. (4.3-17) results in 

2 .~ . · _ rf = o, i ~ 1, 2, .. ., r 
Smce Eq. (4.3-14), when solved for H, yields 

(4.3-24) 

f/[x, '"·A., t] = <I>[x(t), x(t), w(t), A.(t), r(t), i(t), t] 
+ A.T(t)x + rT(t)[g[x(t), ,v(t), t] - z2J 

we can show that 

( 4.3-25) 

because we know that i 2 = g, 'A = 8(1)/ox, and have just found o(J)fow = o 
and ocl>foi.; = 0. This is in a form for direct application of the Weierstrass 
condition, Eq. (4.1-21), which can be written as 

y ~W:i/ i/ 
11 (4.3-26) 

where lower-case symbols indicate optimum vectors and upper-case symbols 
indicate admissible vectors, as before. From Eq. (4.3-25), it becomes apparent 
that this condition is equivalent to 

H[x, W, ~. t] > H[x, w, ~. t] (4.3-27) 

In other words, the Hamiltonian is smaller when we usc the optimal control 
within the admissible set of controls than it is for any other control which is 
in this admissible set. This is the basic contribution of the maximum principle 
-a necessary condition for optimality is the global minimization of the 
Hamiltonian, H, function. 

4.3-2. Summary of the maximum principle 

Since our development of the maximum principle has been necessarily 
long, it is desirable to give a summary of the results. It is also important to 
note that we can successfully use the maximum principle without following 

. each and every detail of our "proof." 
We wish to minimize · 

f
it 

J = ()[x(t 1 ), t 1] + cp[x(t), u(t), t] dt 
t, 

for the system described by 

i = f[x(t), u(t), t] 

10 fixed 

such that, at the unspecified terminal time t 1, 

N[x(t1), t1] = 0 

(4.3-28) 

(4.3-29) 

(4.3-30) 

( 4.3-31) 



and where t ·.s t"estricted such that 1)1\ t<tA.- df~ c>rJ>c..dl-1,· &t1..-r 

g(u(t), t} ~ 0 (4.3-32) 

In other words, u(t) is not rcstl'ictcd in control space ns a function of the 
state vector, x(t), and 

U E U (4.3-33) 

The Hamilton canonic equations, solution of which minimizes the cost 
function and determines the optimum state and control vectors, x(t) and 
u(t), may be obtained if we define a Hamiltonian 

H[x(t), u(t), ;\(t), t] = ¢[x(t), u(t), t] + Jt.r(t)f[x(t), u(t), t) (4.3-34) 

and then set the .Hamiltonian with u = u less than any other value of H 
with u E U. 

/~14~v..J..._. /-.; H[x(t), O(t), A.(t), t] < H[x(t), u(t), A.(t), t] 
<..:r'. uE U 

"-t~~~v/ 
~ cJ xw. 

qH =-A 
ox . 

subject to the two-point boundary conditions 

X(f0 ) = X0 

N[x(t1), t1] = 0 

o() + (0N
7')v + H = 0, ot 1 at 1 

ae + (aNT)v- ;\ = o, ax ax 

(4.3-35) 

(4.3-36) 

(4.3-37) 

(4.3-38) 

( 4.3-39) 

(4.3-40) 

(4.3-41) 

We frequently wish to transfer the system to the origin in minimum time 
so that we have 

N[x(t1), t1] = 0 = x(t1) 

8[x(t 1), t 1] = t 1 

¢=0 
In this particular case, the transverality conditions become 

X(t0 ) = Xo 

(4.3-42) 

(4.3-43) 

(4.3-44) 

i ~~ I -+ 0 t I~ ., o 
::I 

J t,_f~ x(t1) = 0 
" ~),..___ H = -1,·, at t = t1 

(4.3-45) 

(4.3-46) 

(4.3-47) 

~ Example 4.3-2 

Let us consider briefly the time optimal control poblem for a linear time· 
invariant system where the length of the control vector is constrained. We wish 
to minimize 

for the system 
i = Ax(t) + Bu(t) 

x(lo) = Xo 

where u(t) E U means II u(t) II s 1. 

The Hamiltonian, Eq. (4,3-34), becomes 

H[x(t), u(t), ll.(t), t] = II,T(t)[Ax(t) + Bu(t)] 

To make Has small as possible with respect to a choice of u(t), we must have 

-BTII,(t) 
u(t) =II B7'11.(t) II 

The canonic equations become 

~~ = i = Ax(t) + Bu(t), 

with the boundary conditions 

aH = -i. = A7'11.(t) ax 

x(t.) = x., x(t1) = 0 

where we determine t1 by solving 

H[x(t1), 11.(11), u(t1)] = -1 

But, from Eq. (4.2-24) we see that dH/dt = 0 since the Hamiltonian does not 
depend explicitly on t. Thus the above equation becomes 

H[x(t), u(t), ll.(t)] = -1 = V(t)[Ax(t) + Bu(t)) 

which is the additional relation needed to determine the terminal time. 

4.3-3. The maximum principle with state (and control) variable 
inequality constraints 

We now wish to extend the work of Section 4.3-1 to include inequality 
constraints on some or all of the state variables. We will represent this 
inequality constraint by the s vector equation 

h[x(t), t] > 0 ( 4.3-48) 

where each component of b is assumed to be continuously differentiable in 
state space. There are several methods whereby we may convert Eq. (4.3-48) 

· to an equality constraint. We may define a new variable Xn+l by 

· Xn+l =fn+l = [h.(x, t))2H(h.) + [h2(x, t))2H(h2) 
+ · · · + [h,(x, t))2H(h,) 

where H[h,(x, t)] is a modified Heaviside step defined such that 

{
0 if h,(x, t) > 0 

H[h,(x, t)] = K, if h&(x, t) < 0 

K, > 0, s = 1, 2, ... , s 

and where the initial condition is 

Xn+l(lo) = 0 

(4.3-49) 

(4.3-50) 

(4.3-51) 



Thus we see t )X11dt1) is a direct measure of penetration of the state 
variable inequality constraint 

Xn+t(t 1) = J'' Xn+ 1(1) dt = J'' {[ht(X, t)J2 H(ht) + • • • + [h,(x, 1))2 H(h,)} dt 
t, t, 

We will require that the final value of X11+1(t1) is zero, 

Xn+l(tl) = 0 

(4.3-52) 

(4.3-53) 

which will impose the restriction that we do not violate the inequality 
constraint. This approach is a modification by McGill [10] of a similar 
procedure by Kelley [9] which converts the s inequality constraint to s 
equality constraints of the form 

Xn+t = [h,(x, t)]2H(h,), · Xn+ 1(t0) = 0 

(4.3-54) 

XriH = [h,(x, t))2 H(h,), Xn+s(to) = 0 

which are then added to the cost function to obtain 
8 

/modified = Jol'lglnnl + 1: Xn+J(t 1) ( 4.3-55) 
J=l 

The multipliers K. are thus the penalty functions, and I.nodlflod is mini
mized such that the constraint region is entered only slightly, if at all. If we 
require Xn+J(t1) = 0 for I= 1, 2, ... , s, the constraint is of course not 
exceeded at all. 

A slight modification of the penalty-function approach can be obtained 
if we define s new state variables 

(.Xn+t)2 = K1h,(x, t), 

(.Xn+2)2 = K2h2(x, t), 

Xn+l(to) = 0 

Xn+2(to) = 0 

(.Xn+s)2 = K.h,(x, t), Xn+sUo) = 0 

(4.3-56) 

Berkovitz [7] suggests yet another method for converting the inequality 
constraint to an equality constraint. For the case of a scalar constraint, a 
variable 

{
?J4 

- h(x, t) 
ty(x, 'fJ, t) = h(x, t) 

if r; > 0 

if 7J < 0 
(4.3-57) 

is introduced and we convert the inequality constraint h(x, t) :?: 0 to an 
equality <eonstraint by writing 

~~-M+Mh (43 ~) 
87J dt - at ax 7t · · 

which satisfies the constraint if we have the end conditions 

')'[X(to), 1J(to), to]= ')'[X(tl), 'f](tl), tl] == 0 (4.3-59) 

The Euler-Lagrange equations can, of course, be used to determine the 
differential equations for an extremum, and the associated transversality 
conditions can be used to specify the two-point boundary values. If inequality 
constraints on the control variables are present, we must of necessity incor
porate these into our problem formulation. The Hamiltonian formulation 
may also be used. These methods provide us with necessary conditions only. 

From Eq. (4.3-14) it follows that the Lagrangian for the problem at hand is 

& = <!J + An+l[fn+l - Xn+l] 

eli= H- ATX. - rT(g- z2
] + An+,[fn+l - Xn+tl (4.3-60) 

where <P is the Lagrangian for no inequality state constraint. We are using 
the equality constraint method of Eqs. (4.3-49) and (4.3-50). The Euler
Lagrange equations yield 

d ocJ>- a<P- afn+IA = 0 (4.3-61) 
dt ax ax ax >~+t 

a<P d a<P 
au-= dt aw = 0 (4.3-62) 

_f!_ acp- o 
dt a.z- (4.3-63) 

which are, except for thefn+l term, exactly the same as Eqs. (4.3-15), (4.3-16), 
and (4.3-17). Also, we see that 

d 
dt An+t(l) = 0 (4.3-64) 

with the transversality conditions exactly as before and, in addition, 

Xn+l(to) = Xn+l(tl) = 0 (4.3-65) 

It is desirable to reinterpret these results in terms of the Hamiltonian, 
just as we have done for the case of control variable constraints only. We 
can do this easily by combining Eq. (4.3-60) with Eq. (4.3-61) and making 
use of the Weierstrass condition, Eq. (4.3-26), which yields 

X= d'A(t) _ _ an_ 8/, ... t[x(t), t] A (4.3_66) 
dt - ax ax n+l 

. dx(t) oH 3 6 x =---crt= o'A (4. - 7) 

Xn+l = dxd/t) =fn+l = [h 1(X, t))2H(h,) + · · · + [h,(x, t))2H(h,) 

(4.3-68) 

-> _ d)l,ll+t(f) _ 0 
"'11+1 ·- dt - (4.3-69) 



where 

Jl[x(t), u(t), 1\(t), t] = <fo[x(t), u(t), t} + ;\.1'(t)f[x(t), u(t), t] ( 4.3-70) 

fl[x(t), fi(t),l(t), I] s ll[x(t), u(t), 1\(t), t] lu•u (4.3-71) 

with the two-point boundary conditions (transversality conditions) 

x(to) = 'Xo 

N[x(t1), t1] = 0 

ao + (~N"')v + H =0 } at, at, 
at t = t1 

88 + (aNT)v- l =0 ax ax 

(4.3-72) 

(4.3-73) 

(4.3-74) 

(4.3-75) 

(4.3-76) 

These are the equations whose solutions minimize the cost function and 
constraints of Eqs. (4.3-28) through (4.3-33), subject to the additional 
constraint h[x(t), t] > 0. 

Equations analogous to these could be obtained in a relatively straight
forward fashion for each of the other formulations of the inequality state 
constraint problem presented here. Computational techniques will be used 
to obtain numerical solutions to problems of this type in later chapters. 

