Optimal & Adaptive Control

Texas Tech University (1976) R.J. Marks II Class Notes

EXAMPLE: EXAMPLE: $x = \frac{1}{2} = $	(in) have butput (STATES)
--	---------------------------

N SB \mathcal{N} PRE 000 OS-T-SNOJ WHEN T T ONSTRAINTS South × (te Ş XACP N P $\left| \right|$ C 11 N 11 A) TIONS 2-ſ†-3 T $\left|\right\rangle$ Q VELOCITY . ب Ø 0 AINT ADMUSSABLE \Diamond $| \wedge |$ ··· 0 0 \sim 1 Aller . No. 5 11 NO 10 2 2 2 TOR 0 Q \bigcirc R MAT K. X and the second 2 |O|N)1 b D A M. 0 Ø 1000 \mathbb{N} XIN A 20 \bigcirc STL & NO 11 and the second R 6 0 AUMISS40 0 X TOWN - Λ 1 M In the to ING FORWAR And a X Constant of the second and and a second rt; C N ON TROI h PHAS NARIABLE h N. ECR M m.

 \mathbb{A}

	n - n - n - n - n - n - n - n - n - n -			and the second s		· · · · · · · · · · · · · · · · · · ·	a constant of the second se	and the second secon	o o in a sum pro accounting of the sum	- Alexandro			an anna an			 Alternative and an annumerication accurate with an annumerication 					
											CREDBACK	SAY YOU FIND SOME OF TWALCONTROL	FINAL ANATIC PARTION	$J = h(t_{\lambda} \times (t_{\lambda})) + \int_{t_{\lambda}} t_{\lambda} (t_{\lambda} \times (t_{\lambda})) + \int_{t_{\lambda}} t_{\lambda} (t_{\lambda}) + \int_{t_{\lambda}} t_{\lambda} (t_{\lambda$	PERFORMANCE MERSURE 1	- stopking TK2X2(t) Jdt 6=	JEUEL CONSUMPTION	PROD, TO VELOCITY, (RATE)	ASSUME FUEL CONSUMPTION 1		
		and a second									0R	a V × (+) m		t H					<u>5</u>	(

NON \cap PROPERTY \mathcal{Q}_{-} } 0 M Ś 1 0 7 015 Ser. WERR R. 10-Ю 76 À 11 0 4 \times^* (t, te) --Card Start N/ TH -station-1 <u>1060=</u> X (P) = (WED) $\widehat{\Pi}$ P 6 t|Q+ TION 100 Million Þ Non Non 0 X 4 *ŀ*⊖ł Ŋ ATIS EL and a () () () APIAB 2 Summer . H Let " A.S. Long Low h 50 R STATE HAT'S 110′ 1) Q LMMEDLATELY H M (J) N C $\left(\frac{1}{2} \right)$ n N N 0 1 C . N T 194 C Ą ĥ A 24)4 \bigwedge and an 4 to 11 10 S THE N - RP All and a second se 00700 0 NOT 1 X - Contraction XSITION 100 4 ЮH 6 0 Ŧ 2 NTE R \mathcal{I} UNIQUE m For all a proper way that the the -0 11 X Ð 24 ĥ te, h 104 - Series 104 M KK N MA (x, r)NTA 9 $\left| \cdot \right\rangle$ A - Aller Foccours 1 104000 X Ń 1 G 17 4A 4 XIX B(r) u(r)dr $\left(\right)$ シロシ S 100 aligh-12 200 200

(M

FOR NON D III O 100 $\chi(t) =$ THUS レキウム 0 00 X(t) =J-Ŋ \mathbf{V} ß つまえ K 10/4 -----N N + 44 + - \bigcirc \mathbb{R} 11 6-4 the Plant (1) A もち +(+-7)+2 1 11 5 elizacian estatea 1 TIME ξ_{ω} 120 + N M A + 5 X N. ACTA そ、まに-からのしてよ HQ 0 11 Sar. + +)4+= F(+) F2(5) 12 R RA Ą n N/IT N 10 (A 59-PLAN I || んちして-アンタ 1 (r - 72) 4.A.M 4 6 X(0)+ T+At+A unan Marana \mathcal{O} 2 N \$ A32 3 t. BCRUCRY 4 H P & t & ۴ پژ \bigcirc 110 110 44 14 5 S (2) + alexa Church B

 \mathbb{C}^{1}

100 1:1 00 2 4 EN. A T. n la. 1:01 N N NAY \mathbb{V} to M Nitrasa Tisan P D ψĐ. D 0145 DN 6 11 = 15 P 2012/07 P 4 Q \mathcal{Q} 0 Allowing and 1 1 . \bigcirc AGONALIZED 24 m 91 D (1 4 Augure-N H 1 Nº K S 0 \mathcal{O} \geq 500 1 NH NH NH ME \bigcirc 3 D P 740 1 de la 1-94 0 The share + 10 + 1 > 2 EORK Ò The second ンとう (SS) N. NF MARIX 1-1)3+ 1. p. S 14 10° 4 \bigcirc £ 43 N K EIGEN VECTOR 10 17 1411 10100 Ø 0 M ð 6 \Diamond N. $|\sigma|$

 \sim

ONTROL S T P COMPLE TE 0 V N 00 COMPLE X .CONTROL 0 X THEN 11-ナイナ Ŋ Ch) 0 2 0 10 ∇ N Y 5 6 S. J. C. 14 4-8-1 A.C. and the former AVIC M 2.6 174 C HO O S KE Z A REPREST Ω X 0 5410 R T A O 30 UNDE NA 5 7 1100 THA VTA 10 CONT. TO ROLLA LARGE r, a X N OV M In SL2 11

 O_0

SONTRO 2 1 11 1 5 Ì ORDOF: (SUPFICIENCY \square 76 $= (t, t) \times$ 10: XIII SNTXOS TLON 011 A W/A THU. ÌÌ 1111 XQ A L's FR 1 X 14-200 NTERL h 学中 0 1 1 Japan Correct ARE h (t) M 1400 0 đ S - NON -C(t) 21412 60 NNETE icead. (t)11 (t-1-1) -solice -solice 1 t, Х A T Ŕ and and a the strenge \times × N \mathcal{O} X Summer of X 8 4 1 0 10(t) 4 distra- \leq the of the second School State ATING 1 tr4 **Course S rħ. Ptand and a set of the s Fark for I 040 J 57476 Xitte 191 N S L and the second 12 501 0 m 0 to have free and a 11 11 Section 1 A p d Later of aginu K(tp A RUM W 400 and the second 14 m 14 TH CAN Gr 01910 32 6 La Ser O AA 1 44 4 STATE FOR Mare while 1 5 CONTR for the Anaper -なしていくいのに、そうしま and the second N VONT × H 61 <u>N 10.</u> 104 \$ Q ≯ Z X Q R Subley States + COLUNN 0 1-4/2 / t. + Part and N SINC 0° CON TO 101 m Pt 71217 0 P. H. Jet y The state of a 4 ALS-20) B L'ONG'L 4) Hx.(th) Z Call Constant they a 7 Y 1 Sunda State 0 AA AL15 (2) D 10 27 \mathcal{Q} 0 2 1. P(2) A À 2 ATE 0 D Contraction of the second

THEN 3 Ø SINC SSUME 140 = ROOF E K O 0 8 TAKING TMOC 0 No 11 () Service of the servic Manuel -110 3 Manual Manua Manual Manua Manual Manu activities Converties Mo 47 SYSTEM 0 U + 72 + 2 1 tot Hy (t, r) Hx (t, r) dr RANSPOSES tro N X -6+CT 1+ (+,2) X $\frac{4}{2}\left(\frac{1}{2},\frac{1}{2}\right)H_{x}T\left(\frac{1}{2},\frac{1}{2}\right)dr=0$ (+ = ()() H-164, 22 シートン N. V ~ N. L. 3 11 11 SYMMETRIS 1 S. J. J. J. J. S. J. DICTION 1) X 0 IA SINGOL CONTROLLABLE F -1- p + p - p - c - c A F A X 1 2 61 (th)C (ce curra) モキント

Ő

THOS THUS WE MUST FROM 10807 A120, THUS THUS 0 HAVE 101 600 6 Photo: N ANNO DE LA \cap 14) X TMOC Contraction of the second s and the second -for the gran Come of the CCL. 6 フキャ 14-12-) Mo C TRUE -contraction UE . ¢ the the and and a second STATE - X°(to ∜ IV 0 (tp) 4262205. 2004-002-X POS DEF, WATRIX P the contract of the second sec R 4 FE E Ø cesserier verseare and the second and a second CONTROLLABILITY 100NT EPOIC TION and the second s 2 7, =0 + T T Strends. H+ ((to to) w(t) dr - 0 11 74 0 Ś h 6

4 No OCTOUT CONTRO CON01 PROOF NY CA TITEN THUS 5 12-64 Same and 11 R entrepage Alitano A state $TH \in$ A (+, tra) X (ta -Yo where Foucens NOU 14-6 2 and the second and the second s C Par La Las 1 Jane Jane 0 ROLLABILITY 1 ts 7+ (t, r) u (r) 4 r diality. t of 04700 + N W 0 -1 to a le r Ban under Annual P to they and the <-14+(+,r) PREVIOUSLY Hy (to, r) Hy (to, r) 2 CUT POT Hert There

Ň

72/2/16 HOMENORK NOW ONTROLL QUE Mol ×-++ (++) × ++ < CONTROL 1 COLLIM N C OR NOW THE ARE Mart CN S (to,ty) AXt TT T Th T (w = 0)WEDNEENOAY b 6 X 1 h 10 176 2 ipt. 1 X 1 1 1 1 2 2 795 J. × - 6 appin 2 6 ++++++ 7) 70 76 XH tav Same Same No He4 1 IN T and 1+ × (tep) - Car NEARLYINDEPEN - P 4 - And \bigcirc ٢ 2 150 207 0 15 - NON N 0 11 - 22 1 2 5116) Nonething of the local division of the local K XON 1 190 22 C (a)(i) AND DESCRIPTION OF THE OWNER OF T X 200 0 or and a second FT X K Re Con los NGL \mathbf{O} 14 E A LAR (+)O F St. 4 ちくやくちょ せい 2 5 2 Real 1 14 Å A (e) (c) (e) THEN 9 0 2 1

Ŵ

H3 みいしを(かと)を(と, ア 4 Q (r) + A Q 0 the the P(L, 7 () $\left\{ \right\}$ Þ 4 B 9 2 the R - And Ň * h + 2 7 4 sime metalor ~~}) E C 1 No. Ç n.t. 1 ſ 100 MIL 2 oofficiality And the second 590 R 14 5 A-L 5

C) -- U OR Ш OVER THE TO LO DE THEN LET NUT (2 42) 2 diam. 101 X (A) N manage R W IN 101 \sim (tp, ~) 1 191 7 及 (たり, ア) 11 19 N GENERAL NOW 44 + Ş - for A Y $|B(r) + N^{T} \overline{d}(t_{r}, r) B(r)| =$ 2 and a --1000 B(7) -11 dr. DIFFERENTIATES (trap) 11 KQ 20807 607 B(2) WE Ż 0 T Saw Car P 0. オンセント 11 R and the second and a second \mathcal{G} P \bigcirc Carcinga 1907 La La and and a RECURSION ACTUALLY 2-27-4-2 And a strengt à (1 4 and and 0 1º <u>0 xi</u> 01102 A) - C la C

FOR NAS TEN $\sqrt{}$ ZZT ACTUALLY 13=A2B, COMBININES キャノヨ 5 IN Plex r MATRIX. M M MUST 20 22 P FOR 10 101 11 Not the CALLIE C CINENS シタックを Þ 1 10 NEED Lo Co Lo Ŵ 13 (C) -AB AZ WUXU RANK 17-LNOUT BY EULL UMMS -LINEAR LINEANTZ 11 W for MATRIX h N $|\mathcal{I}|$ r ME TH Sur MATRIX 9 5 8 D 2 746 Spe 1) (w ARRIEDCOLUMNS M = 1, ... f St How we CONTROLLABILIT DERIVATIVES T April INVARIANT NOEPENO ,Þ RANK P **j**9 4-14-0 × wir o DENDE 0 Ø -D NT

Ś

OBSERVABILITY 0N He from the " (000 The star NO ARK OEF: and the second of the contraction of the contractio 2AN NOTE 100 110 アイト THE 1210-04 1) ا R. 1 N. Marine Constraint B. Com 20 4 of the if the los $\left(\right)$ Con Long Lance 4 Sector Leader 7 14:6 A the 5 1912 X 110 X <u>proví</u> N A A A N t t O and I want to make O S BUS EN RUAL C2N2 CONT (IS the l N 17 15 1 0.5 UN FOR and the second s t, KNOW 102 1 Lay The Cal S R est. 0M 177 S K No. 5.000100 in the second se T W D E P E 124 614 Santan Junan Tto to 62720 12 174 K WANT N M 200 and the second 14 -Lawer Low Ŵ XCto 1270010 an fillen bereiten terretenen 1 march HxC 010 19 X Land 1

64. 7

ANE THE THUS 2-5 9000 F 111-1 CH-Mo (to, 11 15 OR (H)X \uparrow NECESSITY ×. 家 tq. 2 Samona? CASE SXSTEM LINEARL 11 No. D D D D J JC 17 $\widehat{\Lambda}$ 4 Stall Stall ×14 ZONE オンダ 6 ------CN T FOR A rt o EWC 2400LD + 4 6 1 K 0 A N K そうち 10 5 (+++c ケルトロク 15 OB, CREAINED TX (X 24 UND SIMICAR 200 3 Strath D. Co. OBSERVABL ESTA. FOR 1-4-4-4-COUNTER, 4 TRANSPOSED 70 (Anna A A 11 h TINE 2 San A P N/N 2 H . 3-4-1-5 \int 210 1212 NOV

 $\widetilde{\mathcal{O}}$

е 1 1001× 6-1 K NTRO K 0 ×. × 1 1 SYSTEM 11 11 6 11 6 () 4 -13 1 Z, 0 00 N IT 0 E. 0 1 1 1 1 107 LA, 2 0 524 00000 Q 3 13~ Same C TROLLA 1 ATC -6 불~ $()^{i}$ -metto 200 1 17.4 - C A ~ И - Ale N 0 Þ JUT N ¢0602ª G 0 2 ß 1 <u>____</u> 4 BII RTZ 0 0 NEARL 22 X X 0 B X X £. SYST 1 - 4 CONT 1 177 SINGUL \cap 4 SEV 2000 18 4 È -(` **'**2 NNANK 5 220 Color Color Po. \bigcirc 57975 (z)and the second 1 \bigcirc IND. 10 0 L M andana (4 4 9 2 ~ 1 S 20 \square Gt \bigcap NOT O0 ß. and the second A SN W TWC 640 \bigcirc 0

10 10 LOOK アンコナル The 000 (3)0 0 4 X/X • N 1 ψ́Ι \mathbb{R} X N 10015 6 h X leren Mittae 11 0100 Sector Sector 2000 -Andreas ALC: N 1 N X N - Biccom Ć $\widehat{}$ N New York Circuit, G N Ş ()N 1 Contract of RICINAL N R C 1/A 4 ACK X 6 [n] h 1 to 1 EQUATION: N M R |đ \mathbb{N} $\left| \right\rangle$ district of $\widehat{\Lambda}$ ¥-(N

SUBS TI 20 \cap 50851 760 N× DND (x) (x) - marine for the 0 0 XICS 25 D X \times 1 M 0055 S 1 (A A L D h R Xo × 10 S 00 Pro ų. X N X -((9 1000 2000 and the and the Negative. (0 N.X \square NG - and a second \square $\boldsymbol{\times}$ 0000 þ 11 5(5+2) V \rightarrow 1)] NOT Survey Street + N NG Ŵ 11 5 X C C+2 5(5+2 000 2g Alterna-Lan N MI M A 1+1 Y + Ą Wes 20 0 and as CONTROL a form NEA a state N $\langle \rangle$ M (D) N 1 ~ -theorem and the second second 1000 To A V M Å - Alleria M M A. Ś C 517 1 and a No. 1 1000 C 1 N 20-Ņ 117 A 1 1 542 M 1 4 (Januara) (A ÷Įin the second V + W POLE Nº10 N umilitatus. , Aleren 444

N

24 ENO PERFOR and men from X ¥ FIND MAK PERSIE 20 X = (| N -----10 M EIND 7 (t3)×74 1007 X 0 AN 11 NANC 10000 v 60 20. X 00 THE Jeg- Es CMANT CON Ж I'M $\left| 0 \right|$ DEREORMANCE the Cal and the second i former 201 tog LX(+), ult), t]dt A. Start Same × Nt. 1 ADMISSIALE dine - a appartants. 213 $\left|\right\rangle$ ERSURE J C J Z I W WI DU 0 N. C. S. OCTPOT \bigtriangledown NANCE R Carlos and MERSURE ECTORY *

0 \mathcal{Q} SOME MINIMUM 00 0 T 10 N Λ. dia. I CWIND 1 , III M.5)] WWWWWWW 1, CONSTRES Λ ROM 3 M WE IGHTS 14 64 1 HA T 5/0200 11 C 110 1 - X(te) K 0 Cr 11 \mathbb{W} 110 ģ A Block 1 \cap $x(t_{\ell})$ -5 dingin. th Nul Grad X 1 45 ++++ CONTROL A Pos HING A - All 4 N 40 0 th th 0 Contract of 0 9 Ct A per l' front 2 R 4° 2 2 Ó) 1 1 1 M 3-S and and A CH Ĩ COMPONENTS シナナ 12 11 X 31 1 TRO M V maper 22 \square (the C 40 0 n. FRAT \bigcirc 47 Access of C GT THE L 1 (t) A 2 0 7 $< \gg$ 21(2)/2 in the second CO NC NJBODO 7 21 10020 N B 0 0 N 0 GRNE 0 2 1 FINAL. M 2 $\mathcal{Q}[$ 0 3 4 And a 2 $< \downarrow$ G. ~ 0215 - anno-N 1 62 V in the second (NONMACLY 1000 B S A -1 A NO 1 th 2

N

(4)

04 PU-W 1 WE anan Angela Õ MNIMUM -7 V~ 11 5 区面 R 5 Long Land 21812 M.W. 25 66 (mos Q W ţ Ã alla alla form 40 1-4-4-0 T T 6000 La De La Co B Surger . A CONT $\left(\wedge \right)$ + N. $\langle \rangle$ 1 NUMBER OF XAA Ve \bigcirc <u>C. L. -</u> No 2 1 0 N S N 175 |}-2 P AT to a 11/10 (weither Three and the second 5 the NC+ SOLATOR N. 1 00 t-t 1 100 Z 0 WSJ 28 NERCY \cap ALSC X(t) - N 19 0 (marine 4 antante^r P (A 1 0 0

1 2

den . N N PIC " XA -The second 17 ΙĂ. NOR 01 /01 allow- \geq 14 8 2 0 \odot 2000 0 14 5 8 La form ARDUND XIX 2 $\mathcal{O} \equiv \mathcal{O}$ X + X + 36 X Cr X and the second -2 PTC: 2 (martine and a second (international international i -\$ 1 1 0-10 Ž 1 0-0 -The second t)4 ×z 0 -0 0 295 and the second + / \bigcirc 10 \bigcirc Ð 2 - C) ġ 9 dillor . -mailer Analder B X \bigcirc TON S - Contraction of the second se X 1214 ~~~ *`*, <u>n</u> F 4 + 4 シン 1 0 Ň d.

5 - S

DERLVATIVES SEVERAL (T 2 151 HAT 1 1~> m ŝ, Q Ţ, X Sitemas Antiger ([A \mathbb{V} AROC T(X+-1) = - (X) -0) d w And Street 424 Sand \mathbb{V} VERILOLES, \times 1 O MX N 2 (1 - t ×) 1> (C) \geq r à MV Λ Xallo Super-Δ \bigcirc Ì N N NN N N ~ Annual States - Star C C C C 4 4 1 10 1 4Q 1 ada (i) А 3 77 1 (A

20

X V NºC W NTW Le X -Section and the second 1 and Q and a state 02 Altra C. N -------1111-Andrew Alterna 1 12 - aligne and the second X × 10 4 ~ 1 Signal . 110 X Summer 1 Percent ~ $\langle \langle \rangle$ All and a second ţ. -X T T T 1 Same P1 N - 4----and the second s $\forall \mathcal{V}$ 1× N K 1.1.2.1. 1.2.2.1. 1.2.2.1. p \bigwedge M

MAXIMI 2 -0-÷ζ 1 0 P メナル 3 Ì O2 × 2 AP 199 × 54 Ę) and the second 22 U) K, Q H. Ń ENER i N N 3 S. 119 4 \bigcirc N ts' do. A Second V. 5 N R +> Л 0 North North $\mathcal{D}\mathcal{D}$ Tom 361 - \times 4 21 11 120 11 11 -and the second ()daw. 0 0 ANCO P 110 OI \bigcirc TIA Totam Q 0-1 Activity Sector 1 0 ahn Ľ Ņ W. energe. J Ť 1 (xz X -5 1 Ą 2 and the second s 100 X and and and and Ser Ser to 1 100 24.0 1.00 <u>^.×.</u>9 North Street ß and a second C. 64 24 Contraction of the local distribution of the S where ÷ Sum? and the second \cap 0 10 60 25 0 la la \times the second erdi. 11 ĺη. Constant of the second 5000 PR -" $\langle \rangle$ 0 ß +> 5 and and 1 + - X Barx đ. D 15 land a 00 X NT X ×" 1 22 -1) dN. 5 0 II. daughter-3 5 X 120 1. minutati ALL -10 Ac X tanan Kanan +Ň $\langle \rangle$

 $\overset{\mathcal{U}}{\sim}$

 $\tilde{\omega}$ \bigcirc OR 2 R 风川 COMBININE 76 NHOK 1 NAN $\frac{1}{\sqrt{N}}$ - Contraction of the second orpr august ------EX I NOWNS N X 9 ON 100 A and t 3 Ļ Mil Sol -+ 大 -QUATIONS -tajouron + X hand 1000 ARE VA $\langle 0 \rangle$ Let. ICA PN RIAGLE and a second +...+ 2 + ...+ M Ű (1) 6261 [M]4 1 X N A A Magdady O_{\dagger} 6 2 620 A.M. And and a second QXX where we wanted the N X N Y XN6W S 250 Nov. P 5 0 mfin NOEN 42, 101 0 10 0.00 000

EXAMPLE NETHOLSOF Z PLUG NO 8 < ~ ~ \mathcal{O} 20 1 S W B J Jan Con James A. C J. V.Cr. (x)t C01 7 007 5 1 ¢. - ----T C 7 do-7 Tanan' 3 diana dia 20 Contraction of the second 197 N 1) (C) _____ 11 Y K antion. 77-1 with marken M X Con Provincian and the second sec MN 1+ ()N 10 -EAC AC Survey and 5 No. \$ 11 N. mo ¢, ------4777 A. R. L. $\langle \rangle$ ()~ ST A A. 77 77 5 D N 1 To 34 A and the second 1 1 N and a -0 and and VN N. N. AV A \mathbb{N} and the second of the second Same e R Ν M 1-20 (Carried Street N N 1 1 - f for J.J.L Cⁿ Alternative and a second s 0 - angles (1)ALC: N N E Y) 1 4 0 S. MAXI N 0 \mathcal{D} Jun 1000 đ $\left| \right\rangle$ φ N À И and a second LND L SNOW 11 141 mm 6 $\widetilde{\bigcirc}$ 1000 × 12 (N) torest

W ~~~

A. 0 C N ENSON S ANTS 0000 NV N CM + opt いった the for the second seco 2 10 m A.S. Ser T Come Const $\frac{1}{2}$ anconte. 4-4 ||W. N) N Admisso. Calification 4 - States 10000 N - Andrew -----Straph and 2442 435a3744-0000 27 1 des N N 10 R TLA 200 Construction ALC: NO. l se Ser. hillenter Au NN-C 2 Anthones 46 1 -----Sub- \bigcirc UNIX NOW ŀ 477 5 1 C - Mo-Ro ZYTY D II 2474 TIPLIERS Í +27 NS R \bigcirc 10 ()1277 N Ń and the second A j. (-A)

W N

~ . 25 in th 14C 4 XII II Walt 74 -11 No. Antonio A 650 \langle 270 X N/N 4 Ø XXX 1 X - Company 1> - Aller A. 1 1 1> -verture. 2 C C C Ó and las UTTIPLIERS Å. \langle N 2X × = × 2 9 $[\mathcal{O}]$ 0.0 W 01 M X En ×=0=/w)

(a) ÚN

 $\overset{()}{\sim}$ d t 1-44 0 Th 7-6 Q ALSO N II 25 Λ ZTT V. L \mathcal{O} \mathcal{T} 1 and the second Con la N 1 0 Х 0 11 m 11 11 WE Ø. 4 0000 401 (Alon 14 12 H N $\left|\right\rangle$ R PT M 8 N. Ľ, × 12 C () NON 7 Jaconfilm ----migan. N М - Sandar - Sandar 420 MAXI dr (cr) 322 μ di v 112 1 10000 N) | (\) D. 1 Q artena.c., \wedge 4 5 ŝ, 44 R V \cap de. for for D D \bigcirc Ser. M Ø ()maken $\langle 0 \rangle$ 10 (\mathbf{N}) 11 N-S Server Street

2 10 m ZAMZ PROCEDUR 46 and the time 10 MATRIX 000 D and 11 V T D North Contraction of the second secon 4772 AN6 2+47 ٨ C Long and the first of t RELAT the Car 0 eventual of the line N M & CO N 6 LL Com E.S. - man 3 00/ and the second 1 and and Ľ, N H P Fard and . -Halter Ţ NA Support of the 16 Comment 64 10 N 1 477 Mary 1 Star A 0 0 South and W N 1 N P
\bigcirc 1999 - A X and a second 5 101 5 (,% ACCENTE ACCOUNT: NO 1 3 1 3 0 é z FOR \times 1 11 × - Mary 1000 物 N N 1 -1.1 alexandra Cara -Constantino e la constantino de la constantino d 2 4 6- C 10.00 KG 1 St Ś R h ϕ And A and former 19 The second \$ 6 to in the Aller a 10 3 And Longor Aŝi, $\langle \langle |$ đ S 0 (como 0 Januar -AN TO 6 1 0

 ω

×0 A M^{\dagger} 0 1 p11 75 ð and the const ton X D N M CENERA EIND W/ Þ "L hall a stream N. C. C. Jan 0 ie 4 0.5 S XX -----M 1 store Le Co on N N 4 27 R. A DESCRIPTION OF 0 U Ser al - mp- \square N-FA 5 'n (engineering) 4 ÌΜ S N \mathcal{O} A. Maria -ALL CALL M 0 (Å Ął. 1-194 ſ. 100 210-2 1 C C hon X -| $\overline{\mathbb{N}}$ Ĉ 0 - \square 1 A and the second s Ò t t -10 Januar È. 1> A manufacture of the second se O) 7600 VA. 178 \bigcirc $\langle n \rangle$ 1 \mathcal{D} A 9 stillingster. 100 and the second $\mathbb{N}_{\mathbb{S}}$ SNN 0 М d'A in 400 07 17 No. Out-0110 2- $\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$ \bigcirc man and 1 They 2 dynes, 1+ \square станующими Станующими Станующими P ----a spiniste

(1) (1)

5.672 00 N 0 M P 9/21/26 1 d a 9/10 $\mathcal{O}($ gau uk ASSUME 0 16 $\hat{\mathbf{0}}$ Contra la 70 X 0 100 and a second (control) Contraction of the second Per N/ C. diam's X 11 $\left|\right\rangle$ Allowing the second 6A ή Λ X ØN ØN on and 2 C under . y ar 0 0 N J. RANC 9A 45 \mathbb{N} \uparrow -\$ Ton 'n 110 1 1000 01/ C M 3 Analysis -Q diano, 11 01 Ċ. AVE 5 No. 17 100 с† т N No. K (() \cap 2 Constanting Constanting J 7101 1 M 0 --Att. n Ala 1000 301 \overline{A} 220 j. $\langle \ \rangle$ 0 11 h 1 7 200 X 10/10 У N |.., >Contraction of the second ¢ N 0 Å hat have Contraction of the second 70 1) 1 1 0 10 D 0 ACC C HAM J R 2 1

 (ω)

D/ \sim 01 ~ ~ 116 angefilmet. \mathcal{D} NUCCOUNTRY Rudion (127). Rugenour high and the 19 R 500 8/2 2/8 \$P -fre-The she of the second sure- \times y. M - Constant Constant kin J10 - 4-N and and 0N TANS. -f -NØ ch lou *wp* <u>On</u> Ŷ 0N Section 201 Ø -£? UN & CD on /on Q X Nø 4 0 M/S D. $\phi \wedge$ ĥ

Ŷ NEG 200 D M N 11 11: N X + $\langle | \rangle$ ST A and the second FUS 0 5 5 -C Q X=V* topose, -X 2 × × - Martine *101 -10 b d hi X Ø A X × \$ M YV V X D C T x los CI+ WIW c le \mathcal{O} $\lambda | 0$ 1000 1000 N1 00 t X.S 0/10 x cylo n X KC-A P 50 x K anna aireanna 0 $\psi \Lambda$ $\varphi \backslash I$ 4 × X bn fr X K 100 0 C Jos MP C pr log $\sim \wedge$ Q/D \bigcirc -1 g > 00

42 EX ST 01 n x ſΛ NOW 11 ANOC DX1 3 Z Nf Silver -= turRut diama di A DESCRIPTION OF \bigcirc +>7 07804 A X 3 0 440 and a second s 1/2× C R R that N R. Nŀ I S M S MYXI 10 1 > Angeler a and with which we have 9×+BUTC NXM NX X × |× tigetatie 0 R A + N3200-2007 Hill I MX PX 1500 6 PDS-0 5 -The Alexandree $0 \times +$ シャク NF S GUL A Andrease and the second βΛ [] Contraction of the local distance \bigcirc - \mathcal{N} 6 N.Y An operativity, WEIRK-

A 20 Þ SURSTI 5 1 đΛ M 1 mon 09 01 AIN R 5 Ð w/wCN ð 100 -ويتقلعون 1 7 Ą` Ma 1-X p (d b٨ - States South States 5 -column and a N 0 (M)MAX I ~ NA DN11 X 11 A 45 \cap C M N \bigcirc Taken of the second WOW -Contention ------5 0 Name? R P , and a subscription of the subscription of th Z H A F WINI MOM S. K K in In <0 0 × Y 7 A) 0-10 20 Section 2 $^{\mathbb{X}}$ -C 1 Q n (n CERTIFIC \mathcal{C} \mathcal{N} 0 attenuesta (marine Z D 1 a F の言 dimente attanta and and a second Q -6917 6 L N - $\left|\right\rangle$ 5 (\bigcap NЫ A. 7 1 Section . Ń 1. QV. SUBSER N

 (\mathcal{A})

FIND 0 2 10 10 2 June X Contraction of the second 200 5 176 the second se S E 1 2 CS3.0 Automati NI-No. of Concession, Name 11 dina. Airean al. ++ 1 XM N CONTRACT alar (WE NJ and and a second two win with N TRH 2 C M and and a second - Al \bigcirc L R L シュレタインタ N/N X R 18. V 210 4 11 X +× HX) 4 X J XX -0 Ņ X NOISE Þ X + X P 1 0 N 1 X and V Mar a pomier For in free X ー エ X $\left| \right\rangle$ N ~~ -{ and the second W . . V 129 41 14 N M NX.

1 Ì SPECIA D 230 10 ÐS. 11 11 disertera. Aprilia 1 ~ Ì \mathbb{N}^{1} 2 2 and the second N. îN, # - J The second 0 R || -940m 0 D K 1 about the states the the the first Ŵ 1 12 May 800 M \geq 1115 5 Transpoor 1 former . Canada San |O|N X 6 0 32 1000 -1 D 11 +Lain 1 28 222 M 1 111 00 112 S and the second s 100-~ |^ -D 蘯 N 4

*

(see C.S. 1+142 0 R Turt H.M I O R N N MANS X 2 111 the second in the second \times > ş N. I. N. 5 1000 - 1000 - 1 \$ N. N without a 8 And a subscription M. 5 2 () 1- 61 A Jm J, I 2 answer (1) 10.12 X 100 alater. + 200 in the for the low INK -h m + - , h 1+44 420 0 1 ch 1 At a N R 200 N 4 X OF X < X ALLEN A IN A t the NE ſ -6 Clamar, 12 - Jan A P-MA A source

2.4

K NOW X TRI 11 nancia Antania) j AUTONIA AUTONIA 10/22 1 DE - Car \sim R and the second second E14 1 11 my to I to m D X TT 44-12-1-1-North Annal Y Puedos. Tezesedia Ser. annaderes A P R N land and a second Σ M -4 54, SCALAR SMGE N (Lorent

APPROACH 5 b 10 0 0 2 500 NOTE: BOUN. 1 VNAMIC K 5 11 ŧ(ALC: N The R \cap Ð. R T-UME \mathcal{O} 3 QL 8 2) () () a X 🗸 X (1 × -(1 X X NON 475 A \cap N K No R Pr \prod 100 -perfects Applieds Statistics. ALC: NOT THE OWNER OF -K and a state 0 XIX and the second Colores -١ Ú. CON0 0171M12A 11 tang -< server i 1 X 4 NX N A W N X - Barres 0 \sim 14.6 No. 100 H 6 NON Z 4 V'(x) -N μM VARI X ÎΛ. -ţ. IA. UNCONSTRA TION and the second VA-M D Ŧ X × 2 d la N X=X TIONS \mathcal{Q} þ 5 R and the second Same Second (M) Ser of x) (x Y 1000 2 ~{ No.7 Eliteration president \mathcal{O} D. Ň 19g Same Same À 0/77/ ÷ Y 717 CONSTRAINTS \square and the second À Z N - W \bigcirc 2 Ĭ 808 XLX a $\left(\right)$ \bigcirc R

50 CONSI 11 R 0 11 10 N= 0- 2 0 = 0 N 47 (Come . or lov - ------options and the NX (NR A. SECSNO \bigcirc XN X XX X and and P 22 anneoliteste Ginnenseere 1×+ 72(×) X Second Second 0 12 * S. M Ň 2 2 X TER M M 703 Ð 11 10 7 XPIL a fr X PA-Ma the second X X 0.10 K IG T D = X < A

26 <u>2000</u> WON I 14-12 N DXED A two Martin Strange N 14-4 N N N N N A N $\langle \rangle$ A ITIGNS TULER T+I M STALL X X Ł X CX A-RE E X TR EN UN 740-00 10 5 for the same from the same $\langle n \rangle$ NO Z 69 V V V 101 * X X and the second 12 marine Contraction and the second Mainteneore¹⁴ Mainteneore Ar Land John Y Contraction of the Solo 02 N -A A A A POV N Annan Annan M - James)) \bigcirc N 1 UA CONDITION X 2 X Constraint Constraint Constraint 12/67 XXX (x) m 12 1431 J.A. X N NCC × | |0 ×"O NAN N N G

)

b V (All S. S. Nº UN 1 70 0 C XX Y(X) FIXED C N A R 72 (M H V K ABIABLE Xe YLX2) · YCX 2009 N N VARIAR \propto 54 M A d X 21 d T \$K A N Xo 15 VARIABLE MM Server Server 20-XX $\overset{|_{i_j}}{\times}$ 0 X C/XX/D M 0 X X X Ŕ -unitim-CNOPSINT S N. D -ggian sesignitum 6 P. 0 \cap X X N 100 M to complete the X Angelera . ß · 一日日 日日 日日 Ý Y \bigcirc

SUPPRICIPUNT TT 調査 <u>SNIANDAX</u> A A EULER Contraction of the second seco MUS T La La 10 anna. 1 NW X 10 (j) X -(1)M ij. TWICE 0 Ş \times G, ONDITIONS N) 11 0 12 1. 1. C.C. DUFFERENTIARLE A Ŋ \hat{W} -+5 N) 5 IQ. Annual Contraction \square

Stor States Ma 0 ala T Y Ø \mathcal{D} 0=3 $\sum_{i=1}^{n}$ 101120-1 ~ A 1 0 Ø 1 400000 X 403 w.p. 2 N R X 0 0=3 X N 1.60 X and the second and the inf. (MON al. to magan W. CA. P. J. A. T. LOJ.X n la Kin $\langle \gamma \rangle$ X X Mill X × × X 22 X and the second X 5 ÷ United Street Z errora. X S. St. N. N unnon y a, 1 Par n (() 111 0 n la X à 2 athread a X 9 A N. + 21 X and the second -Ý TRANSVE Training . da Z Ŋ 36. 11. + × Ne N N an pa 1 M A man R 10 GRANGE No. 4 Y -C) C X No. $\mathcal{Q}_{\mathbf{i}}$ \bigcirc 00

PR State 040 1 WOND MAT RUX V CA T 1201 ø 0 ۰۹₄₄ NSIDE Ω 1000 A * MON. 0=0 AX N Con they (34 95 1 1000- C Rept. \square \$ + 2 2 2 2 2 2 4 4 and the second $\sum_{i=1}^{n}$ 1 200 1291 N 5 ANOTHE NO P. V = N 201 12 100/020-100/020-R 1000 Q, S C S C $\sum_{i=1}^{n}$ 0 X 0464 X Ň 6112 NY W C. S. C. D. 2 4 Z 2/2 1/2 1/2 and the second S. annard and a second A S. Subaration ----Contraction of the second seco Allower . XX N -() S North Mar y 1 1 11 2 A. nordx = v e Chi 2 2 VO *.* 今日か P2E-UN 1 2 3 L . A Contraction of the second se 5 4 2. S. C. Jones N 12 22 4 \leq 8. 2 Min Л A A Strain koons Record 1. 1. C Z K P 0/1-Rich Reason in 10 8 \square 2 N N A Company of the second s. A K Land -N 772 the start `*a X N. C) 5 R

Exci WHICH Xa 0100 NOW X 4 N Children London ens. C4 Q 71 0 N N N Xpr NOT Arrisona -00 $\stackrel{(\lambda)}{\times}$ J. 1.000 cm in joy SATISFIES \bigcirc 14/2 Jo / ap X 30 N. \mathbb{N} BA AND NO SON 3 K K MEL MC + 2 * 2 N X N Contraction of the second N * * * (and \bigcirc \bigcirc Nr Al- Low 1. 41 27 21 8 Ē Same -bu (Nh M/K 45 ¢Λ 24 X 0 2 11 de la construcción de la constru XCOL MIN NO Å MAX \times 18 le lat 1000 Come of the Come o \mathbb{Q} X 4 S X \sim Concerne State and by the second 8 Y 6 Y 1 6 N M Senter-× 2) Í. 0,.

N

VX+SX) 10 SOLUTION <u>008</u> 0 X \times \times XCE L.NOTE: 4 1 1 11 11 1 **j** 1 Ch- \mathcal{O} 11 1 A. 1 S 17 AND DESCRIPTION \Diamond LTL/ 1 these alla 0 0 2/1 V 2144 ţ, io... XCH V A M N W MOM IN MOM BOUNDRY À Jacob C Nan 54 and and the R CON and Ct 90 G. C V * AT IL a A 27 (F ()4 64 M and the second + and a 12-2-2 B No. T A G Colline . dtŝ, $|\lambda\rangle$ CAN P 242 1 0110 - Sandher La X and and a ferral and Auger. W. Ĵ ~) anana Alaman 042 2 t and and And Market Caller Brown and and S MOT P. Mary to - <u>1</u> N 6 h Castral Party N N - Com 4 COLUMN T \cap 314 N 0 nf

(n () NDA SINCE AL UNITA 2001 RECAL And Andrews Andrew Andrews And 1 7212 3 N 2 0N $\left(\frac{1}{2} - \frac{1}{2} \right)$ and for the second 2 + 12 N Manual Deneo DY. X Ŵ N N 10 77 77 Surger State X 12 N Additioned and the second 0 N N N. X. 21 5 m UN D · 5 8 4 8 000 Participants -2×2×2 in the second se X N d'I 0) A All and a second 1 15101 (Rest 125 0.4 42 Ó N A. Z,

M S. Λ $\langle \Lambda \rangle$ C P Y Anti-action DOUS H ALCONTRACTOR NS N N N Je . 707A-6 Ś T ME S 220.000° () 24 WANT Q X 1 22 1 2 ->-7 A W E 1 m 1 \geq Constant of TO N M de ENCTH S 7 674 Mad ÷ 80 ELW12 <u>n</u> K · · · · · · SOLOTION 00 Ŵ N K, P KNOW 104.51 Ð, N. N. 1 No. 1 N 444 K X 24910 A in the second se No. and

N DE 1 NOW BOUN 00 H C S 1210 01 11400 33 N) San Carl 5 N S S 10 10-2 tion. Ň (A)V S. S. 6-12111-12 5 N X $|0\rangle$ R N Carrier Con anticologies anticologies commences support N. - Common annaithean an taonachta ann an taonachta a AGRANGE Same Same XN 1 P X Same of Sangara Sangara >× N and an X 10000 100 N N Se and ANSS ognitrate The second s <u>andrika</u> samilitar 007800-CONST. 1 A SWO 2 2 CNU $\left(\right)$ N and and a second se Acres ---ß CONTRACT OF CONTRACT \bigcirc N n na na na X N/S/CY 1 AN. ([averally in \bigcirc CC 77

U đ V 2 A Sec. Contra and the min-100 0 1 -manu-13 2 X + 019 E $|=| \leq 0$ 0 0 3 4 > co + m 0 12+43 100 5 1) 1 A N 10 2 -14 Coloradore Coloradore 101 Ne 0 10 47 × 124 and the second 1 科 la series , ↓ × ↓ × N な 11 \times and the second s Ġ. 210 210 à. (CV OV ONN: 4 N N ×、 4 K , *N* 9 A 13 d t WAL O/ 1 X (4)) 1 Alter A 四 (I) 4 10 Q X AND (1)N đ 14/2 ţ,Ţ 44 · ()} : N. $\sim \sim$ Q M 4 Same -Alterno. (h)쪻 S \mathbb{N} 0 Letter 1

V 5100 A NOVIE NO. -D (1) 6 1 2 2 10/ -41045 41045 () 2 4 (A 11 (University) R all a 1,th State State M 5 7 0 812 73 9 di di -200 1 010 N. 60 4 0 4 TEERATIO. 00 ſħ 12 HERE A

6 R CES-111 mar former 61465 4110 201 X 7 4 1 ٩Ą 1 + E D2 K> ACT + the for 11 ARE Ŵ A 40 and the second the start X (des) (\mathcal{M}) HTE 10000 -1700-A. L. L. mfri for 44 all and a second \bigcirc P A. N.N. + Conversion ... k Red P -ten R 1+2 m 2+ +2] LA 6224 N 1-1 C - from C. James (Annual States) 20 (they . NU 600 100 A. $(\pm \gamma)$ and the second 1) 1 5 1 2 1 17 XITX $\sum_{i=1}^{n}$ 1 K CA

49 XO J. 2070. 14)×(44 Con Con (Ŋ d'h -And the second s 107 New York Contract of Street Veneral Parts 14 (74) Same. 0/0/ The start d 4 d 4 1QA F S + 0 th A Ŵ Ũ XX Xer 1 0

()M (A)0 MM REAR N 6 XX 4NPCE N. $\|$ (N) (N) 101 * +N \bigcirc K ļ 11 -11-22-2000 $\left|\right|$ 100 6 4 6 11 Why why (b)ANGE 11 1 f. (|r| $\left| \bigcirc \right|$ -----All the second s - A N. t \mathcal{Q}_{\downarrow} \bigcirc t A N X R 1 0 WINI TE DOS 3 A) 4 K) 🐠 5 10 \mathcal{D} -0 Cţ -4 1. 1 1 V. C A Xs 13 24 Ĩ, X 12 2 11 N 100 CLEASE STATE 3 |0|James ROT 1 ARC Museo - James -220 64 1 0 -HUPPOLD M 4 m À Contraction of the local division of the loc ~((STERN) 1 100 100 Contractor \cap 61 M 1 N. Salar 4 And And X 4 2 milion 2 Ser Sand $\left| 0 \right\rangle$ North State Λ 1 martine for N Annual -Y Dol 0 17 and the second and the second N: 10 18 d. 4 and the second second + NOR I 1 $\left[N \right]$

5 AN/2 NITIA-L XCD En 1 al A 101 (2)X a the the former of () No. 26 XCE) 54 (mar) 2 Sal Spectrum and the second of the 1 De las a fa Contraction and X ۲X de la composición de la composicinde la composición de la composición de la composic N (t) Strange Strange Con Common and the second 1 St W marine Control Control and the second (<u>a 140</u> 9 And I X for the second and a construction of the and some ONS

[S]0 |X|ſ. Antonio X Ŵ S 3 . 9277 ağızlisti Anna "ağ a ala erev 1] X $\left(\right)$ X -AND COLOR ()Xsh 利 gladina an 1 XN 7 ()April Contraction to t (|)0 Algoria de Caracteria Alegoria - fee X À Von ind ì 0 and the second Annual State X 0 \geq 04 1 X The Com f 1 \square X Very neg \wedge A 2 1 \bigcirc statute" F\$ N \bigcirc C Q 0 and the second second - Annual (inclusion) N. , A >and the second s ADDREAD ADDREA and an 6 Xal \sum 15 Ņ anylon (- Common Cart . seaso national seaso filenome filenome filenome -secure and the

10 N 45 . NOV N 4 202 Noncola Section 0 XL S. C. J. and the second sec X the state And a market of K b -A i M 1. 15 Car \mathbb{N} sum: Mininghatdimentation difference and the second N XIX - Toronto North States S (L) you Som in state Constraint DV V CA-L Designation of the \times and the second s and a 1 Com for the Constant of the second the second s

24 Sec. 2 Jones -ALC: NO. 11 ()Uplicate environ and prove A STREET 0 0 - dear 2 Sec. 3 40 X +enandi) 1 0 ł, 13 with the second }} and . + 11 0 $\left\{ -\right\}$ X Κ., 0 T-N k X - j. N. Annual and the second s Sector of the se 1 1 2 1955-17 1955-17 S. M. 1 440 free D AND DECK 17 Í. 촗 17 1 Ś S

20 and the second second - Contractor ANIC All and a second V 101 مىرىنىيەر. ئىمىنىزىر 1+-+ Hallower, ... 10 an reports 11 the free Ď A 1 And the second second second 2 and the second s entires. 0-1-00 19. 19. 1 V allower . - 43 and the second ×>6 Level 2 Level (and -----MAX Z 1

 \square 20 NNNN 42 \mathbb{N} \sum 1 CONCERNING IN \propto 12 Jack States and American 1 (-----National States -----2.7 Same $\left| \right\rangle$ \bigcirc M. \bigcirc 1-1-- Elin ()> R °>≮ ₽ Automatication Automatication And the second second 24 L and the for the former of the second se NG NG tei külusohkens ükenistikke X and the second Andread The s) 4 Strange and and L. and the second second ~ C And the second s J N VEE A Construction of the Cons John Start - $\left| \right|$ A A () $\langle v \rangle$ J. 1.1 \mathcal{O} for the second X and the second se 20 1 alutur, heread and the second s A property of All Contractions INT & O. a. XXX -4 ĥĵ В 50
$\widetilde{\mathbb{G}}$ the second NO W \propto 5 \times Contraction of the second -t-10 Ŵ - V + V - S iel, X All C Vina and here the A. and the second s Wand a state of the Distances -X X 1 No. Ŵ and a set Same Same W. 1 + N X and the second elicities, 5-10-10 5-10-10 Come) 1 the state Concernant and the second Ņ Summer . 4 Z. C.N. C. Produces ____ Scinition and a constant tty song informe Lenerary. $\left(\right)$ NUMBER OF STREET N. Hand the second S a and the second N -fin N 22 N (01 10 10 N ŝ N "formative R 5 San Carrow and the second Series State C 1 NK NO - Mar march V M 1 saaliy saar R January . The Car NN $|\wedge|$ Ċ,

V N

(i) PICIA $\langle \langle \cdot \rangle_{\mathfrak{f}}$ n 6000F θ XS 11 6J(X) 6x N CST 3+8 11 + 0 -2 10 2 10 "rh-45 Þ 1 11 AN 5 5 4 5 6 Ŵ, EXTREMU NISH (T No, 0 你 X 1 ×34 λþ M X, Q 0 KXC C A 0 4 1 ON \mathcal{O} AUN1551B ST BROOM K3 Kty HLO.T. an X Y VA R.C. kэ Ô \$) 6.7 4 D R . K.s. YA-YXXY No. $\left| \uparrow \right|$ 0 17 ×9 D LA. 0 and a $\mathbb{O}\mathbb{N}$ 14 X Γ 0 0 TS-S-

2 X+25×20) 4 0 4 ۱A NE TWE WY 14 NN. N D N Naw NNR CORNSIDE N B m SVCX 1220 COLV N. Ŵ 17 8 -----0 M X S RA 5 X 100 and and a 0 NO Q 0 Summer . 040 241100 5×3× RV E 5 ¢Λ THRC 001 412 (0 2 3 B APPROX S ROIC TO (1) × 3 8 SXC) XIS 0

N 12 V ANSIDER R. 110 1 ĥ Server of 1 4 11 {} (Ľ and a second Ň Altima-2 of. ŧ \$V ph A 10 PAN D (M)44 6 0 AVE V 201 X>10 ר, Ser con npr in R Ť КŊ 210 $|\rangle$ pla 8×9 0 24 N S 9 *> S S S (h)×× C 2 ++ ' J Ch and to X 6 0 The second se and the second Con the 1 Taupan . 1 1 850 atoliga . Annuella, かりか Ser Col ŝ X N 10 on la 2 S-NG A (\mathbb{N}) A164 V -10 \times X time th. NIC þΛ P 6 K ļ 1 5 0 \gtrsim 15 \times 11 $\left| \bigcirc \right|$ and the second

 \sim 20 R 0 ¢ 1 A 0 and a second 4 2 57412 T A $\left(\right)$ Θ St. 81 (2 - 0 4 0 0 N TO 1 SXCAP +R (1) 0 NTC сл Х St Ch <u>n</u>ra C. A No. C 18 d t M <u> _ _</u> X and the second 60

3 A.P. (1 A al and a second Million. 54 17 14 5 0 Ç3. 4 and the second second 0 5 -6 1 STREET. ing the second [x (+), x (+) ò. Control of the second 5 X X X K X AL-CYR K 🐁 Q ľ -f-K 0 Carte X 00 1 Sector N. ¢.... 11 12 Engl X Cto dentron Ø 1+ , a the 121 / d 104 4 2 100 X

and the second NOW 003 78 X/r \times (m X(ce) NX(Z 0 Z NS 0 2 N × A The second in the second Anna Anna 0 ĝ ~ X SMAD 0 Negations. Ņ / warding , units antimit. K 0 W/W-CORV N N 6 12 NANGE $|\circ|$ Ŋ × 5 () || ||

the the A M 0) O 5.0 -children montain (unders) Theorem 100 SIDE 2 allahan ar Ø 00 1 the A. () 1000 NOI No. ÷ 4 de la and the second P Ò - Ali 1 -7-10 C 200 Ŵ A-C R No y was N 0Å (As) 1 St. X OW 1 the second 1 XI and the second þ 1 - N NA and the second s le and land CONNER 0 on lon 10× 6 < % K. X, 2 , ch A Q 1 Action 1. 11 0 2

93 COND STRAT HOMENORIS 4-6 0 1 The former 0 P \square -----\0 ľ and a second Accounting to the second Seguration of Ô٧ p K 6 -N Ch

th $\mathbb{C}^{\mathbb{N}}$ M AND S Th. 0 0 (î D ()0 URV for) 10 00 1 調整ないで \bigcirc The second 44 Q $\times *$ A Nº P V. 0 M X Decision La califición \mathcal{L} X. 1000 $L = \mathcal{N}$ MM < , _ 12 2 No. Xø 1050 Managar Jury -Same and the second second X cs (n Q X Contraction of the second and a and the second se 5 A Ń \mathbb{V} 1 5 \mathbb{R}^{n} And Andrew Stationary 22 ţ٨,
b N. 12 opposite ------11 Ser Contraction ()Alleria. X 0 Service State X 0N0 an fee 1000 2 C -0000 -S Marine 1 Mar Participa, \mathcal{L} X. NCASO IN land. $|X_N|$ 1 1 170 1 5 N X -----Ka, on IO Þ 2 anere: Allow . 4800 Vice 8 \times " \bigcirc A L. N r, unacchia. Generatio 4 $\langle \rangle$ Ą and the for Ν < 1 M \bigcirc - Internet - Aller

hi A 704 0 MN Y ZX ZX Z 5 N-45 0 X ×. X(+') And a second sec ACCESS (4) income and the San Juni and and a second 1 10-12 Summer . "Province 04 alloco, ------×. 11 222 2X (2X-4) (X-- X N ×, 4 X J(X-) K y 4 and the am Con den CORNERS ×× - - - × + 2 × M R X, - -----NON NTI ON ¢, Ń N X X ANDERS. and 0 2× 6× X x 2) 2+(x -1 X. 4 R and the second Nox-L $\left| b \right|$ might from SECCME MLS.

¢≬ ∕∾i

1 Same NA Not 1 19 20 5 PLU D ONST D from 0 6 0 N \cap • dana da Carl UN ĺ, 04 \tilde{b}_{3} Q. $\langle \uparrow \rangle$ 6 all all S -fromt P A Carlos Carlos 1 1 f. OUTIN X 30 lies of Contract of Carlo Carlo En MA New York Î t a A 1. N/00 Col manual Z 6.5 ADD . -C - 27 Anger-70 Accusation . UN 7.5 -10 à i generali Generali N aler -C 1 ß X Sultin. NG H. 1 5 Ľ P\$ and the second second LAU New York IA X Ô 3+2 And and a second se NA 57 Spinner & T C IN 2 2 - Contraction alla. 3) 1000-1 \bigcirc 0 T C Y 1 210 A N <u>}</u> and the second 0 44 A. N and the second A ALC: NO. -router 2 - Carlor RS 5 A A.M. A Z K 5 6 Allower angle . X

A.C. WTEE CN S é și L D Q 10 10 10 10 76 - 0 P 0 Q N: 1 0 1 19 17 4 + 0 1400 6 3 249/23. 2 20 Cher . (8w) and a second SECOND () M XTREMUN 2 QV 5 21.3 Support Support at a SW T 2 Carl $M^{(n)}$ Ser S N N 4 my. 20 R.S. 16 NINAO N.V. 6

c/ c/

5 10/01 4.4 $\langle \rangle$ 2100 NGT N And the and the second 102 5 R Ŋ S Constantino . Ļ and the second 5 $\bigcap_{i=1}^{n}$ S. 210 Ł $|0\rangle$ 2 86 X X 60 1 Store ERENTIAC -4 Pthos-Se Ø R \$ 6 4 allowed. R. 0 Ę. 1 ph. 44 n g the of +++ 100 - Colled 1 1 1 ALL STREET 1 distantes. \leq \cap QA. N ENSTRAN7) . 1 Sold from 1 dist. () \bigcirc Ŧ andriney. Nellinger POINT P.C. CONSTR. Ń kt

1. C 2 1 (0) n n NO (1 ((AMP C. $(\mathbb{D}$ ((anana Alanana NF T (m N(K.X. X 11 Strates. (100 C ALCONT. V . Castrone Ø 0 2 Alter Alter 1215 Contraction of the second N N \mathcal{O} \bigcirc N. X Þ . . 3 13 1 Ņ 4 decement(%) 0 0 Re X N N 0 K) \mathbb{C} X and a second N And the second second X 1.12 Ň fra. nacione Transmo N N Y 7 - 2 Ex-1X ROCKET マンシ \bigcirc į. ¢ N N N C 0

N/ 2/2/ 2/2 \times \mathcal{N} K And the second s $|\Omega|$ N/ 7465 W 11 || ber for K restation X X=(O and a second second second 110× 6 多難し -loh M |O|Л N 11 1 Support of the second s ß WF. XX2 h N 4 NK '1 Tanka, J ARE 1) Ø, $|O\rangle$ trodu Southers 1 100 W ļĮ and the second Ŵ diagone-0 1 (+ 1 N 14 NΝ -cupationsublice of approx. N 244 Î - All No. \bigcirc N HA 0 1 ngiyan Nijalan 0 N anne) Sector (Sector Alerer and purso (Instanto taradi. 2624 No M 1 Country Country aliania Alian k), -N 1 UNKNOWNS referer-Č, N Ų -----Sugaran Sugaran S -20107 NÌ ()l \cap anna (Ĩ and and a N CONST and the second sec 04 酗 \bigwedge NAPACINE N and a

0 LET30 f Ŵ Non the second BERES A to the second 10407 5 mayor front the second A N R マナ \bigcap -----C $\left(\right)$ XUES $\stackrel{\times}{\scriptstyle \sim}$ C

2 ~ 0 (A) -NQ HA A XT 1 (\wedge) X (] 4 dentary. 15 () \mathcal{Q} eres. + 10 1 100 $\langle \dot{\chi} \rangle$ N \sim \bigcirc $\overline{\gamma}$ M 11 *-3 $\left(\right)$ 6 *"* X 00 2/12 13 $\stackrel{}{\scriptstyle \sim}$ \bigcirc anda Malayo (p) ~ 6 G V-1 , constant Èç, and the second () $\langle \rangle$ Č. Ы 11 X

A U COPERIMETRIC VED UA EXTRE The Comme AND 1 June way the second S. A. sont & some L. C. C. Same K - dame South Street -MIM-ul set the - And I comment from the second NEW NS the company -<u>1</u>_2 CONSTRAINT the second se Contraction of the Contraction of the second USE LA GRANGE MA Ŷ and a start a start and a start Trik INEQUALLT the for the second s - with 5 and the second of the second s der son and a station of the second sec 4 K - Setting - MANY and the second s N.V.V. Sel top A DE Star A Comment DN MAR URDER 22 - Kring -JE X.P LA Ser St and a second a second s 1 140 11

State Martin Contraction Ì 11/2 A-11 NJ and the second CAL ST 1 S. ł no starting and the second sec and the second 5 77 N.S. ann - como - con and the second s Lell N \mathcal{N} i and a second (b)6.5 $\langle \uparrow \rangle$ and the second Allow Street

-0 -4 623 0 4=0 0 and the second CN7 60 P CA M M. My Come 2-- (6 - × T Z \bigcirc 100 Concession. e e t+ 1 1 CRATE (mast) 4 3 S 12 0 FR T 4024 7 t 20 et t × -A-F-CAPT! -1 Ôŋ 1000 ----under the second 4 J. 601 et e 101 (Conception) 4 N p.t. × Lan 1 VECTOR (T -XUT at of to ます ×۰ N/SH A 21 R H Q

purs (r 22 Ś 0 0 0 H 20 dinect contents 0 10 1 S Χ. R R 40 ~~ ------Constant -- 1100⁻⁰ N-6-57 4 diana dia mangana dia mangan Na mangana dia ma Q þ Name of Street \times Gibber. Z 1000 NE CRSAK S W えら 20 20 0 "d 4 Contract of n 3 0 Ch. TT. 1 X -0) 4 ALCONTRACTOR NAMES C σN 3 k X Ç1: 4 12 C 1 t A 1 4 N S 14 % 14 × 5 and the second se C Q X COMPACT. A CONDITIONS Q Witten of -{-+ 5 00 U) it 4 Ŷ 40 0 A Start 6 d 4 \bigcirc N 4 angen Vangen -Service and Ø Ť6 and the 0 0 in 1, 2, 2 - Com Contraction of the second 4 \cap

05 Ŋ L NOW たろう 0 7 p 10 0 4 -f-6 () 62 SX I X + ×. or 4 7 sommerganta, 1 0 11 0 +Ŕ R 1 0 A B SNO 2 2

SIMPLIFY 0 Mмþл 0 × , KULICIT $\widehat{\wedge}$ 4 g f to 5 10000 19 X C -KA-GA 1 dentication. 5/5 Stacko V ACCEPTION OF A) 🕴 * 50 13 0 1 1 200 on X 6 4 例例 lana Series 03 10 SNOT 1 and the second 101 0 K S 4 6 Stranger (+ M N D 07 N NO T TINE N. 100 \square 2 VARIANT 3

de No ₹ N T X ψ 10/1 8 MAN1 I 4 \times , 1 NE X N Continues California 2 R 1 itte. 100 W/ C N 20 4 2 -X 200 X V K × ALC: NO. SHA < pt and the second se Xe 1 (4) N ACCULATION OF NON and the second × v ACHCH 0 4 X 0 $\langle \mathcal{O} \rangle$ 4 U U 0 0 COSTATE t X N N OBRICE Investory. Salarsi da S H. t N N *(0)=0 X TPL C university. ţΛ D(X,U,T 404 0 - John from Series -4 les 1 TER MUNA 11 fr. K X 74-¢ 0-2 2 TWININ NX N 1 (A 4 \mathcal{I} YSTE x(+1,+1)=0 01 17-1-

NOW Surgary -00 NOW (0) 'X -46-SO No. Contraction - miles and and a second second <u>I</u>A and and \square X A Alexandre 3 Nł SINC η 1 NA NA P. n X -jázová. \mathcal{C} and the second 0 0 M 1 0 £. -0 2 X, 2 (11) + X2 オシスタイ 11 Ser. citerato Transferen The Alter $\langle 0 \rangle$ ÷ - Contraction 1 p 6 XX N 0 N -ALC: NO. Ŵ Same-Sec. 10 And and a second second N approx. × -Contractory \bigcirc X 0 N W 1 1/200¹ X N S. X NF Q N 4 G h SN Alexandra and (1) N W 11 1 4 (h × X 57 m WON and in the second W (0) C 0 A AJ 1 A THE summer a 12 5 11 () н О h \cap Capitol 周日 P Г (У) (У) 45 x I 0 2 < 17 X X ₩ bc, ð Jo.

00 A C HOWEVER L m 5061 AN En CONSIDE T A D 1 -Papilot-Gilanda 11 0 (\mathbb{O}) Q ¥ Same long by Lan 11 44 4 0 C X T J. E. -D 0 S. X 44 X 44 J. -maliant. Q OS. T ſ (n) 70000 t) **R** 4 (tr DRINC 7 T N T X St VUO of the o per and o by o o d ¢ # 4 et et - Kanara -X 101 XAX 0 6 Q Let The second second (X) A f đ ¢ × - ALLER A A TI CAA

Ø 0 *.*, Sold Section () + 0 of the SXT. -0 Y X -1 02 |1 í. -┝ 5X X 5 A A 5 0 0 1 0 ine d \bigcirc \bigcirc 40 9/19 WO 1 X Ø Ť * 4 4 5 ۸0 X 1 t. 2 1 0 5 1 X (A) × 103 1 đ 1 5 \bigcirc 30 d e CI-2 \sim X ()SN

õ

10% Θ \bigcirc (W)9 Æ ALC: NO \bigcirc 10 N Q D. 10 盛意 11 M -Ű, Lews *w* -TURNUT-War ×. · ×. \bigcirc Ŵ 300 X 0 いた 1 4/0 RON And galaxies 4 a., g ÷ ()N 400 TA - and XLAL CONSIGNAL CONTROL (A X F. **Q** A.N 7 The state South States ()1> Carrow $\widehat{\mathbb{Q}}$ M 4 n

THE N Th 2744LS 0 \mathbb{W} (w)(m) \$3 22 n, Q 0 40 A ASAIN () V N SECOND have 60 NOW Xa NE A and the second -0.00-v 6 M \bigvee 1 -1 Sales Sales C NEC 0.04 P 1000 verite. Siles of 2 2 1 1 1 イイ A. n X 1 Non December X)0 W E $\langle \rangle$ the to Ø N. Q. 0 \Diamond D anton a -menutic T X S Ma 101 ~ - Aller SN a. h wB. 110 No. W 5 CON. Q 808 1000 1 X Л JTC) Contraction of the second 13 | Ch 5 ţ. くつけた V CD J Jam 100 A CA-N D.t 0 6) -1 ACCOUNTS OF -9 and the second 0 100 R ĝ. * STATE OF 1000 5 5 N O Y. N \bigcirc - Andrewski Ta 0 and a second 0 A DIBLE M t the y V -0 X Ŵ 60 0 OT X -W No. 9.... <u></u>38 **(1)** NA TK 12. 6 * 4 -contractor Contractor \propto Ŋ B X+QU X 00 a superior of the superior of do lav * 47 5 N 4 ADDARD CONTRACT (G) -14 151 6 1000 000 []24 Selection of 0 North Co 1

 \sum 8 10 0 1 MROI 10 TE -Ci-J-NOW $\langle \!\!\! D \rangle$ P+Q+ATP+PA-PBR-10TP)X=0 PCty X. $p = -pA - A T P + P B R^{-1} B^{T} P - Q = 0$ D= JA BUD-HD+JA+D+9 キロら 5 A W A N(E)=RELX(E THERE 10 202 1 UCH. to 1 Caller and the second T N V そん ちょ ATTY 1918 OUR UNISNOWN-(and and T H Com 14 T A C 1 June 1 mar 2 h MX1ST ment 12 NOV T IN P 1×NDCU У.e Õ EQUATION (NONLINEAR) X * T. SCOLU V 14 W 2 W C £ (1 C / C MC \rightarrow (A, A NONNOW メンチャ and the second PLAX-ORIGIAX] X CORRESPONDING B See A R X = -QX+A T for IN C REGULATER A T AX 2 0 No. 4-2 1 0 D (A - 15(+ COND. XCHI $\frac{1}{X(f)}$

) Do 1 0/0 CAN A A 11 イヤロへ 7 RICATTI 00 DE T a y 10 PCt. Ń 1 W. James ł Cherry Singe-1 1-0-1 1.0 EQUATION 0 R M M CM N U SOLUM 0 (Y WAY $\mathcal{O}^{|}$ 0.1 V a (e-) =/ 1 - 0 R . N. A. WALTER 210 6 P-1AT PP-1 + NV V. LARCO 101-101 CAUMAN 8.0 0 10 200 / GRIN, ß, PER BTPP . 2. 44 60 P シューク VG0.772 nt-

ROH CONSIDER SOLUTION DROBLEM NOW 50000 m $\frac{dx}{dx} + a_2(x) x^2 + a_1(x) y + a_0(x) = 0$ EIRS T 1714005 0 P Soluting 32111 MAKE MAN T 961 2 200 - 2 A OL CHE F 5-2-00 K. N SX P 5) 191 ψ N OF X OPDER 15.0 SI & SZ ARE DETER. 5 X + CK (EROM SAGE'S 0 + 4 -4 -5-1-5 PROER 4 7 115 VARIABLE 4 1.5 Contil N Ŵ KILSA TTI Colton. D N N N アメ LINEAR L (3) No ex S.S. 11500 l south 70-11-01 AVE インノナ Eq. Solution N Servine 1 1 017 . NEW

6, SENERAL V i I 10 EVALUATE NI-SON 1 1 С 4 4 N + W N + Y P - 2 11 11 4 CAL N x 10-34 free free 1 + 1 (n AOVE 1/2 2 + => PARTIC ULAR $\overline{\wedge}$ Ň A V 4 ļ NON 4 200 (1 $\overline{\wedge}$ \bigcirc Q H 6 SOLUTION Eley () Notality.
ASSUME \mathbb{V} w 10 77 W) 2.44 m NTRAINTS ON T $imes^{s}$ しょた h(x,t) Ju-o X { [00 $h_{\leq}(x,t)$ 0 hg (x, t) 2021 1813 ALCH, at 12 PAINCIPI 110 EUNC in C 1 to at 12 1400an-1001 (maliner. N 22 1971 1 1+ 4 NON 2254 c 194 10004 T 1/1 R North N X 44 シエラン NEW V ST A 1 1 56 ØØ EQUATION 10 SIDE (4,2) WS K , strandsta ΙV \cap

)

TANK - AND A COMPANY A COMPANY AND A COMPANY A COMPANY AND A COMPANY A COMPANY AND A C
- And a state of the state of t
Contraction of the second
n Ar
A CONTRACTOR OF A CONTRACTOR O
The formation of a state of the formation of the state of
· · · · · · · · · · · · · · · · · · ·
- the state of the second state of the second state
the second second second second second
11 Junio Maria Junio Ju
· · · · · · · · · · · · · · · · · · ·
WARD DESIGN TO THE OWNER OF THE O
An Annual and a second s
a think and the constant of many and filling on the constant
the property of the second
A definite of definitions and the second part fitting of the definition of
and a fail where the fail of the second s
and a second
An

112 $\phi(\star, v)$ N. LA C N X) (T R R R ADDATE -MATRIX h ş (() × た 2 NF NF + NF 101 A 100 K r=0, WE HAVE REGULATER PROB. 01 V C AX : L 11X- 11 2+ of N 1 1 0 R PROBLEM: 2 1 Ò NO M Ø 1, 1, 0, R P. R $\|X(t)-r(t)\|$ X Q2 2 0 0 6/70 (m) À 470 X OF+ + 1 UCENIA 50 V COSTA AXTQU 0=7 ×. AAA

6 T 2000 Ŵ Ð, 20 NOW 4L 50 C \mathbb{V} M X D 11 4 0 MJ C ſ lineary and 11 -e U and an and a second H. N 1000 C A. V · M 0 Ck 1000 1000 ヨシテ N 6 h ts Contraction of the d L Ñ Ń Ì R C X メ((オイ)、オイ) the state animi-N 784 **8**99 4 424 N P/X 220 1100 0 - perty place 94 2 -{ 0 4 O10 27

0 SLA , X(t) + piz X(t) + t(t) 1 - S N(tp) \$, 0, 0 8 8 8 4 0 d= (2) x $=(5\phi_{11}-\phi_{21})$ \$ 22 - SQ 2 -AC N(C) : (++++++++++) -00 **B** 120 1 1022-5912)(5+,-5r P(t)X(t)+ No. L DIN 1 p22-50/C L NOV X(t) + 42 - 1 (t) + + 2 (t) X(t) + S(t) - r1/10 K 1) X + X K R BT 1 2014 X 1 PX4 1021- Q2 P(AX-BR BTPXK))* X SANA T-N 22: 大へも

2 Brinpa MT 080 22 Ĥ D M_{\bullet} DO N δ , N V , N 5 LING PENALTY T 5 ŀ 11 OTAT. 1 Þ -4th 611 \bigcirc Z NERAL N/N/N The second 1.5 R a contrativity Actions 12 R -4 Ô h 1 Card S Second Second <u>r</u> 4 ZWW. $\langle n \rangle$ 1 NON N. 0 TERM: 0 1 W. D-POR Ļ N H 100 MOST 7422 an P S. 60 6 1 K CATT ALC: NO and the second W 01 ------2000 -UA 00 T. 1 1 C 9 徽 N T 266 0775**/5**8 - juli MEGL ANN X 1.1 44 S 10 % A 3 A Ŷ 10 Not 2 At la 5 \cap Ĩ -((ð 0.0 ONES 210 \bigcirc ŋ 3 And Party Warr's R 0 10 10 the same man 4 SC Ø 1.1 0 R and the second 'UN 1000 Ci I 114 TP-V

6 50BGC S. de la N G 2 1 CON TROL ELX(++)++ BoczA CON TRAINTS X. K J. Ś 1¢ XXX 417X PACBLEM Ļ V N O the the second V TATE 0 A 1 (Å Aller Stationer 1 NEQUALITY ٩ X - 4 K STATE IN EQ. CON. CONTROL INEG 1NITIAL 1 のとし Q 5 NICA COND

215 1250 $\langle M \rangle$ \mathcal{O} 00 Q N N J 7 451 () D M \rightarrow 11 Þ the first |NG (units) Providence to the \$ 1) 11 X 6 ----- \mathbb{N} 21.15 X \bigcirc \mathbb{Q}^{\times} (1 ٦Ø XCE -· Sx T th hq. Sec. A CONTRACT $\times \phi$ キシリノを言う \uparrow 0 (ĥ and a Q Ŵ 14121 $\left(\right)$ 17 Ŏ |0|N . 444000m 0 N 0 K. M $|0\rangle$ -J-0 P 2000 1 20 1 -tt D 84 M and a second and the second M oh Lo 9 4 ÷ 6 0 - mark 16 2 V 0 2 (9) (9) (9) ×٩ 1 $\overline{}$ 5 X.X.N, W, Z, Z, T) Ψ A -\$-. 0 N N 0 No. N distant and N N & 11 M M E.S. \mathbb{N} ~ ΓN M 115 N Ν Γ 5 a p.