Example 4.3-3 

As an example of optimization with a state variable constraint, we consider 
the brachistochrone problem previously treated by McGill [10] and· Dreyfus 
[11]. A particle is falling for a specified time, t 1 - 10 , under the influence of a 
constant gravitational acceleration g. The particle has initial velocity xi to) = X30• 

We wish to find the path that maximizes the final value of the horizontal coor
dinate x 2(t1). The final value of the vertical coordinate x2(t1) and the velocity 
x3(t1) are unspecified. The path is constrained by a line h[xh x2] ::2: 0 in the 
x 1x 2 plane, where it is known that the unconstrained solution intersects the line. 
The system dynamics are described by 

X1 = X3 cos u, 

X2 = X3 sin u,. 

x,(t0) = X1o 

X2(to) = Xza , 

X3 = g sin u, Xa(to) = Xao 

where the control u is the slope of the path. The cost function is 

J = -x1(t1) 

with no specified endpoint equality constraints, and the state vector inequality 
constraint 

h(x1x 2) = ax1 + b - x2 > 0 

which is converted to the equality constraint 

x4 = 14. = [h(xh x2)]2H(h) 

I 
I 
I 

f 

We can easily compute the requisite nonlinear two-pt 1boundary value 
problem by direct application of the maximum principle given in this section. 
The equations for this TPBVP arc 

X1 = X~A.t((A.tXa)2 + (A.2X3 + A.ag)2]-ll2, Xl(lo) = Xlo 

X2 = Xa(A.zXa + A.ag)[(A.tXa)2 + (A.2Xa + A.ag)2)-ll2, X2(to) = X2o 

X3 = g(A.2X3 + A.ag)((A.tXa)2 + (A.2X3 + A.aC)2]-ll2, Xa(to) = Xao 

X4 = h(xl! x2)H(h), x4(to) = 0 

~~ = -2aA-41i(x11 x2)H(h), A.t(to) = -1 

~2 = 2A.4h(xt, x2)H(h), A.2(t1) = 0 

~a= -A.ixJ[(A.Jx3)2 + (A.2X3 + A.3g)2]- 112 

- A.z(A.zxa + A.ag)[(A.tXa)2 + (A.zXa + A.Jg)2]-l12, A.J(tr) = 0 

~4 = 0, X4(t1) = 0 

The solution of this set of nonlinear differential equations with the associated 
boundaJ'y conditions establishes the optimal trajectory and optimal control. 
Needless to say, this will not be an easy task. We shall examine this problem 
again, in Section 13.3-2, and determine a numerical solution for this optimi
zation problem with a state variable inequality constraint. 

4A Hamilton-Jacobi equation and continuous 

dynamic programming 

Let us consider once more the problem of minimizing 

J = J:: cp[x(t), u(t), t] dt 

subject to the equality constraints 

x = f[x(t), u(t), t], X(/0) = Xo 

and the control variable inequality constraint 

u(t) E U 

(4.4-1) 

(4.4-2) 

( 4.4-3) 

where U is a possibly infinite or semi-infinite closed interval, the admissible 
input set, which may depend on x(t) and t. Let us further assume, for the 
moment, that t1 is fixed and x(t1) is unspecified. Suppose that we have 
calculated fi(t) and x(t) to be the optimal control and trajectory. The cost 
function is then a function of the initial state, x(t0 ), and the initial time, /0 , 

only. It is convenient to give this a special symbol such as 

A It' V(X0 , t0 ) = J(i, fi) = cp[i(t), fi(t), t] dt 
t, 

( 4.4-4) 

so that V(x0 , 10 ) is the minimum value of the performance index when the 
initial syst~m state is X0 and the initial time is /0 • V(x0 , t0 ) is a function only 
of x. and f0 since i.(t) and fi(t) are known (optimal) values for all t E [10 , t1]. 



We now C\ l:ter a time At between t0 and t1 and rewrite the cost func-
tion, Eq. (4.4-4), as 

J
t.+At Jl' V(x0 , t 0) = cp(i, fi, t) dt + cp(i, 0, t) dt 
I• · t.+Ai (4.4-5) 

= lt(x, o) + Jlx, u) 

If we now assume that cf> is smooth over the interval to to to+ At and that 
At is sufficiently small, we may rewrite the J1 term as 

..A....a. 41-. 
-:> J1 = At¢[x(l0 + aAt), 0(10 + aAt), to + aAt], 

~h+J 111 

The second part of the cost function is simply 

(4.4·6) 

J
t, 

V2 = V[i(to + At), to+ At] = cp[i(t), u(t), t] dt 
I•+At 

(4.4-7) 

tll'cf1:rhis is so because of the fundamental theorem of dynamic programming 
~.,.which asserts that any part of an optimal trajectory is an optimal trajectory. 
1 J 'To show that J2 is V[i(t0 + At), 10 + At], we observe that the value of J2 

' depends only on the state i(/0 + At) and the control ii(t) in the time interval 

14
t from to + At to t 1 . If J2 was greater than V2> then there must have existed 

a control such that 

J 1(i, fi) + J1

' cf>[i(t), u(t), t] > V(x., to) ( 4.4-8) 
t,+At 

But this contradicts the assumption that u(t) is an optimal control. However, 
by the definition of V2> J2 > V2; thus J2 = V2. 

We will now write the cost function along the optimal trajectory as 

V(x., to) = Atcf>[i(t. + cu:::,.t), ii(t. + aAt), to + aAt] 

+ V[i(to + At), to + At] 
(4.4-9) 

By expanding the last term in this equation in a Taylor's series about At= 0, 
we have 

V(xo, 10 ) = Atcf>[i(to + aAt), ii(to + aAt), to + aAt] 

+ V(x., t.) + [oV~:· to)] At+ [oV~;: t.)r x.At (4.4-10) 

+ [At]2[ . ] + ... 
Upon taking the limit as At approaches zero and recalling the equality 

constraint of Eq. (4.4-2), we have, finally, the Hamilton-Jacobi equation 

av~:· 1•) + cf>[t(t.), u(t.), t.J + [av~~: '·)r f[t(t.), u(t.), t.J = o (4.4-11) 

In this expression, we see that if we define 

1\.(t ) = a V(x., t.) 
. 

0 OX0 

(4.4-12) 

) 
I 

we may then rewrite the Hamilton-Jacobi equation, 
subscript "o" for convenience, as 

av~~· t) + H(x, fi, A, t) = o 

r dropping the 

(4.4-13) 

It is important for us to stress ·here that this Hamiltonian is the 
Hamiltonian evaluated (at time 10) for the optimum control ii(t), since we 
have been assuming all along that cf> was evaluated about the optimal control 

· and state. Thus, yet another way for us to write the Hamilton-Jacobi equation 
is 

.(8V(x;t) _ -n( av t) at - x, ax' (4.4-14) 

where 

s( x, ~~, t) = Minu.u s[ x(t), u(t), .1\.(t) = oV~~· t), t] (4.4-15) 

When t 1 is fixed and x(t 1) is unspecified, it is an easy matter for us to 
show from Eq. (4.4-4) that the initial condition for the Hamilton-Jacobi 
equation is 

(4.4-16) 

If we had obtained the Hamilton-Jacobi equation for the cost function 

f
t, 

J = O[x(t1), t1] + cf>[x(t), u(t), t] dt 
t, 

( 4.4-17) 

we would have obtained the same Hamilton-Jacobi equation (4.4-13) with 
the initial condition (at the terminal time) 

Needless to say, the Hamilton-Jacobi equation cannot be easily solved in 
general. However, when it can, u(t) is determined as a function of x(t), or 
in other words, we find a feedback control law which is highly desirable. 
The Hamilton-Jacobi partial differential equation is equivalent to the func
tional equation of dynamic programming or Bellman's equation [11,12,13]. 
It is sometimes called the Hamilton-Jacobi-Bellman equation [14]. 

Example 4.4-1 

Let us consider the linear constant differential system described by 

i = Ax(t) + bu(t), x(O) = X 0 

where A is an n x n matrix and b is ann vector. Any u(t) is assumed to be admis
sible. We wish to find u(t) as a function of x(t) such that 

J = t s; (xTQX + rU2] dt 



We now ct l:ier a time l:l.t between 10 and t1 and rewrite the cost func-
tion, Eq. (4.4-4), as 

f
i,+At fit 

V(X0 , 10 ) = cp(i, fi, t) dt + cp(i, 11, t) dt 
t, I,+At (4.4-5) 

= J,(x, u) + J2(x, u) 

If we now assume that cp is smooth over the interval t0 to lo + l:l.t and that 
l:l.t is sufficiently small, we may rewrite the J, term as 
~ -1-l-. 

-? / 1 = Atcp[x(t0 + aAt), fi(to + aAt), 10 + aAt], (4.4·6) 
~. fs r. 

The second part of the cost function is simply 

f
t, 

V2 = V[i(t0 + l:l.t), to+ l:l.t] = cp[i(t), u(t), t] dt 
t,+.J.t 

(4.4-7) 

rt't':rhis is so because of the fundamental theorem of dynamic programming 
~.,.which asserts that any part of an optimal trajectory is an optimal trajectory. 
1 J.To show that J2 is V[t(to +At), t0 +At], we observe that the value of J2 

depends only on the state i(t0 + At) and the control u(t) in the time interval 

6
t from t0 +At to t1. If J2 was greater than V2, then there must have existed 

a control such that 

J,(i, u) + It' cp[i(t), u(t), t] > V(xo, to) ( 4.4-8) 
t,+&t 

But this contradicts the assumption that u(t) is an optimal control. However, 
by the definition of V2, J2 > V2; thus J2 = V2. 

We will now write the cost function along the optimal trajectory as 

V(x0 , t0 ) = Atcp[i(to + al:l.t), fi(to + al:l.t), to + al:l.t] 

+ V[i(to + At), to + At] 
(4.4-9) 

By expanding the last term in this equation in a Taylor's series about l:l.t = 0, 
we have 

V(xo, t0 ) = l:l.tcp[i(to + al:l.t), u(to + aAt), to + aAt] 

+ V(x0 , to)+ [av~:· to)] At+ [<W~; to)r 'ioAt (4.4-10) 

+ [l:l.tP[ . ] + ... 
Upon taking the limit as At approaches zero and recalling the equality 

constraint of Eq. (4.4-2), we have, finally, the Hamilton-Jacobi equation 

av~:· to)+ cp[i(to), fi(to), to] + [av~;o· fo)rf[i(to), u(to), to] = 0 (4.4-11) 

In this expression, we see that if we define 

A(t) = oV(xo, to) 
0 OX0 

(4.4-12) 

I 
f 
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we may then rewrite the Hamilton-Jacobi equation, 
subscript "o" for convenience, as 

av1~' t) + H(x, u, A., t) = o 

} dropping the 

(4.4-13) 

It is important for us to stress here that this Hamiltonian is the 
Hamiltonian evaluated (at time to) for the optimum control fi(t), since we 
have been assuming all along that cp was evaluated about the optimal control 
and state. Thus, yet another way for us to write the Hamilton-Jacobi equation 
is 

(aV(x; t) _ -H(x fJV t) 
.• at -,. , ax' (4.4-14) 

where 

H(x, ~~· t) = Minu.uH[ x(t), u(t), A(t) = av~~· t), t] (4.4-15) 

When t1 is fixed and x(t1) is unspecified, it is an easy matter for us to 
show from Eq. (4.4-4) that the initial condition for the Hamilton-Jacobi 
equation is 

(4.4-16) 

If we had obtained the Hamilton-Jacobi equation for the cost function 

I
t, 

J = 8[x(t 1 ), t 1] + ,, cp[x(t), u(t), t] dt ( 4.4-17) 

we would have obtained the same Hamilton-Jacobi equation (4.4-13) with 
the initial condition (at the terminal time) 

( 4.4-18) 

Needless to say, the Hamilton-Jacobi equation cannot be easily solved in 
general. However, when it can, u(t) is determined as a function of x(t), or 
in other words, we find a feedback control law which is highly desirable. 
The Hamilton-Jacobi partial differential equation is equivalent to the func
tional equation of dynamic programming or Bellman's equation [11,12,13]. 
It is sometimes called the Hamilton-Jacobi-Bellman equation [14]. 