たい

00 AGAI 5 2 MOM ANE + 6×1 + 12 1 2 9 + 11 tt. 6 W 7 50 6 2 X 0 202000 5 2 X X M M 6 101 NS X A ζħ the second . dr. g Com NG 4 6 + at - and and Sau 000 + V 1 54-026 0 V and and 143 4 C) Ŷ 10 10 11 01 10 527 7 2 X 01/09 ON0 Alto -----BE. (6 4 5 0^ Nº P 下のる市 X/de horalow and a

0 0 THUS VARIATION. 1500 200 <u>_</u> ONS Ø S NS S \sim $\langle n \rangle$ BUT N ÷ ţ. ------M 0 MARCINE 0 \mathcal{O} 12 2 No. M |O|(1) + 2 F T - 5×7(44. R ~ 01 Th Th A j1 A A 11 NCE \$th A B B 5 S The Fester U) 100 00 2 0 t t E t g N RA. M 4 terk 5 × 2/2/2 He of 2.44 1 8 4 2025 d/ -N. -00 Concession of the local division of the loca Ň ON 50 11 1 ()M TIMA 1 T 5 4 br ler N0 R N N Same Cont N N N N N 4 c c 口肌。 San g ţ\$ 1 2and the second ~ M _ R 61 Dr 5 0 T C \$ 10 0 N

01 (M)2 $\langle N \rangle$ a を行 Ų, $\langle l \rangle$ 47)X r\$ 0 MIS H G 4 ġ. \mathcal{S} ØĄ 1.5 denorma approximation approxim 9 14 \diamond 27 N ĺΦ, 5 Note of Control of Con Contraction of $\langle n \rangle$ (n)Ð 1000 5 - Marine Anone and -1- $\left(j \right)$ 4 5 70 1-91 JL B Ò 201 Yongood S d C \mathcal{O} N/ 21 Ŵè (1 M and which a ADMIS ()And the second s Transport.

0 WE 11 RECALL M ter 40 Θ X ×, 7 ()X. And a second sec Provent ! A-N 200 X and the second 1 and an alman 12 1 CPR. 5 \mathbb{P} S from M former M/S Con an show a 121 NEERS \times , NOV. N (C) UĄ a granetsen¹ apreizign $\left| \right\rangle$ \mathbb{A} RAL - Andrewski -S. \Diamond X SONDITIONS 10 -presser in the second second 0 1 Jon Law the sec allowed a $\times 1$ X. -1 0 45 San San San

V D HL A 000 0 A M R - X, T 4000 IN W 1 an colorado 1 W Ŵ 10 \mathcal{N} X 9-7 LQ. PONTRYACIN'S MAX PRINCIPLE. TH, 19-22 1A 79 101. 5 anterior strategica l'all ERT h whereast were from the second A A t. $\| \rangle$ - 2 T - -RING2 the second 14 ļ ma & (X) like S NK OP TIMAL 101 Carlos and Carlos t 4 W 1078/m L'ONNE NV O 2752 X١ 5. CONTROL (x, w, x, t) CONS/T ~ Ň, 101-101-10 1 22 1 5965

TH SUR, EIN O NI (NI MI Com WITH AX A R NW M C S M 00 1) MPCE 000 MPLE $\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$ S the 1) -LECT W R \mathbb{V} 1 K .st × 4.1. 61 XLE 5 N S M Ş \mathcal{O} 11 4 2 / 2 2 / 2 --00 C 14111-00 ha Alexandra Alexandra -R R Contraction of the local division of the loc \cap V -1999 11 And the second s 5 and the second Convertion of $|\Lambda|$ ÷. V 74-4-7 V Þ NO THE A ĮΩ[here X. Con and -Contraction of the local division of the loc and the second (p NX \cap 7 U X X) WIRDC. 16 Y, d 780 6 X XCee) and and a second se Constant of + X 1000 n d N W

240 NG THUS, WE GN13 WIN J C v V THU CT Same in the second seco CAR CLAR ÷. \$ I. A n 0 -12 20 0 Application of the second seco L' 1 000000 16. 20 1 dese IV * WANNA * * * 41 A M 14 44 Contraction of the Index N / II marr 2 10 £ Jacober 1 6 دوادندومیدوسرو_{یدی}. «فناویورورویو MININIZE. 1 NHG N 10 · 11 C Ľ 12:4 R R 19.4 A M 1000

 \mathcal{O} EXAMPLE 20 2 ThVININ (For) / *jov* 60 EINO 27 m 11 5 11 dinastro di secono 11 Timpy, Timpy, 104 100 -11 EW CO 1000 \bigcap N × Gi 2 2 2.11 ------0 27 20 07 W N 2 0 U A (ĵ 13 AU Ń 2 20 3 T , and the second se 5 all and a second Colling. K-2-1 木 the second second $\overline{}$ METHON X (th) \square V 4 -contrast regiment E) 2 3 l e $\langle \rangle$

N

11/11 BACK SEANIN'S f (x ca)] = (e) + (e) 2 7 7 8 W 1 2 C 1> 212 176 X) = [] 7 ₹ (×) 4 (MON) PROBLEN WEWANT + 0 ON TROLLED CATAT S 0 CP CP-H || CON TROC -1 TERATIVE SOHOHES 10 [K(++)] TY-V-K 14 6

ſ١. N.C. 0 12 2015 HONC Ą C mar 21 m C 17 11 A. - second Antiberta a \mathbb{C} 20 Service of the servic 1> Nel 6 CT T 1 - Junetinem one of the second 5 オン Minute ł 0 The second \wedge \mathbb{V} 4 + 40 martine 40 Martine Å $\left[\hat{u} \right]$ and the second 11 50 1> ANO - and have 1 COX 0 N Ŵ. $\langle \rangle$)(11 A. 19 and the second and and a \mathcal{O} Apple 2111 * |+ 4 11 ()1000 62 100 Number of Cot V -0 | \sim NF 17 Land Ø 1 \bigcirc and a second 11 1 11 C × 0-+ $(\uparrow$ 15 and and a yst. 4 \sim 1--months states and a subsection 24 6 10 4 11 Ø - Contraction ()4 the off de la 0 N N. $[\mathcal{O}]$ Ś DA. $|\langle 0 \rangle|$ Ò Manad and the second 1 K d - interior , rt S \mathbb{A}

304 de NOW, NUN and they NOTE SOLVE NE C N F(X(+) Y X () 120 1-1-5 1 5 IJ \times^{\diamond} 12/1 X Transferror No. 10 SN W P in the second se 1 QVinterest of NY N 404 入 0 S X X dv) X Ŵ A () ine. N Ú. CONTRACTOR . \mathcal{O} 1,2 И 31776 2 Ì 70 -gumme Contraction of the 1 200figua 5 00 2 4 2022 Server. h ł. ſ, LON. R and and Q

EXAMOLE STEP 0 20100 K. 5 ASSUME the second NONT CONTROL E O R QEJERENCES: NOW MITIA ONTROL XXY 6 C4400 Lad for N/S Ъ SNOLLADOS X XX XX 2 00 (Des 1) O 4 11 SU and Com Antonia - For X tone, R N HAVE (1 11 (North R K 6 197 2 l 00 X XXXX 2 (2,4) and have N 40 > N (10 No. anatitika, anatore 0 And the second s 1 5 - Commence (X) = + 2 X, Jac. 6 2000 COCO 2000 P ALL'S 100 N) A Cx N01 0 \bigcirc -M X UTION S 1000 11 F 12 81 1 Sh LAL TO 201 1.99 in the for the second 20 Y S from facester ... 1010 - 100 1-D-1 3-979 - Constantion 51 M CS 0 No. N TES A 5 H2 X ~ 4 K

N P (|* A. * 101121101 XFI 0 0 Q on K -1) actions purchase \$ ~ (° H. K E Q -----9-+ 5 やみ 4 5 \Rightarrow 11 -condition-VEN ╀ Ð, 76 \sim and the second 副門 29 1 -----No. (H \mathbb{Q} $\gamma | b$ X^{*} X (th and a 2 4 $|0\rangle$ 16 $\phi \wedge$ m -t-t-t-|| Xa 1 11 \$ 04 X aprese (1 Constantine Constantine 1 NN V No. Ø mps of $\overset{k}{\nearrow}$ and and a

(A)

	n de la companya de	THE REAL PROPERTY AND A RE	The second	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 A COMPANY OF THE PARTY OF THE P	10 M. A. COLLECTION CONTRACT STATE AND INCOMENDATION OF AN ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDR	 · · · · · · · · · · · · · · · · · · ·	a and a second and a second a			and the second	a server versa s ⁶ Maria e versa versa (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,									n de la constante de la constan	U V
										S EN (SN) I = C	- + S / - + S / - + S / ·		S = T · · · · · · · · · · · · · · · · · ·		-X-X-X-	(6) SE T (SE) /	SO XXXX	(5) X = 8 = X (2) + (2) + (2)		Contraction of the second seco	A A A A A A A A A A A A A A A A A A A	FROM PREVIOUS PROBLEM	

NON NE A もも BANG -Ð Ŧ R \times^{g} 60/16 X, H entitute societa 1 | |(1 Rob 1504 X t 1 K Ŵ TONIAN BANG 1 from and the second 30 G in 6 † H 1 |1. Sector 604 (\mathbf{M}) -Z MI (V 1 unitation and and a t 111 D A ell 1 + Ch W M 11 ~] canal ----e de la construcción de la const -15 l (° NN t 4. OPTIMAL Û (\downarrow) K Ì No. モンシン W.

ω ω

78-PLOSE TEST INCLUDING D osine AN \times -5 X 1910 ------ And 0 ALCONTRACTOR 6) U. (-Ax+b WILL たっこの V N V 4 and and a series 4 101 COVER Gla_ n X enterine Address N.S. MAN AN 0 X T D TOU E MINI CONT. TIME NEINCE $b \mathcal{O} \leq \lambda \mathbf{I}$ X+bu) PRINC, C Ň 5 1 years 5 L A th N S C $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ X A VIII Cheller Star 2 402

ψ $\sum_{i=1}^{p}$ VBST 12 1 H In N 0 W 1120 6 W 4 76 11 \ltimes 11 50 + N TLON Ĩ. 11 X Naw F and the second V No. > A. ٦ ANS H |V|N. C T F 11 ų. XVT N 4 1 T. 00 101 CM E " + X4 Weighters and a second 1 Server . ender-0 \bigcirc 00 under -11 Ô K 5 Al]] P 12 N) X Ŵ Allowing . -14 X φ W = 1810 21 2 44 C 0 $(|\rangle$ \mathbb{V} da. \sim 1212 11 -Ø I 100 Com Ļ Catholic C V IN 5 CCONST UD Carbonan -X T b 210 11 4 - Andrew OMES ١ 1 b.... YS AX+b 0 N 41 AX4 0 100 t 8 8 \square 0 0 addense Villetterare 100 11 6 +t+r N N

à

3 N HONO M M 4 H i I (Ø 1 5044 Annanger Annanger Aprenda Aprenda X Property and the second s Cash-0 1. maashir C 4 \bigcirc 0 W 0 an or heard = 17 4 - 2 × 0 Ļ h A 100 FORCING \mathcal{O} 14-0 t, 0 S = L) 0 \bigcirc SA N 01 45 - funder 5

HA 14 4 Л Now M 101 AMPLE 4 17 R.X. a second NCE All and a second 0 0 0 the state X T 1 and all and a 5 + 0 0 640 640 (| iouro contra M 0 11 1 2 To A 1 \mathcal{O} 12 and and S AV D E. 2 68 $\overset{h}{\times}$ S И 10210 (1 3 V -4 (M (A 5 L OV 0 13 0 724 0 Ð C D Ct 4 M ÷. Ð ter S. A. ACCESSION NO. A XO 1× 0 1 26 1 4 K 6 t m 0

S V

*(*1) (1) MM M (P N -2 Z 11 - 9-(| A) (М () \mathcal{O} -the second W Second And a state 1 Q M 1 4 S. S 0 0 2 Stores 50 5 11 0 \mathcal{A} Q ------V Page 1 N A 52 V 0 Northe 1 and I fan NG 4P 5 C C II and a 0 5 6 Section - marine N 5 1 52 .____

8 NOW N. USE 1 S. 4 18 N 81 in the second aller and 405 () N -----ABROAM . X N N STATISTICS STATISTICS 1 \bigcirc 8 C Q 200 Л an Sa C Ň X - Lines Ń X ß t N XNCT ()C Alim 0 Contraction of the second New Contraction 14 N Å NA) Å

R 150K ¢. 10 \sim X 3 2 PC 07 11 4 NOW X X 19 Ń anger Adala Vallmann 4 11 17 Z 1 -f-11 NF 12 X ì I 200 ()X ALCON . Q 500 Manual Alama hat 1 N N K distances Transition C. -225y 1 denories. Alexander 1 N NO N W A $\left(\right)$ B San San \wedge 0 5 C4 > C N Ŵ 11 N \sim

Z N D N Ce h NOW F. R. ∇ ICH LNC S N pt 100 ŀ 2 N D J N - Andrew N X 0 4 A 1 2 14 100 $\left(\right)$ 1 to a to et a V = +

444 0 N. Start All 21/2 CD. A land and South and the second se (| / N 4 1.2.2.2. 4 N. () K, and the second sec rational Visuality And the second s 14 and the second s H.A. 11010 45 0 0 To yes RE - Sheer A 102 M Section 199 0 Horne H. 1 100 C C 211 4. 1 - Andrews and a second \mathbb{C}^{k} 5101010 N, A Control 1 St N N 4 74 North State 'b C/14/ C 10 And the second s -0 140

V 212 X 101 Real Provide P $(\land$ ja-1 Μ 10 0 × 2 1 N () $\left| \right\rangle$ witherese 9.44 1.445 . Selection $\left(\right)$ M $\langle \cdot \rangle$ Section. Without a Support 2 \bigvee All and and a second $\widehat{\mathcal{A}}$ 1 - 1 S-S-V 20 - Contraction of the second se \square S. 1 James -0 ×. (1 > 1)100 de (1) 1 \mathbb{N} 101/1 1 10 \$ NANA-.3× -55 DAD 3 1 X A Ì genter in en e and the second A_{i} 1 1 and well NA elesion. Ŵ

2 all -1 Contraction of 2 5 N IN I $\langle \rangle$ - the control + Le la tra W. - Aller Ъ. \cap N inter . C Stor Cr $\langle \rangle$ 'n remains and the second 1.56 d. 107 | | |

C 2 * K \approx VACO-11 $\sqrt{>}$ Í PC K 6 1 2 1 therdparts 1 12 and the second $| \wedge$ S. an an N V (0)) Ø D. V $\langle | \rangle$ |O|1 Annina Alfredari -theory 6 1 \bigcirc \rightarrow 5 101 0 A. Contraction of the local division of the loc an and a collection of the second sec . . K

K X A. NA WAR ì Ń And Andrewson and Sp. ٨ 1 (7-1) V San Contraction 2 2 02 = N-N NO \bigvee \mathcal{O} N.C. States -1720.10 N $\langle \cdot \rangle$ 0 14 \square and the second second

1_ 00

		;	į		/		1		1		. J	. (<u> </u>	× .	$\langle \cdot \rangle$	1	$\left \right\rangle$	1 1	1	k e	1	1	7	1	4.	r .	4	а (:	7	1
)) .	1 1			(-								- Andrews															
					1											-)		
								An and a little of a little of a	and the second se								1															
																		and the second														
																		or frances.											ļ			
																		CONTRACTOR CONTRACTOR		0		· · · · · · ·										
																			Subsystem (10													-
																11		-							4 Hereit							
																			N.			T	and the second sec		-	erentende er je staarspoortelete	January and the second	1				
																		1-1000 - 11-11-1	-	-					Statute of Statute				1			
																\mathbb{N}		a na su a							AND THE OWNER		10000			and the second s		
														-													and the second se			\square	<pre></pre>	
								- Marchael M											and the first of t			0201					And a second sec)	
																		a presenta de la constante de l			100-00-00-00-00-00-00-00-00-00-00-00-00-									X	1	
	ł					VIEN IN A LANGE VI											5										and an and a second					
																									4 Tanind Williamo							
														VALUE - ANDREAM		1	2	100 PT						1		and the second		L-X				
	;															0			#Napore-													
						-											area	-	A CONTRACTOR	and the second se								K I				
	1																		2. A CONTRACTOR			a da ser de la composition de la compos					K.					
	1								1000 A								And the second se									X	1 and a second se					
									-							0	5															
																free			al construction of the second s							/						
								and the state of the state								, , ,						and the second							of last meaning			
																, post 11-12.00					And Address of the Party of the				- A							
																	3				1. Television											
	1										100-400 (A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.							and the second se														
															-	\sim					- And			A								
																1	0								Source of the							
																l'age	2	i L							out the second							
								The second s																	Talline and							
																									- Internet							
																									1							
					1											9	*								The second second				-			
																	ATTENT OF A															
																					1				A PARAMA		ļ					
																anto: 5									a status							
																9									· · · · · · · · · · · · · · · · · · ·							
	1																				101101											
	ļ																															
															And	Z	in the second		and the second se													
	1												ALCOUNTED AND A				5															
					< 1000 C										and the second sec	2	********												Paramatan State			
	1						-									\wedge		a na manada terretaria						of the second						annual distance of the		
											to a constant					Contraction of the local division of the loc	ar ar i menerar	N1 - 1	and the second second			a distante da una televita								a reaction of the second		
		N NAMES OF CASES		ar ann an t-		A DECISION OF A DECISION							Contraction of Contraction				Same Market and State						to may do 4 i Para Andre			a de la constante de la consta			1. And 1.	Annotation		
		2		1		1	1	1	1	1		1	1			1			1	1	1	F 1	f.	3			1					

5 N. 14 4 0 $\left| \right|$ 11 1 (\ NPLE 11 26 NF M NI 10 11 1 \mathcal{O} ×, 2000 \mathbb{N} 1 Sec. Sec. No. (n) \times Ν Ser. n I BUNCE. 6 Al un 0 OM to N Appendition on and find X N 4 N N N N adeligy Chrances N D May Andrew Andrew + 0 0 6 H)X the same Constant of \mathcal{O} 1-14-1 - de-N. 6 0 12 |O|2 ((C

 $_{\rm c})$ } N. 1 A $\left| \right\rangle$ A Contraction 2 LUL VE No. FOR \mathcal{O} 20 port-- A 5 A A A N -N () t 11 tan) Ala C C Name and State 10 3 ------N N (A) 1 9 000000 C IV N 1 N. C nAutomote A N N A) 1 A X Į and and a - and the second 4 W-Country of NF ()A. X -distance () X and and diam'r 1 and and and address NX M P X -the Contraction of the contraction o A and a 2244 (1)5 ||5 (1 Same S) ŝ 11 3] (\mathbf{W}) 4

105 ħ 1-> $\left| \right\rangle$ NA ber tom N N NON s. P <u>+</u> See Constant , martine N 2721 A in the second se 5 \mathcal{O}_{i} i la 0 8 Ô 4 3 and the set when N N 0 67 11 $\left(\right)$ A AUKE 0 SINC 0 ø 100 Ņ - contract. in south and Surger Constants 5 ر م 0 \mathcal{D} Station Contraction 0 the for land. Anton 13 \mathbb{A} Ĉ1 0 TSA \mathcal{C} lane of the and a series Ser here 100 11 // 5 ç 2.0 and and a 5 ONN2 7 1 $|\gamma_{\Lambda}|$ 10-10-20 $\int \langle \cdot \rangle$ -Things 0 (* 0 ج.... \bigcirc 2 12 ~ alber Ø All and the second 1 LIS SAL Co generation And a second sec T Change of the No. R. 岺

 (\emptyset) 6 440 THEM + SOLVING K $X(\tau_{2}) =$ X, (+,) A 4 X Z U H= 11 17 H 11 (++) / (++) 11 N 7 À ~ - Abara West 11 SNN X, Cti 6 J. K/t N 4 K Addutes. 100 1+1=×-1 por the les A 1 20 17) X-マが referer. 1 ZX R +X R 4 (H Nutración Secondor Latter man 4<u>---</u> 20 4 1 N X M-N T. the 2 4 h -----8 + 5 X Terre ٦ 7 AA 5

25 TON. EROM LAST 1 7-76 14 × 11 |) 2 11 ×, -+ + + / + + / ×, c ||| ||| ||| ||| \square Bare A X CON O 0 0 \square Ĩ 0 E. UCEL 4 JUN E 60 1 d (c) X -160 I B 5 Stanley, And Services 三國 S ANAL CONTRACTOR Λ \bigcirc C Ĩ 1= 28 6 XI=K, t K the for the second

AT NIE 0 CT I' DA USE 1 the server ONSIDER 1 2 1 X1(t 2 \$ NA-NN 5 N Th X(+) = 11 1 N. all and a 6 US C A A N ------Sec 1 -7 H CE 17 1 Comments of TURE anter the X N 4 Surger . N 01 and the second (2) 0 C. AXXR \bigcirc 4 VIEND ------N. a te 200 Sayin . X 5 14 2 2 No. the second 1 R + \mathcal{O} A 1 Ņ 4 X and. 000 1 N and the second Ś S. R A 6 63 ĝ and the second X M. Ch. (h 1 477 4

5 N N Ø, Ø 0% le + 0 1 - 4 - 4 t = t Blockson, and 15 - E XLL 0 Ų \mathcal{A} N North Day MINDS-1 CU >1 0 0 ne file (and the second s No. nt J 1911 C Elline Civiller 1 JR and the second s y and the second N NON n l 44 North Contraction (th 1917 (42 NUV C ander Sau Contraction C N Carlos Marc N New York 6 0 X C X - V -Ser. 2 Prophility -+ 入 N , millensister . AXTEO N 462 1 7744 5 THU Alter. 240 10 March 100000 W ON I ALS 1000 (A \bigcirc 5 m/ 100 ayonnan Vestad PARCE TORY N No. THUN N N/D VV and a second TIA

145 SANC EXXX MOLE non EIN0 1:1:0 K, 54 $y_{12j_{2k-2}}$ NHE -1 (Ser. and a BANG Merci C. 4550125 61 í (the w X 1 Y ŕ 11 ()1 N. - 100 M X No. 1990----メオ 1 612 11 0 Annual The second secon U C N 9 1 NOE \wedge Allen Contraction of 0 N V \neg U 5 \mathbf{O} Ŷ

М 5 $\overset{}{}_{\lambda}$ \$ C P 72 1 - D C NI NI 11 NOT NONT'S 2 Carter Street 9 \mathbb{N} 11 17 × 1 Netwood Party 2027 9-12-10-C . N EXPLICIT 1 2 2 2 2 Na H N eren a area da \cap 0 and the second 1 - free × 6 0 11 FOR . Same No. × 1 × 1000 1=03 Construction of the second I Wall on you 1 IN S U N N tt and the second s anto transforme. Addalled SINGULA OI N SINGO BANGx ++ + C in the second XCZIECS (7) \mathbf{i} 14-0 N (2)X A 0 Ŋ SAMO n N Xeerc (00) $\left(u = -1 \right)$ Mr. Jac O free \times n 0 and the second Comment 0071 MA NT T NT 1 1++5 7 C 11 24 22 R 11 ------(Tear)-4 N average and 12 51 + 1 A Tread

0 2/

162 DURINE 2(2) = EX (2)X P 74 A T A E) I X(t) SI NG L N Stand of Thderiver of f. 1 SINEULAR and from theme after and \cap ŀ N÷ NOVICE STATE \bigcirc Ň Contraction of the second 1 2 || r# - Con-**Situation** t \bigcirc \bigcirc N.F.

UĄ HERE 04 $\langle \rangle$ 1 REN K X and a second 1 CA nation and > // イズ (1 and one 4 11 11 ds-Ø 4.' 11 CONSIDE R X U 0 $\mathcal{I}_{\mathcal{I}_{i}}^{\mathcal{I}_{i}}$ × 0 A Bernard Contraction 1 N inform + C 18 0 N S na f N 10 V alpha K ł 1) X and the first and C X Ymrei and and P 0i 0 O ZXXI Z Q CONT × + 400 10.00 100 201 -megale 0 11 n NEX - Aller 1 M +17 1 Ŵ 400 X + K 2 NGU A and the Same 17 110 0 C. A. 67 Lord Lord and the second sec (M) 1 R N n A 0

FINDA ARCON 491 FROM W ON 0 00 21 N C ($\left[\right]$ USING X R 2 2 612 $>^{l}$ N R |O|N N (M) 5100 CO 6 X 11 lΛ Notice Sector 11 Section of the AR. 1 N Ce hr N R NON 1 Numers) XXX ARCIS NON. 11 0 1000 PRC. 2 6 SOLV C \bigcirc bel ful fair N Ż 4 ALSO TIONST Crox A V / C 6017A 0001 A

0 m 21115 X 5120 N FOR 5 E FOR 25 11 NX - Clare 8/4 I H I 1) $\widehat{\mathbb{A}}$ 2 ×, 100 11 - SHEX - N to the AR X DV. -3 9 R NF R and a $\overset{p}{\times}$ 202 K NIAN 1.07 entra 11 11 A 1 2 S \forall Dega Second a and the second And and a (and 124 m X PLICIST X XIS N - \mathbb{N} Ν × h M N N. 1 Superior . and the second l and the particular of B and the second -- Alinea A K -N H- E- W X 0 4 and the second ATTACK AND IN CONTRACT OF A DESCRIPTION OF A DESCRIPTIONO P anian Tanian 20 and a second K nji 11 p 3 5000 m +XXX 100 10 \times FUNC, X FEOBRACL an a com X C 1010 M 1 1 Ŋ N 11 0 11 ALTERNIT CONTRACTOR angelan. X $\overline{\mathcal{N}}$ X TIME Constant of the local division of the local M (tt) (x+x) 11 1 えよう

0 ്വ

290 * 0 V1+A-T -K2C(ti-E) = Xi(ti) C - (ti-E) + K2C X-(+) $h \leq \leq D M C$ 7405 = 2 $X_2(t) = K \otimes (t-t)$ X X20= K2 N N ۲ -111a and the second t - 2K2= X(t) => K2= (H) XXLEN autra, for and a second an 17 N/A (+ 11 K et(t-t) $) e^{-(t-t_i)}$ HOMO C-(t-t) 200 X XXXX X 0.00 Xm 1 J XXXX $- \pm \chi_{+}(r_{+})e$ XXX+ オメシ -M $X(t_{c}) = X_{c}(t_{c}) C^{-(t_{c})}$ PRATICULAR 4 N X NN NN 504 A H - (2-2)-FORCING and the sea of a

LSN OC THUS met of her X2 (t 0 10 OR FOR sh 0 -() the second second Come of RLO 1997 - S Ct -induction XII Reads In > X=(t) Q 1 increases ADRA ADRA annyklever. HJEZNO-en r 24 3 X Rivers... 25 \geq 1 $|\times|$ 2141 1 + (7)the second secon e e W-Comer N 2 And the adamas and a 2 N Heren N - he for X $\overline{\Lambda}$ 7 (t BURGERS ------Ł XNO - Contraction \bigcirc 5 the application No. 調 (t-t) - (+-SNOCLAR TRACLAR and and M The and a second - and and the second a ste Am T × N A NO XZOT N/ XX K 018 1 theme they 0

8 K-S-K K 5194 1-214 MOTE 11 14-0 H 19-14 NK \$16 - and the second × po po 11 (X-26 K X V NECATIVE Commission SZ AG 9 12 0 V C X 1 X N Port. ŕ 4 and the second s 1 and a A X 1 + 15 $\overset{\times}{\sim}$ N C) XI 14 -----XN I T , r

70 R 4 CONSIDE ASSUME Windson -2.5 10000 YN \subset KrX2 162 (TX2=C A ACCESSION OF N N ---- X ~~ stown THEXT JAX14 d. ß. 0 P 7 X - strenge 21 6 A MA Atonio natellitera Ć Y X and X in P 102 X X X X 15 ß 4 J-N-CE

P 0 NO がいたい nice² $X = X = \delta$ $\langle \lambda \rangle$ 11-14 X Þ decorais R D. A - and and a NEX2 11 roundin. 10 Land 50 NX 1 " (AINOULAN C ţ.] N + N 50 \times CONDI 2 ð CONTROL) + (the many 4 TIONS \wedge 0 71 M N N P 2 20 A - 8 4 BANG 212 1 - (to the BANG

)

A 1 () (-×k. |||| $\langle \zeta \rangle$ UN CO. KO K 0, 6 + Q 22 / t 1 N . /-| A K 5 (

.... 14 12 \sim and a superior and a 1 S. Q. 1 1.5 Sector $\left(\right)$ 6 ES^N And Contraction A starting 21. TANK and a 15 N. 1 4175 No. 2. 2 in a star N ()A \sim MOLT-LOW 0 1 1. 1/2 12 X N and the second 5 L, D , $|X_{N}|$ (+ 1 5 N. ty. D) ----i _{Al} N (M \mathbb{N} 1 South of the second ľ~ľ N Conserved in 3-Same and ~ ~ XX <u>~~</u> 2 × 4 en raque 2 N.S. X Long Sold Pro-N. C. \langle 1 $\langle N \rangle$. Contract of the second -ranna Secondaria Mariana Maria 0/ à 1 A . 2 Kg annan Maria 4 \bigcirc ()na analas de la composition de N. -6 X ġ, New York

X × . 1 Stan Nited Landston ritada mili 19. - Oktober 19. - Oktober **)** 1 and a second sec alitatus. The second s À \mathbb{N} norme and the second 0.000 1000 All approxim 422 a construction of the second sec 100 5 and the second sec Les anna Jacker Var 1 - Constrained and And the second sec h. . renandram were g the second and a second sec man and the second seco 1240 Jo Yron Lines a survey and a survey of the s La the and the state Antonio Minimum (Lancourse) Managerigiji Antonio Antonio C. 1 windsom. and a and the second s and the second s sensor allows 0 BBBBBBBBBB 1 00 C) and (- Maria 19 - Com and the surveyor N

 \mathcal{A} $|\langle \rangle \rangle$ 0 Self March () f \mathbb{N}^{-} - 4 -A + 130 angelou ... 0. 1 An Stor . Joseffer som 1 n and a second sec (N. 199 percentation a de la compañía de la the second of the second se Ŏ 1 - \bigcirc 6 A second s Section of the sectio darmah . 1

.