Example 4.4-1 

Let us consider the linear constant differential system described by 

i = Ax(t) + bu(t), x(O) = X 0 

where A is ann X n matrix and b is an 11 vector. Any u(t) is assumed to be admis
sible. We wish to find u(t) as a function of x(t) such that 

J = t J~ [xTQx + rrt2] dt 



is a minimur. ) is a positive constant semidefinite matrix1 and r is positive. 
The Hamiltonian for the problem is 

H(x, u, A., t) = !x'~'Qx + !rua +A'~' Ax+ A.Tbu 

We need to find the controlu which minimizes the Ha1niltonian. This is 

aaH = 0 = ru + b'~'A. 
ll 

so 

and the Hamiltonian becomes 

H(x, :.\,I) = fx'~'Qx +:.\'~'Ax- {A?'bb'~'A.r- 1 

Since the system and the Q and r terms are time invariant and since the 
optimization is for a process of infinite duration, it follows that V(x, t) will 
depend only upon the initial state x. This implies that 

oV(x, t) _ 
0 at -

Therefore, since )l.. = oV/o:r,, the Hamilton-Jacobi equation becomes 

.!.xTQx + (oV)T Ax- .!.[(oV)'~'b]
2

r- 1 = 0 
2 ox . 2 ox 

If we assume a solution 

we see that 

oV = Px ox 
and the Hamilton-Jacobi equation may be written as 

x'~'[f Q + jPA + tATP- !PbbTPr-1] x = 0 

which says that, for any nonzero x(t), the matrix P must satisfy the n(n + 1)/2 
algebraic equations (the P matrix is symmetric) 

Q + PA + A'~'P -· Pbb'~'Pr- 1 = 0 

This equation is solved for P, and then the control is computed from 

U = -b'~')l.r- 1 = -b'~'r- 1 e~) = -bTPxr-1 

If we further consider the system 

and the cost function 

x1(0) = x10 

X2(0) = X2o• 

J = t s; (4xi + u2
) dt 

it is easy for us to show that the optimum control is given by 

11 = -2.~1 - 2x2 

) 

! 

I 
I 

Example 4.4-2 

Consider the system 

x(O) = x0 

with cost function 

J = t s;t (X2 + liS) dt 

where it is desired to determine the optimal feedback control. We accomplish 
this by forming the Hamiltonian 

H(x, u, A., t) = fx2 + j112 + A,u - A.x3 

We then set 8H/oll = 0 and note that A. = 8V/ox to obtain u = -A,; then 

H(x av) = .!.x2 _ l.[aV(x, t)J2 
_ [aV(x, t)J .3 

'ax 2 2 ax ax x 

The Hamilton-Jacobi equation is 

aV(x, t) _ _!_[aV(x, 1)]2 
_ [aV(x, t)Jx3 + .,!.x2 = o 

at 2 ax ax • 

with V[x(t1), t1] = 0. 
If the optimization interval is infinite, then o V/ot = 0, and we need to solve 

thedifferential equation 

[d~~)J + 2[djix)]x3 - x2 = 0 
with V(O) = 0 as the initial condition. We may approximate the solution to 
this ordinary differential equation by a series expansion 

V(x) :;=Po + P1X + ~ P2X2 + 3
1
1 P3X3 + ~!P4X4 + · · · 

If we terminate the series after the fourth-order term, substitute the assumed 
solution into the differential equation, and equate like powers of x (up to xl), we 
obtain Po= p 1 = p 3 = O,p2 = l,p4 = -6. Thus the approximate closed-loop 
control is 

u =-A,=-~~= -x + x 3 

We naturally may question the stability of the approximate control. However, 
with u as obtained, the system differential equation becomes 

x = -x3 + u = -x 
which is certainly stable. 

A similar procedure to this could have been used to obtain an approximate 
solution to the nonlinear partial differential equation that is the Hamilton
Jacobi equation for this example. In this case, the p's would be functions of time, 
and we would obtain matrix Riccati-type equations [15]. This approach has 
many attractive features. In particular, only initial condition problems need be 
solved. However, there are two disadvantages: There is no assurance of system 
stability; the number of matrix Riccati differential equations which must be solved 

/ 



increases grer '' · . with the order ot' the ditl'erential system and the order of the 
polynomial it .br the approximate solution to V(x, t). If an expansion in x to 
the N order is used for an 11 vector differential system, the number of distinct 
Riccati-type differential equations is 

N (n- 1 + j)l 
E= J.:1 (n-l)!jl 

for an assumed solution of the form 

If, for example, the solution to a four-vector differential system is approximated 
by terms up to and including the fourth power in x, we need to solve sixty-nine 
diiTcrcntinl equations to obtain the closed-loop control. 

Our discussion of the second variation technique, the invariant imbedding 
procedure, and specific optimal control using the quasilinearization approach 
will point out many interesting interconnections with the approach used to 
obtain the solution to this example. 

In our development thus far, we have assumed that the terminal time, t 1 , 

is fixed. It is possible to remove this restriction with the result that the 
Hamilton-Jacobi equation (4.4-13), (4.4-14), or (4.4-15) is still applicable. 
The initial condition for the Hamilton-Jacobi equation is still Eq. (4.4-18) 
and, in addition, the terminal time is determined by the relation 

n(x,~~.t)+1=0, at t=t1 (4.4-19) 

which holds if the problem is a minimum time problem such that 

V(x, t) = t1 - t (4.4-20) 

If, further, the differential system is time invariant, the Hamiltonian is equal 
to -1 at all times along the optimal trajectory. 

We may formally obtain the Pontryagin maximum principle by taking 
appropriate partial derivatives of the Hamilton-Jacobi equations (Problem 
9). However, the resulting maximum principle is not applicable to as broad 
a class of problems as is possible. The reason for this is that it is necessary 
that V(x, t) be smooth or, in other words, twice continuously differentiable 
with respect to x in order to obtain the Hamilton canonic equations of the 
maximum principle. We shall illustrate these difficulties with a simple 
example. 

Example 4.4-3 

A second-order example will now be discussed to illustrate that the assumption 
of the differentiability of V(x, t) does not hold in some of the simplest cases. 
We will consider the problem of transferring the system represented by the 
differential equations 

from an initial state X0 to the origin in minimum time. W )SUme that the 
admissible set for the scalar control is described by lu(t) I ~ l. 

This problem can be solved by the Pontryagin maximum principle. In the 
time optimal problem 

fit 
J = (l)dt 

t. 

Therefore, the Hamiltonian is 

H[x, u, A., i] = 1 + i\1x2 + i\214 

The adjoint equations are 

;\t = 0, 

The solutions to these equations arc 

i\1 = c1, i\2 = C2 - C1t 

where CJ is the initial condition on 'li.J• The control which minimizes the Hamil
tonian subject to I u I :::;: 1 is 

u = -sign 'll.2 = -sign (C2 - C1t) 

The initial conditions C1 and C2 are not arbitrary but must be such that x(t 1) = 0 
since it is desired to transfer the system X0 to the origin in minimum time. When 
u = + 1, the solution to the differential system equation is 

x2 = t + x2(0) 

t2 
X1 = 2 + X2(0)t + X1(0) 

If t is eliminated from the foregoing, we obtain 

X~ (O) Xft(O) x1 =-+xt ---. 2 2 
When u = -1, the solution to the differential system equations is 

x 2 = -t + x~(O) 
-t2 

x1 = 2 + x~(O)t + x;(o) 

and if t is eliminated in the foregoing, we obtain 

Xt = -x~ + xl(O) +x~2(0) 
2 2 

By determining the constants C1 and C2 in terms of x1 and x2, it is a straight
forward task for us to show that the control law is 

u = -sign[x1(t) + !x2(t) I x2(t) 11 

These equations represent the optimal control and trajectories for u = -1 and 
u = +1, respectively, and they indicate that these trajectories are segments of 
parabolas. Figure 4.4-1 is a plot of some of these parabolas. 

The segment of the parabola which is not an optimal trajectory has been 
represented by a broken line. The optimal control can be determined from 
Fig. 4.4-1 and a knowledge of the state of the system. The curve AOB repre-



sents the s• 1:ting curve. When x lies below AOB, u = + 1 until the system state 
reaches the _ jve AO, at which time the control switches to -1. If x lies above 
AOB, 11 = -1 until it reaches 80, where it switches to + 1. 

·The optimal transition time T(x), which is the cost function J or V(x, t),can 
be determined from the solutions for x1 and x 2• Figure 4.4-2 is a plot of T(x), the 
minimum time to transfer to the origin for the case in which the initial x2 is 
held constant (x20 = -2), and x10 is varied about the switching line. 

Fig. 4.4-1 Switching curve and trajectories for minimum time Example 
(4.4-3). 

V(x,I)=T(x1) 

~~ 
Fig. 4.4-2 Minimum time to origin for fixed X20 Example (4.4-3). 

From the graph it can be seen that &T(x)f&x1 has a di: ;.inuity at the 
switching curve. It can be shown analytically that &T(x)/&x1 "olows up" as x 1 

approaches + 2 from the left. Hence the Hamilton-Jacobi equation would not be 
applicable in examples of this type. This example indicates the loss of generality 
which results from deriving the maximum principle from the Hamilton-Jacobi· 
Bellman equations. 
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PROBLEMS 

• 1. Find the TPBVP which, when solved, yields the control, u(t), and trajectory, 
x(t), which minimize 

for the system 

/ x = -x3 + u, x(O) = t 

2, Find the control and trajectory which transfers the system 

to the line 

such that 

is minimized. 

x1 = x2, 

x2 = u, 

x1(0) = 0 

x2(0) =--= 0 

J = ~ J: u2(t) dt 

" 3. Find the control and trajectory which transfers the system 

x= -x +u 

from x(O) = 10 to x(l) = 0 such that 

./is inimized. 
" 4. Fin the control and trajectory which minimizes 

J = ~ J; x2(t) dt 

subject to the inequality constraint I u(t) I :::;; 1 for the system x = u such that 
x(O) = 1, x(4) = 1. 

5. Determine the Weierstrass-Erdmann corner conditions for the minimization of 
the cost function 

J = J: x2(2 - x)2 dt 

6. What is the Weierstrass E function for the cost function of Problem 51 
"' 7. For the system 

Xt(O) = 10 

xlO) = 0 

find the control and trajectory which minimizes 

if the desired final state is: 
(a) Xt(fi) = x2(t1) = 0. 
(b) x1(t1) = 0, x2(t1) =unspecified. 

j 
J 
I 

J 

"""' t.. '\,.)'1-* \_ l r¥:~ I • \ "Y.I , 

8. Develop a second- and fourth-order approximation to tr llution of the 
Hamilton-Jacobi equation to find the closed-loop control whicu ~inimizes 

J = t f' (xt + u2) dt w ~~ ~) J J X \, ~ .J ( a:! ) v 
t, ~ ~ 1.. 1 t Jxa-

x,=x2+xi +~(x-x.""'"~~fY~.-+"• 
~>tl ' "' o'~<, 

for the system 

x2=x,-x2+u ~· ...... ~QI-)Q) .=.) b_;t::: 
Compute and compare the actual numerical results when t 1 is infinite. C. t 

' 9. Derive the Pontryagin maximum principle from the Hamilton-Jacobi equation 
by calculating (d/dt)(&V/&x) and &V/8}.. as outlined in Section 4.4. Observe th~ 

"' difTcrentiability requirement on V(x, 1). • .,._.........___~> t- t" ~ -., IV...W IY.,._.--- - '-

10. Find the control vector which minimizes V ()I) :: I' I) + _'t, I'' J X 

J
l .,.,...., 

J = ~ 0 (X2 + ul + un dt 1,. 'I.. 