U V 100 -6 1 10/11 THESE OUTINIS VAD 4 × X¢ a N X and the second = 0 + × + 0 = N 13 ŝ \bigcirc CORD. Ø MN L 140140 b NOV -101 \$ B 6 4 4 4 A and a Ŵ 20 R.C. Ò XCO N) 05 - \hat{Q}_{μ} × K. X 0 $\hat{0}$ S-A-0400 and the second X N 20 -1 i x 6 - Standar \times Rel C 10) N 5 | X (A $\hat{\Omega}$ h0 W/C 202 Ø J. 2.7 L 44-4 + N 0

00 2 N 11 USING VISN δ NOR MS LINIFIA 60 SAME Ч 17 M. ğ 746 61 an CAL attending. \mathcal{D} ÷ Q 1 er X M 11 - $\langle N \rangle$ × × X 04+1 Joh ×+1 salar salar 10 $\approx c$ -201 X 0 XX. n, 6 **\$** 6 0 have - An X. on i M KA and the second se $\left(\mathcal{R} \right)$ 2 0 $\langle \rangle$ ۰ 1980-1. 126 126 NO12 57 <u>f</u> - the Sec. 1 0 0 R _**_** (X 6 $\langle 0 \rangle$ 140 0 NT 0 S. $\mathbb{Z}^{\mathbb{Z}_{\mathcal{X}}}$ <NOWN 10 + HOT CONT OF 0 $>_{\mathcal{X}}$ Sec. 11 S.S. 02 \$ Si Maria K (N 100 VACUE AV K CO 0 $\langle \rangle$ 0 A ÷., 2 \cap 12 2 \cap 8 Ì 0 2

VEXY len ×0 12 465 () 0 R > ×. 101 11 \sim \cap ÷ Techy. Bolice XZ+OZ 2 2 20 0 ST S Xen - X 1-Ð k N N K P No Co -4X0-2X0X0 -2 x ° -No. X +12 NXX NFand the second i st h X CO) X (O) T P 100 -(10)-) 1+ 2 X R Ø (5X-(X)(XC) N 2 N ÷ 4 C 1/4 e e t e N N N ese Co \mathbb{N} r'o NIC

No. p, X 141 1 Al & SCALP. Ś 5 + R na de la composición de la com -5 Ô * 12 a la 1 ON/ Ó A ĬI. 125 Ø A 2 CAS 6 S 0 \bigcirc 1. 1 717 X 0 10 * X 0N Ct-11 21 11 0

かして

NN 0 <u>_</u> SOF1 X Xp(G) 274 \mathcal{O} 1 f -----S. 0 S s d'an L 0 0100 0.00 -. Upentities K ON 5 Å 4 17 \mathcal{O} 1-4-11 10.0 N -ONS. À No X 0 10000 S ()5 Â

HOW COMI AND a c (2)140 Ś F. . 1 11 0 11 43 Þ 0 6 1000 and the second 1 C R X=B Min 00 1 and vo. Ū, 1 0 Lovez X M 1000 0 110 Newns N 1 CA. 0 X, N P Ŵ 10 VECTO FINAL R 01 201 R N. 1000 -1 4 14 0 R ----ß 1 2 1 S (h 26 6 TIME XIV YW - Land 2 27-3 N 4 S and a 2 4 $\left| \bigcup_{i=1}^{n} \right|$ h 'a 100000 and the by MM' \cap Ľ 2 DT ~ 5 -N.C.

d G

V M 1 HTISF agoggan-¹-magour-(1 SECI \bigcirc 1 K - Jane X North Contraction 0 N () N ß Antonio -H 1 and a second sec 1000 None of 4- \heartsuit et. 20 T CON 0171045ľ 00 X ンチ 7 640 120 X, 11 H N X HQ

N 0. and and a second se and the second s and the second sec The second second A second YAY O

												A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A Commenter of the second seco
								194 - Contraction and the contraction of the contra)				

1+1- $(\Lambda$ CONSIDER 9/21 THEIGHT ×, XH COMPANY. 298 0×1×3,43 176 X \bigcirc 4 ct e (2,0,2 to the UND-9 ×(t+), t+ K 0 mappin \uparrow 199 0 - $\langle \rangle$ A Ą * VES L. aller and the Ødt X ØJt $\langle \mathbb{D} \rangle$ 3 H K. X N 4 1 9 1 1 1 2 2 hum 21915 Ctri 0 and the second ÷ Φ VECTOR \sum -----AL CX X(rol to 60HI = M No. 444 ¢ ¢ ONT -IN DIRECTION $\overline{\mathbb{N}}$ 1 and a 1 ×, 10 0-

0 9 0 Ser 1 C.C.M. SAI 7405 NE CONSIDE R ALSS ONE 514 K D X A C II H. (I Sugar. 11 25 KNOW 5 L. 0 Ch THX -- 3 3 Aur and the K Sec. 9 Ŧ Shandar. 0 +. d $[\mathcal{O}]$ A IA X K BA CX , U, NI ×. ġ. 0100 SULTS: 5 4/4 ×١ X Contraction of the second and the second - Car 1 No C a X X (the A VA K - Jan Ja De cf. billion - \mathcal{O} 4 1 x. There 4

- Characteristics K SOLVINE Equal H 100 50 NTECRATE 2 COPOTE 120 FORM 0 INTECOR -Afr-lupo. 1 OLVE X. £. ストのまや × A THE N 10 ST N TH Nation Nation 2/1 Nr. () 44 1000 RI K) 6 × õ 0 t.C 1 S C N HOLO 52 W 3) A t, o 2 Ket y 476 tron tet. OS TA Jos 43 (10 ¢, anone Constant Ò 1. 10 4 Ψ 454 1 0 1 01212 7 ¢N^{or'} à Se. 11 20 Ð d. 5124 An , and a second Ò X A spectra 1

×+ START DUER EXAMPLE ζ \times • \parallel X Z Z OSTH ZE COMPUTE T WE'K EVAN S M CP-15 Commence Second CH. 24 (202epassa ^{Na}ture) UA Ō -Sec. literation condumn N O N A CN = X9/2 2 A 0016 artic T 1 L marten L 2 The Car Contraction of the second ACA IN A (-X + Q Analysis. A Ņ V rdt V - \bigcirc CThe second -IA New Jack \mathbb{C} 4 1 \mathbb{G}

р И

(vi 0 N= 0,1 TIG C CN 0 (1 2 1 0 () <u>y</u> And a second 1 - C 3 NOW 0 006 0 t C \sim $\mathcal{I}_{\mathbf{L}}^{\mathbf{X}}$ X°X Sum-C 4 \bigcirc Section -Â **Stabut** • Chalipe - 7 6 -0 0 Co All the second -Manual And 200 dillo Allo 0 N Manual I new any 1 States of Sec. 1 () ġ C N W 大 and the X n X and the court of ſ N X T L + D and Cafe N in and -N. 0 NULL CONTRACTOR d t Jue Carl Same T unter de la contraction de la (N 0 and the second Service of the servic 0 C

EXAMPLE K \times $^{\circ}$ ale ME 0 210 No. 1000 NL 11 5 14 A 11 22 WANNA J. ERENTIAL UNKNOWNO A - a france off A-t-A--250+ C Q X (f 9 - Company X - fee) ð d RCX ASSUME WE KNOW 1694 X 0 XJH 1 er lot PROXIMATION 40,00 3ZININIM D 10 X-X 44 h d t Suppose and the second X

X ľ. V NE |0 () 1010 124 5+6 0 THUS \times_{\circ} \times ×.×. NV P \uparrow Colored to P SN 1 -0 X 1(N and the second X \times N S. Æ KA. A A) VI Xo Ø, 61 diverses. 2+ 0 - 6.7 Q \mathcal{Q}_{i} RX N / J V 7 X -N q 0 14 free . Sucue. and the \square 9 \odot N N N CX CV M 10,4 X Q \mathbf{r} Ŵ 61 X X R -11-M N N ſ Q 0 20 Q A

)

76 NOW NOW -310 4 17 4 X Con allower 100N 5 $\langle \rangle$ n + a/a N NA. 0 (α, χ_2, \star) Ŵ TT And The .(- Sher and the second se X Q et e DX T X 44 N N N N R T N MA. 2 2 Å Y= XX TBX2 0 4 AN N W

200 KNOWINE 5 11 AND ort \$* + STORS AN Altan a an an NS NS 4 201 Q C. 4 C CM Subsection of the local distance X de la AND R 1 5 47 d)x26dte X-XNAT R (\diamond) Ü Q dr-X2y Contrast -Ą 20 (M 12 100 N \square 1 A and the second Q for y KG D

SINCE COUPLING GIVES ASSUME NE X > < c(ti), X(ti) (A 12 S C-AN Fut T CT W A QLLING ARIZ (7, 6, 4, 4) 0000 TOTAL MENSURE Well TH IN CONST GUASIGNEAR (ZAT PRINCIPLE ATTONS M O for the Mark \Box 170 XIS Q || N. 11 U ZMIX ð \sum_{k} D× 4004 302 1 1) NGN 16 N SNON S Q

-0 -0

-

t t

)									
(THESE ASSUMING X(ta)=Xa)	$\frac{SH}{SX} = \lambda = \frac{SX}{SX} + \frac{SQ}{SX} + \frac{SX}{SX} + $	(0) = 0 + (1)	$N(t_{f}) \times (t_{f}) = n_{f}^{2} + \lambda^{T} f \ll HAMILTONIAN$	M(to)X(to)= mo= of BOUNDRY CONDITIONS	THE BOLZA PROBLEM $J = \Theta[x(t), t] _{t_0}^{t_1} + \int_{t_0}^{t_1} \phi(x, u, t) dt \leqslant PER. MERSURE$ $\hat{x} = f(x, u, t) \ll n \ v = c = an$	TURNS OUT DECONSTANT	ISOPERIMETRIC CONSTRAINT > C= 1 to edt	THIN I THAT THIT TO ALLE CONSTRAINT	$f(u, u, t) = 0 \Rightarrow \phi_a = \phi \forall f \leftarrow DIFFERENTIAL CONSTRAINT$ $\Gamma_a < \Gamma < \Gamma_{aa} \Rightarrow \phi_a = \phi + \lambda^{T} \int d^{2} - (\Gamma_{-} \Gamma) (\Gamma_{-} \Gamma_{aa})^{T}$	$f(w,t) = 0 \Rightarrow \phi_{\alpha} = \phi + \lambda f \leftarrow POINT CONSTRAINT$	$\phi - x \frac{s\phi}{sx} = \phi - x \frac{s\phi}{sx} + 1 \text{ corner conditions}$	$\frac{5\phi}{5x} = \frac{5\phi}{5x} + \frac{\phi}{t} = 0 \leftarrow FOR WHEN x(t_{t_{1}}) = \Theta(t_{t_{1}}) = 0$	SX 5X+ [d- St X]St = OF TRANSVERSALITY CONDITION	50 - 1to O(X, X, t) dt <- PERFORMANCE MEASURE	VARIATIONAL CALCULUS	CONTROLLABILITY [BIABIAZBI. A"B] (RANK N) DESERVABILITY [CTIATCTIATET 1., AT"CT]	PLUG SHEET (TEST 1)	

)		
$\frac{\delta \Theta}{\delta t_{f}} + \frac{\delta \Theta}{\delta X} \times \frac{\delta \Phi}{t} = 0$ $WEIERSTRASS = FUNCTION:$ $E = \overline{\Phi}(x, \overline{X}, t) - \overline{\Phi}(x, x, t) - (\overline{X} - x) \frac{\delta \Phi}{\delta X} > 0$ $PONTRYAGIN'S = MAXIMUM PRINCIPLE:$ $H(x, U, \lambda, t) = H(x, U, \lambda, t)$ $H(x, U, \lambda, t) = H(x, U, \lambda, t)$	L= 0 / + / to + d dt H= 0 / + / Tr dt 0 / + / + / + / + / + / + / + / + / + /	X=PX = P+PA+ATP-PBR"BTP+Q=OF FQUATION P(t,)=S U=KX = K=KALMAN GAIN U=KX = K=KALMAN GAIN BOLZA PROBLEM WITH INEQUALITY CONSTRAINT X=1, N t=0 P(X,U,t]>0	LINEAR REGULATOR $\dot{x} = Ax + BU$ $J = \frac{1}{2} x(t_{f}) _{2}^{2} + \frac{1}{2} \int_{t_{0}}^{t_{f}} \left[x(t_{0}) _{2}^{2} + U _{R}^{2} \right] dt$ $U = -R^{-1}B^{T}A$, $\lambda(t_{f}) = Sx(t_{f})$

FINAL PONTRYAGIN'S MAX PRINCIPLE $(1) FOINT: f=0 \Rightarrow ga = g + \lambda^{T} f$ $(2) ISOPERIMETRIC: Ci = \int_{t_{0}}^{t_{0}} e_{i} dt$ (3) INEQUALITY: BANG NELERSTRASS- EROMAN CORNER CONDITIONS CONSTRAINED MINIMIZATION OPTIMAL 74=0 IF 74 NOT EXPLICIT FUNC WEIERSTRAUSS E FUNCTION $E = \Phi[x, \overline{x}, t] - \Phi(x, \dot{x}, t) - (\dot{x} - \dot{x})^{T}$ \bigcirc m m m m m x, A x pq 11 Θ L+, V, v, X] + L= V, V, X] M $J = h(t_{+}, x(t_{+})) + .$ $\dot{x} = f(x, t) +$ $Q_{+} = Q_{+} \times T$ g=g+XTC:-2] $\overline{\Phi} = \mathcal{M} = \lambda^T \dot{X} = \lambda^T (\text{cons.})$ $\frac{dt}{dt} \frac{\delta g}{\delta \chi} = 0 \quad \langle t \rangle \frac{dt}{\delta \chi} = 0$ Sx++ [g- 60 × EULER'S EQUATION BANG CRAM SHEET $x, v, t \perp \leq \mathcal{H}$ QLx, U, EJ + AT $\phi + b^T c + \lambda$ + CONTROL · G(x, t) U(t) Laz / Max ; az / T CALOS Xola Tet CQ2 ~ (PMAX -A(x,t) + hTuldt $x, v, t] \Rightarrow v = : ugn(h^{1} + \lambda^{T} G)$ + + + + + + $\frac{1}{2} \frac{1}{2} \frac{1}$ g(x,v,t)dt. . 71016 x,10) d 4 te cidt 0 T din 1 - Marton

SINGULAR PROBLEMS, N T QUASILINEARIZATION Ø \bigcirc FUNCTIONALS - 0 = (1+2) . Y W 0,0 ANG - REST ASSUME S. COMPUTE + 3. COMPUTE FOR MINIMUM FUEL PROBLEM N FFERENTIAL 0 7400 Ja × 11 10 SJ = 0 ₹ CALCULUS: Y= + (x, Xz) INTEGRATE COSTATE COMPUTE COMPUTE Notificate Actually Ŵ Z = UNIT VECTOR AR > Y (1) = Y (0) = Z Y 11-112 × 22 m 0 F 0 (t) 4 (t) 4 5 N M STEEPEST BANG D, XCOJ +(0)= / 1 X (0)=0 7(0) o [x Cit - x Ch)] LESTIMATE 0° APPROXIMATION FROM > = 0 CONTROL Altanta Materia SQRXUE = 11 < (~) / × (IDEALLY=0 \$ X * (0) = 0 0...0 × 14 DESCENT V((5×1) × 0 + Xo=+(xouot x = (0) x AND 1+ 10×1-X 3/1 S 1 () x x x 0000 6 K et 10 A SI X (2, + 1) A WAY N X E.

William L. Everitt, editor

NETWORK SERIES Robert Newcomb, editor

Anner

Elementary Nonlinear Electronic Circuits Carlin & Giordano Network Theory: An Introduction to Reciprocal and Nonreciprocal Circuits Chirlian Integrated and Active Network Analysis and Synthesis Deutsch Systems Analysis Techniques Herrero & Willoner Synthesis of Filters Manasse, Eckert & Gray Modern Transistor Electronics Analysis and Design Newcomb Active Integrated Circuit Systhesis Sage **Optimum Systems Control** Van Valkenburg

Network Analysis, 2nd Ed.

PRENTICE-HALL INTERNATIONAL, INC., London PRENTICE-HALL OF AUSTRALIA, PTY. LTD., Sydney PRENTICE-HALL OF CANADA, LTD., Toronio PRENTICE-HALL OF LIDIA PRIVATE LTD., New Delhi PRENTICE-HALL OF JAPAN, INC., Tokyo

1.1

OPTIMUM SYSTEMS CONTROL

Andrew P. Sage

Professor and Director Information and Control Sciences Center Institute of Technology Southern Methodist University

Kwongshu Chao Aug. 31, 1970

PRENTICE-HALL, INC. Englewood Cliffs, N.J.

CALCULUS OF EXTREMA AND SINGLE-STAGE DECISION PROCESSES

Many problems in modern system theory may be simply stated as extreme value problems. These can be resolved via the calculus of extrema which is the natural solution method whenever one desires to find parameter values which minimize or maximize a quantity dependent upon them. In this chapter we will consider several such problems, starting with simple scalar problems and concluding with a discussion of the vector case. The method of Lagrange multipliers will be introduced and used to solve constrained extrema problems for single-stage decision processes. A brief discussion of linear and nonlinear programming will be presented. Multistage decision processes, which can be treated by the calculus of extrema, will be reserved for a variational treatment which will result in a discrete maximum principle. Much of the work in this chapter is very basic, and a selection of only references [1] through [5] of direct interest to the systems control area is given.

2.1 Maxima and minima (scalar process)

٩

1

8

A real function f(x), defined for a scalar $x = \alpha$, has a relative maximum or a relative minimum $f(\alpha)$ for $x = \alpha$ if and only if there exists a positive real number δ such that, respectively,

$$\Delta f = f(\alpha + \Delta x) - f(\alpha) < 0 \tag{2.1-1}$$

$$\Delta f = f(\alpha + \Delta x) - f(\alpha) > 0 \qquad (2.1-2)$$

for all $\Delta x = x - \alpha$ such that $f(\alpha + \Delta x)$ exists and $0 < |\Delta x| < \delta$. Further, if df(x)/dx exists and is also continuous at $x = \alpha$, then $f(\alpha)$ can be an interior maximum or minimum only if

$$\left. \frac{f(x)}{dx} \right|_{x=\alpha} = 0 \tag{2.1-3}$$

If f(x) has a continuous second derivative for $x = \alpha$, the nature of the extremum at $x = \alpha$ can be determined. The following well-known procedure

Fig. 2.1-1. Illustrations of extrema.

can be used for the determination of the extrema of a give balar function y = f(x).

- 1. Differentiate y with respect to x.
- 2. For each value of x, determine the specific values of α which satisfy the equation dy/dx = 0.
- 3. Test to see what kind of extrema the function has for each value of α thus obtained. This we can easily accomplish by the second-derivative test in which we substitute each value of α into the second derivative of y with respect to x and apply the following rule:

If
$$\left. \frac{d^{\circ}y}{dx^{2}} \right\} > 0$$
 then y has a relative minimum
< 0 then y has a relative maximum (2.1-4)
= 0 then y has a stationary point

4. Evaluate the actual value of the extrema by substituting each value of α obtained into f(x).

There are three different types of extrema possible. If a value of α can be found such that $f(\alpha)$ is an extremum for all x throughout its domain of definition, f(x) is said to have an absolute extremum. If a value of α can be found such that $f(\alpha)$ has an extremum throughout a bounded neighborhood of x, f(x) has a relative extremum at $x = \alpha$. If f(x) is defined only for a limited range of values of x, and if f(x) has an extremum at either boundary of x (with respect to all the values f(x) has for all values of x contained within the limited range of x), then f(x) has an extremum at its boundary. These different types of extrema are illustrated in Fig. 2.1-1. We will have opportunity to apply these concepts to parameter optimization of control systems in Sections 8.2 and 13.3-1.

2.2 Extrema of functions of two or more variables

The extrema-finding technique can be extended to include functions of more than one variable. Suppose $y = f(x_1, x_2, \ldots, x_n) = f(\mathbf{x})$. A procedure similar to the previous one is used, using partial derivatives instead of total derivatives. A simple example will illustrate the procedure to be followed.

Example 2.2-1

Let us consider the maximization of

$$y(\mathbf{x}) = \frac{1}{(x_1 - 1)^2 + (x_2 - 1)^2 + 1}, \quad \mathbf{x}^T = [x_1, x_2]$$

- UIM.

5

1

where \mathbf{x}^{T} is to indicate transpose of the column vector \mathbf{x} . Following an extended version of the foregoing scalar procedure, we take the partial derivatives of \mathbf{y} with respect to x_1 and x_2 and set them equal to zero to obtain:

$$\frac{\partial y}{\partial x_1} = \frac{(-1)(2x_1 - 2)}{[(x_1 - 1)^2 + (x_2 - 1)^2 + 1]^2} = 0, \qquad \alpha_1 = 1$$

$$\frac{\partial y}{\partial x_2} = \frac{(-1)(2x_2 - 2)}{[(x_1 - 1)^2 + (x_2 - 1)^2 + 1]^2} = 0, \qquad \alpha_2 = 1$$

Thus, since $\alpha_1 = \alpha_2 = 1$ are the only extrema, and since a simple computation shows that the second derivatives are nonpositive at this extrema, we see that we have a maximum at the point $x^T = [1, 1]$.

Example 2.2-2

Let us now suppose that the allowable range of x is constrained such that $|x_1| \leq \frac{1}{2}$ and $|x_2| \leq \frac{1}{2}$. It is desired to find the value of x which yields a maximum for the y = f(x) of Example 2.2-1 in the allowable or admissible range of x. This region of state space is also shown in Fig. 2.2-1. From this figure, it is apparent that, for this simple problem, y = f(x) has an extremum (maximum) somewhere on the boundary of the admissible range for x, in fact precisely at $x^T = [\frac{1}{2}, \frac{1}{2}]$. This is a very simple example of optimization with an inequality constraint. We will have considerably more to say about this very important type of constraint when we consider dynamic systems and the calculus of variations.

Example 2.2-3

A slightly more difficult problem arises if the allowable range of x is constrained such that the Euclidean norm of x equals one. Symbolically, this means that $||x||^2 = x^T x = x_1^2 + x_2^2 + \ldots + x_n^2 = \langle x, x \rangle$. Since the dimension of the example that we are considering is two, the Euclidean norm squared becomes $||x||^2 = x_1^2 + x_2^2$.

One approach to the problem is to solve for x_1 in terms of x_2 , then solve for $y = f(\mathbf{x})$ in terms of x_2 alone. This will then allow us to use the standard scalar procedure. From the given constraint on the length of the Euclidean norm, we have $x_1 = (1 - x_2^2)^{1/2}$. Substituting this into the expression for $y(\mathbf{x})$ of Example 2.2-1, we find that

$$y(x_2) = \frac{1}{(\pm \sqrt{1-x_2^2}-1)^2 + (x_2-1)^2 + 1}$$

where $y(x_2)$ has the given constraint imbedded into it. The next step is to differentiate this expression with respect to the remaining variable, x_2 , and set the result equal to zero. This yields two solutions. The second-derivative test shows that a maximum (which is easily shown to be an absolute maximum) occurs at $x^T = [0.707, 0.707]$ and that an (absolute) minimum occurs at $x^T = [-0.707, -0.707]$.

We note that, in the absence of the equality constraint, this problem has no

Fig. 2.2-1(a) $y(x) = 1/[(x_1 - 1)^2 + (x_2 - 1)]^2$; (b) Top view of Fig. 2.2-1a showing the region defined in state space by $|x_1| \le 1/2$; $|x_2| \le 1/2$; (c) Top view of Fig. 2.2-1a showing the region of state space defined by $||x||^2 \le 1$.

[†]Appendix A contains a brief presentation of vector matrix notations and vector matrix calculus.

of this type, namely $||\mathbf{x}||^2 \le 1$ and $||\mathbf{x}||^2 < 1$. The first constraint set is closed (and convene it includes the boundary $||\mathbf{x}||^2 = x_1^2 + x_2^2 = 1$. The second is open (and convex) since it does not include the boundary. It is generally quite difficult to work with constraints of this form. One method, satisfactory in quite a few problems, is to ignore the constraint and find the maximum (or minimum). If this turns out to be interior to the boundary of the constraint set, we have the solution. If the maximum (or minimum) occurs outside the boundary, the inequality constraint is treated as an equality constraint, and a solution is found with this constraint. Another method, to be discussed later, is to convert the inequality constraint to an equality constraint. Figure 2.2-1 illustrates salient features of these examples.

2.3 Constrained extrema problems— Lagrange multipliers

An alternate approach to extremizing a function (i.e., find those values of the independent variables which cause the dependent variable to have an extremum) with given constraints or accessory conditions is to make appropriate adjustments on the independent variable by using an adjustable multiplying parameter, commonly called a Lagrange multiplier. The procedure is to form a new function by adjoining the given constraint to the original function. This new function, then, is extremized, by means of the previously developed method. We will solve an example first by the more straightforward, but often more cumbersome, procedure and then by using the Lagrange multiplier. Considerably more justification for the Lagrange multiplier procedure will be provided in the next chapter on variational calculus.

Example 2.3-1

A tin can manufacturer wants to maximize the volume of a certain run of cans subject to the constraint that the area of tin used be a given constant. If a fixed metal thickness is assumed, a volume of tin constraint implies that the cross-sectional area is constrained.

The defining equations for this problem are:

$$Volume = V(r, l) = \pi r^2 l \tag{1}$$

Cross-sectional area =
$$A(r, l) = 2\pi r^2 + 2\pi r l = A_o$$
 (2)

Our problem is to maximize V(r, l) subject to keeping $A(r, l) = A_o$, where A_o is a given constant. The same approach can be used here as in Example 2.2-3. We solve for l in terms of r (or if preferred, r in terms of l) and then express the volume as a function of r alone, noting that the constraint on the cross-sectional area is now imbedded into the expression for the volume. We then examine the first and second derivatives to discern the character and location of the extrema. Method 1

From Eq. (2) we have

$$=\frac{A_o-2\pi r^2}{2\pi r}\tag{3}$$

By substituting Eq. (3) into Eq. (1), we obtain

$$V(r) = \frac{r}{2} A_o - (2\pi r^2) \pi \Lambda^3$$
 (4)

We differentiate V with respect to r and set the result equal to zero to obtain

$$\frac{V(r)}{dr} = \frac{A_o}{2} - 3\pi r^2 = 0, \quad r = \sqrt{\frac{A_o}{6(1)}}.$$
 (5)

We now substitute Eq. (5) into Eq. (2) and solve for *l*:

$$=\sqrt{\frac{2A_o}{3\pi}} \tag{6}$$

It is interesting to obtain the optimum length-to-radius ratio. In doing this, we see that, to get maximum volume, we make the length of the tin can equal the diameter, keeping cross-sectional area equal to a given constant.

Method 2

so

By using the Lagrange multiplier, we again want to extremize (maximize) the volume V(r, l) subject to the constraint $A(r, l) = A_0$. First we form the adjoined function

$$V'(r, l) = V(r, l) + \lambda[A(r, l) - A_o]$$

where λ is the Lagrange multiplier. In terms of the parameters of the tin can, this expression becomes

$$V'(r, l) = \pi r^{2}l + \lambda [2\pi r^{2} + 2\pi r l - A_{o}]$$

We take the first partial derivative with respect to each of the variables and set each result equal to zero. Thus we obtain

$$\frac{\partial V'(r,l)}{\partial l} = \pi r^2 + \lambda 2\pi r = 0, \quad r = -2\lambda$$
$$\frac{\partial V'(r,l)}{\partial r} = 2\pi r l + \lambda [4\pi r + 2\pi l] = 0, \quad l = 2r$$

We now evaluate λ subject to given constraint, $A(r, l) = A_0$ or

$$4_o = 2\pi r^2 + 2\pi r$$

In terms of the obtained values of r and l, this becomes

$$A_o = 2\pi(4\lambda^2) + 2\pi(-2\lambda)(-4\lambda)$$

$$\lambda = \pm \sqrt{\frac{A_o}{24\pi}}$$

$$r = 2\sqrt{\frac{A_o}{24\pi}}, \qquad l = 4\sqrt{\frac{A_o}{24\pi}}$$

We note that the negative square root is selected for λ to make r and l physically realizable quantities. We further note that the length-to-radius ratio is the same as obtained by the first method, as it well should be.

2.4 Vector formulation of extrema problems single-stage decision processes

Considerable notational simplification occurs if functions of more than one variable are written in state vector notation. Thus a scalar function of several variables which is to be extremized

$$J = \theta(x_1 \, x_2, \, \dots, \, x_n) \tag{2.4-1}$$

may be written as

$$\Psi = \theta(\mathbf{x}) \tag{2.4-2}$$

where

$$\mathbf{x}^{T} = [x_{1}, x_{2}, \dots, x_{n}]$$
 (2.4-3)

For the majority of systems problems, it is convenient to distinguish between control vectors and state vectors. We generally desire to find a control vector, \mathbf{u} or $\mathbf{u}(k)$, or $\mathbf{u}(t)$ if we have a multistage or continuous process which minimizes or maximizes some scalar index of performance of the system. This performance index will be called J. Possibly the simplest singlestage decision process with equality constraints is to minimize or maximize the scalar index of performance

$$J = \theta[\mathbf{x}, \mathbf{u}] \tag{2.4-4}$$

(2.4-5)

subject to the equality constraint

$$\mathbf{x}^{T} = [x_{1} \, x_{2}, \, \dots, \, x_{n}]$$
 (2.4-6)

u is an *m* vector

$$\mathbf{u}^{T} = [u, u_2, \ldots, u_m] \tag{2.4-7}$$

f is an *n* vector function

 $\mathbf{f}^{T}(\mathbf{x}, \mathbf{u}) = [f_{1}(\mathbf{x}, \mathbf{u}), f_{2}(\mathbf{x}, \mathbf{u}), \dots, f_{n}(\mathbf{x}, \mathbf{u})]$ (2.4-8)

The solution proceeds as follows. We adjoin Eq. (2.4-5) to Eq. (2.4-4)

with a vector Lagrange multiplier in order to form a scalar (-) tity which we will call $H(\mathbf{x}, \mathbf{u}, \boldsymbol{\lambda})$.

$$H(\mathbf{x}, \mathbf{u}, \lambda) = \theta(\mathbf{x}, \mathbf{u}) + \lambda^{T} \mathbf{f}(\mathbf{x}, \mathbf{u})$$
(2.4-9)

$$\lambda^{T} = [\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}] \qquad (2.4-10)$$

We now adjust x and u such that H is a maximum or minimum. This requires

$$\frac{\partial H}{\partial \mathbf{x}} = \frac{\partial \theta}{\partial \mathbf{x}} + \frac{\partial}{\partial \mathbf{x}} \mathbf{f}^{T}(\mathbf{x}, \mathbf{u}) \boldsymbol{\lambda} = \mathbf{0}$$
(2.4-11)

$$\frac{\partial H}{\partial \mathbf{u}} = \frac{\partial \theta}{\partial \mathbf{u}} + \frac{\partial}{\partial \mathbf{u}} \mathbf{f}^{r}(\mathbf{x}, \mathbf{u}) \boldsymbol{\lambda} = \mathbf{0}$$
(2.4-12)

where

$$\left[\frac{\partial H}{\partial \mathbf{u}}\right]^{T} = \left[\frac{\partial H}{\partial u_{1}}, \frac{\partial H}{\partial u_{2}}, \dots, \frac{\partial H}{\partial u_{m}}\right]$$
(2.4-13)

Thus $\partial H/\partial u$ may be interpreted as the gradient of H with respect to u, which is commonly designated $\nabla_u H$. Also,

$$\frac{\partial}{\partial \mathbf{x}} \mathbf{f}^{T}(\mathbf{x}, \mathbf{u}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{1}} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ \frac{\partial f_{1}}{\partial x_{n}} & & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix}$$
(2.4-14)

It should be noted that Eq. (2.4-14) is similar to the transpose of the Jacobian of a vector

$$[J_{\mathbf{x}}\mathbf{f}(\mathbf{x},\mathbf{u})]^{T} = \begin{vmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{1}} \\ \vdots & & \vdots \\ \frac{\partial f_{1}}{\partial x_{n}} & \mathbf{f}^{\mathsf{T}} & \frac{\partial f_{n}}{\partial x_{n}} \end{vmatrix}$$
(2.4-15)

with at least two important differences: $\partial f(\mathbf{x}, \mathbf{u})/\partial \mathbf{u}$ need not be square and is a matrix rather than a determinant. In order that J be an extremum, not only must

$$\frac{\partial H}{\partial \mathbf{x}} = \mathbf{0}; \qquad \frac{\partial H}{\partial \mathbf{u}} = \mathbf{0}$$
 (2.4-16)

but also the second variation of H must be greater than zero for a minimum or less than zero for a maximum (see second-derivative test, Section 2.1.)