+ ~ \. l',... .. 'I ,.. y. l 
for the system described by ~: , ) • , J · 

x = u1 + 112, x(O) = 1 j?~ ..:._ w-J f_._J .M 
Use the maximum principle and the Hamilton-Jacobi equations to find the 
optimum control vector. ~ .. ~ 

' . 11. Set up the differential equations and boundary conditions to minimize for t f 
unspecified 

subject to the constraints 
a) Xt = x2, x2 = Xa, Xa = u 

b) x(O) = 0 
.. c) lui:::;; 1; lxal:::;; 10 

/ d) x1(t1) = t}, x2(t1} = x~(t1) 
' 12. Set up the equations and boundary conditions to optimize the system 

X1 = X2, X2 = Xa, Xa = u 

for the performance index with t 1 unspecified 

J = r x~dt + t}x2(tl) 

subject to all of the following constraints 
a) xT(O) = [1, 0, 0] 
b) x1(11) = x2(t1) 
c) Xa(tr) = 0 
d) lui :::;; 1 

e) J:' u2dt = 1 

13. Find the Hamilton-Jacobi equation for the system 



· if the pe ;nance index is 

J = J~' (xi + u2
) dt 

'.14. Show that the solution of the Hamilton-Jacobi equation for the system 

:t =Ax + u, Ar +A = o, II u II ~ 1 

and the cost function 

ftr 
J = 

0 
dt = t1 

is 
V(x) = llxll 

What is the optimal control? 

15. Find the optimal control to minimize 

for the system 

when 

Itt 
J= 0 dt 

.:i: =-X'+ u, 

x(O) = 1, x(t1) = 0 

lui~ 1 + !xl 

5 
OPTIMUM SYSTEMS 

CONTROL EXAMPLES 

In this chapter, we will illustrate some, but certainly by no means all, 
or even a majority, of the optimal control problems for which closed-form 
analytic solutions have been obtained. The problems we will solve in this 
chapter are very important in their own right and illustrate the use of the 
maximum principle for problems in which closed-form analytic solutions 
may be obtained. Specifically, we will discuss the linear regulator problem, 
the first solution of which was due to Kalman [1, 2, 3, 4]. We then discuss 
the minimum time problem which has been considered by Pontryagin [5], 
Bellman [6], LaSalle [7], and many others [8 through 13]. 

A characteristic of some minimum time problems is the possibility of 
a singular solution. The possibility of singular solutions is well-recognized 
in the variational calculus literature and has been extensively discussed for 
control problems by Johnson [14, 15, 16] and others. Minimum fuel problems 
for linear differential systems are then discussed. A variety of authors, but 
notably Athans, have discussed various aspects of minimum fuel problems 
including the possibility of singular solutions [17 through 20]. Finally, the 
minimum time, minimum fuel, and minimum energy control of self-adjoint 
systems are discussed. It is certainly true that the self-adjoint assumption, 
coupled with the need for as many control inputs as state variables, seriously 
restricts the practical usefulness of the solutions, particularly for high-order 
systems. However, the relative ease with which the control can be computed 
makes this an excellent example for a relatively thorough analysis. 
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Many other 1imal control problems are solved in this book other than 
the ones in this chapter. Discrete and distributed parameter problems are 
reserved for the next two chapters. Chapter 11 discusses several optimal 
control problems with regard to obscrvability and controllability. Nonlinear 
problems, which include the majority of optimal control problems, are 
discussed in Chapters 13, 14, and 15. The literature in this area is very 
extensive. For an excellent survey of many other problems plus a lengthy 
bibliography, we refer to the survey papers of Paiewonsky [22] and Athans 
[23). 

5.1 The linear regulator 

We will now study a particular control problem which has as its solution a 
linear feedback control law. It occurs where we have a linear differential system 

i:. = A(t)x + B(t)u, x(/0 ) = x. (5.1~1) 

and wish to find the control which minimizes the cost function (for t 1 fixed) 

f
t, 

J = {-xr(t1)Sx(t1) + {- [xT(t)Q(t)x(t) + u2'(t)R(t)u(t)] dt 
t, 

(5.1-2) 

Clearly, there is no loss of generality in assuming Q, R, and S to be sym
metric. We may obtain the solution to this problem via the maximum 
principle or the Hamilton-Jacobi equation. Here, we will use the former 
method. The Hamiltonian is 

H[x(t), u(t), ll(t), t] = -txTQx + {urRu + ;VAx + JlTBu (5.1-3) 

Application of the maximum principle requires that, for an optimum 
control, 

· 8! = o = R(t)u(t) + nr(t)Jl(t) 

and 

~~ = -"A, = Q(t)x(t) + AT(t)A(t) 

with the terminal condition 
8(} 

'A(t1) = ox(t,) = Sx(t1) 

Thus we require that 
u(t) = -R-1(t)Br(t)A(t) 

,;7/ 

(5.1-4) 

// 
(5.1-5) 

/ 
(5.1-6) 

(5.1-7) 

and we shall inquire whether we may convert this to a closed-loop control 
by assuming that the solution for the adjoint is similar to Eq. (5.1-6) 

ll(t) = P(t)x(t) (5.1-8) 

If we substitute this relation into Eqs. (5.1-1) and (5.1-7), we see that we must 
require 

i = A(t)x(t)- B(t)R- 1(t)Br(t)P(t)x(t) 

Also, from Eqs. (5.1-8) and (5.1-5) we require 

X = Px(t) + P(t)x "'" -Q(t)x(t) - Ar(t)P(t)x(t) 

By combining Eqs. (5.1-9) and (5.1-10) we have 

(5.1-9) 

(5.1-10) 

[P + P(t)A(t) + AT(t)P(t)- P(t)B(t)R- 1(t)BT(t)P(t) + Q(t)]x(t) = 0 

(5.1-11) 

Since this must hold for all nonzero x(t), the term premultiplying x(t) 
must be zero. Thus the P matrix, which we see is ann X n symmetric matrix 
and which has n(n + l)/2 different terms, must satisfy the matrix Riccati 
equation- which, as we shall see later, must be positive definite-

p = -P(t)A(t)- AT(t)P(t) + P(t)B(t)R- 1(t)BT(t)P(t)- Q(t) (5.1-12) 

with a terminal condition given by Eqs. (5.1-6) and (5.1-8) 

P(t1) = S (5.1-13) 

Thus we may solve the matrix Riccati equation backward in time from 
t 1 to to. store the matrix 

K(t) = -R- 1(/)Br(t)P(t) 

and then obtain a closed-loop control from 

u(t) = + K(t)x(t) 

(5.1-14) 

(5.1-15) 
It is important to note that all components of the state vector must be 

accessible. We will remove this restriction in Chapter 11 when we discuss 
the ideal observer. A block diagram for accomplishing this solution to the 
regulator problem is shown in Fig. 5.1-1. If we compute the second variation, 
we find that 

f
tr o2J = t lJxr(t1)S 8x(t1) + t t, [8x1'(t)Q(t) lJx(t) + 8n7'(t)R(t) lJu(t)J dt 

(5.1-16) 

Fig. 5.1-1 Optimum linear closed-loop regulator. 



Thus, Q 1 and S must be at least positive semidefinite in order to 
establish the sufficient condition for a minimum. In addition, we know 
from Eq. (5.1-7) that R must have an inverse; therefore, it is suft1cicnt that 
R be positive definite and that Q and S be at least positive semidefinite. 

In some cases it may turn out that certain elements of the S matrix are 
large enough to give computational difficulties. In this case, it is 'possible 
and perhaps desirable to obtain an inverse Riccati differential equation; we let 

P(t)P-1(t) =I (5.1-17) 

and, by differentiating, we obtain 

pp- 1(t) + P(t)P- 1 = o (5.1-18) 

such that we obtain an "inverse" matrix Riccati equation 

p-1 = A(t)P- 1(t) + p-l(t)AT(t) - B(t)R-1(t)BT(t) + p-1(t)Q(t)P- 1(t) 
(5.1-19) 

with 
p-l(tr) = s-1 (5.1-20) 

In this way, for example, it is possible to solve the Riccati equation such 
that s-1 = [0], the null matrix, which will require that each and every. 
component of the state vector approach the origin as the time approaches the 
terminal time. The "gains" K(t), or at least some components of them, 
become infinite at the terminal time in this case. It is also necessary to assume 
certain controllability requirements here, as we shall see in Chapter 11. 

It is possible to write the nonlinear n X n matrix Riccati equation with 
a terminal condition as a 2n vector linear differential equation with two-point 
boundary conditions. We will use this approach, in part, to solve a Riccati 
equation associated with a filtering problem in Chapter 9. Our discu.ssio~ 
of the second variation method in Chapter 13 will also make use of a R1ccat1 

transformation. 

Example S.l-1 

Consider the scalar system 

x = -ix(t) + u(t), x(to) = Xo 

with the cost function 

J = !sx2(t1) +! J1
' [2x2(t) + u2(t)] dt 

t, 

The Riccati equation, Eq. (5.1-12), becomes / 

p = p + pz - 2, p(t 1) = s V 
which has a solution that we may write as either 

p(t) = -0.5 + 1.5 tanh ( -1.5t + ~~) 
or 

p(t) = -0.5 + 1.5 coth ( -1.51 + ~2) 
where ~1 and ~2 are adjusted such that p(t 1) = s. 

I. 

I 

For example, if 

(a) _s = 0, t1 ""-I' then~~ = 1.845 radians, which gives 

K(t) = -R- 1B 7'P = 0,5 - 1.5 tanh ( -I.St + 1.845) 

Since s = 0, we are not particularly weighting the state at the final time, and 
the "gain" (and control) goes to zero at the final time. 
(b) s = 10, t1 = 10, then ~2 = 15.1425 radians. In this case we are applying 
a great weight to the error at t = t 1, and the gain becomes large ( -1 0) at the 
terminal time. 
(c) s = oo, the Riccati equation cannot be solved directly since it has an 
infinite initial condition .. The inverse Riccati equation can be solved with zero 
terminal condition to giv~ 

K-1(t) ;;~25 + 0.75 tanh (-1.51 + 1.5t1 - 0.346>] . 

As t 1 becomes infinite, it is easy to show that~K(t) becomes unity and, as is 
expected, the-feedl5acRgaillbecomes-constant.-Figufe-5~l~:nnustrates K(t), the 
"Kalman gains" as they are sometimes called, for these three cases for this 
particular problem. 

Example S.l-2 

Let us consider the optimum closed-loop control for a nuclear reactor system. 
Specifically, we wish to consider a very simple reactor model with zero tempera
ture feedback. Only one group of delayed neutrons will be used. 

The reactor kinetics are described by the equations 

iz = ~ Af3)n + A,c, /311 t: =A- A,c 

where the neutron density, 11, and the precursor concentration, c, are the state 
variables, and the reactivity p is the control variable. The system has the initial 

t,= 00 

lr = 1 sec 

Time, seconds 

Fig. 5.1-2a ( -1) times Kalman gain for controller, s = 0. 



s 
~ 
I 

s 
~ 
I 

0 

0 

• t,= lOsee 

lr =oo 

10 
Titne, seconds 

Fig. 5.1-2b ( -1) times Kalman gain for controller, s = 10. 

00 
00 

t, = 1 sec 
fr= 10 sec 

Time, seconds 

Fig. 5.1·2c ( -1) times Kalman gain for controller, s = oo, 

conditions n(O) =no and c(O) = c0 • fl, A and A- are constants, the average fraction 
of precursors formed, effective neutron lifetime, and precursor decay constant. 

The problem is to increase the power from the initial sta~e no to a terminal 
state dn0 , where d is some constant greater than 1.0. The performance index for 
the system is 

ftr 
J, = i 0 p2 dt 

The control variable therefore becomes p, and p, in elfect, thus becomes a state 
variable. The kinetics equations may then be rewritten as 

li = (p Afi)n + A-c 

c = IJr- AC 

p==u 
where u is the control variable. Chapter 14 on quasilinearization indicates how 
the nonlinear two-point boundary value problem resulting from the use of 
optimal control theory may be used to obtain the optimum control and trajectory, 
which arc shown in Fig. 5.1-3, for the following system parameters 

A,= 0.1 see-1 n0 = 10 kW 
d = 5 

A = to-s sec f1 = 0.0064 
t1 = 0.5 sec 

We will now develop a method of feedback control about the optimal trajectory 
which minimizes a cost function J 2 ; it will be quadratic in deviation from the 
nominal (optimal for J 1) trajectory and control. 

Having formulated a model for the nuclear reactor system and determined 
the optimal trajectories, we now desire to determine the linearized system coef
ficient matrix about the optimal trajectory. The deviations of the state and 
control variables about the optimal or nominal trajectories are expressed by 

n = n,m + An(t), 

p = Pn(t) + Ap(t), 

c = c11(t) + Ac(t) 

u = U11(t) + Au(t) 

Time (sec) 

0.6 

Fig. 5.1-3 Optimal control (reactivity) and trajectory (flux density) for 
Example (5.1-2). 



The state vecl 

Ax'~'(t) = [An(t), Ac(t)~ Ap(t)] 

The linearized model becomes 

At = [a"i/ _: ••:(I)] ax(t)+ m Au 

0 0 0 
= A(t)Ax{t) + b(t)Au{t) 

where 

a (I) _ Pn(t) - {3 
II - A ' 

To complete our design of the closed-loop controller, we must evaluate 
A(t) and b(t) about the optimum or nominal trajectories, select the R, Q, and S 
matrices, and solve the associated Riccati equation. The nominal trajectory, 
control, and time-varying gains are then stored and used to complete the closed
loop controller design. 

The choice of the R, Q, and S matrices to minimize 

is somewhat arbitrary and can perhaps best be done here by experimentation. 
We can accomplish this only after we have obtained a knowledge of possible 
disturbances which may drive the system off of the nominal trajectory. Let us 
assume that we will use 

11 0 

Q=l 0 0 
..... o 0 

ol 
0 ' 

104
....J 

S=O, r=l 

In Chapter 13 the second variation and neighboring optimal methods of con
trol-law computation will lead us to a method for choosing the proper weighting 
matrices for a variety of cases, in particular, for relating J 1 and J 2• 

The control, Au(t), is computed from 

Au(t) = -R- 1(t)B'~'(t)P(t)Ax(t) 

= -[P3t(t)An(t) + P32(t)Ac(t) + P3a(t)Ap(t)] 

where it is necessary to solve the 3 x 3 matrix Riccati equation, having six 
different first-order differential equations, to obtain P(t). Figure (5.1-4) illustrates 
the Kalman gains -K'~'(t) = [p31(t), p32(t), p 33(t)] for this example. Figure (5.1-5) 
indicates how the complete closed-loop controller is obtained. It is interesting 
to note that, in an actual physical problem, the precursor concentration is not 
measurable, and therefore we need to add an "observer" of this particular state 
variable. We also need to discuss many more aspects of this problem such as 
disturbances and parameter variations. We will postpone further consideration 
of these important questions until we establish some foundation in state and 
parameter estimation and optimal adaptive control. We have, in this example, 

Reactivity 
disturbances 

W(t) 

Time, seconds 

Fig. 5.1-4 Kalman gains for Example (5.1-2). 

Optimal state 
variable storage 
(flux density) 

Measurement 
noise 

v(t) 

Stole estimator 
(observer) 

Fig. 5.1-5 Structure of controller for Example (5.1-2). 

illustrated how a basically nonlinear problem may be linearized, and a linear 
time-varying closed-loop controller obtained, if a nominal trajectory is known. 
Since this can be accomplished for a variety of problems, we see that the linear 
regulator problem is indeed an important one. 



5.2 The 1ar servomechanism 

The linear regulator problem considered in the preceding section cnn be 
generalized in sevcrul wnys. We can assume that we desire to lind the control 
in such a way as to cause the output to track or follow a desired output 
state, )](t). We may also assume that there is a forcing function (not the 
control) for the system differential equations. Therefore, we will consider 
the minimization of 

J = t II7J(t ,) - z(t I) II~ + ~·II' r II7J(f) ·- z(t) llb<o + II u(t) ll~<td dt (5.2·1) 
t, 

for the system which contains an input or plant noise vector w(t) 

i = A(t)x(t) + B(t)u(t) + w(t), x(t0 ) = X0 (5.2·2) 

z(t) = C(t)x(t) (5.2-3) 

The requirements on the various matrices are the same as in the preceding 
section. We proceed in exactly the same fashion as for the regulator problem. 
The Hamiltonian is, from Eq. (4.3-34), 

H(x, u, /\., t) = ~II r;(t) - C(t)x(t) llb<t> + t II u(t) ll~<t> 
+ 1\,T(t)[A(t)x(t) + B(t)u'(t) + w(t)J 

We employ the maximum principle and set 8H/8u = 0 to obtain 

u(t) = -R -i(t)BT(t)A(t) 

and 

0:: = -A = cr(t)Q(t)[C(t)x(t) - r;(t)] + AT(t)ll(t) 

with the terminal condition 

i\(t1) = cr(t1)S[C(t1)x(t1)- r;(t1)J 

(5.2-4) 

(5.2-5) 

(5.2-6) 

(5.2-7) 

In order to attempt to determine a closed-loop control, we assume 

i\.(t) = P(t)x(t) - ~(t) (5.2-8) 

We substitute .this relation into the canonic equations and determine the 
requirements for a solution. By a procedure analogous to that of the preceding 
section~ we easily obtain the following requirements 

p = -P(t)A(t)- AT(t)P(t) 

+ P(t)B(t)R- 1(t)BT(t)P(t) - CT(t)Q(t)C(t) 
(5.2-9) 

(5.2-10) 

and 

e = -[A(t)- B(t)R- 1(t)BT(t)P(t)Y~ + P(t)w(t)- CT(t)Q(t))](t) (5.2-11) 

~(t,) = CT(t,)Sr;(t,) (5.2-12) 

Thus we see that the linear servomechanism problem hmposed of two 
parts: a linear regulator part, plus a prefilter to determine the optimal 
driving function from the desired value, r;(t), of the system output. The 
optimum control law is linear and is obtained from Eq. (5.2-5) as 

u(t) = -R- 1(t)BT(t)[P(t)x(t)- e(t)] (5.2-13) 

Unfortunately, the optimal control is, in practice, often computationally 
unrealizable because it involves e(t) which must be solved backward from 
t1 to to and, therefore, requires a knowledge of )](t) and w(t) for all time 
t E [t 0, t 1]. This is quite often not known at the initial time t a· 

Example 5.2-1 

Let us consider the minimization of the cost function 

J = ! J~' [(x, - "/1)2 + u2] dt 

for the system described by 
x1 = x2, x1(0) = x,0 

X2 = U, X2(0) = X2o 

We first use Eqs. (5.2-9) and (5.2-10) to obtain the Riccati equation for 
this example 

Pu<tr) = 0 

ih2 = -Pu + P12P221 Ptlfr) = 0 
<' 

. P22 = -2PI2 + P~2. P22(t,) = 0 ' 

. If we allow t1 to become infinite, we obtain the soluti~n p 11 ~ p 22 = -v'Y, ' 
p12 = 1. Thus we have for the closed-loop control 

u = -R-lBT[Px - ~] = -x1 - ,v-2 X2 + ~2 
where we must determine~ by solving Eqs, (5.2-11) and (5.2-12) which become for 
this example 

~1 =~I - 'IJh ~l(tf) = 0 

~2 = -~, + ../2~2• ~2(t,) = 0 
If '1]1 = a; a constant, for t greater than zero, we are justified in obtaining 

the equilibrium solution for the f equation if tf = oo by setting f = 0 to obtain 
~2 = 0.7on, = '11 =a. If '11 = 1 - e-1, we will then find by a simple limiting 
process that for t1 = oo, 

Mt) = 1 + 2 + ~ e-t, t ~ 0 

We may realize this solution as shown in Figure (5.2-1). 

We note that if w(t) = )](t) = 0, or for that matter, any vector constant 
in time, the servomechanism problem reduces to a regulator problem except 
that it is an "output" regulator problem rather than a "state" regulator 
problem because of the presence of the output matrix C(t). It is not necessary 
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for the system to be controllable in order to find a solution to the regulator 
problem. The only exception to this is in the· limiting cases where S becomes 
infinite or where t 1 becomes infinite. It is, however, necessary that the 
system be observable in order for a solution to the output regulator problem 
to exist. We will expand considerably on these ideas when we consider 
controllability, observability, and the reachable zone problem in Chapter 11. 

It is possible to give a frequency-domain interpretation to the regulator 
and servomechanism problem for the infinite time interval case for a constant 
system. We will present this method, due to Kalman, in Chapter 9 where 
the duality concept will allow us to treat both the estimation and the control 
problems. 

5ti3 Bang bang control and minimum time problems 

Maximum effort control problems have become increasingly important 
in a variety of applications. It is natural that we ask under what circum
stances optimal controls will always be maximum effort, or bang bang. To do 
this, we will restrict each component of the control vector, u(t), to some 
bounded interval. Let us consider the nonlinear <?ifferential sy..s}em where the 
C'2_11t~<?l. enters in a linear fashion -----:r o. >~ u~ 1 .""-.. : 

X= f[x(t), t] + G[x(t), t]u(t), x(t0 ) = X 0 (5.3-1) 

a1 < u1 < b1, Y i (5.3-2) 

and assume a performance index which, likewise, contains only linear terms 
in the control variable, such that the Hamiltonian will also be linear in u(t). 