[†]This scalar quantity, the Hamiltonian, has a number of very interesting properties that will be mentioned in later chapters.

$$\mathbf{f}(\mathbf{x},\mathbf{u})=\mathbf{0}$$

Chapters 3, / ad 13 will provide us with considerably more information on the second valiation than we present here. To see what this constraint on the second variation of H means, in terms of the necessary conditions required for making J(x, u) have an extremum, let us now formulate the second variation of $H(\mathbf{x}, \mathbf{u}, \boldsymbol{\lambda})$. The first variation of $H(\mathbf{x}, \mathbf{u}, \boldsymbol{\lambda})$ is

$$\delta H = \left(\frac{\partial H}{\partial \mathbf{x}}\right)^T \delta \mathbf{x} + \left(\frac{\partial H}{\partial \mathbf{u}}\right)^T \delta \mathbf{u}$$
(2.4-17)

which is the linear part of

$$\Delta H = H[\mathbf{x} + \delta \mathbf{x}, \mathbf{u} + \delta \mathbf{u}] - H[\mathbf{x}, \mathbf{u}] \qquad (2.4-18)$$

To get the second variation of H, denoted $\delta^2 H$, we take the second-order part of the expansion of Eq. (2.4-18) in a Taylor series about $\delta u = 0$, $\delta x = 0$ to obtain

$$\delta^{2}H = \frac{1}{2} \,\delta\mathbf{x}^{T} \left\{ \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} \frac{\partial H}{\partial \mathbf{x}} \end{bmatrix} \delta\mathbf{x} + \begin{bmatrix} \frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{x}} \end{bmatrix} \delta\mathbf{u} \right\} \\ + \frac{1}{2} \,\delta\mathbf{u}^{T} \left\{ \begin{bmatrix} \frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{x}} \end{bmatrix}^{T} \delta\mathbf{x} + \begin{bmatrix} \frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{u}} \delta\mathbf{u} \end{bmatrix} \right\}$$
(2.4-19)

In more compact notation, this becomes

$$\delta^{2} H = \frac{1}{2} \left[\delta \mathbf{x}^{T} \, \delta \mathbf{u}^{T} \right] \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} \frac{\partial H}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{x}} \\ \left[\frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{x}} \right]^{T} & \frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{u}} \end{bmatrix} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{u} \end{bmatrix}$$
(2.4-20)

If we define

$$\delta \mathbf{z}^{T} = [\delta \mathbf{x}^{T} \, \delta \mathbf{u}^{T}], \qquad \mathbf{P} = \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}} \frac{\partial H}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{x}} \\ \begin{bmatrix} \frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{x}} \end{bmatrix}^{T} & \frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{u}} \end{bmatrix}$$
(2.4-21)

Eq. (2.4-20) reduces to

$$\delta^2 H = \frac{1}{2} \delta \mathbf{z}^T \mathbf{P} \delta \mathbf{z} = \frac{1}{2} || \, \delta \mathbf{z} \,||_{\mathbf{P}}^2 \tag{2.4-22}$$

which is recognized as the standard quadratic form. A positive definite quadratic form is defined as one for which $\delta z^T P \, \delta z > 0$ for all nonzero δz . A positive semidefinite matrix, P, is defined as one which has the property that $\delta z^T P \, \delta z \ge 0$ for all nonzero δz . In a similar fashion, negative definite and negative semidefinite quadratic forms and matrices are defined. Section 1.23 of Appendix A delineates a method which we can use to discern positive definiteness of a square matrix. Thus we can state the two necessary conditions [4] for J(x,u) to have an extremum in a given interval of x for convex or concave J(x,u). If J(x,u) is not convex or concave, the second condition is only sufficient, and a quantity known as the bordered Hessian must be used to obtain the second necessary condition.

I. The following vectors are zero:

$$\frac{\partial H}{\partial \mathbf{x}} = \mathbf{0}; \qquad \frac{\partial H}{\partial \mathbf{u}} = \mathbf{0}$$

II. The following matrix

$\int \frac{\partial}{\partial \mathbf{x}} \frac{\partial H}{\partial \mathbf{x}}$	$\frac{\partial}{\partial \mathbf{u}} \left(\frac{\partial H}{\partial \mathbf{x}} \right)$
$\left[\frac{\partial}{\partial \mathbf{u}}\frac{\partial H}{\partial \mathbf{x}}\right]^{\mathrm{T}}$	$\frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{u}}$

is {positive semidefinite for a minimum along f(x, u) = 0negative semidefinite for a maximum along f(x, u) = 0

A sufficient condition for a function to have a minimum (maximum) given that the first variation vanishes is that the second variation be positive (negative) where the first variation vanishes [4]. These conditions are general and need be modified only if the possibility of a singular solution exists.

Example 2.4-1

Suppose that we have a linear system represented by

$$\mathbf{f}(\mathbf{x},\mathbf{u}) = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{c} = \mathbf{0}$$

and wish to find the m vector **u** which minimizes

$$\mathbf{x}, \mathbf{u} = \frac{1}{2} \|\mathbf{u}\|_{\mathbf{R}}^{2} + \frac{1}{2} \|\mathbf{x}\|_{\mathbf{Q}}^{2}$$

XQX

where A is an $n \times n$ matrix, B is an $n \times m$ matrix, x, c, and 0 are n vectors. R and Q are positive definite symmetric matrices of dimensionality $m \times m$ and

The Hamiltonian function is formed by adjoining the cost function to the $n \times n$. given constraint via the Lagrange multiplier technique which gives us

$$H = \frac{1}{2}\mathbf{u}^{T}\mathbf{R}\mathbf{u} + \frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \lambda^{T}[\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{c}]$$

In order to minimize J, it is necessary that

$$\frac{\partial H}{\partial \mathbf{x}} = \mathbf{Q}\mathbf{x} + \mathbf{A}^T \mathbf{\lambda} = \mathbf{0}, \qquad \frac{\partial H}{\partial \mathbf{u}} = \mathbf{R}\mathbf{u} + \mathbf{B}^T \mathbf{\lambda} = \mathbf{0}$$

where λ is to be adjusted so that the given equality constraint is satisfied, or Thus we find that $U = -R'B^{T}(AR'A^{T} + BR'B^{T})^{-1}c = -(R+BA^{T}RA'B)'B^{T}AAA'$

u=-(R+BTA=TOA=1B)-+BTA=TOA-1C whether is the optimum u vector. We notice that it is necessary that the inverse of A exist in order for the u-vector to exist. To check if this solution does in fact cause J(x, u) to have a minimum, we find the second variation and check the necessary condition II given earlier. From Eq. (2.4-19) and the specifications for

this problem, we have

$$\delta^2 J = \frac{1}{2} [\delta \mathbf{x}^T \, \delta \mathbf{u}^T] \begin{bmatrix} \mathbf{Q} & \mathbf{0} \\ \mathbf{0} & \mathbf{R} \end{bmatrix} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{u} \end{bmatrix} = \frac{1}{2} \, \delta \mathbf{x}^T \mathbf{Q} \, \delta \mathbf{x} + \frac{1}{2} \, \delta \mathbf{u}^T \mathbf{R} \, \delta \mathbf{u}$$

16 13 Mijj 10 CH =

For J(x, u) is ve a minimum, $\delta^2 J \ge 0$, therefore Q and R must be non-negative definite. Since this-is-given-in-the statement-of-the problem, the solution, if-it exists, does minimize J(x, u). A further requirement is obtained by noting that the first variation of f(x, u) = 0 yields ASx + BSU = 0 and Example 2.4-2 it is Harfore only reassary, for 5770, that Suppose that we wish to minimize the cost function $R+B^{T}QA^{T}B$ be

positive definite.

 $J = \frac{1}{2} \|\mathbf{x}\|_{O}^{2}$

subject to the constraint-

x + bu + c = 0

where the scalar control is bounded such that |u| < 1.

This problem can be solved without the magnitude constraint on the control with the result (from the last example)

$$u = -(\mathbf{b}^T \mathbf{Q} \mathbf{b})^{-1} \mathbf{b}^T \mathbf{Q} \mathbf{c}$$

If |u| obtained from the foregoing problem is less than 1, we obtain what is called a singular solution. This is so because the H function is linear in the control variable and $\partial H/\partial u = \lambda^T b = 0$ is the equation for a stationary point which may well be a minimum. If b^TQb is positive definite, it is at least a local minimum. If the value of *u* obtained is within the boun<u>dary, that value solves our problem.</u>

If the value obtained is greater in magnitude than 1, the true solution for umust be on the boundary. This type of problem is of concern in optimal control Y theory and will be considered in some detail for dynamic processes.

Example 2.4-3 [2] /

3 1

Suppose that observations of a constant vector are taken after being corrupted with noise. Symbolically, we express this as

z = Hx + y

where z which is composed of observed numbers is an m vector, H is an $m \times n$ matrix, x is an *n* vector, and y is an *m* vector representing measurement noise. It is desired to obtain the best estimate of x, denoted \hat{x} , such that

$$J = \frac{1}{2} \|z - H\hat{x}\|_{R^{-1}}^2$$

is minimum where \mathbf{R} is a symmetric positive definite matrix. We accomplish this by setting

$$\frac{\partial J}{\partial \hat{\mathbf{x}}} = \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{z} - \mathbf{H} \hat{\mathbf{x}}) = \mathbf{0}$$

Thus to obtain the best least-square error estimate of x we have

$$\mathbf{\hat{x}} = (\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{z}$$

One of the simplest cases of interest occurs when we take *m* estimates of a scalar. In that case it is reasonable to take H as a unit vector of dimension m or, in other words, a column vector of 1's, and R as the identity matrix. For this simplest case, we have for the "best" estimate of x

$$\mathbf{\hat{x}} = \frac{\mathbf{H}^T \mathbf{z}}{m} = \frac{1}{m} \sum_{i=1}^m z_i$$

which is the well-known expression for the average of a num of observations.

Another interesting case occurs when we have computed r for r measurements and someone gives us an additional measurement. A great deal of effort would be involved in multiplying and inverting $H^{T}R^{-1}H$ if H is, say, a 1000 by 20 matrix. To repeat this procedure for a new 1001 by 20 matrix would probably be prohibitive of computer time, particularly if "on-line" computation is a requirement. We are thus led to seek a solution which allows us to add the new measurement without repeating the entire calculation. A method which allows us to do this is called a recursive or sequential estimation scheme. Such schemes are of considerable importance in modern system theory and will be explored in much more detail in Chapters 10 and 15.

Assume a set of measurements is represented by

where $\hat{\mathbf{x}}_m$ is given by $(\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1} \mathbf{z}$. Now suppose that we obtain an additional measurement such that we have

$$\begin{bmatrix} \mathbf{z} \\ \vdots \\ z_{m+1} \end{bmatrix} = \begin{bmatrix} \mathbf{H} \\ \mathbf{h}^T \end{bmatrix} [\mathbf{\hat{x}}_m + \Delta \mathbf{x}] + \begin{bmatrix} \mathbf{v} \\ \vdots \\ v_{m+1} \end{bmatrix}$$

The problem now becomes one of obtaining the best estimate of x, \hat{x}_{m+1} , such that

$$J = \frac{1}{2} \left\| \begin{bmatrix} \mathbf{z} \\ \mathbf{z}_{m+1} \end{bmatrix} - \begin{bmatrix} \mathbf{H} \\ \mathbf{h}^T \end{bmatrix} \mathbf{\hat{x}}_{m+1} \right\|$$

is minimum. Following a procedure similar to the previous one, we find the best estimate of x is

$$\mathbf{\hat{x}}_{m+1} = \left(\begin{bmatrix} \mathbf{H} \\ -\mathbf{h}^T \end{bmatrix}^T \begin{bmatrix} \mathbf{H} \\ -\mathbf{h}^T \end{bmatrix} \right)^{-1} \begin{bmatrix} \mathbf{H} \\ -\mathbf{h}^T \end{bmatrix}^T \begin{bmatrix} \mathbf{z} \\ -\mathbf{z}_{m+1} \end{bmatrix}$$

where for convenience we will now assume that the matrix \mathbf{R} is an identity matrix. This amounts to placing equal weight on each measurement. A recursive scheme may be developed by the use of the matrix inversion lemma [2, 3]. We recall that

$$\left\{ \begin{bmatrix} \mathbf{H} \\ - \\ \mathbf{h}^T \end{bmatrix}^T \begin{bmatrix} \mathbf{H} \\ - \\ \mathbf{h}^T \end{bmatrix} \right\}^{-1} = [\mathbf{H}^T \mathbf{H} + \mathbf{h} \mathbf{h}^T]^{-1}$$

If we define

$$\mathbf{P}_m^{-1} = \mathbf{H}^T \mathbf{H}, \qquad \mathbf{P}_{m+1}^{-1} = \begin{bmatrix} \mathbf{H} \\ \mathbf{h}^T \\ \mathbf{h}^T \end{bmatrix}^T \begin{bmatrix} \mathbf{H} \\ \mathbf{h}^T \\ \mathbf{h}^T \end{bmatrix} = \mathbf{P}_m^{-1} + \mathbf{h}\mathbf{h}^T$$

then the $\mathbf{r} = \mathbf{x}$ inversion lemma

 $\mathbf{P}_{m+1} = \mathbf{P}_m - \mathbf{P}_m \mathbf{h} [\mathbf{h}^T \mathbf{P}_m \mathbf{h} + 1]^{-1} \mathbf{h}^T \mathbf{P}_m$

which will be developed in Section 10.4-1 in a more general form, yields for the recursion formula

$$\begin{aligned} \mathbf{\hat{x}}_{m+1} &= \mathbf{P}_{m+1}[\mathbf{H}^{T}\mathbf{z} + \mathbf{h}z_{m+1}] \\ &= \mathbf{P}_{m}\mathbf{H}^{T}\mathbf{z} + \mathbf{P}_{m}\mathbf{h}z_{m+1} - \mathbf{P}_{m}\mathbf{h}[\mathbf{h}^{T}\mathbf{P}_{m}\mathbf{h} + 1]^{-1}\mathbf{h}^{T}\mathbf{P}_{m}[\mathbf{H}^{T}\mathbf{z} + \mathbf{h}z_{m+1}] \\ &= \mathbf{\hat{x}}_{m} + \mathbf{P}_{m}\mathbf{h}[\mathbf{h}^{T}\mathbf{P}_{m}\mathbf{h} + 1]^{-1}[z_{m+1} - \mathbf{h}^{T}\mathbf{\hat{x}}_{m}] \end{aligned}$$

Thus the new estimate is equal to the old plus a linear correction term based on the new data and the old \mathbf{P}_m only. For *m* estimates of a scalar *x* with *H* as a unit vector of dimension *m*, we have

$$\mathbf{P}_{m}^{-1} = m, \quad \mathbf{P}_{m+1} = \frac{1}{m+1}, \quad \mathbf{x}_{m} = \frac{1}{m} \sum_{i=1}^{m} z_{i}$$
$$\mathbf{\hat{x}}_{m+1} = \mathbf{\hat{x}}_{m} + \frac{1}{m+1} [z_{m+1} - \mathbf{\hat{x}}_{m}] = \mathbf{\hat{x}}_{m} \left[\frac{m}{m+1}\right] + \frac{z_{m+1}}{m+1}$$

which is, of course, the expected answer in this simple case.

2.5 Linear and nonlinear programming

The previous section contains several examples of what are commonly called nonlinear programming problems. Basically, the nonlinear programming problem is concerned with the extremization of a continuous differentiable function of *n* nonnegative variables $\theta(x_1, x_2, \ldots, x_n) = \theta(\mathbf{x})$ subject to *m* inequality constraints $\Lambda_i(\mathbf{x}) \leq 0$, $i = 1, 2, \ldots, m$. Figure 2.5-1 illustrates some basic ideas in a nonlinear programming problem. In nonlinear programming, the θ function is called an objective function—the function to be extremized. In this book we will commonly call such functions *cost functions*.

As we have seen, ordinary calculus methods may be used to find the extremum of unconstrained functions. If ordinary calculus is applied to extremize θ , and if the resulting optimum vector x lies entirely within the constraint set $\Lambda_i \leq 0$, and if $x_i \geq 0$, then that value of x solves the optimization problem with the constraint. We have seen examples of this in Section 2.2 and Example 2.4-2. If the optimum value of x computed by extremizing θ is outside the constraint set $\Lambda \leq 0$ then the optimum value of x lies on the boundary of the constraint set. If we knew which one of the *m* constraints Λ determined the optimum, then we could apply the Lagrange multiplier method and use an equality sign for that particular constraint and ignore the other constraints since the optimum x will be on the boundary of one of the known *m* inequality constraints to determine which one of the inequality constraints to use. It is possible that more than one of the *m* inequality

constraints will determine the optimum x as illustrated Fig. 2.5-1. We should remark that, in the typical nonlinear programming problem, the functions Λ are convex, which insures that the possible region for an optimum

x is also cor Also, θ is convex if minimization is required and concave if maximization is required. This requires that any local optimum is a global optimum of the cost function in the possible region of a constraint Λ_i [4].

A special case of the nonlinear programming problem is the linear programming problem which occurs when the θ and A functions are linear in the *n* vector **x**. In this case we are assured that the optimum value of **x** lies on the boundary of two or more elements of the linear constraint set $A(\mathbf{x}) \leq 0$. Clearly, the major problem is to decide which ones. This is a statement of the general linear programming problem. Of several methods available for solving the problem, the most used method appears to be the simplex method [5]. In order to use the method, certain restrictions must be applied. The variables x_i must be nonnegative, the constraints Λ_i must be linear equalities, and the cost function must be minimized by the optimum **x**.

We may transform the general problem of linear programming, that of maximizing the cost function (objective function)

$$J = a^T x$$

with the *m* inequality constraints

(J.X., i.e., J isa (2.5-1) (J.X., i.e., J isa the d, pred contration (2.5-2) and Any number can be written

into the restrictive form for the simplex method. Any number can be written as the difference of two nonnegative numbers. For instance, if x_1 has no restrictions on its sign, we may let

 $Bx \leq c$

$$x_{n+1} - x_{n+2} = x_1, \quad x_{n+1} \ge 0, \quad x_{n+2} \ge 0$$

This insures the nonnegativity of the variables. Unfortunately, every substitution of this type replaces one variable (x_1) by two variables $(x_{n+1}$ and x_{n+2}). If the original problem formulation contains inequality constraints, we convert them to equality constraints by the introduction of nonnegative slack variables. For example, if we had the constraints

 $2x_1 + 4x_2 + x_3 \ge 5, \qquad 6x_1 + x_2 + x_3 \le 4$

we would introduce the nonnegative variables x_4 and x_5 to obtain equalities

 $2x_1 + 4x_2 + x_3 - x_4 = 5, \qquad 6x_1 + x_2 + x_3 + x_5 = 4$

The variables x_4 and x_5 "take up the slack" in the inequalities and are called slack variables. Again, we increase the total number of variables to be considered. The linear programming problem may now be solved by the simplex method.

Since we are to be much more concerned with optimization in dynamic systems than static optimization, we will not develop the many theorems of linear and nonlinear programming. References [4] and [5] contain thorough discussions of both of these topics. We will consider nun al methods for the optimization of single-stage decision processes in Section 13.3-1.

The extrema-finding techniques of this chapter, although quite sufficient for many different situations, will not, in general, allow the solution to many problems associated with control systems. Whereas the previously discussed techniques deal with methods for extremizing functions of one or several independent variables, in control-system design, we are typically concerned with extremizing certain types of functions whose independent variables are actually other functions. This type of function is called a *functional*. Although, as we might expect, many of the basic approaches for extremizing functionals are similar to those for extremizing functions, the end results are sometimes quite different. The solution to a given problem in extremizing a given function of one variable is, perhaps, a number associated with a coordinate point, while the analogous solution to a functional problem is a number associated with a function. The body of mathematics developed for extremizing functionals is variational calculus. This subject is at the very heart of optimal control theory and is a subject that we will explore in some detail throughout the remainder of this text.

REFERENCES

- 1. Korn, G.A. and T.M. Korn, Mathematical Handbook for Engineers and Scientists. McGraw-Hill Book Co., New York, 1962.
- 2. Ho, Y.C., "Method of Least Squares and Optimal Filtering Theory." <u>Rand</u> Memo RM 3329 PR, 1962.
 - 3. Lee, R.C.K., Optimal Estimation Identification and Control. Technology Press, Cambridge, Mass., 1964.
- 4. Saaty, T.L., and J. Bram, Nonlinear Mathematics. McGraw-Hill Book Co., New York, 1964.
- 5. Dantzig, G.B., *Linear Programming and Extensions*. Princeton University Press, Princeton, N.J., 1963.

PROBLEMS

0 1. Find u such that

$$J=x^2+u^2$$

is minimized subject to the equation

xu = 1

Use the Lagrange multiplier technique as well as the basic method.

2. Discuss the singular solution problem where x is a two vector.

0_3. Find \hat{x}_6 for a set of measurements where z = Hx, where

	1.01	:	Γ1	07	
1 ==	2.03		0	1	
	3.00	TT	1	1	
	3.05	п =	1	1	
	1.95		0	1	
	0.97		_1	0_	

4. Now suppose that an additional measurement

 $z_7 = 3.0;$ $h^T = [1, 1]$

is taken. Compute \vec{x}_7 by the smoothing method and the matrix inversion lemma method. Compare the effort involved via each method.

5. Verify the matrix inversion lemma if

$$\mathbf{P}_{r+1}^{-1} = \mathbf{P}_r^{-1} + \mathbf{h}\mathbf{h}^r$$

$$\mathbf{P}_{r+1} = \mathbf{P}_r - \mathbf{P}_r\mathbf{h}(\mathbf{h}^T\mathbf{P}_r\mathbf{h} + 1)^{-1}\mathbf{h}^T\mathbf{P}_r$$

by showing that

$$\mathbf{P}_{r+1}^{-1}\mathbf{P}_{r+1} = \mathbf{I}$$

6. From Eqs. (2.4-14) and (2.4-17) calculate the third variation of H as given in Eq. (2.4-9).

7. Find the maximum value of

$$\theta(\mathbf{x}) = x_1^2 + x_2^2, \quad x_1 \ge 0, \quad x_2 \ge 0$$

subject to the inequality constraints

$$(x_1 - 4)^2 + x_2^2 \le 1$$
$$(x_1 - 1)^2 + x_2^2 \le 4$$

Find the maximum value of

 $J = x_1 + x_2, \quad x_1 \ge 0, \quad x_2 \ge 0$

subject to the constraints

 $\begin{aligned}
 x_1 + \frac{1}{2}x_2 &\leq 1 \\
 \frac{1}{2}x_1 + x_2 &\leq 2
 \end{aligned}$

9. Two alternate expressions were developed for the optimum U vector of Example (2.4-1). Show that the two expressions are equivalent and that the first Solution will be easier to implement computionally if the dimension of U is lower than that of X.

VARIATIONAL CALCULUS AND CONTINUOUS OPTIMAL CONTROL

In this chapter we will introduce the subject of the variational calculus through a derivation of the Euler-Lagrange equations and associated transversality conditions. The existence of the definite integrals defining the cost function is assumed, and it is further understood that minimizing (maximizing) functions are to be chosen from the set of all functions having continuous second derivatives on the time interval under consideration. In addition, we will assume that the integral of the cost function is at least twice continuously differentiable. Thus, this chapter will deal with most of the basic concepts necessary for solving the types of variational problems commonly classified as control-system problems. Several such examples of continuous control problems will be solved. Many of the restrictions posed here will be removed in the next chapter.

3.1 Dynamic optimization without constraints

We will now examine a functional of the simple form where t_o and t_f are fixed

$$J\langle x \rangle = \int_{t_0}^{t_f} \phi[x(t), \dot{x}(t), t] dt \qquad (3.1-1)$$
Problems of remization of this functional form are sometimes called Lagrange problems. These include the Bolza problem

$$J^{1}\langle x \rangle = \theta[x(t), t] \Big|_{t_{0}}^{t_{f}} + \int_{t_{1}}^{t_{f}} \phi[x(t), \dot{x}(t), t] dt \qquad (3.1-2)$$

The inclusion is apparent if Eq. (3.1-2) is rewritten in the form

$$f^{1}\langle x\rangle = \int_{t_{o}}^{t_{f}} \Lambda \left[x(t), \dot{x}(t), t\right] dt \qquad (3.1-3)$$

where

$$\Lambda[x(t), \dot{x}(t), t] = \phi[x(t), \dot{x}(t), t] + \frac{d}{dt}\theta[x(t), t]$$
(3.1-4)

We would now like to find an x(t) such that the given $J\langle x \rangle$ is extremized (i.e., maximized or minimized, depending on the given physical problem). This x(t) is called an extremal, and only an extremal can cause $J\langle x \rangle$ to have an extremum. We will assume that we know the correct extremal curve, denoted $\hat{x}(t)$. Thus we can write the expression (3.1-5) for a family of curves, starting at $t = t_0$ and ending at $t = t_f$, which includes the extremal curve $\hat{x}(t)$.

$$x(t) = \hat{x}(t) + \epsilon \eta(t)$$
 (3.1-5)

where $\eta(t)$ is a variation in x(t) and ϵ is a small number. A plot of $J\langle x \rangle$ versus ϵ for various choices of $\eta(t)$ might appear as shown in Fig. 3.1-1. It is obvious that at $\epsilon = 0$, all curves are minimum since

$$\hat{x}(t) = x(t)|_{t=0}$$
(3.1-6)

Thus on the extremals we have

Fig. 3.1-1. Minimization problem of variational calculus.

independent of the value of $\eta(t)$ chosen. Strictly speaking, the solution obtained from Eq. (3.1-5) could cause $J\langle x \rangle$ to have a maximum or minimum or be a stationary point. The condition for a minimum is that $\partial^2 J/\partial \epsilon^2$ be positive at $\epsilon = 0$ independent of $\eta(t)$. However, in most physical problems, it is apparent that if a solution to Eq. (3.1-7) exists, it will be a solution which minimizes (maximizes) the inte-

 $\frac{\partial J\langle x \rangle}{\partial c} = 0$

(3.1-7)

gral, $J\langle x \rangle$, as desired. Now we can extremize Eq. (3.1-1) by using Eqs. (3.1-5) and (3.1-7). By differentiating Eq. (3.1-5) with respect to t, we obtain

$$\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}(t) + \epsilon \dot{\eta}(t) \tag{3.1-8}$$

If we substitute Eqs. (3.1-5) and (3.1-8) into the given f tional (3.1-1), we then have

$$J\langle x\rangle = \int_{t_0}^{t_r} \phi[\hat{x}(t) + \epsilon\eta(t), \dot{x}(t) + \epsilon\dot{\eta}(t), t] dt \qquad (3.1-9)$$

We should note that

$$\lim_{\epsilon \to 0} J(x) = J(\hat{x}), \qquad \lim_{\epsilon \to 0} x(t) = \hat{x}(t)$$

Therefore, to find the extremals of $J\langle x \rangle$ we now use Eq. (3.1-7)†

$$\frac{\partial J\langle x \rangle}{\partial e}\Big|_{e=0} = \int_{t_0}^{t_1} \left\{ \eta(t) \frac{\partial \phi(\hat{x}, \dot{x}, t)}{\partial \hat{x}} + \dot{\eta}(t) \frac{\partial \phi(\hat{x}, \dot{x}, t)}{\partial \dot{x}} \right\} dt = 0$$

or

$$0 = \int_{t_0}^{t_f} \eta(t) \frac{\partial \phi(\hat{x}, \dot{x}, t)}{\partial \hat{x}} dt + \int_{t_0}^{t_f} \dot{\eta}(t) \frac{\partial \phi(\hat{x}, \dot{x}, t)}{\partial \dot{x}} dt \qquad (3.1-10)$$

After simplification Eq. (3.1-10) becomes,‡

$$0 = \int_{t_o}^{t_f} \eta(t) \left[\frac{\partial \phi}{\partial \hat{x}} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}} \right] dt + \frac{\partial \phi}{\partial \dot{x}} \eta(t) \Big|_{t_o}^{t_f}$$
(3.1-11)

Since Eq. (3.1-11) must equal zero independent of the value chosen for $\eta(t)$, we have

$$\text{ Under Jupanje Ggn.} \qquad \frac{\partial \phi}{\partial \hat{x}} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}} = 0$$

$$(3.1-12)$$

Transversality condition
$$\frac{\partial \phi}{\partial \dot{x}} \eta(t) = 0$$
, for $t = t_0, t_f$ (3.1-13)

[†]The following is given without proof: If u = f(x, y, z, ...) is a function of several variables, each of which is a differentiable function of r, v, w, ..., then u as a function of these new independent variables, is differentiable, and the following chain rule applies

 $\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} + \dots$ $\frac{\partial u}{\partial v} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial v} + \dots$

 $\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \, du$

‡Applying the formula for integration by parts, which is

by letting

$$u = \frac{\partial \phi}{\partial \dot{x}} \qquad dv = \dot{\eta}(t) \, dt$$
$$du = \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}} \, dt \qquad v = n(t)$$
$$\int_{t_0}^{t_1} \dot{\eta}(t) \frac{\partial \phi}{\partial \dot{x}} \, dt = \eta(t) \frac{\partial \phi}{\partial \dot{x}} \Big|_{t_0}^{t_1} - \int_{t_0}^{t_1} \eta(t) \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}} \, dt$$

These relation is follow as a consequence of the following lemma.

If x(t) is contained in $[t_1, t_2]$ such that $\eta(t_1) = \eta(t_2) = 0$, then x(t) = 0 for every $\eta(t)$ contained in $[t_1, t_2]$ such that $\eta(t_1) = \eta(t_2) = 0$, then x(t) = 0 for all t in $[t_1, t_2]$. Proof of this lemma is given in reference [1]. $0 \ge 0$ These two very important relationships form a good foundation for solving variational problems. Equation (3.1-12) is commonly known as the Euler-Lagrange equation and Eq. (3.1-13) is the associated transversality condition. These equations specify a two-point boundary value differential equation which, when solved, determines \hat{x} in terms of a known ϕ .

3.2 Remarks on transversality conditions.

The various forms and uses of the transversality conditions will be covered in some detail in this chapter. We do this because these conditions are among the hardest things to correctly formulate for any variational problem, and they are generally different enough for each problem to warrant comment.

We will now examine Eq. (3.1-13) and tabulate many of the possible combinations for which this equation holds. In each case, t_0 and t_f are fixed.

I. Fixed Beginning—Terminal Points

In this case we fix $x(t_o)$ and $x(t_f)$. Thus every admissible solution must pass through these fixed points. Therefore from Eq. (3.1-4) we $y(t_f)$ see that we must require that $\eta(t_o) = \eta(t_f) = 0$. In this case the correct boundary conditions are the specified $x(t_o)$ and $x(t_f)$.

II. Variable Beginning-Terminal Points

We now consider that $x(t_o)$ and $x(t_f)$ are variable or, in other words, not constrained. Therefore from Eq. (3.1-13) we have (since $\eta(t)$ can be arbitrary at the end points) $\partial \phi / \partial \dot{x} = 0$ at $t = t_o$ and $t = t_f$. When this particular situation results, the boundary conditions are called the natural boundary conditions.

III. Variable Beginning—Fixed Terminal Points

In the case where $x(t_o)$ is variable and $x(t_f)$ is fixed, we must constrain $\eta(t_f)$ to be zero but can allow any (admissible) $\eta(t_o)$. Therefore from Eq. (3.1-13) we have the two-point boundary conditions $\partial \phi / \partial \dot{x} = 0$ at $t = t_o$, and $\eta(t_f) = 0$, which means that the other boundary condition is the specified $x(t_f)$.

IV. Fixed Beginning-Variable Terminal Points

For $x(t_o)$ fixed and $x(t_f)$ variable, a situation which often occurs in optimal control, we have from Eq. (3.1-13) that (since $\eta(t_f)$ is arbitrary) the two-point boundary conditions are the specified $x(t_o)$ and $\partial \phi/\partial \dot{x} = 0$ at $t = t_f$.

With this tabulation, the analysis of the scalar Lagrange problem (which,

as previously mentioned, includes the scalar Bolza proble⁽¹⁾'s nearly complete. Figure 3.2-1 illustrates graphically the essence of this abulation.

3.3 The second variation: sufficient conditions for (weak) extrema weak means relative

Until now, in the study of extrema of functionals we have only considered a necessary condition for a functional to have a relative or weak extremum. This was, of course, the condition that the first variation vanish. In this section, we shall be briefly concerned with sufficient conditions for a function to have extrema and shall thus introduce the second variation. The next section on examples will illustrate the application of the second variation in a particularly simple case.

To establish the nature of an extremum, it is necessary to obtain $\partial^2 J/\partial \epsilon^2$ evaluated at $\epsilon = 0$ from Eq. (3.1-1) under the conditions of Eq. (3.1-5). This is

$$\frac{\partial^2 J\langle x \rangle}{\partial e^2} \Big|_{x=0} = \int_{t_0}^{t_0} \left\{ \eta^2 \frac{\partial^2 \phi(\hat{x}, \dot{\hat{x}}, t)}{\partial \hat{x}^2} + 2\dot{\eta}\eta \frac{\partial^2 \phi(\hat{x}, \dot{\hat{x}}, t)}{\partial \hat{x} \partial \dot{\hat{x}}} + \dot{\eta}^2 \frac{\partial^2 \phi(\hat{x}, \dot{\hat{x}}, t)}{\partial \dot{\hat{x}}^2} \right\} dt$$
(3.3-1)
Applying integration by parts and the transversality conditions [Eq. (3.1-13)]
we have $\eta^2 \int_{t_0}^{t_0} \eta \dot{\eta} \frac{\partial^2 \phi(\hat{x}, \dot{\hat{x}}, t)}{\partial x \partial \dot{\hat{x}}} dt = -\int_{t_0}^{t_0} \left\{ \frac{d}{dt} \frac{\partial^2 \phi(\hat{x}, \dot{\hat{x}}, t)}{\partial x \partial \dot{\hat{x}}} \right\} \eta^2 dt$
(3.3-2)

thThus the second variation of J becomes

$$\frac{\partial^2 J\langle x \rangle}{\partial \epsilon^2} \Big|_{\epsilon=0} = \int_{t_o}^{t_f} \Big\{ \eta^2 \Big[\frac{\partial^2 (\hat{x}, \dot{\hat{x}}, t)}{\partial \hat{x}^2} - \frac{d}{dt} \frac{\partial^2 \phi(\hat{x}, \dot{\hat{x}}, t)}{\partial \hat{x} \partial \dot{\hat{x}}} \Big] + \dot{\eta}^2 \frac{\partial^2 \phi(\hat{x}, \dot{\hat{x}}, t)}{\partial \dot{x}^2} \Big\} dt$$
(3.3-3)

To establish a minimum (maximum) of J, the first necessary condition is that $\partial J/\partial \epsilon = 0$ at $\epsilon = 0$ independently of the variation $\eta(t)$. The second necessary condition for a minimum (maximum) is that the second derivative of J with respect to ϵ , evaluated at $\epsilon = 0$, be equal to or greater than (equal to or less than) zero. Sufficient conditions for a weak minimum (maximum) require that the derivative be positive (negative). All of this must, of course, be true independent of the variation $\eta(t)$ and need only be true along the optimal "trajectory," $\hat{x}(t)$.

We can rewrite Eq. (3.3-1) as the quadratic form integral

$$\frac{\partial^2 J(x)}{\partial \epsilon^2}\Big|_{\epsilon=0} = \int_{t_0}^{t_f} [\eta(t)\dot{\eta}(t)] \begin{bmatrix} \frac{\partial^2 \dot{\phi}(\hat{x}, \dot{\hat{x}}, t)}{\partial \hat{x}^2} & \frac{\partial^2 \dot{\phi}(\hat{x}, \dot{\hat{x}}, t)}{\partial \hat{x} \partial \dot{\hat{x}}} \\ \frac{\partial^2 \dot{\phi}(\hat{x}, \dot{\hat{x}}, t)}{\partial \hat{x} \partial \dot{\hat{x}}} & \frac{\partial^2 \dot{\phi}(\hat{x}, \dot{\hat{x}}, t)}{\partial \dot{\hat{x}}^2} \end{bmatrix} \begin{bmatrix} \eta(t) \\ \dot{\eta}(t) \end{bmatrix} dt \quad (3.3-4)$$

If the matrix in this expression is at least positive (negative) semidefinite, we have certainly established a minimum (maximum). Alternately, from Eq. (3.3-3) we are assured that the second derivative is equal to or greater than zero if

$$\frac{\partial^2 \phi(\hat{x}, \dot{x}, t)}{\partial \hat{x}^2} - \frac{d}{dt} \left[\frac{\partial^2 \phi(\hat{x}, \dot{x}, t)}{\partial \hat{x} \partial \dot{x}} \right] \ge 0$$
(3.3-5)

and

$$\frac{\partial^2 \phi(\hat{x}, \dot{x}, t)}{\partial \dot{x}^2} \ge 0 \tag{3.3-6}$$

For many problems in which we will have interest, the foregoing conditions are fulfilled, and we can establish necessary and sufficient conditions for a minimum. It is still possible, however, for Eq. (3.3-1) or Eq. (3.3-2) to be greater than zero even if the requirements of Eqs. (3.3-4), (3.3-5), and (3.3-6) are not satisfied, since $\eta(t)$ and $\dot{\eta}(t)$ are not independent of one another.

Complete exploitation of this point is beyond the intent of js chapter. Chapters 5 and 6 of reference [1] provide an excellent and readable discussion of the necessary and sufficient conditions for a minimum. We will return again to this point in Chapter 4. We must again emphasize here that we are establishing conditions for a relative extremum, sometimes called a weak extremum, which may or may not be an absolute extremum. In Section 4.1 we will discuss some requirements for an absolute or strong extremum.

Example 3.3-1

We desire to find the curve with minimum arc length between the point x(0) = 1 and the line $t_f = 2$.

The first step toward solving this problem is to formulate the functional $J\langle x \rangle$. If we define the differential arc length as *ds*, the functional we desire to minimize is easily seen to be

$$J\langle x\rangle = \int_0^2 ds$$

with associated boundary conditions

$$x(t = 0) = 1$$
, $x(t = 2) = open$

Noting that for a differential arc length

 $(ds)^2 = (dx)^2 + (dt)^2$

we have

$$\frac{ds}{dt} = [1 + \dot{x}^2]^{1/2}$$

By substituting into the given cost function, we obtain

$$J\langle x\rangle = \int_0^2 [1 + \dot{x}^2]^{1/2} dt$$

Upon referring back to the functional defined in Eq. (3.1-1), we see that

$$\phi(x, \dot{x}, t) = [1 + \dot{x}^2]^{1/4}$$

The Euler-Lagrange equation for this problem is therefore

 $\frac{\partial \phi}{\partial \hat{x}} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}} = 0$

and thus we obtain

$$\frac{-d}{dt} \left[\frac{\dot{x}}{(1+\dot{x}^2)^{1/2}} \right] = 0$$

Upon integrating, we obtain

$$\frac{\dot{x}}{(1+\dot{x}^2)^{1/2}} = c = \text{constant}, \qquad \dot{x}^2 = \frac{c^2}{1-c^2} = a^2$$

Thus we see that the extremal curve is given by

$$\hat{x}(t) = at + b$$

shortest distance between a point and a straight line is another Therefore, ' straight line.

We obtain the particular solution by properly applying the transversality equation to the given boundary conditions. We note that this problem falls into situation IV, i.e., fixed beginning—variable terminal point. Thus, $x(t_o) = x(0) = 1$ and

$$\frac{\partial \phi}{\partial \dot{x}} = 0 = \frac{\dot{x}}{[1 + \dot{x}^2]^{1/2}}, \quad \text{at}$$

or $\dot{x} = 0$ at t = 2.

Differentiating the solution for \hat{x} with respect to *t*, we have $\hat{x} = a$, and using the transversality conditions we obtain a = 0 and b = 1. Therefore, the extremal curve satisfying the given boundary condition and minimizing the given arc length is x = 1.

To mathematically demonstrate that we have obtained a minimum rather than a maximum or stationary point, it is necessary to show that the second variation, represented by Eq. (3.3-3), is greater than zero. The pertinent terms in Eq. (3.3-3) are, for this example,

$$\frac{\partial^2 \phi}{\partial \hat{x} \partial \hat{x}} = 0, \quad \frac{\partial^2 \phi}{\partial \hat{x}^2} = \frac{1}{(1 + \hat{x}^2)^{3/2}} \quad \therefore \quad \frac{\partial^2 \phi}{\partial \hat{x}} = \frac{1}{(1 + o)^{3/2}}$$

t = 2

Since $\dot{x} = 0$ is the extremal solution, $\partial^2 \phi / \partial \dot{x}^2$ is always greater than zero. Thus the second variation is greater than zero, and we have indeed established a minimum. Physically this was, of course, evident from the start.

Example 3.3-2

We desire to find the equation of the curve which minimizes the functional (boundary conditions unspecified)

$$J\langle x\rangle = \int_0^2 \left[\frac{1}{2}\dot{x}^2 + x\dot{x} + \dot{x} + x\right]dt$$

The Euler-Lagrange equation for this problem is

$$\dot{x} + 1 - \dot{x} - \ddot{x} = 0 = 1 - \ddot{x}$$

By integrating directly, we obtain the solution to this equation:

$$x(t) = \frac{t^2}{2} + C_1 t + C_2$$

To determine C_1 and C_2 we must now apply the transversality equation to the given boundary conditions. Since this is a variable beginning-terminal point problem, situation II is used, which is the natural boundary condition case.

$$\frac{\partial \phi}{\partial \dot{x}} = \dot{x} + x + 1 = 0, \quad \text{for} \quad t = 0, 2$$

Therefore, from the solution for x and its derivative, we have

$$\frac{\partial \phi}{\partial \dot{x}} = t + C_1 + \frac{t^2}{2} + C_1 t + C_2 + 1 = 0, \quad \text{for} \quad t = 0, 2$$

We can now solve for C_1 and C_2 from the simultaneous equations

$$C_1 + C_2 = -1$$
, $3C_1 + C_2 = -5$

to obtain $C_1 = -2$ and $C_2 = 1$. Therefore the extremal cury which satisfies the given boundary conditions, is

$$x(t) = \frac{t^2}{2} - 2t + 1$$

The actual value of the extremum is obtained when we substitute into the given cost function and carry out the integration to obtain $J_{\min} = \frac{4}{3}$.

3.4 Unspecified terminal time problems

By slightly changing the cost function given in Eq. (3.1-1) we obtain a very useful problem formulation; it is called an unspecified terminal time problem and, as will be apparent later, leads to the "minimum time" problem of optimal control. The basic problem is one of minimizing a given cost function where t_f is unspecified subject to the constraint that the final state of the system be specified by a prescribed terminal line or, in higher-dimensional problems, terminal manifold.

The cost function generally contains terms representing energy expended, distance traversed, elapsed time, and so forth, which may appear singly or in combination. The original state of the system may be specified or unspecified, and the terminal line or manifold may be time-varying or invariant.

The approach used here will be general enough so that any of the foregoing specifications can be included in the solution of a specific problem. A graphical illustration of a variable terminal time problem is given in Fig. 3.4-1. Instead of calling $J\langle x \rangle$ a functional, we will now use the systems control terminology, cost function, which for this problem will be given by

$$J\langle x\rangle = \int_{t_o}^{t_f} \phi(x, \dot{x}, t) dt \qquad (3.4-1)$$

where t_0 is known, t_f is unspecified, and $x(t_0)$ may or may not be specified.

Fig. 3.4-1. Illustration of variable terminal time problem where $x(t_f) = c(t_f).$

We should note that for the problem shown in Fig. 5.4-1 the initial state, $x(t_0)$, is specified hough, in general, as previously stated, it need not be.

As before, $\mathfrak{X}(t)$ is the required curve, here referred to as the optimal system trajectory. A family of curves, which includes the optimal trajectory $\mathfrak{X}(t)$, starting at t_0 and ending at t_f is given by

$$x(t) = \hat{x}(t) + \epsilon \eta_x(t) \tag{3.4-2}$$

with time derivative

$$\dot{x}(t) = \dot{x}(t) + \epsilon \dot{\eta}_x(t) \tag{3.4-3}$$

where $\eta_x(t)$ is a variation in x which depends on t.

Since the terminal time is unspecified, it must be treated as a variable and, therefore, must be examined to see if perhaps there is a final time, \hat{t}_{f} , which is optimal. We will therefore define a family of final times, one of which is the optimal final time \hat{t}_{f} :

$$t_f = \hat{t}_f + \epsilon \eta_l(t_f) \tag{3.4-4}$$

where $\eta_t(t_f)$ is a variation in t_f .

Our first step in minimizing the cost function, Eq. (3.4-1), is to substitute Eqs. (3.4-2), (3.4-3), and (3.4-4) into it, which gives us

$$J\langle x\rangle = \int_{t_o}^{\hat{t}_f + \epsilon\eta_t(t_f)} \phi[\hat{x}(t) + \epsilon\eta_x(t), \dot{x}(t) + \epsilon\dot{\eta}_x(t), t] dt \qquad (3.4-5)$$

We now set $\partial J/\partial \epsilon = 0$ at $\epsilon = 0$ and obtain

$$\frac{\partial J}{\partial e}\Big|_{e=0} = 0 = \int_{l_0}^{l_f} \left\{ \eta_x(t) \frac{\partial \phi}{\partial \hat{x}} + \dot{\eta}_x(t) \frac{\partial \phi}{\partial \hat{x}} \right\} dt + \eta_l(\hat{t}_f) \phi[\hat{x}(\hat{t}_f), \dot{x}(\hat{t}_f), \hat{t}_f] \quad (3.4-6)$$

Integrating a portion of Eq. (3.4-6) by parts, we obtain

$$\int_{t_0}^{\hat{t}_f} \eta_x(t) \left[\frac{\partial \phi}{\partial \hat{x}} - \frac{d}{dt} \frac{\partial \phi}{\partial \hat{x}} \right] dt + \eta_x \frac{\partial \phi}{\partial \hat{x}} \Big|_{t=t_0}^{\hat{t}_f} + \eta_l(\hat{t}_f) \phi[\hat{x}(\hat{t}_f), \hat{x}(\hat{t}_f), \hat{t}_f] = 0 \quad (3.4-7)$$

At the terminal time, the terminal line, C(t) or, in higher dimensions, wterminal manifold, and the optimal trajectory x(t) intersect, as shown in Fig. 3.4-1. Therefore, using Eqs. (3.4-2) and (3.4-4), we have

$$\hat{\chi} \subset \ell^{(5)} \qquad \hat{\chi}[t_f + \epsilon \eta_i(t_f)] + \epsilon \eta_i[t_f + \epsilon \eta_i(t_f)] = C[t_f + \epsilon \eta_i(t_f)] \qquad (3.4-8)$$

We take the partial derivative of this equation with respect to ϵ and evaluate it at $\epsilon = 0$ to obtain

$$\eta_{l}(\hat{t}_{f})\dot{X}(\hat{t}_{f}) + \eta_{x}(\hat{t}_{f}) = \eta_{l}(\hat{t}_{f})\dot{C}(\hat{t}_{f})$$
(3.4-9)

where $\dot{x}(t) = \partial \hat{x}/\partial t$ and $\dot{C}(t) = \partial C/\partial t$ at $t = \hat{t}_f$. Thus

$$\eta_x(\hat{t}_f) = \eta_t(\hat{t}_f)[\dot{C}(\hat{t}_f) - \dot{X}(\hat{t}_f)]$$
(3.4-10)

By substituting Eq. (3.4-10) into (3.4-7), we have

$$\int_{t_0} \eta_x(t) \left[\frac{\partial \varphi}{\partial \hat{x}} - \frac{\alpha}{dt} \frac{\partial \varphi}{\partial \hat{x}} \right] dt + \eta_t(\hat{t}_f) \left\{ \left[C(\hat{t}_f) - \hat{x}(\hat{t}_f) \right] \frac{\partial \varphi[x(tf), x(tf), tf]}{\partial \hat{x}(\hat{t}_f)} + \phi[\hat{x}(\hat{t}_f), \hat{x}(\hat{t}_f), \hat{t}_f] \right\} - \eta_x(t) \frac{\partial \phi}{\partial \hat{x}} \Big|_{t=t_0} = 0$$
(3.4-11)

Remembering that Eq. (3.4-11) must be identically equal to zero independent of the variations, we see that the first requirement for the solution to our problem (the second variation must also be non-positive) is that

$$\frac{\partial \phi}{\partial x} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}} = 0 \tag{3.4-12}$$

$$\eta_t(t) \Big[(\dot{C} - \dot{x}) \frac{\partial \phi}{\partial \dot{x}} + \phi \Big] = 0, \quad \text{for} \quad t = \hat{t}_f \quad (3.4-13)$$

$$\eta_x(t) \frac{\partial \phi}{\partial x} = 0, \quad \text{for} \quad t = t_o \quad (3.4-14)$$

We recognize that Eq. (3.4-12) is the familiar Euler-Lagrange equation while Eqs. (3.4-13) and (3.4-14) comprise the transversality conditions for this problem. As before, there are four different relationships obtainable from the transversality conditions, but since they are so similar to those discussed previously, the details of these relationships are left as an exercise. We note that the \sim notation has been removed from Eqs. (3.4-12) through (3.4-14) for convenience. Let us now attempt to apply our results to a simple problem.

Example 3.4-1

t

We wish to minimize

$$J\langle x\rangle = \int_0^{t_f} [1 + \dot{x}^2]^{1/2} dt$$

with x(0) = 1 such that $x(t_f) = C(t_f) = 2 - t_f$.

We should recognize that the cost function is actually the arc length, which means that the distance between a point and a line is being minimized. Application of the Euler-Lagrange equation yields the optimal trajectory x = at + b, as in Example 3.3-1. To evaluate the arbitrary constants a and b, we make proper use of the transversality Eqs. (3.4-13) and (3.4-14). Here we specify x(0) = 1; thus $\eta_x(t_o) = 0$. And since t_f is unspecified, Eq. (3.4-13) becomes

$$(\dot{C}-\dot{x})\frac{\partial\phi}{\partial\dot{x}}+\phi=0,$$
 at $t=t_f$

Thus we obtain $\dot{x} = 1$ at the unspecified terminal time t_f . From the solution to the Euler-Lagrange equation and the specified initial condition, we have x(t=0) = 1; so we must have b = 1 and $\dot{x}(t=t_f) = a = 1$. Therefore the optimal trajectory is x(t) = t + 1, and the final time t_f is $t_f = \frac{1}{2}$. Salient features of this problem are indicated in Fig. 3.4-2. An interesting fact here is that the optimal trajectory intersects the terminal manifold at right angles. In general,

Fig. 3.4-2. Illustration of variable terminal time variable end point problem, Example (3.4-1).

the optimal trajectory will always be nontangent to the terminal manifold. This nontangency condition is, in fact, called the transversality condition.

3.5 Euler-Lagrange equations and transversality conditions-vector formulation

The previous results can be easily generalized to include scalar cost functions in n-dimensional variables via the state-space approach. That is, we desire to minimize

$$J\langle \mathbf{x}\rangle = \int_{t_o}^{t_f} \phi(\mathbf{x}, \dot{\mathbf{x}}, t) dt \qquad (3.5-1)$$

where x is the system state, an n vector such that $\mathbf{x}^{T} = [x_1, x_2, \dots, x_n]$. t_0 , the starting time, is generally specified (it may not be); $x(t_o)$ may or may not be specified; $\mathbf{x}(t_f)$ is specified by a given terminal manifold denoted $\mathbf{C}(t_f)$. As before, the terminal time t_f does not have to be known. After following a procedure quite similar to the scalar one, we have, after setting $\partial J/\partial e$ at e = 0 and dropping the \uparrow notation the requirement that among other things

$$\int_{t_{s}}^{t_{r}} \eta^{T}(t) \left[\frac{\partial \phi}{\partial \mathbf{x}} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{\mathbf{x}}} \right] dt = 0$$
(3.5-2)

be true independent of $\eta(t)$. This leads to the requirement that

$$\frac{\partial \dot{\phi}}{\partial \mathbf{x}} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{\mathbf{x}}} = \mathbf{0} \tag{3.5-3}$$

†In general, all the states of x(t) need not be specified at the terminal time. If this is in fact the case for a given problem, great care must be exercised in applying the equations derived for transversality conditions in this section. This point will again be stressed at an appropriate time in the next chapter.

which is simply an extended version of the Euler-Lagrans guation. The associated transversality conditions are given by

$$\eta_{\mathbf{x}\overline{\partial \mathbf{x}}}^{T}=0, \quad \text{at} \quad t=t_{o}$$
 (3.5-4)

$$\eta_x^T \frac{\partial \phi}{\partial \dot{\mathbf{x}}} + \eta_t \phi = 0, \quad \text{at} \quad t = t_f$$
 (3.5-5)

where η_t can be related to η_x by an equation obtained exactly as Eq. (3.4-8) was obtained

$$\eta_{l} \left[\frac{d\mathbf{x}}{dt} - \frac{d\mathbf{C}}{dt} \right] + \eta_{\mathbf{x}} = \mathbf{0} \qquad \overset{\text{(3.5-6)}}{\longleftrightarrow} \qquad (3.5-6)$$

Although the notation of this section may appear somewhat cumbersome, in an actual problem it is not, as the next example shows. Use of the Lagrange multiplier technique, as in the next section, will alleviate some of the burdensome notation. section mo. 3. 7. not 2.6

Example 3.5-1

We desire to find the transversality conditions for the minimization of

$$J = \int_{t_0}^{t_f} \phi(\mathbf{x}, \mathbf{\dot{x}}, t) dt$$

such that $\mathbf{x}(t_f) = \mathbf{C}(t_f)$, where $\mathbf{C}^T(t) = [c_1(t), 0, 0]$ and $\mathbf{x}^T = [x_1, x_2, x_3]$, $\mathbf{x}(t_0) = \mathbf{x}_0$, with t_0 specified and t_1 unspecified. The Euler-Lagrange equations are

$$\frac{\partial \phi}{\partial x_1} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}_1} = 0, \qquad \frac{\partial \phi}{\partial x_2} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}_2} = 0, \qquad \frac{\partial \phi}{\partial x_3} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}_3} = 0$$

with associated boundary conditions, $\mathbf{x}(t_0) = \mathbf{x}_0$, which represents the initial condition for the two-point boundary value problem, and 11:18

$$t = \frac{\partial \phi}{\partial \dot{x}_1} + \frac{\phi}{c_1 - \dot{x}_1} = 0, \quad x_2(t) = 0, \quad x_3(t) = 0, \quad \text{at } t = t_f = \frac{\chi(t) = c(t)}{(\chi(t))}$$

3.4-15) -7 Although it may seem that all unspecified terminal time problems may now X be worked by mere substitution into the derived relationships, Eqs. (3.5-3) χ_1 through (3.5-6), this is not the case. Many problems do not fall precisely into a form which allows direct use of our derived formulas. When this type of χ_1 problem is encountered, a good procedure to follow is to derive the transversality condition for the particular problem. An example demonstrating this type of χu approach follows.

χı

Example 3.5-2

We wish to find the transversality conditions for the minimization of

$$J = \int_{t_a}^{t_f} \phi(\mathbf{x}, \dot{\mathbf{x}}, t) \, dt$$

such that $\|\mathbf{x}(t_f)\|^2 = 1$, where $\mathbf{x}^T = [x_1 x_2]$, with specified starting time t_o and terminal time t_{f} . Thus, we would like to reach the region of state-space specified

4

\$

ک` بن

Sor XIL)

any

by $x_1^2 + x_2^2 = 1$)specified terminal time t_f given the state at the starting time t_o denoted by $\mathbf{x}(t_o)$.

The transversality conditions are, from Eq. (3.5-4),

$$\left(\frac{\partial\phi}{\partial\dot{\mathbf{x}}}\right)^{T}\boldsymbol{\eta}_{\mathbf{x}}=0=\frac{\partial\phi}{\partial\dot{x}_{1}}\boldsymbol{\eta}_{x_{1}}+\frac{\partial\phi}{\partial\dot{x}_{2}}\boldsymbol{\eta}_{x_{2}}, \quad \text{at} \quad t=t_{f}$$

As before, we assume that $x(t) = \hat{x}(t) + \epsilon \eta_x(t)$ where x is the optimal trajectory. For this problem, this relation in component form becomes $x_1 = \hat{x}_1 + \epsilon \eta_{x_1}$ and $x_2 = \hat{x}_2 + \epsilon \eta_{x_2}$. Substituting these results into the given terminal manifold, we obtain

$$(\hat{x}_1 + e\eta_{x_1})^2 + (\hat{x}_2 + e\eta_{x_1})^2 = 1, \quad \text{at} \quad t = t_j$$

Taking the partial derivative of the foregoing equation with respect to ϵ and then setting $\epsilon = 0$, we have

$$\hat{x}_1\eta_{x_1} + \hat{x}_2\eta_{x_2} = 0, \quad t = t_f$$

We thus see that the specification of the terminal manifold

$$x_1^2(t_f) + x_2^2(t_f) = 1$$

leads to a linear relationship between η_{x_1} and η_{x_2} at the terminal time. If we combine this relation with the previously stated transversality condition, we obtain for one of the terminal boundary conditions

$$\frac{\partial \phi}{\partial \dot{x}_1} \frac{x_2}{x_1} - \frac{\partial \phi}{\partial \dot{x}_2} = 0, \quad \text{at} \quad t = t.$$

Therefore the two boundary conditions at $t = t_f$ are

$$x_1^2(t_f) + x_2^2(t_f) = 1$$
$$\frac{\partial \phi}{\partial \dot{x}_1(t_f)} \frac{x_2(t_f)}{x_1(t_f)} - \frac{\partial \phi}{\partial \dot{x}_2(t_f)} = 0$$

Thus for a given $\phi(\mathbf{x}, \dot{\mathbf{x}}, t)$, we can resolve this problem completely by solving for the optimal trajectory through the Euler-Lagrange equations and the appropriate boundary conditions which we have just obtained.

3.6 Variational notation

Much of the notation in the problems that follow can be considerably simplified if variational rather than differential notation is used. We wish to minimize (for t_0 and t_f fixed)

$$J = \int_{t_0}^{t_f} \phi(x, \dot{x}, t) \, dt \tag{3.6-1}$$

We assume, as in Section 3.1, that both x(t) and $\dot{x}(t)$ are representable by a family of curves

$$x(t) = \hat{x}(t) + \epsilon \eta(t), \qquad \dot{x}(t) = \dot{x}(t) + \epsilon \dot{\eta}(t) \qquad (3.6-2)$$

where x(t) is the optimal (extremal) curve and $\eta(t)$ is a variation in x(t)

depending upon *t*. We substitute Eq. (3.6-2) into Eq. (3.6-1) Ad expand $\phi(x, \dot{x}, t)$ in a Taylor series about the point e = 0.

$$\phi[\hat{x}(t) + \underline{e}\eta(t), \dot{x}(t) + \underline{e}\eta(t), t] = \phi(\hat{x}, \dot{x}, t) + \frac{\partial \phi}{\partial \hat{x}} e\eta(t) + \frac{\partial \phi}{\partial \dot{x}} e\dot{\eta}(t) + \text{H.O.T.}$$
(3.6-3)

where H.O.T. is used to indicate higher-order terms in $\eta(t)$ and $\dot{\eta}(t)$. If we now let

$$\Delta J = J \langle \hat{x} + \epsilon \eta \rangle - J \langle \hat{x} \rangle$$

we can write

$$\Delta J = \int_{t_0}^{t_1} \{\phi[\hat{x}(t) + \epsilon\eta(t), \dot{\hat{x}} + \epsilon\dot{\eta}, t] - \phi[\hat{x}(t), \dot{\hat{x}}, t]\} dt$$

$$= \int_{t_0}^{t_1} \{\frac{\partial\phi}{\partial\hat{x}}\epsilon\eta(t) + \frac{\partial\phi}{\partial\hat{x}}\epsilon\dot{\eta}(t) + \text{H.O.T.}\} dt \qquad (3.6-4)$$

Now we define the first variation of x(t) and $\dot{x}(t)$ as

$$\epsilon \eta(t) = \delta x, \quad \epsilon \dot{\eta}(t) = \delta \dot{x}$$
 (3.6-5)

Thus

Reid

$$\Delta J = \int_{t_{\star}}^{t_{\star}} \left[\frac{\partial \phi}{\partial \hat{x}} \, \delta x + \frac{\partial \phi}{\partial \dot{x}} \, \delta \dot{x} + \text{H.O.T.} \right] dt \qquad (3.6-6)$$

Since the variation plays the same role in variational calculus as the differential in standard calculus, we use the property of linearity, which means that the first variation of J, δJ , the linear part of ΔJ , is

$$\delta J = \int_{t_s}^{t_f} \left[\frac{\partial \phi}{\partial \dot{x}} \, \delta x + \frac{\partial \phi}{\partial \dot{x}} \, \delta \dot{x} \right] dt \tag{3.6-7}$$

A necessary condition for an extremum at $x(t) = \hat{x}(t)$, i.e., $\epsilon = 0$, is that the first variation of J, δJ , be zero. Applying this to Eq. (3.6-7), along with the minor simplification of integrating by parts and dropping the \uparrow notation, we obtain

$$\int_{t_0}^{t_r} \left[\frac{\partial \phi}{\partial x} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}} \right] \delta x \, dt + \frac{\partial \phi}{\partial \dot{x}} \, \delta x \Big|_{t=t_0}^{t=t_r} = 0 \tag{3.6-8}$$

For Eq. (3.6-8) to equal zero independent of the variation δx , we must have

$$\frac{\partial \phi}{\partial x} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}} = 0 \tag{3.6-9}$$

$$\frac{\partial \phi}{\partial \dot{x}} \delta x = 0, \quad \text{for} \quad t = t_o, t_f$$
 (3.6-10)

We note that Eq. (3.6-9) is the Euler-Lagrange equation and Eq. (3.6-10) is its associated transversality condition.

In a similar n)er, it is also easy to show that the second variation of Eq. (3.6-1), written $\partial^2 J$, is

$$\delta^2 J = \frac{1}{2} \int_{t_0}^{t_1} \left\{ (\delta x)^2 \left[\frac{\partial^2 \phi}{\partial x^2} - \frac{d}{dt} \frac{\partial^2 \phi}{\partial \dot{x}^2} \right] + (\delta \dot{x})^2 \frac{\partial^2 \phi}{\partial \dot{x}^2} \right\} dt \qquad (3.6-11)$$

where the second variation is now defined as the quadratic part of Eq. (3.6.6) or twice Eq. (3.3-4). As previously stated, the interpretations of the second variation are that $\delta^2 J \ge 0$ implies a minimum of J and $\delta^2 J \le 0$ implies a maximum of J. A quadratic form integral similar to Eq. (3.3-4) also follows directly.

3.7 Dynamic optimization with equality constraints—Lagrange multipliers

A constrained optimization problem may require extremizing a cost function of the form

$$J = \int_{t_0}^{t_f} \phi(\mathbf{x}, \dot{\mathbf{x}}, t) \, dt \tag{3.7-1}$$

subject to the equality constraint

$$\Lambda(\mathbf{x}, \mathbf{\dot{x}}, t) = \mathbf{0} \tag{3.7-2}$$

where $\mathbf{x}^T = [x_1, x_2, \dots, x_n]$ and $\Lambda^T = [\Lambda_1, \Lambda_2, \dots, \Lambda_m]$ with $m \le n$. It can be shown that the solution to this problem is the same as that obtained by extremizing

$$J' = \int_{t_o}^{t_f} \left[\phi(\mathbf{x}, \dot{\mathbf{x}}, t) + \lambda^T(t) \Lambda(\mathbf{x}, \dot{\mathbf{x}}, t) \right] dt \qquad (3.7-3)$$

where $\lambda^{T} = [\lambda_1, \lambda_2, \dots, \lambda_m]$ is the vector equivalent of the Lagrange multiplier discussed in Chapter 2 [4].

To illustrate the development of the Lagrange multiplier, let us consider a special case where x is a two vector. Suppose that we wish to minimize

$$J = \int_{t_0}^{t_f} \phi(x_1, x_2, \dot{x}_1, \dot{x}_2, t) dt \qquad (3.7-4)$$

subject to the constraint (with fixed end points)

$$\Lambda(x_1, x_2, t) = 0 \tag{3.7-5}$$

We will use the variational notation just developed to establish a method for treating the given equality constraint. To establish a minimum, it is necessary that the first variation of Eq. (3.7-4) be zero, that is

$$\delta J = \int_{t_0}^{t_0} \left\{ \delta x_1 \left[\frac{\partial \phi}{\partial x_1} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}_1} \right] + \delta x_2 \left[\frac{\partial \phi}{\partial x_2} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}_2} \right] \right\} dt = 0 \quad (3.7-6)$$

If δx_1 were independent of δx_2 , we could simply set each term of Eq. (3.7-6)

equal to 0. Since the constraint provides a dependence on x_1 and x_2 , we must take the given constraint into consideration. Taking the variable of Eq. (3.7-5) we have

$$\delta \Lambda = \frac{\partial \Lambda}{\partial x_1} \, \delta x_1 + \frac{\partial \Lambda}{\partial x_2} \, \delta x_2 = 0 \tag{3.7-7}$$

It also follows that, for any $\lambda(t)$, we may multiply Eq. (3.7-7) by $\lambda(t)$ and integrate so that

$$\int_{t_{*}}^{t_{*}} \lambda(t) \left[\frac{\partial \Lambda}{\partial x_{1}} \, \delta x_{1} + \frac{\partial \Lambda}{\partial x_{2}} \, \delta x_{2} \right] dt = 0 \qquad (3.7-8)$$

If we add Eq. (3.7-6) to Eq. (3.7-8) we obtain

$$0 = \int_{t_0}^{t_1} \left\{ \delta x_1 \left[\frac{\partial \phi}{\partial x_1} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}_1} + \lambda \frac{\partial \Lambda}{\partial x_1} \right] + \delta x_2 \left[\frac{\partial \phi}{\partial x_2} - \frac{d}{dt} \frac{\partial \phi}{\partial \dot{x}_2} + \lambda \frac{\partial \Lambda}{\partial x_2} \right] \right\} dt$$
(3.7-9)

We will now adjust λ so that the term within the first brackets under the integral is zero. It also must follow that, since δx_2 is arbitrary, the term in the second brackets under the integral is also equal to zero. It is apparent that we would have obtained the same results had we reformulated the given problem by adjoining to the cost function the constraint via a Lagrange multiplier as in Eq. (3.7-3) and used the Euler-Lagrange equations on this cost function. The resulting Euler-Lagrange equations would then be solved subject to the equality constraint of Eq. (3.7-2).

Example 3.7-1

We are given the differential system

$$\ddot{\theta} = u(t)$$

which may be interpreted as the moment of inertia of a rocket in free space, and we desire to minimize

$$J = \frac{1}{2} \int_0^2 (\ddot{\theta})^2 dt$$

such that

$$\theta(t=0) = 1, \quad \theta(t=2) = 0$$

 $\dot{\theta}(t=0) = 1, \quad \dot{\theta}(t=2) = 0$

To cast this problem in state space notation, we let

$$x_1(t) = \theta(t), \quad \dot{x}_1 = x_2(t), \quad \dot{x}_2 = u(t)$$

Now the differential system can be represented by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{b}u(t)$$

where

$$\mathbf{x}^{T} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}, \quad \mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{b}^{T} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

When we apply (3.7-3) (u(t) is treated as another state variable, x_3), the problem becomes one of minimizing

$$J = \int_0^2 \left\{ \frac{1}{2} u^2(t) + \lambda^T(t) [Ax(t) + bu(t) - \dot{x}] \right\} dt$$

=
$$\int_0^2 \left\{ \frac{1}{2} u^2(t) + \lambda_1(t) [x_2(t) - \dot{x}_1] + \lambda_2(t) [u(t) - \dot{x}_2] \right\} dt$$

The Euler-Lagrange equations yield

$$\lambda_1 = 0, \quad \lambda_2 = -\lambda_1(t), \quad u(t) = -\lambda_2(t)$$

The final solution is obtained by means of the given differential relationships and boundary conditions, and it is

$$x_1 = \frac{1}{2}t^3 - \frac{7}{4}t^2 + t + 1, \quad x_2 = \frac{3}{2}t^2 - \frac{7}{2}t + 1, \quad u = 3t - \frac{7}{2}$$

This system, along with a plot of the system trajectories, is shown in Fig. 3.7-1.

Fig. 3.7-1. Block diagram, optimal control and state variables for system of Example (3.7-1).

Example 3.7-2 Linear Servomechanism[†]

Suppose that we wish to minimize

$$J = \frac{1}{2} \int_{t_0}^{t_f} \|\mathbf{u}(t)\|_{\mathbf{R}(t)}^2 + \|\mathbf{x}(t) - \mathbf{r}(t)\|_{\mathbf{Q}(t)}^2 dt$$

for the general time-varying system specified by

$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$$

†A considerably more detailed treatment of this problem will be given in Chapter 5.

with $\mathbf{x}(t_o) = \mathbf{x}_o$ as the initial condition vector. $\mathbf{r}(t)$ is the desire fillue of the state vector $\mathbf{x}(t)$. As before, it is necessary to assume that all matrices and vectors are of compatible orders. We adjoin the differential system equality constraint to the cost function by the Lagrange multiplier to obtain

$$J' = \int_{t_0}^{t_f} \{\frac{1}{2} \| \mathbf{u}(t) \|_{\mathbf{R}(t)}^2 + \frac{1}{2} \| \mathbf{x}(t) - \mathbf{r}(t) \|_{\mathbf{Q}(t)}^2 + \lambda^T(t) [\mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) - \mathbf{\dot{x}}] \} dt$$

The exact nature of the cost function used depends upon the particular problem being solved. Therefore R(t) and Q(t), both penalty-weighting matrices, are generally chosen with regard to the physical conditions present. We also assume that both R(t) and Q(t) are symmetric, since there is no loss in generality by doing so. The control vector, u(t) is treated just as if it were a state vector. Then we apply the Euler-Lagrange equations, which in this case are

$$\frac{\partial \Phi}{\partial \mathbf{x}} - \frac{d}{dt} \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} = \mathbf{0}, \qquad \frac{\partial \Phi}{\partial \mathbf{u}} - \frac{d}{dt} \frac{\partial \Phi}{\partial \dot{\mathbf{u}}} = \mathbf{0}$$

where

$$\Phi = \frac{1}{2} \|\mathbf{u}(t)\|_{\mathbf{R}(t)}^2 + \frac{1}{2} \|\mathbf{x}(t) - \mathbf{r}(t)\|_{\mathbf{Q}(t)}^2 + \lambda^T(t) [\mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) - \dot{\mathbf{x}}]$$

Thus

4.