J = 8[X(fr), ft1 + ( {¢[~(t), !] + hT[X(t), t]Utt)} df (5,3-3) 

H[x(t), u(t), ;\(t), t] = ¢[x(t), t] + hr[x(t), t]u(t) 

+ iV(t)[f[x(t), t] + G[x(t), t]u(t)J 
(5.3-4) 

Since the Hamiltonian is linear in the control vector, u(t), minimization of 
the Hamiltonian with respect to u(t) requires that 

if {hr[x(t), t] + IV(t)G[x(t), t]J1 > 0 

if {hr[x(t), t] + iV(t)G[x(t), t]}1 < 0 
(5.3-5) 

\ 

~
~ 
I 

'· 

Thus we see that when the control vector appears )arly in both the 
equation of motion of the differential system and the performance index, 
and if in addition each component of the control vector is bounded, the 
optimal control is bang bang. The only exception to this occurs in cases where 

~~ ~~~ hT(x(t), t] + A,T(t)G[X(t), t] = 0 ciV t ). ,._o (5,3·6) 
·~ v • 4 

for then the Hamiltonian is not a function of u(t) and cannot be minimized 
with respect to u(t). When Eq. (5.3-6) holds for more than isolated points in 
time, the optimization problem is said to possess a singular solution, a prob
lem which we will discuss in detail in the next section. A singular solution 
is possible with respect to a particul11r control compon"'en't;""i;;;Jfti;-Tth 
component of Eq. (5.3-6) is zero . 
.. For this problem, the canonicequations are obtained as 

x = ~Z = f[x(t), tJ + G[x(t), t]u(t) 

-A= oH = o<j>[x(t), t] + ohr[x(t), t] u(t) 
ox ax ox 

+ ofT[x(t), tJ A.(t) + o( G[x(t), t] u(t)}>"A_(t) 
ox ox(t) 

(5.3-7) 

(5.3-8) 

where u(t) is determined via Eq. (5.3-5). Since we have not specifically stated 
the end cenditions, we have carried the general problem about as far as is 
possible. When we specify information concerning the desired states at the 
terminal time and the initial condition vector, we have, as before, a two
point boundary '-:!lhte nroble!.JI with half of the g,on.£J[tions specifled a~ 
imhal time and hair at the terminal time. A possible method of solution of 
tfie canonfc equatwns for this formulation consists of reversing time in the 
canonic equations. Starting at the determined or specified terminal vector, 
which often is the origin of the state vector, we integrate back from this 
point with a constant control until a switching point is obtained from Eq. 
(5.3~5). Since no terminal conditions are present for half of the state variables, 
the method is, of necessity, cut and try. Chapters 13, 14, and 15 provide 
more systematic methods for solving this type of two-point boundary value 
problem. 

We shall now illustrate various solutions to a particular case which 
results in bang bang control-the minimum time problem for constant linear 
s~tems with a scalar in ,2m,. In this problem, we desire to transfer ann vector 
constant differential system 

x = Ax(t) + bu(t), X(t 0 ) = Xo (5.3-9) 

to the origin, x(t1) = 0, in minimum time, such that we have for the cost 
function 

f
tr 

J= (1)dt=tr-lo 
t, 

(5.3-10) 
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11 
CONTROLLABILITY 

AND OBSERV ABILITY 

-THE SEPARATION THEOREM 

In our previous work with the regulator and servomechanism problems, 
we noted that there were certain requirements, in addition to the definiteness 
of certain mntrices, which must exist in order for the problem to have a mean~ 
ingful solution. Jn this chapter we wish to examine these requirements, 
which we have postponed until now so that we might explore them using 
optimum control and filtering theory. 

First we will C)( amine an intrinsic characterization of the manner in which 
the output of a system is constrained with respect to the ability to observe 
system states. Then we will examine the dual requirement and find the charac
terization of the manner in which a system is constrained wHh respect to 
control of the system states or system outputs. We will consider these require
ments for both continuous and discrete systems and wHl thus prove the 
observability and controllability requirements for linear systems. Original 
efforts in this area arc due to Kalman Ho and Narendra [1, 2, 3, 4], Kreindler 
and Sarachik [5], Lee [6], and Gilbert [7], 

We shall then turn our attention to systems that are partially observable 
in that the output vector contuins all information necessary for the unique 
recovery of each component of the state vector. We discuss two methods 
for the construction of observers, the first due to Kalman [8), and the second 
to Luenberger [9), 

291 
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Finally, we pose the problem of combined estimation and control in 
which we not only have the requirement for state estimation but also the 
requirement to use the estimated state in such way as to generate an optimal 
control law. This problem has been: treated by Kalman [10), Joseph and 
Tou [11), Gunckel and Franklin [12], and others [13, 14]. It lays the foundation 
for the optimal adaptive problem which we shall consider in later chapters. 

1181 Observability in linear dynamic systems 

In Chapters 8, 9, and 10 we developed various concepts concerning 
state estimation in linear continuous and linear discrete systems. To accom
plish state estimation, it is necessary that certain requirements with respect 
to observability be met. 

For a system to be observable, it must be possible to determine the state. 
of an unforced system from the knowledge of the output of the system 
over some time interval. Specifically, in an unobservable system; it is impos
sible to determine an initial state vector x(t v) from a knowledge of the output, 
z(t). Of course, we must be able to do this if we are concerned with control 
of system state variables as we are in the regulator problem. We shall first 
discuss the observability requirement for linear discrete systems and then 
proceed to .a discussion of linear continuous systems. 

11.1-1 Observability in time-varying discrete systems 

Let us suppose that we have a system whose state is described by the 
unforced vector difference equation 

x(k + 1) = A(k)x(k) {11.1-1) 

and suppose that we observe a vector z(k) which is a linear combination of 
the system states plus an additive noise term 

z(k) = C(k)x(k) + v(k) 
We desire to find the best least-squares estimate, i(k), of x(k) by minimizing 

kt 

J={· ~ llz(k)- C(k)i(k)l/~-~<kl (11.1-3) 
k=k, 

subject to the constraint of Eq. (I 1.1-1) with x(k) replaced by i(k). This 
is a multistage decision process, and since Eq. (11-1.1) holds, we can write 

x(ko + 1) = A(ko)x(ko), 

x(ko + 2) = A(ko + l)x(ko + 1) = A(ko + l)A(ko)x(ko) 

Thus it is clear that 

x(ko + k) = q;(ko + k, ko)X(k0 ) (11.1-4) 
where 

k,+k-1 

q;(ko + k, ko) = A(kQ + k- 1) •.• A(ko + l)A(ko) = kij, A(k) (11.1-S) 
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(11.1-6) 

Since matrix multiplication is not commutative, we realize that we must 
form the product in Eq. (11.1-5) in the proper order. Now we can write 

x(k) = rp(k, k0)x(k0) (11.1· 7) 

By using Eq. (11.1-7), we can write the cost function as 
kt 

J = i ~ II z(k) - C(k)rp(k, ko)i(ko) 11~-•(k) 
k=kq 

(11.1-8) 

which includes the constraint Eq. (11.1-1), since it has been used to formulate 
the equation. 

We wish to minimize Eq. (11.1-8). To do this we will solve 8Jfoi(k0) = 0, 
which is the usual necessary condition for a minimum. In doing this we obtain 
from Eq. (11.1-8) 

k, 
~ rpT(k, /<;0)CT(k)R- 1(k)[z(k)- C(k)rp(k, k0)i(k0 )] = 0 (11.1~9) 

k=k, 

We note that i(ko) may be removed from the summation sign. By doing 
this and solving the resulting equation, we obtain 

k! 

x(ko) = M- 1(k0, k.r) ~ cp7'(k, k.)CT(k)R- 1(k)z(k) 
k=k, 

(11.1-10) 

as the best initial condition, where we have defined 
k! 

M(k0, k1) = I; rpT(/c, k0)CT(k)R-1(k)C(k)cp(k, k0) 
k=k, 

(11.1-11) 

Clearly, M(k.r, k.) must have an inverse and, therefore, must be nonsin
gular. Kalman's condition for observability goes even further, in that it requires 
M(k1, ko) to be positive-definite. We recall that a positive-definite matrix F 
is defined as one such that xTFx > 0 for any nonzero x. Also real sym
metric matrix F is positive-definite if and only if there exists a nonsingular 
matrix D such that F = DTD. We note that D, being nonsingular, implies 
that F is nonsingular also, since det (F) = [det (D))2. Since M is of the form 
DTD, the positive-definite requirement really only requires that M be non
singular. For observability, we are not at all concerned with the specific 
nature of the positive-definite weighting matrix R, and thus we set R =I 
in Eq. (11.1-11). 

Example 11.1-1 

Suppose we have two integrators in cascade as in Fig. 11.1-la. We ask: Can 
we estimate xT = [x11 x2] by observing z? Obviously not, because we do not 
know the initial condition on the second integrator. In this case we would find 
M to be singular and thus not positive definite. 

Now suppose that we add a switch to the system as shown in Fig. 11.1-lb. 
We begin by observing z'l' = [zh z2] at some time t0 < (1• Can we estimate x? 
We would find that M is singular fort < t 1 and nonsingular thereafter, indicating 
that the system is observable fo.r I> t~o and nonobservable fo.r t < 11• This is 
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Known T x2(b) T x1(k) 

II input 1-z-1 1-z-1 

z(b) 

(a) 

Closed at t1 

Known T x2(b) T 
input 1-z-1 1-z-1 z1(b) 

z2(b) 

(b) 

Cl d t t ose a 1 Open a 
Known T T ~ input 1-z-1 1-z-1 ~ 

'------

(c) 

Fig. 11.1-1 A simple system which is a) unobservable b), c) observable for 
I> 11• 

what we could expect intuitively. Lastly, we add another switch, which we open 
at time t2 as shown in Fig. 11.1-lc. In this case, the system would be nonobserv
able for I < t,, but observable thereafter, even for t > t 2• This is because of 
the fact that, once we know the value of x1 for some time ! 0 , we know .v1 for all 
time, provided .\"2 is known, and we are always observing x2• Thus, M will be 
singular for t < t 1 and nonsingular thereafter. There is a general theorem we 
could have applied to the third part of this example [2] which states that the 
rank of M(k,, ko) is nondecrcasing with increasing time or, here, incrca~;ing k1, 

1t is not necessary that we interpret the obscrvability condition through 
the use of a least-squares curve fitting procedure. From Eqs. (ll.l-2) and 
(11.1-7) we can set up a vector Z com posed of 

z(k0 ) C(ko) 

z(ko + 1) C(k0 + l)q;(k0 + 1, ko) 

z(ko + 2) C(k0 + 2)q.>(k0 + 2, k0 ) 

Z = = i.(ko) = A.P(k0 , k,)i.(ko) 

(11.1-12) 
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such that 

A(k0 , k 1) = [C1'(k0 ) l g>'l'(ko + 1, ko)C'I'(ko + 1)! • • • ! g>'l'(k I> k0)C'I'(k 1 )] 

(11.1-13) 

To solve for i(t.), it is necessary that A(k0 , k1) be of rank n (x is an n 
vector). This provides us with an alternative test for observability. If we 
premultiply Eq. (ll.l-12) by A(k., k1), we have 
~ k-~ 
}:; g>P(k, ko)CT(k)z(k) = [ 2:; cp'l'(k, k.)CP(k)C(k)q.>(k, ko)]x(ko) (l,l.l-14) 

k=k0 k=k0 

Thus we again have 

(11.1-15) 

where M(ko. k1) has been previously defined by Eq. (I 1.1-11). The matrix 
M(k0 , k1) is sometimes called the Gram'ian matrix and is nonsingular if and 
only if the matrix A(k., k1) is of rank 11. Thus there certainly must be at 
least n columns in A(k0 , k1), which requires that the minimum sequence 
length, k1 - k. is (nfm- 1), where x is an 11 vector and .z is an m vector. 

For constant discrete systems where A and C are stage invariant, these 
results simplify somewhat since r:p(k, ko) = A <k-k,>, C(k) = C, and the observ
ability requirement becomes that the matrix 

A(k) = [CT: ATC'l' i AP'CT! AP'C'l' i ... i APHCP] (11.1-16) 

be of rank n. If a constant system is not observable on a sequence of length 
k = n, it is, of course, not observable on any sequence. This is not the case 
for stage-varying or nonconstant systems as indicated in Example 11.1-1. 
In many cases, it will be computationally more convenient to determine 
whether or not the n X n matrix Al:l.P is of rank n rather than the n X nm 
matrix A of Eq. (11.1-16). This statement will apply to the many matrices 
of the form of Eq. (11.1-16) which we will encounter in this section and the 
next. 