Palers

$$\frac{\partial \Phi}{\partial \mathbf{x}} = \mathbf{Q}(t)[\mathbf{x}(t) - \mathbf{r}(t)] + \mathbf{A}^{T}(t)\boldsymbol{\lambda}(t), \qquad \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} = -\boldsymbol{\lambda}(t)$$
$$\frac{\partial \Phi}{\partial \mathbf{u}} = \mathbf{R}(t)\mathbf{u}(t) + \mathbf{B}^{T}(t)\boldsymbol{\lambda}(t), \qquad \frac{\partial \Phi}{\partial \dot{\mathbf{u}}} = \mathbf{0}$$

The Euler-Lagrange equations for this problem become

$$\dot{\lambda} = -\mathbf{A}^{T}(t)\lambda(t) - \mathbf{Q}(t)[\mathbf{x}(t) - \mathbf{r}(t)], \qquad \mathbf{u}(t) = -\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\lambda(t)$$

Since $x(t_f)$ is unspecified, the transversality condition at the terminal time yields $\lambda(t_f) = 0$. This solution can be block-diagrammed as in Fig. 3.7-2. We note that the solution for the optimal control requires that R(t) have an inverse. Also, certain other requirements must be met to insure a minimum of the cost function; specifically, R(t) and Q(t) must be nonnegative definite to insure a nonnegative second variation. Thus we see that R(t) must be positive definite.

Although it appears that we have solved the originally stated problem, there are still some further refinements which are highly desired. Since the state of the system is specified at t_o , we are given $\mathbf{x}(t_o)$, while the adjoint operator $\lambda(t)$ is specified at the terminal time, $\lambda(t_f) = \mathbf{0}$. What we, in fact, have to do is solve a two-point boundary value problem (TPBVP), something which, in general, cannot always be done without recourse to electronic computers. In this particular case, since the differential equations are all linear, superposition can be invoked and a closed-form analytical solution obtained with great difficulty.

If we let r(t) be either a constant vector or the null vector, the foregoing problem reduces to a regulator problem. The treatment of the servomechanism problem can be made more general if we assume that indirect state observation is made available to us, that is, for the system

$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$$

we can obtain directly only

$$\mathbf{z}(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{D}(t)\mathbf{u}(t)$$

The procedure and results are quite similar to the ones obtained in this example except that requirements on observability and controllability, to be discussed in Chapter 11, are present.

To solve this two-point boundary value problem, we must require a knowledge of $\mathbf{r}(t)$ for all time in the closed interval t_o to t_f or, in shorthand notation, $\forall t \in [t_o, t_f]$. Since a two-point boundary value problem must be solved before we can determine the optimum control for this problem, it is clear that a closedloop control has not been found. After we have formulated the Hamilton-Jacobi equations and the Pontryagin maximum principle, we will have a great deal more to say about this important problem.

3.8 Dynamic optimization with inequality constraints

In many physical problems of interest to the control engineer, there are various inequality constraints on the control vector. For example, the maximum thrust from a reaction jet is physically limited as is the maximum input reactivity in a nuclear reactor. When inequality constraints are present, it is necessary that we consider them in determining optimum system design. Thus we are faced with minimizing a cost function of the f

$$J = \int_{t_0}^{t_f} \phi(\mathbf{x}, \dot{\mathbf{x}}, t) \, dt \tag{3.8-1}$$

with equality constraints of the form

$$\Lambda(\mathbf{x}, \dot{\mathbf{x}}, t) = \mathbf{0} \tag{3.8-2}$$

and inequality constraints of the form

$$\Gamma_{\min} \leq \Gamma(\mathbf{x}, \dot{\mathbf{x}}, t) \leq \Gamma_{\max} \tag{3.8-3}$$

When the inequality constraint involves the control vector, the control vector which satisfies the constraint conditions is called an admissible control vector. One technique which is generally satisfactory for resolving the control inequality constraint problem consists of converting the inequality constraint to an equality constraint. It can be easily demonstrated that the, equations

$$(\Gamma_{\max i} - \Gamma_i)(\Gamma_i - \Gamma_{\min i}) = \gamma_i^2, \quad i = 1, 2, \dots, 7 \quad (3.8-4)'$$

are equivalent to the constraints of Eq. (3.8-3), since each term on the left side of Eq. (3.8-4) must be positive, or each negative, and thus have a positive product. Thus the inequality constraints have been converted to equality constraints and may be treated as such. Lagrange multipliers are then used to adjoin the equality and inequality constraints to the cost function, Eq. (3.8-1), and the Euler-Lagrange equations applied.[†] The technique can best be illustrated by an example.

Example 3.8-1

Let us consider the same plant dynamics as in the previous example 3,7-1.

$$\dot{x}_1 = x_2(t), \qquad \dot{x}_2 = u(t)$$

with the initial conditions $x_1(t_o) = x_o$ and $x_2(t_o) = v_o$. The problem is to find the control which maximizes $x_1(t_f)$, for fixed t_f , subject to the boundary condition equality constraint that $x_2(t_f) = v_f$ and the inequality constraint on the scalar control $u_{\min} \le u \le u_{\max}$. We convert the inequality constraint to an equality constraint by introducing a new variable $\alpha(t)$ and replacing the inequality constraint by

equivalent of minimizes
$$(u - u_{\min})(u_{\max} - u) - \alpha^2 = 0$$

 $-\chi^{(l_f)}$ Thus the problem may be recast as one of minimizing $J = -x_1(t_f)$ subject to the equality constraints

 $\dot{x}_1 = x_2(t),$ $x_1(t_0) = x_0,$ $x_1(t_f) = \text{open}$ $\dot{x}_2 = u(t),$ $x_2(t_0) = v_0,$ $x_2(t_f) = v_f$ $(u - u_{\min})(u_{\max} - u) - \alpha^2 = 0$

†Chapters 4, 13, and 14 will consider more varied aspects, theoretical and computational, of the inequality constraint problem.

A.S.C.

itis

The cost f ion with the adjoined Lagrange multiplier becomes

$$J' = \left(-x_1(t_0) + \int_{t_0}^{t_f} -\dot{x}_1 \right) + \lambda_1 [x_2 - \dot{x}_1] + \lambda_2 [u - \dot{x}_2] + \lambda_3 [(u - u_{\min})(u_{\max} - u) - \alpha^2] a$$

The Euler-Lagrange equation

$$\frac{d}{dt}\frac{\partial\Phi}{\partial\dot{\mathbf{x}}} - \frac{\partial\Phi}{\partial\mathbf{x}} = \mathbf{0}, \quad (\mathbf{x}^T = [x_1, x_2, u])$$

 α^{2}] - \dot{x}_{1}

with

$$\Phi = \lambda_1 [x_2 - \dot{x}_1] + \lambda_2 [u - \dot{x}_2] + \lambda_3 [(u - u_{\min})(u_{\max} - u) - u_{\min}](u_{\max} - u) - u_{\min} (u_{\max} - u) - u_{\max} - u_$$

yields

$$\lambda_1 = 0, \quad \lambda_2 = -\lambda_1$$

$$0 = -\lambda_2 + \lambda_3 [2u - u_{\max} - u_{\min}], \quad 0 = \alpha \lambda_3$$

Application of the natural boundary condition equation (transversality condition) to determine the single missing terminal condition on $x_1(t_f)$ yields

$$\frac{\partial \Phi}{\partial \dot{x}_1}\Big|_{t=t_f} = 0 = -1 - \lambda_1(t_f)$$

Thus we have arrived at the two-point boundary value problem whose solution determines the optimal state and control variables. This TPBVP is

$$\dot{x}_{1} = x_{2}(t), \qquad x_{1}(t_{o}) = x_{o}$$

$$\dot{x}_{2} = u(t), \qquad x_{2}(t_{o}) = v_{o}$$

$$\dot{\lambda}_{1} = 0, \qquad \lambda_{1}(t_{f}) = -1$$

$$\dot{\lambda}_{2} = -\lambda_{1}(t), \qquad x_{2}(t_{f}) = v_{f}$$

$$\alpha(t)\lambda_{3}(t) = 0$$

$$\lambda_{2}(t) = \lambda_{3}(t)[2u(t) - u_{\max} - u_{\min}]$$

$$\alpha^{2}(t) = [u(t) - u_{\min}][u_{\max} - u(t)]$$

This TPBVP is nonlinear because of the last three coupling equations above and is quite difficult to solve without recourse to a computer. In a usual version of this problem, $u_{mln} = -1$ and $u_{max} = +1$. In that case, it is possible to show that $\alpha(t) = 0$ and

where

$$\begin{array}{ll} \operatorname{sign} \lambda_2 = 1 & \operatorname{if} \ \lambda_2 > 0 \\ \operatorname{sign} \lambda_2 = -1 & \operatorname{if} \ \lambda_2 < 0 \end{array}$$

 $u(t) = -\operatorname{sign} \lambda_{2}(t)$

This does not, however, change the nonlinear nature of the two-point boundary problem. In a later chapter we will devote considerable time to various gradient methods, Newton-Raphson techniques, and other computational techniques for solving nonlinear two-point (and multipoint) boundary value problems.

REFERENCES

1. Berkovitz, L.D., "Variational Methods in Problems of Control and Programming," Journal Math. Anal. Appl., Vol. 3, pp. 145-169, 1961.

- 2. Bliss, G.A., Lectures on the Calculus of Variations. Univ y of Chicago Press, Chicago, 1963.
- 3. Elsgoc, L.E., Calculus of Variations. Pergamon Press, Ltd., New York, 1961.
- 4. Gelfand, I.M. and Fomin, S.V., *Calculus of Variations*. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963.
- 5. Kalman, R.E., "The Theory of Optimal Control and the Calculus of Variations," *Mathematical Optimization Techniques*. University of California Press, Los Angeles, California, 1963.

6. Leitman, G., Optimal Control. McGraw-Hill Book Company, New York, 1966.

- 7. Leitman, G. ed., Optimization Techniques. Academic Press, New York, 1962.
- 8. Tou, J., Modern Control Theory. McGraw-Hill Book Company, New York, 1964.

PROBLEMS

1. A linear differential system is described by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$$

where

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad \mathbf{x}^T = [x_1, x_2], \qquad \mathbf{u}^T = [u_1, u_2]$$

Find u(t) such that

$$J = \frac{1}{2} \int_0^2 ||\mathbf{u}||^2 dt$$

is minimum, given $x^{T}(0) = [1, 1]$ and $x_{1}(2) = 0$. 2. Find the conditions necessary for minimizing

$$J = \theta[x(t_f)] + \int_{t_o}^{t_f} \phi(x, \dot{x}, t) dt$$

 $\int given x(t_0) = x_0$ and $g(x, \dot{x}, t) = 0$.

3. Use the results of Problem 2 to find the control u(t), which minimizes

$$J = \frac{s}{2}x^{2}(2) + \frac{1}{2}\int_{0}^{2}u^{2} dt$$

such that $\dot{x} = u(t)$, x(0) = 1.

4. A linear system is described by

$$\dot{x} = -x + u, \qquad x(0) = 1$$

It is desired to minimize

$$J = \frac{1}{2} \int_0^2 (x^2 + u^2) \, dt$$

A feedback law is obtained if we let $u(t) = \alpha x(t)$ where $d\alpha/dt = 0$ such that $\sqrt{\alpha}$ is a constant. Find the equations defining the optimum value of α .

5. Find the differential equations and associated boundary conditions whose solutions minimize

$$J = \frac{1}{2} \int_0^{t_f} u^2 dt$$

for the differential system described by

$$\dot{x}_1 = -x_1 + x_2$$
$$\dot{x}_2 = u$$

with end points given by

$$x_1(0) = x_2(0) = 0$$

$$x_1^2(t_f) + x_2^2(t_f) = t_f^2 + 1$$

6. Find the value of u which minimizes (for t_f unspecified)

$$J = \int_{0}^{t_{f}} \left[\alpha + u^{2}(t) + x^{2}(t) \right] dt$$

for the differential system

$$\dot{x} = -x(t) + u(t), \quad x(0) = 1, \quad x(t_f) = 0$$

7. A linear second-order differential equation is described by

$$\dot{x}_1 = x_2(t), \qquad x_1(0) = 1$$

 $\dot{x}_2 = u \qquad x_2(0) = 1$

Find, by use of the Euler-Lagrange equations and transversality conditions, the optimal control u(t) which minimizes:

(a)
$$J = \int_{0}^{1} u^{2} dt$$
, $x_{1}(1) = x_{2}(1) = 0$
(b) $J = \int_{0}^{1} u^{2} dt$, $x_{1}(1) = 0$
(c) $J = \int_{0}^{t_{f}} u^{2} dt$, $x_{1}(t_{f}) = c(t_{f}) = -t_{f}^{2}$ At $z = \int_{0}^{t_{f}} (1 + 5)(5) t_{0}^{-1} (1 + 5)(5) t_{0}^{-1}$

(Also determine t_f and $x_1(t_f)$.)

(d)
$$J = \int_{0}^{t_{f}} u^{2} dt, \quad x_{1}(t_{f}) = c(t_{f}) = -t_{f}^{2}, \quad x_{2}(t_{f}) = 0$$

(e) $J = \int_{0}^{1} \{ \|\mathbf{x}\|^{2} + \|\mathbf{u}\|^{2} \} dt \quad \mathbf{x}_{1} = \mathbf{x}_{1}^{2} \mathbf{x}_{2}^{2} \mathbf{x$

For all cases, sketch both the optimal system trajectory x(t) and the optimal system control u(t).

8. For the fixed plant dynamics given by

$$\dot{x} = u$$

determine the optimal closed-loop system which minimizes

$$J = \frac{1}{2} \int_0^2 \{u^2 + (x - i)^2\} di$$

 \int where $i(t) = 1 - e^{-t}$.

9. For the fixed plant dynamics given by $\dot{x} = u(t)$, $x(0) = x_0$, determine the optimal closed-loop control which minimizes for fixed t_f

$$J = \frac{1}{2}sx^{2}(t_{f}) + \frac{1}{2}\int_{0}^{t_{f}}u^{2} dt$$

where s is an arbitrary constant. Do this by first determining the optimum open-loop control and trajectory and then let u(t) = k(t)x(t).

THE MAXIMUM PRINCIPLE AND HAMILTON-JACOBI THEORY

In the previous chapter, we formulated many problems in the classical calculus of variations. A derivation of the Euler-Lagrange equations for both the scalar and vector cases was presented. We discussed the associated transversality conditions and some of the difficulties which we may encounter if inequality constraints are present. Several simple optimal control problems were stated and solved. In this chapter we wish to reexamine many of the problems presented in the previous chapter and obtain more general solutions for some of them. In addition, we will develop methods for handling some problems which could not be conveniently formulated by the methods in the previous chapter.

To these ends, we will present the Bolza formulation of the variational calculus using Hamiltonian methods. This will lead us into a proof of the Pontryagin maximum principle and the associated transversality conditions. We will proceed then to a development of the Hamilton-Jacobi equations, which are equivalent to Bellman's equations of continuous dynamic programming. Finally, we will give brief mention to some limitations of dynamic programming. Examples to illustrate the methods will be presented. We will reserve the next chapter for a discussion of some of the many problems which we can formulate and solve using the maximum principle.

In order to fully develop our approach to optimization theory where

the termina ne is not fixed and where the control and state vectors are not necessarily smooth functions, we must consider in more detail the first variation for such problems.

4.1 Variation of functions with terminal times not fixed—the Weierstrass-Erdmann conditions

In this section, we will consider problems which arise when the terminal (or initial) time is not fixed (unspecified in the problem statement). We must reexamine our concept of a variation in order to accurately treat problems wherein the terminal (or initial) time is not fixed if we are to use the powerful concept of the first variation. We thus wish to consider the extremization of

$$J = \int_{t_0}^{t_r} \Phi[\mathbf{x}(t), \dot{\mathbf{x}}(t), t] dt$$
 (4.1-1)

where all admissible trajectories are smooth and where the terminal time is not fixed. We define a variation δJ as the part of

$$\Delta J = J[\mathbf{x} + \mathbf{h}, t_f + \delta t_f] - J[\mathbf{x}, t_f]$$
(4.1-2)

which is linear in h, \dot{h} , δx , $\delta \dot{x}$, and δt_f . Since both x and t_f vary, it is appropriate to consider the variation δx as

$$\delta \mathbf{x} (t_f) = \mathbf{h}(t_f) + \dot{\mathbf{x}}(t_f) \,\delta t_f \tag{4.1-3}$$

For the cost function, Eq. (4.1-1), we find that

$$\Delta J = \int_{t_0}^{t_f + \delta t_f} \Phi[\mathbf{x}(t) + \mathbf{h}(t), \dot{\mathbf{x}}(t) + \dot{\mathbf{h}}(t), t] dt - \int_{t_0}^{t_f} \Phi[\mathbf{x}(t), \dot{\mathbf{x}}(t), t] dt \quad (4.1-4)$$

By taking the linear terms in this equation and performing an integration by parts, we obtain the first variation as[†]

$$\delta J = \Phi[\mathbf{x}(t_f), \dot{\mathbf{x}}(t_f), t_f] \,\delta t_f + \mathbf{h}^T(t_f) \frac{\partial \Phi[\mathbf{x}(t_f), \dot{\mathbf{x}}(t_f), t_f]}{\partial \dot{\mathbf{x}}(t_f)} \\ + \int_{t_o}^{t_f} \mathbf{h}^T(t) \left\{ \frac{\partial \Phi}{\partial \mathbf{x}} - \frac{d}{dt} \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} \right\} dt$$
(4.1-5)

where, for convenience, we assume that $h(t_o) = 0$. Using Eq. (4.1-3), the first variation becomes

$$\delta J = \left\{ \Phi[\mathbf{x}(t_f), \dot{\mathbf{x}}(t_f), t_f] - \dot{\mathbf{x}}^T(t_f) \frac{\partial \Phi[\mathbf{x}(t_f), \dot{\mathbf{x}}(t_f), t_f]}{\partial \dot{\mathbf{x}}(t_f)} \right\} \delta t_f + \delta \mathbf{x}^T(t_f) \frac{\partial \Phi[\mathbf{x}(t_f), \dot{\mathbf{x}}(t_f), t_f]}{\partial \dot{\mathbf{x}}(t_f)}$$
(4.1-6)
$$+ \int_{t_0}^{t_f} \mathbf{h}^T(t) \left\{ \frac{\partial \Phi}{\partial \mathbf{x}} - \frac{d}{dt} \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} \right\} dt$$

†It is not correct to call h(t) the first variation if the terminal time is not fixed. This does not alter any results if differential notation, $\mathbf{x}(t) = \hat{\mathbf{x}}(t) + \epsilon \eta_x(t)$, and $t_f = t_f + \epsilon \eta_f$ are used. It would, of course, be correct to use the symbol $\overline{\delta \mathbf{x}(t)} = \mathbf{h}(t)$, where $\overline{\delta \mathbf{x}(t)}$ is the variation in \mathbf{x} only and does not include a variation in terminal time.

In much of our work, it will be convenient to define a $qu = \frac{1}{2}y$, called the Hamiltonian, by

$$\underline{H[\mathbf{x}(t), \boldsymbol{\lambda}(t), t]} = \Phi - \dot{\mathbf{x}}^T \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} = \Phi + \dot{\mathbf{x}}^T \boldsymbol{\lambda}$$
(4.1-7)

where the Hamiltonian is not a function of \dot{x} x(t) and $\lambda(t)$ are called the canonical variables. In terms of the Hamiltonian, the first variation of Eq. (4.1-1), which is Eq. (4.1-6), becomes

$$\delta J = -\delta \mathbf{x}^{T}(t_{f})\boldsymbol{\lambda}(t_{f}) + H[\mathbf{x}(t_{f}), \boldsymbol{\lambda}(t_{f}), t_{f}] \,\delta t_{f} \\ + \int_{t_{a}}^{t_{f}} \mathbf{h}^{T}(t) \left\{ \frac{\partial H}{\partial \mathbf{x}} + \frac{d\boldsymbol{\lambda}}{dt} \right\} dt$$
(4.1-8)

To establish a necessary condition for a minimum, it is necessary that the integrand in Eqs. (4.1-6) and (4.1-8) vanish and also that the transversality condition, as obtained from Eq. (4.1-8)

$$-\delta \mathbf{x}^{\mathrm{T}}(t_f)\boldsymbol{\lambda}(t_f) + H[\mathbf{x}(t_f), \boldsymbol{\lambda}(t_f), t_f]\,\delta t_f = 0 \tag{4.1-9}$$

be satisfied.

 \sim

Thus far in our development we have considered functions with "smooth" arcs. Let us now consider the problem of minimizing the cost function

$$J = \int_0^1 x^2 (2 - \dot{x})^2 \, dt$$

subject to

$$x(0) = 0, \qquad x(1) =$$

Physically, it is clear that the absolute minimum for J is 0 and that this is obtained for

$$\begin{aligned} x(t) &= 0 & t \in [0, \frac{1}{2}] \\ x(t) &= 2t - 1 & t \in [\frac{1}{2}, 1] \end{aligned}$$

which is certainly a solution to the Euler-Lagrange equation for this problem

 $x^2\ddot{x} + x\dot{x}^2 - 4x = 0$

There is one disturbing feature about this solution, however, in that the optimum x(t) has a "corner" or discontinuous first derivative which gives rise to formal difficulty since \ddot{x} is contained in the Euler-Lagrange equations. Certainly, though, this particular function x(t) is smooth in a piecewise sense, or piecewise smooth. We will define a function as being smooth in an interval of time if it is continuous and has a continuous time derivative in the interval. A function is piecewise smooth if it is smooth except for, at most, a finite number of points. We may examine further the special requirements imposed by this "corner" by considering the Weierstrass-Erdmann conditions [1].

The Weierstrass-Erdmann corner conditions furnish us with the requirements for a solution at corners or jumps in the extremal curve. In all of our work thus far (except Section 3.8), we have considered functions defined for smooth ar ad thus have allowed only smooth solutions of the associated variational problems. The Weierstrass-Erdmann conditions extend the class of admissible arcs to include those which are only piecewise smooth. Specifically, we wish to find the function $\hat{x}(t)$ among all functions x(t) which are continuously differentiable for $t \in [a, b]$, except at some point $c \in (a, b)$, and which satisfies prescribed boundary conditions such that the functional

$$J(\mathbf{x}) = \int_{a}^{b} \Phi[\mathbf{x}(t), \dot{\mathbf{x}}(t), t] dt$$
 (4.1-10)

has an extremum. It is of course clear that, for $t \in [a, c]$ and $t \in [c, b]$, the function x(t) must satisfy the Euler-Lagrange equations for a minimum

$$\frac{d}{dt}\frac{\partial\Phi}{\partial\dot{\mathbf{x}}} - \frac{\partial\Phi}{\partial\mathbf{x}} = 0 \tag{4.1-11}$$

We may rewrite the cost function as a sum of two cost functions:

$$J(\mathbf{x}) = \int_{a}^{b} \Phi[\mathbf{x}(t), \dot{\mathbf{x}}(t), t] dt + \int_{b}^{b} \Phi[\mathbf{x}(t), \dot{\mathbf{x}}(t), t] dt$$

= $J_{1}(\mathbf{x}) + J_{2}(\mathbf{x})$ (4.1-12)

We may now take the first variation $\delta J_1(\mathbf{x})$ and $\delta J_2(\mathbf{x})$ separately. We assume, for the moment only, that a and b are fixed, and we require that the $\hat{\mathbf{x}}(t)$ calculated from $J_1(\mathbf{x})$ and $J_2(\mathbf{x})$ is the same at t = c which is unknown. Since c is arbitrary, the first variation of $J_1(\mathbf{x})$ is

$$\delta J_{1}(\mathbf{x}) \stackrel{=}{=} \delta \mathbf{x}^{T}(a) \frac{\partial \Phi[\mathbf{x}(a), \dot{\mathbf{x}}(a), a]}{\partial \dot{\mathbf{x}}(a)} \\ + \left\{ \Phi[\mathbf{x}(c), \dot{\mathbf{x}}(c), c] - \dot{\mathbf{x}}^{T}(c) \frac{\partial \Phi[\mathbf{x}(c), \dot{\mathbf{x}}(c), c]}{\partial \dot{\mathbf{x}}(c)} \right\} \delta c \qquad (4.1-13) \\ + \delta \mathbf{x}^{T}(c) \frac{\partial \Phi[\mathbf{x}(c), \dot{\mathbf{x}}(c), c]}{\partial \dot{\mathbf{x}}(c)} + \int_{a}^{c} \mathbf{h}^{T}(t) \left\{ \frac{\partial \Phi}{\partial \mathbf{x}} - \frac{d}{dt} \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} \right\} dt$$

Since $\mathbf{x}(t)$ satisfies the Euler-Lagrange equations for an extremal and since $\delta \mathbf{x}(a) = \mathbf{0}$, we have

$$\delta J_{i}(\mathbf{x}) = \delta \mathbf{x}^{T}(\tau) \frac{\partial \Phi[\mathbf{x}(\tau), \dot{\mathbf{x}}(\tau), \tau]}{\partial \dot{\mathbf{x}}(\tau)} + \left\{ \Phi[\mathbf{x}(\tau), \dot{\mathbf{x}}(\tau), \tau] - \dot{\mathbf{x}}^{T}(\tau) \frac{\partial \Phi[\mathbf{x}(\tau), \dot{\mathbf{x}}(\tau), \tau]}{\partial \dot{\mathbf{x}}(\tau)} \right\} \delta \tau \qquad (4.1-14)$$

(for $\tau = c - 0$)

In a similar fashion, we can show that the first variation for the extremal solution of $J_2(\mathbf{x})$ is

$$\delta J_{2}(\mathbf{x}) = -\delta \mathbf{x}^{T}(\tau) \frac{\partial \Phi[\mathbf{x}(\tau), \dot{\mathbf{x}}(\tau), \tau]}{\partial \dot{\mathbf{x}}(\tau)} - \left\{ \Phi[\mathbf{x}(\tau), \dot{\mathbf{x}}(\tau), \tau] - \dot{\mathbf{x}}^{T}(\tau) \frac{\partial \Phi[\mathbf{x}(\tau), \dot{\mathbf{x}}(\tau), \tau]}{\partial \dot{\mathbf{x}}(\tau)} \right\} \delta \tau \qquad (4.1-15) (\text{for } \tau = c + 0)$$

In order to obtain the extremum, the extremal solution mu

$$\delta J(\mathbf{x}) = \delta J_1(\mathbf{x}) + \delta J_2(\mathbf{x}) = 0$$
 (4.1-16)

Thus

$$\frac{\partial \Phi}{\partial \dot{\mathbf{x}}}\Big|_{t=c=0} = \frac{\partial \Phi}{\partial \dot{\mathbf{x}}}\Big|_{t=c=0}$$
(4.1-17)

$$\Phi - \dot{\mathbf{x}}^{T} \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} \Big|_{t=c=0} = \Phi - \dot{\mathbf{x}}^{T} \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} \Big|_{t=c=0}$$
(4.1-18)

since δx and δt_f are arbitrary. These requirements, Eqs. (4.1-17) and (4.1-18), are called the Weierstrass-Erdmann corner conditions and must hold at any point c where the extremal has a corner. If we use the Hamiltonian canonical variables

$$H = \Phi - \dot{\mathbf{x}}^T \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} = \Phi + \boldsymbol{\lambda}^T \dot{\mathbf{x}}$$
(4.1-19)

$$\boldsymbol{\lambda} = -\frac{\partial \Phi}{\partial \dot{\mathbf{x}}} \tag{4.1-20}$$

we immediately see that the Weierstrass-Erdmann conditions simply require H and λ to be continuous on the optimum trajectory at all points where there are corners.

It is possible to generalize the Weierstrass-Erdmann corner condition in terms of the Weierstrass E function, defined as

$$E = \left\{ \Phi(\mathbf{x}, \dot{\mathbf{X}}, t) - \Phi(\mathbf{x}, \dot{\mathbf{x}}, t) - (\dot{\mathbf{X}} - \dot{\mathbf{x}})^{T} \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} \right\} \ge 0 \qquad (4.1-21)$$

where $\partial \Phi / \partial \dot{\mathbf{x}}$ is evaluated at the optimum solution vector $\mathbf{x}(t)$ and $\dot{\mathbf{x}}$ is an admissible vector, one which satisfies all constraints. This provides us with necessary conditions for an extremum under constrained conditions [1, 6].†

In the next section, we will examine, among other things, minimum time problems for problems where the extremal arcs or trajectories are smooth but where the terminal time is not fixed. Thus we will need to use the expanded variational notation presented in the first part of this section. Then we will consider the important case in optimal control where the admissible control and state variables are restricted. We will then use the Weierstrass E function to develop a maximum principle. In this work we will find it necessary to interpret the vector x in this section as the generalized state vector, which includes the control vector.

4.2 The Bolza problem and its solution

We will introduce the Hamiltonian approach to the solution of variational problems by considering the Bolza problem of the variational calculus and

†Certain other conditions are also required, such as absence of conjugate points. References [1], [6], and [11] provide much elaboration on this point.

is. We shall see that the results obtained are similar in many several exter ways to the results of the Pontryagin maximum principle which we will present in the next section. Our approach to this section will be, as before, to employ classical variational techniques.

4.2-1. Continuous optimal control problems-fixed beginning and terminal times—no inequality constraints

We are given a nonlinear differential system operating over the fixed interval $t \in [t_0, t_f]$ of the form

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t) \tag{4.2-1}$$

where x(t), the *n* vector state variable, is determined by u(t), the *m* vector control variable, and the initial condition vector

$$\mathbf{x}(t_o) = \mathbf{x}_o \tag{4.2-2}$$

Actually, the statement that all components of the *n*-dimensional state vector are fixed at the initial time, t_0 , is a bit restrictive, although it is generally true for optimal control problems. However, in the state and parameter estimation problem, not all of the components of the state vector are specified initially. Thus a more general* statement of the specified initial conditions is

$$\mathbf{M}(t_o)\mathbf{x}(t_o) = \mathbf{m}_o \tag{4.2-3}$$

where \mathbf{m}_{o} is an r vector. In a similar fashion, some of the terminal states may be specified. In this case, we may find[†]

$$N(t_f)x(t_f) = n_f \tag{4.2-4}$$

where \mathbf{n}_f is a q vector, $q \leq n$.

We will return to a discussion of this point momentarily. But now we desire to determine the control u(t) such as to minimize

$$\int_{\lambda t}^{t_{0}} \lambda t + \int_{t_{0}}^{t_{0}} \phi \lambda^{\dagger} \qquad J = \theta[\mathbf{x}(t), t] \Big|_{t=t_{0}}^{t=t_{0}} + \int_{t_{0}}^{t_{0}} \phi[\mathbf{x}(t), \mathbf{u}(t), t] dt \qquad (4.2-5)$$

We use the method of Lagrange multipliers discussed in the last chapter to adjoin the system differential equality constraint to the cost function, which gives us

$$J = \theta[\mathbf{x}(t), t] \Big|_{t=t_0}^{t=t_f} + \int_{t_0}^{t_f} \{\phi[\mathbf{x}(t), \mathbf{u}(t), t] + \lambda^{T}(t) [\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t] - \dot{\mathbf{x}}] \} dt$$

$$(4.2-6)$$

We define a scalar function, the Hamiltonian, as

$$H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] = \phi[\mathbf{x}(t), \mathbf{u}(t), t] + \boldsymbol{\lambda}^{T}(t)\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t] \quad (4.2-7)$$

*These are, of course, still not the most general statements for the initial and terminal manifold.

These are, of course, not the most general statements for the terminal manifold.