H.l-2 Obscrvnbility in continuous systems 

We have previously derived the observability condition for discrete 
static and dynamic systems, Now consider a continuous dynamic system 
represented by the n vector equation · 

i(t) = A(t)x(t) (11.1-17) 

·where we observe (measure) an m vector output 

z(t) = C(t)x(t) + v(t) (11.1-18) 

where v(t) is additive measurement noise. We wish to find the best least
sq~mre estimator, ~(t), of x(t) such that the cost function 

f
e,, 

J = {· llz(t)- C(t)i(t)llit-•<tl dt 
t, 

(ll.l-19) 
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is minimized, subject to the constraint 

i(t) = A(t)i(t) (11.1-20) 

We could obviously apply the maximum principle, but instead, we will use 
another, simpler approach as follows. The solution to Eq. (11.1-20) is 

i(t) = cp(t, r)x(r) (11.1-21) 
where 

orp~, r) = A(t)cp(t, r), cp(t, t) =I (11.1-22) 

Therefore, given i(t1) at some time t1 = r, we can find i(t 1) at any other 
time t 1 = t by choosing the proper transition matrix cp(t, r). 

We can use Eq. (11.1-21) to replace i(t) in the cost function, Eq. (11.1-19). 
In so doing, we are free to choose any value of t we desire. It seems that 
a reasonable choice is t = t" since we will then obtain a solution for that 
value of i(t1) (i.e., the final state) which gives least-square error. In addition, 
we have previously given the solution for x(ko) for the discrete case. Thus, 
the cost function becomes 

f
ir 

J = {· II z(t)- C(t)cp(t, t1)t(t1) llft·•<l> dt 
t, 

(11.1-23) 

To determine the particular i(t1) that minimizes Eq. (11.1-23), we must 
solve 

a:t
1
) = 0 = r cp'~'(t, t1)C'~'(t)R- 1(t)[z(t)- C(t)cp(t, t1)i(t1)] dt (11.1-24) 

which gives 

[J;~ cp'~'(t, t 1 )C'~'(t)R - 1(t)C(t)cp(t, t 1) dt J i(t 1) = ( cp'~'(t, t 1 )C'~'(t)R -t(t)z(t) dt 

(11.1-25) 
We now define 

(11.1-26) 

so that 

(11.1-27) 

Clearly, the matrix of Eq. (11.1-26) must have an inverse or, in other 
words, must be nonsingular. Furthermore, by computing the second deriva
tive 82J/8x2, we see that we require N(t "' t 1) to be positive-definite in order 
to establish sufficient conditions for a minimum of the cost function. Thus, 
a system becomes observable at time t1 when the matrix N(t., t1) is positive
definite for t, t 1 > to· Again, it can be shown that the rank of the matrix 
N(t0 , 11) is nondecreasing with time. In other words, once a system becomes 
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observable at t = 11, it remains observable for all t > 11• For observability, 
the matrix R is again set equal to the identity matrix I. 

We will again offer an alternate derivation of the observability require
ment. The output of the system z(t) is from Eqs. (11.1-18) and (11.1-21). 

}tb~ CL~' ~tt'. z(t) = C(t)cp(t, t1)i(t1) (11.1-28) 

By premultiplying this equation by cp'~'(t, t1)CT(t) and integrating, we obtain 

s:: cp'~'(t, t1)CT(t)z(t)dt = [( cp'~'(t, t1)CT(t)C(t)cp(t, t1)dt] i(t1) (11.1-29) 

Thus 

(11.1-30) 

where N(t0 , t1) is as defined before: 

f
ir 

N(tn, t1) = cp'l'(t, ti)CT(t)C(t)cp(t, t1) dt 
t, 

(11.1-31) 

We can clearly solve for i(t.) also by 

i(t0 ) = M- 1(1 0 , /1) Jt' cp'l'(t, t0 )CT(t)z(t)dt 
I, 

where 

f
tr 

M(t 0 , t 1) = cp'~'(t, f 0)C'~'(t)C(t)cp(t, f 0) dt 
t, 

(11.1-33) 

and we can easily show that 

M(t0 , t1) = cp'~'(t, f 0 )N(t0 , tl)cp(tf> 10 ) (11.1-34) 

From Eq. (11.1-28) we see that a necessary condition for the system to 
! .f. be observable (on the interval [t., t1]) is that the columns of C(t)cp(t, t1) 
: ~~iVbe linearly independe.nt. Mathematically, we may write this condition of 

r fl ~in ar inde~n~:n-~jnterms of :nt~ctor:)] as (15, 16] ,// ct\::1 ~ U,: 

\ \ . 0 C(t)cp(t,tl)::;i=O ·X Vt E [t.,tl], :)J::;i:O (11.1-35) 

i d 'J This condition may be developed into a test for observability as follows. 
If we assume that the conditions of Eq. {11.1-35) are not fulfilled, and dif
ferentiate Eq. (11.1-35) repeatedly, noting that 8cp(t, t1)/0t = A(t)cp(t, t1), 
we obtain the set of equations 

,lr)(t)cp(t,t1) = OT, j= 1,2, . .. ,n . (11.1-36) 
where 

r1 = CT(t) 

r ~ ark-• + A'~'(t)r k -- 81 k-1 
(11.1-37) 

Now if we define 

(11.1-38) 
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(ll.l-39) 

which, since cp is always nonsingular, implies that I' is singular. But Eq. 
(11.1-35) does not express an equality, so none of these relations, Eq. (11.!-36), 
could hold, and r cannot be singular if the system is observable. Thus, 
if the r matrix of Eq. (ll.l-38) is of rank 11, where I'; is defined in Eq. 
( 11.1-37), the system is observable. 

The matrices M(t0 , t1) and N(t 0 , t1) are known as Gramian matl'tces and 
must be positive-definite for an observable system. This is an alternate and 
equivalent criterion to requiring the r matrix to be of rank 11. For a constant 
system, it is considerably simpler to determine the rank of the r matrix 
than to evaluate either of the Gramian matrices. Thus for a constant system, 
the easiest criterion for observability is to use the requirement that then X nm 
matrix 

( 11.1-40) 

be of rank 11. This may be accomplished if we determine whether the n X 11 

matrix 1'1'7' is of rank n. 
We may now distinguish between several types of observability. A system 

is said to be observable on the interval [1 0 , t1] if, for a specified 10 and spe
cified t1 , every state x(t0 ) may be determined from knowledge of z(t) Y t E 

fto, t1]. In other words, theM matrix is positive-definite or the rank test is 
satisfied for the fixed 10 and fixed t1. If this is true for all (0 and some t1 > t0 , 

we say that the system is completely observable. If this is true for every t 0 

and every t 1 > to, the system is said to be totally observable. The only 
modification to this statement needed to treat discrete systems is that there 
are a finite number of states, as discussed in Section 11.1-1, before a discrete 
system will become observable. Finally, we remark that application of the 
state estimation techniques of the previous two chapters to unobservable 
systems often leads to impossible computational problems in determining; the 
solution to the error variance equation. A remedy is to attempt to estimate 
only those components of the state vector which are observable in the 
output vector. 

11.2 Controllability in linear systems 

In Chapters 9 and 10, we saw that the linear state estimation and the 
regulator problem were duals of one another. Thus it is reasonable to expect 
a dual of the observability criterion, and we shall call it the controllablilily 
criterion. We will say that a system is state controllable if any initial state 
vector x(to) can be transferred to any final sf.atc vector x(t1), where !,. and 

SEC. 11.2 CONTROLLi\D!LITY IN LINEAR SYSTf.. 2( 

t 1 are fixed by means of some control u(t). t More precise definitions of co 
trollabilitl as well as a discussion of the implications of duality, will be giv< 
at the end of this section. We shall first consider state controllability ar 
output controllability for continuous systems. The close similarity of tl 
results will then be noted. As suits the dual to observability, we shall initia 
our approach by considering the transfer of the system from the initial sta 
to a final state which, since linear systems are being considered, can be co 
sidered to be the origin without loss of generality. 

Suppose we wish to determine whether the system described by 

i(t) = A(t)x(t) + B(t)u(t) ( 11.2-

z(t) = C(t)x(t) ( 11.2-

is controllable. In other words, we wish to find whether there is a contr< 
u(t), such that x(to) = X 0 and x(t1) = 0. We will find the control which accor 
plishes this (if it exists) and which minimizes the .cost function 

J = f f~' II u(t) llh(t) dt (11.2~ 
t, 

We will use this cost function to "get a handle" on the problem, i.• 
to determine if there is a u(t) such that we can bring the system from x(to) = 
to x(t1) = 0. Another "sensible" cost function would work equally wr 
To do this, we shall use the maximum principle. Thus, we form the Ham 
ton ian 

H[x(t), u(t), ~(t), t] = iII u(t) llhco + ~T(t)[A(t)x(t) + B(t)u(t)] (11.2· 

and obtain. in the usual way 

aH . - = x = A(t)x(t) + B(t)u(t), 
(})!, 

oH = -A= N'i\(t), ax 
To obtain the miniml!m H, we set 

which gives 

()fl = 0 au 

X(to) = Xo 

x(t1) = 0 

u(t) = -R- 1(t)BT(t)i\(t) 

By combining these last four equations, we obtain 

i = A(t)x(t)- B(t)R-1(t)B7'(t)i\(t), x(t0) = Xo 

X, = -AT(t)i\(t), x(t1) = 0 

(11.2· 

( 11.2· 

(11.2· 

(11.2· 

( 11.2· 

(11.2-1 

tin a similar way, n system will be called output controllable if there exists an inr 
u(l) which transfers an initial 0\Jtput vector z(/0) to 11ny final output vector z(lr)• 
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In a fashion similar to that which we have used many times before, we 
obtain the solution to these two equations as 

I
t, 

x(t1) = cp(t1, !0 )X(t0 ) -- cp(tr. T)B('r)R- 1(r)BT(T)A(r) dr 
t, 

A(t) = cpT(t" t)A(t f) (11.2-12) 

which must be zero. An alternate approach is to write 

~ x(l) ~ <p(t, t 1)x(t 1) 'f ( <p(l, r)B(r)R-'(r)B'(r)A(r) dr 

/ 

which, since x(t1) = 0 becomes just 

-t + x(t) ,;-@<p(t, r)B( r)R-'(r)B'(r)A(r) dr 

But, since 

(11.2-14) 

(11.2-15) 

A( I) = cpT(t 0 , t)A(Io) (11.2-16) 

Eq. (11.2-15) can be written, if we choose t = t., as 

~Jt, x(to) = cp(to, r)B(r)R-1(r)BT(r)cpT(t0, T)A(to) dr 
II 

( 11.2-17) 

Now we can solve either Eq. (11.2-13) for A(t1) or Eq. (11.2-17) for 
A(t0 ). Suppose we choose the latter. Then 

A(t0 ) = -W-1(! 0 , t,)x(to) (11.2-18) 
where 

(11.2-19) 

If a system is state controllable, W(t 0 , t1) must have an inverse and also 
be positive-definite as the second variation would show. Again R may be set 
equal to the identity matrix. In Section 9.2, we had a relation very similar 
to Eq. (11.2-19), which we converted to a differential equation. We found that 
it was very much easier to solve the differential equation than to evaluate 
the integral. Let us now try the same approach here. Differentiation of Eq. 
(11.2-19) gives 

()W~t: tr) = -cp(t0 , 10 )B(t0)R- 1(t 0)BT(t0)cpT(to, fo) 

+ Jt' ?!fJ(to, r)B(r)R- 1(r)BT(r)cpT(t0, r) dr 
1, ot. 

+It' rp(lo, r)B(r)R- 1(r)BT(r) ocpT(to, 7') dr 
~ ~. 

(11.2-20) 

SEC. 11.2 CONTROLLABILITY IN LINEAR SYST>. 

which becomes, since ocp(t, 10 )/ot = A(t)cp(t, to) and rp(t, t) = I, 

oW~;: tr) = -B(t0 )R- 1(to)BT(to) 

+ A(t.) f' cp(t0 , r)B(r)R- 1(r)BT(r)cpT(/0 , r) dr 
t. 

(11.2-2 

+ ( cp(t0 , r)B(r)R- 1(r)BT(r)cpT(t0, r)AT(t0 ) dr 

But, by Eq. (11.2-19), the two integrals are just W(to, t1). Therefore, 

oW~:: tr) = -B(t0)R-'(t0)BT(t0 ) + A(to)W(to, tr) (11.2-2 
+ W(t 0 , tr)AT(to), W(tr. lr) = 0 

We have, therefore, succeeded in obtaining a differential equation forW(to,t 
which should be easier to solve than the defining relation for W(to, t1) 

Eq. (11.2-19). 
It is interesting now to evaluate the cost function of Eq. (11.2-3) whi< 

by Eq. (11.2-8), becomes 

I
t, 

J = t AT(t)B(t)R-T(t)R(t)R-'(t)BT(t)A(t) dt 
t, 

(11.2-2 

But R(t) is symmetric, so that 

f
t, 

J = i )!,T(t)B(t)R- 1(t)BT(t)A(t) dt 
I, 

(11.2-: 

From Eqs. (11.2-16) and (11.2-18), we see that 

A(t) = cpT(t0 , t)A(to) = -cpT(t., t)W-'(to, t,)x(to) 

From the defining relation for W(t 0 , t1), we know that it is symmetric; hen 
Eq. (11.2-24) becomes 

J = i r x'I'(t0 )W- 1(t 0 , t1)cp(t0 , t)B(t)R- 1(t)BT(t)q>T(t0 , t)W- 1(to, lr)X(to) dt 
t, . ( 11.2-: 

By excluding those terms from the integral which do not involve t, we s 
that 

J = i{ x~"(t.)W" 1 (t0 , t 1 )[J:: rp(t0 , t)B(t)R" 1 (t)B'~'(t)q>71(to, t) dt ]w-1(fo, t 1 )x(/, 

(11.2-~ 

Or, since the integral in the brackets is just the definition of W(t "' t r ), we ha 
finally 

(11.2-~ 

Equation (11.2-28) allows an interesting interpretation of controllabili 
Suppose that we are given some definite value for the cost J. Then, if 
can determine w- 1(10 , t1), we can find all initial conditions such that J 
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(11.2-28) is satisfied. We can thus plot a surface in n-space representing 
those initial conditions from which we can take the system to the origin 
with a cost of J. This problem is known as the reachable zone problem, 
which is considered in Problem 4 of this chapter. 

We can offer an alternative approach to this problem. We shall do this 
now for the output controllability problem which reduces to the state control
lability problem when C(t) =I. The solution to Eqs. (11.2-l) and (11.2-2) 
is the m vector output due to the r vector control 

z(t)- C(t)p(t, / 0)X(t0 ) = C(t) r p(t, T)B(T)ll(r) dr 
t. 

( 11.2-29) 

At timet 1, the left-hand side of this equation is simply equal to some speci
fied value za(t1) such that we may write 

ztt(t1) = z(t1)- C(t1)p(t" f 0 )x(to) = J'., C(t1)p(t" T)B(T)u(r) tiT (11.2-30) 
t. 

A sufficient condition for output controllability on [1 0 , t1] is that the 
columns of C(t1)p(t" T)B(T) be linearly independent, which means that, 
for arbitrary m vector '1], we have the r vector equation [15, 16] 

'1}TC(t1)p(t1, r)B(T) =f= 07
', ( 0 < 'T < t1 (11.2-31) 

We may develop another output controllability condition from this condition. 
This proof will proceed by the method of contradiction. Suppose that there 
exists at least one nonzero vector '1], such that Eq. (11.2-31) is, in fact, true. 
Repeated differentiation of Eq. (11.2-31) with respect tor yields 

'1JTC(t1)p(t1, r)rir) = OT, j = 1, 2, ... , n (11.2-32) 

where, since op(t,,r)/o'T = ~-cp(t,,T)A(T), 
r.(r) = B(T) 

I'i'T) = ara/T)- A(T)rH('T) 

Then, if we define the n by nm matrix r 
r = [rh rv. •... , r~~1 

the condition of Eq. (11.2-~2) becomes, for. the 11'1} vectors..¥, 
.)('TC(tl)rp(t!> 'T)J' = 07' 

( 11.2-33) 

(1 1.2-34) 

(11.2-35) 

which would tell us that r could not be of rank n since p is nonsingular 
(excluding for the moment the possibility of C being singular). But Eq. 
(11.2-35) cannot be zero by Eq. (11.2-31), and so r must then be of rank 
n, and Eq. (11.2~35) will not, in fnct, be zero. Although this requirement 
holds for time-varying systems, it is particularly easy to apply in the case 
of constant systems, for then, as is easily verified, for rl = [r.,' ~ r2, .. ' 
( -1 )"+'I',], 

I 
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(11.: 

and this must be of rank n. This is only the requirement for state con 
lability since, if a constant system is controllable at all, it is control 
at t 1 = to (impulse control required). Therefore, from Eq. (11.2-35), the 
put controllability requirement is that 

[CB;CABjCA2Bi .. ~ 'CAn-•B] (11. 

be of rank m. For the general time-varying case, the C(t1)r term ol 
(11.2-35) must be of rank m since we know that cp must be nonsingu! 

If, in Eq. (11.2-30), we let 

u(t) = BT(t)p7'(t~o t)CT(t1YMtl) (11. 

we have 
(1 I. 

where 

and must be positive-definite for a controllable system. For state co1 
lability, we may treat C =I; then we can easily show that 

V(t 0 , t1) = cp(tr, lo)W(to, tl)q;T(t,, to) (11. 

where W(l 0 , t1) is defined by Eq. (11.2-19). 
It is quite easy for us to show that all of these results carry over ex 

to the discrete system described by 

x(k + 1) = A(k)x(k) + B(k)u(k) (l I. 

~l(k) = C(k)x(k) (11. 

except that discrete transition matrices and summations are used r 
than continuous transition matrices and integrations. The time interval[ 
is then replaced by the sequence ko, kQ + l, •.. , k1• Thus, for instanc 
discrete equivalent ofEq. (11.2-19) is 

A·~A·t 

W(k0,k1)= ~ p(k0 ,k)B(k)R- 1(k)B7'(k)p7'(k0,k) (11. 
A·~A·, 

Analogous to the discrete observability requirement, a controllable di! 
system can be tmnsferred to the origin in at most 11 stages, where x is 
vector. 

Just as in the case of observability, there are several different tyr 
controllability. We will give these definitions for the case of state co 
lability. Output controllability definitions follow merely by replac1 
of x(t 1) by z(t 1) in the definitions. 

We will say that a system is state controllable for a given to and t 1 if 
initial state x(to) can be transferred to any final state x(t1) using any c< 
u)(t) over the interval (! 0, t 1]. A system w.ill be said to be completely stat( 
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trollable if, for any 10 , each initial state x(t .) can be transferred to any final 
state and given final time x(t1) where, of course, t1 > t •. To obtain total 
state controllability, the system must be completely state controllable for 

every t a and every t r· 

Example 11.2-1 

Let us consider the linear system described by 

x1 = :'<2(t) + u(t), z1(t) = x1(t) 

.X2 = -x1(t) - 2x2(t) - ll(t), z2(t) = x,(t) + x2(t) 

The system dynamics can also be written as 

x = Ax(t) + bu(t), z(t) = Cx(t) 

where 

[ 0 1] 
A= ' ·-1 -2 

We wish to determine the observability and controllability of the system. 
From the preceding section we know that the system is observable if then X nm 
matrix 

[CT i ATCT j ... 1 AT"-'CT] = [~ : ~ =~J 
is of rank 2. This is the case, and so the system is observable. To discern state 
controllability, we must examine the matrix 

[B!AB!A2Bi···iAn-1B]=[ l -ll] ' ' ' . -1 

to see if it is of rank 2. Clearly it is not, and so this system is not state control· 
table. Neither is the system output controllable, becaus1~ the matrix 

[CB!CABiCNB! · · · !CAn-tD] = [
1 

-
1
] 

I ' • I ! 0 0 

is not of rank 2, 
Let us now examine the reasons for this uncontrollability. Figure 11.2-1 

illustrates a possible block diagram for this system. Appropriate transfer func
tions for the system are 

x 1(s) 1 
II(S) = S + 1' 

and we observe that the physical reason the system is not state controllable is 
that the state vector x(t) can be controlled only along or parallel to a straight 
line x1(t) + x2(t) = 0. This is certainly not in two dimensions; therefore the 
system is not state controllable. Appropriate transfer functions for the output 
state are 

i 

( 

r 
! 
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s 

Fig. 11.2-1 Block diagram of uncontrollable system, Example (11.2·1) . 
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Since the output z2(t) cannot be controlled by the input, the entire system is 
not output controllable. If the output were just z1(t), a scalar, then the system is 
not state controllable but is output controllable. This means that we could 
determine an input which could drive z1(t) to any given value but could not 
drive x1(t) and x 2(t) to any value which lies off the line x 1(t) + x 2(t) = 0. We 
note that we were given a second order system but found first order transfer 
function from control input to state and output state variables. This implies that 
that the given system is "reducible" in order. Choate and Sage [16] have shown 
that systems which are not totally controllable must be reducible. 

Earlier we remarked that the dual of an unobservable system is an 
uncontrollable system. This can easily be seen if we observe the observability 
criteria where the adjoint system (A*= -AT, B* = CT, C* = BT) is used and 
if we note that the observability criteria becomes the controllability criteria. 
Thus we may say that a system is controllable if the adjoint system is observ
able. Since the dual system is defined by A*(t*) = AT(t), B*(t*) = CT(t), 
C*(t*) = BT(t), t* = o-t, we see that the similar statement for dual sys~ 
terns, a system is uncontrollable (unobservable) if its dual is unobservable 
(uncontrollable), applies. 

For successful control, it is normally necessary that systems be both 
controllable and observable. For example, if a subsystem which is unobser
vable is part of a closed-loop system, instabilities in the unobservable part 
of the system cannot be detected or stabilized by the closed loop. If a system 
is not state controllable, it is not possible to control a portion of the system, 
and thus persistent transients may exist. If the system is not output control
lable, then it appears that all is lost unless it is possible tQ change input and/or 
output state variables. 

Even tho~1gh a system may be observable, not all components of the 
state variable, x(t), may be recoverable immediately from the observation 
z(t). We recall that z(t) may well be a scalar, x(t) may well be a 100 vector, 
and the system may certainly be observable. In the next section we 
shall discuss methods of state·vn.riablc recovery from obsel'vable output 
vectors. 
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