Thus the cost function becomes

$$J = \theta[\mathbf{x}(t), t]\Big|_{t=t_0}^{t=t_f} + \int_{t_0}^{t_f} \{H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] - \boldsymbol{\lambda}^{T}(t)\dot{\mathbf{x}}\} dt \quad (4.2-8)$$

- 1 11

If we integrate the last term in the integrand of Eq. (4.2-8) by parts, we obtain

$$J = \left\{\theta[\mathbf{x}(t), t] - \boldsymbol{\lambda}^{T}(t)\mathbf{x}(t)\right\}\Big|_{t=t_{o}}^{t=t_{f}} + \int_{t_{o}}^{t_{f}} \left\{H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] + \boldsymbol{\lambda}^{T}\mathbf{x}(t)\right\}dt$$
(4.2-9)

We now take the first variation of J for variations in the control vector and, consequently, in the state vector about the optimal control and optimal state vector. This gives us

A necessary condition for a minimum is that the first variation in J vanish for arbitrary variations δx and δu . Thus we have as the necessary condition for a minimum the very important relations

$$\nabla \delta \mathbf{x}^{T} \left[\frac{\partial \theta}{\partial \mathbf{x}} - \boldsymbol{\lambda} \right] = 0, \quad \text{for} \quad t = t_{o}, t_{f}$$
(4.2-11)

$$\dot{\lambda} = -\frac{\partial H}{\partial x}, \quad \dot{b} = \mathbf{f}(\mathbf{x}, \mathbf{u}, t) = \frac{\partial H}{\partial \lambda}$$
(4.2-12)

$$\begin{aligned}
\psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{x}} - \mathbf{\lambda} \right] &= \mathbf{0}, \quad \text{for } t = t_{o}, t_{f} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \hat{f} = \dot{\psi} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{x}} - \mathbf{\lambda} \right] = \mathbf{0}, \quad \text{for } t = t_{o}, t_{f} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{x}^{*} \left[\frac{\partial H}{\partial \mathbf{\lambda}} - \mathbf{0} \right] \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{\lambda} \end{bmatrix} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{\lambda} \end{bmatrix} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{\lambda} \end{bmatrix} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{\lambda} \end{bmatrix} \\
\end{pmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{\lambda} \end{bmatrix} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} \\
\end{pmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{\lambda} \end{bmatrix} \\
\end{pmatrix} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} \\
\end{pmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{\lambda} \end{bmatrix} \\
\end{pmatrix} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} \\
\end{pmatrix} &= \mathbf{0} \quad \psi \ \partial \mathbf{\lambda} \end{bmatrix} \\
\end{pmatrix} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} \\
\end{pmatrix} \\
\end{pmatrix} \\
\end{pmatrix} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} \\
\end{pmatrix} \\
\end{pmatrix} \\
\end{pmatrix} \\
\end{pmatrix} \\
\begin{pmatrix} \partial H \\ \partial \mathbf{\lambda} \end{bmatrix} \\
\end{pmatrix}$$

Since Eqs. (4.2-3) and (4.2-4), or alternate and perhaps more general expressions for the terminal manifold, may interrelate the components of the vector variation δx at the terminal time, and since an initial manifold may interrelate the components of the vector variation δx initially, Eq. (4.2-11) is the general statement for the transversality condition for the problem treated here. For a large class of optimal control problems, the initial state of the system is specified but the terminal state is unspecified. In that case, Eq. (4.2-11) yields the transversality conditions as state is me

$$\chi(t_0) = \chi_0, \qquad \chi(t_0) = \chi_0, \qquad \lambda(t_f) = \frac{\partial \theta[\mathbf{x}(t_f), t_f]}{\partial \mathbf{x}(t_f)}$$

it tot 4

(4.2-14)

٥4

since $\delta \mathbf{x}(t_0) = 0$, $\mathbf{x}(t_0)$ is fixed, and $\delta \mathbf{x}(t_1)$ is completely arbitrary. In another broad class of problems $\mathbf{x}(t_0)$ and $\mathbf{x}(t_1)$ are fixed. In this case $\delta \mathbf{x}(t_0)$ and $\delta \mathbf{x}(t_1)$ must be zero, and $x(t_0)$ and $x(t_f)$ are the boundary conditions for the twopoint boundary value problem. For many estimation problems, neither $\mathbf{x}(t_0)$ nor $\mathbf{x}(t_1)$ are fixed (specified). In that case, Eq. (4.2-11) yields $\Lambda(t_0) =$ $\lambda(t_1) = 0$ as the boundary conditions for the problem since $\delta x(t_0)$ and $\delta \mathbf{x}(t_{t})$ are arbitrary. In still another case, we might have $\mathbf{x}(t_{\theta}) = \mathbf{x}_{\theta}, \theta = 0$,

and $||\mathbf{x}(t_f)| = 1$. In this event, it is easy for us to show that the final transversality conditions are obtained if we solve the two scalar equations, each in *n* variables.

 $\delta \mathbf{x}^{\mathrm{T}}(t_f) \mathbf{x}(t_f) = 0, \qquad \delta \mathbf{x}^{\mathrm{T}}(t_f) \,\boldsymbol{\lambda}(t_f) = 0 \qquad (4.2-15)$

We now give a more general and precise interpretation to the transversality conditions. For the general case where the initial manifold is

$$\mathbf{M}[\mathbf{x}(t_0), t_0] = 0 \quad \text{h-vector k-a} \qquad (4.2-16)$$

and the terminal manifold is

$$t_{f}] = 0 \quad \text{the } u \text{ intide indust}$$

$$(4.2-17)$$

we adjoin these conditions to the θ function by means of Lagrange multipliers, ξ and ν and obtain for the cost function

 $N[x(t_{f}),$

$$J = \theta[\mathbf{x}(t), t] \Big|_{t=t_o}^{t=t_f} - \hat{\boldsymbol{\xi}}^T \mathbf{M}[\mathbf{x}(t_o), t_o] + \boldsymbol{\nu}^T \mathbf{N}[\mathbf{x}(t_f), t_f] \\ + \int_{t_o}^{t_f} \{H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] - \boldsymbol{\lambda}^T(t) \dot{\mathbf{x}}\} dt$$
(4.2-18)

We now apply the usual variational techniques to obtain for the transversality conditions at the initial time:

$$\lambda(t_o) = \frac{\partial \theta}{\partial x} + \left(\frac{\partial \mathbf{M}^T}{\partial x}\right) \boldsymbol{\xi}, \qquad \mathbf{M}[\mathbf{x}(t), t] = 0 \qquad t = t_o \qquad (4.2-19)$$

The *n* initial conditions are obtained from this, with *r* parameters to be found in Eq. (4.2-19) such that we satisfy the *r* conditions of Eq. (4.2-16). In a similar fashion, the terminal condition is

$$\lambda(t_f) = \frac{\partial \theta}{\partial \mathbf{x}} + \left(\frac{\partial \mathbf{N}^T}{\partial \mathbf{x}}\right) \boldsymbol{\nu}, \qquad \mathbf{N}[\mathbf{x}(t), t] = 0, \qquad t = t_f \qquad (4.2-20)$$

n terminal conditions are obtained from this with q parameters v found in Eq. (4.2-20) such that the q conditions of Eq. (4.2-17) are satisfied.

The *n* vector differential equation obtained from Eq. (4.2-12) will be called the adjoint equation. Equation (4.2-13) provides the coupling relation between the original plant dynamics, Eq. (4.2-1), and the adjoint equation, the λ equation of Eq. (4.2-12). This coupling equation was obtained from

$$\delta J = \cdots + \int_{t_0}^{t_1} \left\{ \partial \mathbf{u}^T \frac{\partial H}{\partial \mathbf{u}} + \cdots \right\} dt \xrightarrow{\text{the free in } t_1} \left(\psi_1 \mathcal{V}_1 \mathbf{v}^{(0)} \right)$$

and it is important to note that δu must be completely arbitrary in order for us to draw the conclusion that $\partial H/\partial u = 0$ to obtain the optimal control. For the problem posed here where the admissible control set is infinite, δu can be completely arbitrary. Where the admissible control is bounded, δu cannot be completely arbitrary, and $\partial H/\partial u = 0$ may not be the correct requirement. We will have more to say about this later. The solution we have obtained for this problem is a special case of the Po. , agin maximum principle.

It is also interesting to note that, since $H = \phi + \lambda^T f$, we may compute the total derivative with respect to time as

$$\frac{dH}{dt} = \frac{\partial \phi}{\partial t} + \dot{\mathbf{x}}^{T} \left[\frac{\partial \phi}{\partial \mathbf{x}} + \left(\frac{\partial \mathbf{f}^{T}}{\partial \mathbf{x}} \right) \boldsymbol{\lambda} \right] + \dot{\mathbf{u}}^{T} \left[\frac{\partial \phi}{\partial \mathbf{u}} + \left(\frac{\partial \mathbf{f}^{T}}{\partial \mathbf{u}} \right) \boldsymbol{\lambda} \right] + \dot{\boldsymbol{\lambda}}^{T} \mathbf{f} + \boldsymbol{\lambda}^{T} \frac{\partial \mathbf{f}}{\partial t}$$
(4.2-21)

but from Eqs. (4.2-12) and (4.2-7), we have

$$\dot{\boldsymbol{\lambda}} = -\frac{\partial H}{\partial \mathbf{x}} = -\frac{\partial \phi}{\partial \mathbf{x}} - \left(\frac{\partial \mathbf{f}^{T}}{\partial \mathbf{x}}\right) \boldsymbol{\lambda}$$
(4.2-22)

and from Eq. (4.2-7),

$$\frac{\partial H}{\partial \mathbf{u}} = \frac{\partial \phi}{\partial \mathbf{u}} + \left(\frac{\partial \mathbf{f}^{T}}{\partial \mathbf{u}}\right) \boldsymbol{\lambda}$$
(4.2-23)

Thus, since $\dot{\mathbf{x}}^T \dot{\boldsymbol{\lambda}} = \dot{\boldsymbol{\lambda}}^T \mathbf{f}$, Eq. (4.2-21) becomes

$$\frac{dH}{dt} = \frac{\partial \phi}{\partial t} + \lambda^{T} \frac{\partial \mathbf{f}}{\partial t} + \dot{\mathbf{u}}^{T} \frac{\partial H}{\partial \mathbf{u}}$$
(4.2-24)

We see that, if ϕ and f are not explicit functions of time, the Hamiltonian is constant along an optimal trajectory where $\partial H/\partial u = 0$. It can be shown that this is always true along an optimal trajectory, even if we cannot require $\partial H/\partial u = 0$. We will make use of this fact in a later development.

In order that J be a minimum, the second variation of J must be nonnegative along all trajectories such that Eq. (4.2-1) is satisfied. Therefore we need to compute the second variation of J in Eq. (4.2-9) and impose the requirement that the variation of Eq. (4.2-1) is zero, or that

$$\delta \dot{\mathbf{x}} - \left(\frac{\partial \mathbf{f}^{f}}{\partial \mathbf{x}}\right) \delta \mathbf{x} - \left(\frac{\partial \mathbf{f}^{f}}{\partial \mathbf{u}}\right) \delta \mathbf{u} = \mathbf{0}$$
(4.2-25)

Applying this condition and taking the quadratic part of the Taylor series expansion of $J(x + \delta x, u + \delta u) - J(x, u)$, Eq. (4.1-4), we have for the second variation

$$\delta^{2}J = \frac{1}{2} \left[\delta \mathbf{x}^{T} \frac{\partial^{2}\theta}{\partial \mathbf{x}^{2}} \delta \mathbf{x} \right] \Big|_{t=t_{o}}^{t=t_{f}} + \frac{1}{2} \int_{t_{o}}^{t_{f}} [\delta \mathbf{x}^{T} \delta \mathbf{u}^{T}] \left[\frac{\partial^{2}H}{\partial \mathbf{x}^{2}} - \frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{x}} \right] \left[\frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{x}} \right]^{T} - \frac{\partial^{2}H}{\partial \mathbf{u}^{2}} \left[\frac{\partial}{\partial \mathbf{u}} \frac{\partial H}{\partial \mathbf{x}} \right] \left[\frac{\partial}{\partial \mathbf{u}} \frac{\partial}{\partial \mathbf{u}} \right] \left[\frac{\partial}{\partial \mathbf{u}} \frac{\partial}{\partial \mathbf{x}} \right] \left[\frac{\partial}{\partial \mathbf{u}} \frac{\partial}{\partial \mathbf{u}} \frac{\partial}{\partial \mathbf{u}} \right] \left[\frac{\partial}{\partial \mathbf{u}} \frac{\partial}{\partial \mathbf{u}} \right] \left[\frac{\partial}{\partial \mathbf{u}} \frac{\partial}{\partial \mathbf{u}} \frac{\partial}{\partial \mathbf{u}} \frac{\partial}{\partial \mathbf{u}} \right] \left[\frac{\partial}{\partial \mathbf{u}} \frac{\partial}{\partial \mathbf{u}} \frac{\partial}{\partial \mathbf{u}} \right] \left[\frac{\partial}{\partial \mathbf{u}} \frac{\partial}{$$

and this must be nonnegative for a minimum. This will be the case if the n + m square matrix under the integral sign and $\partial^2 \theta / \partial x^2$ are nonnegative definite.

Example 4.2-

We are given the differential system consisting of three cascaded integrators

$$\dot{x}_1 = x_2$$
 $x_1(0) = 0$
 $\dot{x}_2 = x_3$ $x_2(0) = 0$
 $\dot{x}_3 = u$ $x_3(0) = 0$

We wish to drive the system so that we reach the terminal manifold

$$x_1^2(1) + x_2^2(1) = 1$$

such that the cost function

$$J=\tfrac{1}{2}\int_0^1 u^2\,dt$$

is minimized. The solution to the problem proceeds as follows. We compute the Hamiltonian from Eq. (4.2-7) as

$$H=\tfrac{1}{2}u^2+\lambda_1x_2+\lambda_2x_3+\lambda_3u$$

and determine the coupling relation, Eq. (4.2-13),

$$\frac{\partial H}{\partial u}=0=u+\lambda$$

and the adjoint Eq. (4.2-12)

$$egin{aligned} \dot{\lambda}_1 &= -rac{\partial H}{\partial x_1} = 0 \ \dot{\lambda}_2 &= -rac{\partial H}{\partial x_2} = -\lambda_1 \ \dot{\lambda}_3 &= -rac{\partial H}{\partial x_3} = -\lambda_2 \end{aligned}$$

From Eqs. (4.2-17) and (4.2-20) we see that the transversality condition at the terminal time is

 $x_1^2(1) + x_2^2(1) = 1$ $\lambda(1) = \frac{\partial \theta}{\partial x} + \left(\frac{\partial N^T}{\partial x}\right) \nu, \qquad t = t_f$

where

$$N[\mathbf{x}(t_f), t_f] = x_1^2(t_f) + x_2^2(t_f) - 1 = 0, \qquad t_f = 1$$

Thus

$$\lambda(1) = \begin{bmatrix} \lambda_1(1) \\ \lambda_2(1) \\ \lambda_3(1) \end{bmatrix} = \begin{bmatrix} 2x_1(1)\nu \\ 2x_2(1)\nu \\ 0 \end{bmatrix}$$

Thus the problem of finding the optimal control and associated trajectories for this example is completely resolved when we solve the two-point boundary value problem represented by

$$\dot{x}_1 = x_2 \qquad x_1(0) = 0$$

$$\begin{aligned} \dot{x}_2 &= x_3 & x_2(0) = 0 \\ \dot{x}_3 &= -\lambda_3 & x_3(0) = 0 \\ \dot{\lambda}_1 &= 0 & \lambda_1(1) = 2x_1(1)\nu \\ \dot{\lambda}_2 &= -\lambda_1 & \lambda_2(1) = 2x_2(1)\nu \\ \dot{\lambda}_3 &= -\lambda_2 & \lambda_3(1) = 0 \end{aligned}$$

Although the six first-order differential equations represented above are perfectly linear and time invariant, the solution to this problem is complicated by the nonlinear nature of the terminal conditions. We shall discover various iterative schemes for overcoming this difficulty in later chapters.

4.2-2. Continuous optimal control problems—fixed beginning and unspecified terminal times—no inequality constraints

The material of the previous subsection may be easily extended to the case where the terminal manifold equation is a function of the terminal time and the terminal time is unspecified. For convenience, we will assume that the initial time and the initial state vector are specified. Solution may then easily be obtained for the case where the initial time and initial state vector are unspecified. Therefore the problem becomes one of minimizing the cost function

$$J = \theta[\mathbf{x}(t_f), t_f] + \int_{t_0}^{t_f} \phi[\mathbf{x}(t), \mathbf{u}(t), t] dt \qquad (4.2-27)$$

for the system described by

$$\dot{\mathbf{x}} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t], \qquad \mathbf{x}(t_o) = \mathbf{x}_o$$
 (4.2-28)

where t_0 is fixed and where, at the unspecified terminal time $t = t_f$, the q vector terminal manifold equation

$$N[x(t_f), t_f] = 0 (4.2-29)$$

is satisfied. It may be noted here that the terminal manifold line, $x(t_f) = c(t_f)$, of the previous chapter becomes here $N[x(t_f), t_f] = 0$ which is more general. We adjoin the equality constraints to the cost function via Lagrange multipliers to obtain

$$J = \theta[\mathbf{x}(t_f), t_f] + \nu^T \mathbf{N}[\mathbf{x}(t_f), t_f] + \int_{t_o}^{t_f} \{\phi[\mathbf{x}(t), \mathbf{u}(t), t] + \lambda^T(t)[\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t] - \dot{\mathbf{x}}]\} dt$$
(4.2-30)

As before, we define the Hamiltonian

 $H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] = \phi[\mathbf{x}(t), \mathbf{u}(t), t] + \boldsymbol{\lambda}^{T}(t)\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t]$ and integrate a portion of the cost function, Eq. (4.2-30), to obtain

$$J = \theta[\mathbf{x}(t_f), t_f] + \boldsymbol{\nu}^T \mathbf{N}[\mathbf{x}(t_f), t_f] - \boldsymbol{\lambda}^T(t_f)\mathbf{x}(t_f) + \boldsymbol{\lambda}^T(t_o)\mathbf{x}(t_o) + \int_{t_o}^{t_f} \{H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] + \dot{\boldsymbol{\lambda}}^T \mathbf{x}(t)\} dt$$
(4.2-31)

We again)m the first variation by letting

 $\mathbf{x}(t) = \mathbf{\hat{x}}(t) + \mathbf{\hat{h}}(t), \quad \mathbf{u}(t) = \mathbf{\hat{u}}(t) + \mathbf{\delta u}(t), \quad t_f = t_f + \mathbf{\delta t}_f \quad (4.2-32)$

and then we form the difference $J[x, u, l_f] - J[\hat{x}, \hat{u}, l_f]$ and retain only the linear terms. Thus we have, after dropping the \wedge notation for convenience,

$$\delta J = \delta t_f \left\{ H[\mathbf{x}(t_f), \mathbf{u}(t_f), \boldsymbol{\lambda}(t_f), t_f] + \frac{\partial \Theta}{\partial t_f} \right\} + \delta \mathbf{x}^T(t_f) \left\{ \frac{\partial \Theta}{\partial \mathbf{x}} - \boldsymbol{\lambda}(t_f) \right\} + \int_{t_a}^{t_f} \left\{ \mathbf{h}^T(t) \left[\frac{\partial H}{\partial \mathbf{x}} + \dot{\boldsymbol{\lambda}} \right] + \delta \mathbf{u}^T(t) \left[\frac{\partial H}{\partial \mathbf{u}} \right] \right\} dt$$
(4.2-33)

where

$$\Theta[\mathbf{x}(t_f), \boldsymbol{\nu}, t_f] = \theta[\mathbf{x}(t_f), t_f] + \boldsymbol{\nu}^{\mathrm{T}} \mathbb{N}[\mathbf{x}(t_f), t_f]$$
(4.2-34)

We must set this first variation equal to zero to obtain the necessary conditions for a minimum. Therefore, the equations which determine the optimal control and state vector are

$$H = \phi[\mathbf{x}(t), \mathbf{u}(t), t] + \lambda^{T}(t)\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t]$$
(4.2-35)

$$\frac{\partial H}{\partial \lambda} = \dot{\mathbf{x}} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t]$$
(4.2-36)

$$\frac{\partial H}{\partial \mathbf{x}} = -\dot{\boldsymbol{\lambda}} = \frac{\partial f^{T}[\mathbf{x}(t), \mathbf{u}(t), t]}{\partial \mathbf{x}} \boldsymbol{\lambda}(t) + \frac{\partial \phi[\mathbf{x}(t), \mathbf{u}(t), t]}{\partial \mathbf{x}} \qquad (4.2-37)$$

$$\frac{\partial H}{\partial \mathbf{u}} = \mathbf{0} = \frac{\partial \phi[\mathbf{x}(t), \mathbf{u}(t), t]}{\partial \mathbf{u}} + \frac{\partial f^{T}[\mathbf{x}(t), \mathbf{u}(t), t]}{\partial \mathbf{u}} \boldsymbol{\lambda}(t)$$
(4.2-38)

These represent the 2n differential equations for the two-point boundary value problems. The conditions at the initial time are

$$\mathbf{x}(t_o) = \mathbf{x}_o \tag{4.2-39}$$

whereas those at the final time are

$$\boldsymbol{\lambda}(t_f) = \frac{\partial \Theta}{\partial \mathbf{x}(t_f)} = \frac{\partial \theta}{\partial \mathbf{x}(t_f)} + \left[\frac{\partial \mathbf{N}^T}{\partial \mathbf{x}(t_f)}\right] \boldsymbol{\nu}$$
(4.2-40)

$$N[x(t_f), t_f] = 0 (4.2-41)$$

and

$$H[\mathbf{x}(t_f), \mathbf{u}(t_f), \boldsymbol{\lambda}(t_f), t_f] + \frac{\partial \theta}{\partial t_f} + \left(\frac{\partial \mathbb{N}^T}{\partial t_f}\right) \boldsymbol{\nu} = 0 \qquad (4.2-42)$$

Equation (4.2-40) provides n conditions with q Lagrange multipliers to be determined. Equation (4.2-41) provides q equations to eliminate the Lagrange multipliers, and Eq. (4.2-42) provides the one additional equation which we must have to determine the unspecified terminal time. Example 4.2-2

For the first-order single integration system

$$\dot{x} = u, \quad x(0) =$$

we desire to find the control u(t) which makes $x(t_f) = 0$, where t_f is unspecified, such as to make, for specified values of α and β ,

$$J = t_f^{\alpha} + \frac{1}{2}\beta \int_0^{t_f} u^2 dt$$

a minimum. For this problem

$$N[x(t_f), t_f] = x(t_f) = 0, \qquad \phi = \frac{1}{2}\beta u^2$$
$$\theta = t_f^{\alpha}, \qquad H = \frac{1}{2}\beta u^2 + \lambda u$$

The canonic equations are

$$\dot{x} = u = -\frac{\lambda}{\beta}, \quad \dot{\lambda} = 0$$

with the boundary conditions x(0) = 0, $x(t_f) = 0$, where we determine the final time by solving Eq. (4.2-42) which becomes, for this example,

$$-\frac{\lambda^2(t_f)}{2\beta} + \alpha t_f^{\alpha-1} = 0$$

The solutions to the canonic equations are

$$x(t) = -\frac{\lambda(t_f)t}{\beta} + 1, \quad \lambda(t) = \lambda(t_f)$$

But since $x(t_f) = 0$, $t_f = \beta \lambda^{-1}(t_f)$, and in the particular case where $\beta = \alpha = 1$, we can easily show from the a foregoing that $\lambda(t_f) = +(2)^{1/2}$, which determines the solution to this example. The optimum control is $u(t) = -\lambda(t) = -2^{1/2}$. The corresponding trajectory is $x(t) = 1 - 2^{1/2}t$, with $t_f = 2^{-1/2}$.

Example 4.2-3

A problem which will be of considerable interest to us later will be the "minimum time" problem. In that case

$$\theta[\mathbf{x}(t_f), t_f] = t_f, \qquad \phi = 0$$

and we specify the optimal control and corresponding trajectory by solving Eqs. (4.2-35) through (4.2-38), which become

$$H[\mathbf{x}(t), \mathbf{u}(t), \lambda(t), t] = \lambda^{T}(t)\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t]$$
$$\frac{\partial H}{\partial \lambda} = \dot{\mathbf{x}} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t]$$
$$\frac{\partial H}{\partial \mathbf{x}} = -\dot{\lambda} = \frac{\partial \mathbf{f}^{T}[\mathbf{x}(t), \mathbf{u}(t), t]}{\partial \mathbf{x}}\lambda(t)$$
$$\frac{\partial H}{\partial \mathbf{u}} = \mathbf{0} = \frac{\partial \mathbf{f}^{T}[\mathbf{x}(t), \mathbf{u}(t), t]}{\partial \mathbf{u}}\lambda(t)$$

with the bou-

y conditions specified by Eqs. (4.2-39) through (4.2-42)

$$\mathbf{x}(t_o) = \mathbf{x}_o$$
$$\lambda(t_f) = \frac{\partial \mathbf{N}^T}{\partial \mathbf{x}(t_f)} \boldsymbol{\nu}$$
$$\mathbf{N}[\mathbf{x}(t_f), t_f] = \mathbf{0}$$
$$H[\mathbf{x}(t_f), \mathbf{u}(t_f), t_f] = -1 - \left(\frac{\partial \mathbf{N}^T}{\partial t_f}\right) \boldsymbol{\nu}$$

In many cases, the system is brought to rest at the unspecified time, and the terminal manifold is the origin, so that

$$N[\mathbf{x}(t_f), t_f] = \mathbf{x}(t_f) = \mathbf{0}$$

Then the foregoing expressions reduce to

 $\mathbf{x}(t_o) = \mathbf{x}_o, \quad \mathbf{x}(t_f) = \mathbf{0}$ $H[\mathbf{x}(t_f), \mathbf{u}(t_f), \lambda(t_f), t_f] = -1$

If the Hamiltonian is not an explicit function of time, Eq (4.2-24), which applies here as well, yields dH/dt = 0; therefore, for this minimum time problem

$$H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] = H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t)] = -1$$

It should be emphasized that we are not solving the usual minimum time problem since we have imposed no inequality constraints on the control (or state) variables. An alternate version of this problem would be to consider $\theta = 0$ and $\phi = 1$. This changes the Hamiltonian for this particular problem, but it certainly does not change the optimal control and state vector, as the reader can easily verify.

4.3 The Bolza problem with control and state variable inequality constraints—the Pontryagin maximum principle

In the prior work in this chapter we treated the Bolza problem with no inequality constraints present on either the control or the state variable. We found for example that a minimum of

$$J = \theta[\mathbf{x}(t_f), t_f] + \int_{t_o}^{t_f} \phi[\mathbf{x}(t), \mathbf{u}(t), t] dt$$

for a system described by

 $\dot{\mathbf{x}} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t], \qquad \mathbf{x}(t_o) = \mathbf{x}_o$

with t_o and t_f fixed may be obtained if we define a Hamiltonian as

$$H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] = \phi[\mathbf{x}(t), \mathbf{u}(t), t] + \boldsymbol{\lambda}^{T}(t) \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t]$$

and set

$$\frac{\partial H}{\partial \lambda} = \dot{\mathbf{x}} \qquad \mathbf{x}(t_o) = \mathbf{x}_o$$

$$\frac{\partial H}{\partial \mathbf{x}} = -\dot{\boldsymbol{\lambda}} \qquad \boldsymbol{\lambda}(t_f) = \frac{\partial \theta[\mathbf{x}(t_f), t_f]}{\partial \mathbf{x}(t_f)}$$
$$\frac{\partial H}{\partial \mathbf{u}} = \mathbf{0}$$

If the admissible control vector is unrestricted, then the first variation of u(t), $\delta u(t)$, is also unrestricted, and in that part of Eq. (4.2-10) which reads

$$\int_{t_0}^{t_r} [\partial \mathbf{u}(t)]^T \left[\frac{\partial H}{\partial \mathbf{u}} \right] dt + \cdots = 0$$

we are free to set $\partial H/\partial u$ equal to zero. Sections 4.1 and 4.2 describe a special case of the maximum principle where this is possible. In many problems, inequality constraints on the admissible control vector (the maximum thrust from a reaction jet is limited, for example) are present, and we must therefore take this into account if we are to determine a realistic control strategy. If u(t) is constrained, $\partial u(t)$ may not be allowed to be completely arbitrary, and therefore we may not in general set $\partial H/\partial u = 0$. Also, certain regions of the state space may be prohibited, and we must determine an optimum control such that the state x(t) does not enter the forbidden regions. We examined a portion of this problem in Chapter 3 and found that we could handle inequality constraints by converting them to equivalent equality constraints. In this section, we desire to find the state and control vector such that the cost function

$$J = \theta[\mathbf{x}(t_f), t_f] + \int_{t_0}^{t_f} \phi[\mathbf{x}(t), \mathbf{u}(t), t] dt$$
 (4.3-1)

is minimized subject to

(a) the n differential system equality constraints

$$\dot{\mathbf{x}} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t]$$
 (4.3-2)

(b) the q end point equality constraints $(q \le n)$ at the terminal time (which may be unspecified)

$$N[\mathbf{x}(t_f), t_f] = \mathbf{0} \tag{4.3-3}$$

and the initial condition equality constraint

$$\mathbf{x}(t_o) = \mathbf{x}_o \tag{4.3-4}$$

where we assume that t_o is fixed and $\mathbf{x}(t_o)$ is known. Actually, t_o does not have to be fixed and the initial condition constraint can be $\mathbf{M}[\mathbf{x}(t_o), t_o] = \mathbf{0}$, as was the case in Section 4.2. The required modifications to treat this case are small since the results are so similar to the variable end-point and variable end-time case.

(c) The r admissible control inequality constraints $(r \le m)$

$$g[x(t), u(t), t] \ge 0$$
 (4.3-5)

- where we will find it necessary to impose the requirement that the ma $\partial g/\partial u$ be of maximum rank whenever g = 0.
- (d) The s inequality constraints (with no control component in the constraint) expressing the forbidden region of state space

$$h[x(t), t] \ge 0$$
 (4.3-6)

which does not satisfy the maximum rank test in (c).

As is apparent, we have formulated a rather formidable problem in the variational calculus. We will solve the problem in such a fashion that we obtain the Pontryagin maximum principle [2, 3, 4, 5]. However, due to a slight change in the original problem statement, a more appropriate name for the result of our development would be the Pontryagin minimum principle. Our development will be patterned after that of Berkovitz who has unified many of the approaches to the optimal control problem [6, 7]. We will first consider the case where the inequalities of part (d) on the admissible regions of state space are not present and will then modify our maximum principle and associated transversality conditions to include this important case.

4.3-1. The maximum principle with control variable inequality constraints

We now wish to derive the first necessary condition for a minimum of the problem just posed, except that we will assume that there are no bounded state variables. Thus we are considering the first three of the four constraints just mentioned. Constraint (c) is very similar to the inequality constraint of Section 3.8, and we now find it desirable to expand upon that method of treating an inequality constraint.

We are given the inequality constraint

$$g[x(t), u(t), t] \ge 0$$
 (4.3-7)

We may convert this inequality constraint to an equality constraint by writing for each component of g either

$$(\dot{z}_i)^2 = g_i[\mathbf{x}(t), \mathbf{u}(t), t], \quad z_i(t_o) = 0, \quad i = 1, 2, ..., r \quad (4.3-8)$$

or

$$(y_i)^2 = g_i[\mathbf{x}(t), \mathbf{u}(t), t]$$
 $i = 1, 2, ..., r$ (4.3-9)

It is apparent that either of these two equations force g_i to be greater than or equal to zero since $(\dot{z}_i)^2$ and $(y_i)^2$ must certainly be greater than or equal to zero. This technique was apparently first proposed by Valentine [8] and extended by Berkovitz [6]. It is quite similar to the penalty function technique of Kelly [9] as we shall see in our chapter concerning the gradient and second variation methods for the computation of optimal controls. The choice between Eqs. (4.3-8) and (4.3-9) will depend largely upon the particular computer (for an analog computer, Eq. (4.3-8) is generally easier to implement than Eq. (4.3-9)) and the particular compute pal algorithms used (for the quasilinearization method, Eq. (4.3-9) is considerably simpler to use than Eq. (4.3-8) and also results in less computer solution time).

Example 4.3-1

It is quite easy to see that the constraint used here includes, as a special case, that considered in Section 3.8. For example, if we require for a scalar control u, $u_{\min} \le u \le u_{\max}$, then we may write

$$g_1[\mathbf{x}(t), u(t), t] = u_{\max} - u \ge 0, \qquad g_2[\mathbf{x}(t), u(t), t] = u - u_{\min} \ge 0$$

and we convert these inequality constraints to equality constraints by writing

$$(y_1)^2 = u_{\max} - u, \qquad (y_2)^2 = u - u_{\min}$$

for which

$$(y_1y_2)^2 = (u_{\max} - u)(u - u_{\min})$$

which is precisely the constraint used in Section 3.8.

For the problem at hand, we adjoin, via the Lagrange multiplier, constraints (4.3-2), (4.3-3), (4.3-4), and (4.3-5) to Eq. (4.3-1) to obtain

$$J = \theta[\mathbf{x}(t_f), t_f] + \mathbf{\hat{g}}^T[\mathbf{x}(t_o)] + \nu^T \mathbf{N}[\mathbf{x}(t_f), t_f] + \int_{t_o}^{t_f} \left\{ H[\mathbf{x}(t), \dot{\mathbf{w}}(t), \boldsymbol{\lambda}(t), t] - \boldsymbol{\lambda}^T(t) \dot{\mathbf{x}} - \mathbf{\Gamma}^T(t) [\mathbf{g}[\mathbf{x}(t), \dot{\mathbf{w}}(t), t] - \dot{\mathbf{z}}^2] \right\} dt$$
(4.3-10)

where

$$(\mathbf{z}^2)^T = [z_1^2, z_2^2, z_3^2, \dots, z_r^2]$$
 (4.3-11)

$$H[\mathbf{x}(t), \dot{\mathbf{w}}(t), \boldsymbol{\lambda}(t), t] = \phi[\mathbf{x}(t), \dot{\mathbf{w}}(t), t] + \boldsymbol{\lambda}^{T}(t)\mathbf{f}[\mathbf{x}(t), \dot{\mathbf{w}}(t), t] \quad (4.3-12)$$

$$\dot{\mathbf{w}} = \mathbf{u}(t), \qquad \mathbf{w}(t_{o}) = \mathbf{0} \quad (4.3-13)$$

We may now apply the Euler-Lagrange equations to the above cost function or take a first variation of it in order to obtain the necessary conditions for a minimum. It is thus convenient to define a scalar function Φ , the Lagrangian, as

$$\Phi[\mathbf{x}(t), \dot{\mathbf{x}}(t), \dot{\mathbf{w}}(t), \boldsymbol{\lambda}(t), \boldsymbol{\Gamma}(t), \dot{\mathbf{z}}(t), t] = H[\mathbf{x}(t), \dot{\mathbf{w}}(t), \boldsymbol{\lambda}(t), t]$$

- $\boldsymbol{\lambda}^{T}(t)\dot{\mathbf{x}} - \boldsymbol{\Gamma}^{T}(t)[\mathbf{g}[\mathbf{x}(t), \dot{\mathbf{w}}(t), t] - \dot{\mathbf{z}}^{2}]$ (4.3-14)

We will use the Euler-Lagrange Eqs. (3.5-3). Since there are no w(t) and z(t) terms in Eq. (4.3-14), we may write the Euler-Lagrange equations as

$$\frac{d}{dt}\frac{\partial\Phi}{\partial\dot{\mathbf{x}}} - \frac{\partial\Phi}{\partial\mathbf{x}} = \mathbf{0} \tag{4.3-15}$$

$$\frac{d}{dt}\frac{\partial\Phi}{\partial\dot{\mathbf{w}}} = \mathbf{0} \tag{4.3-16}$$

$$\frac{d}{dt}\frac{\partial\Phi}{\partial\dot{z}} = 0 \tag{4.3-17}$$

Each piec se continuously differentiable solution of the Euler-Lagrange equations (4.2-15), (4.3-16), and (4.3-17) will be called an extremal curve or an extremal trajectory of the associated variational problem. It can be shown that the function Φ need be only piecewise smooth, and thus the Euler-Lagrange equations require that every arc of the extremal trajectory on which the first derivatives of Φ have no discontinuities be a solution of the Euler-Lagrange equations. The corner condition will answer our questions concerning what happens at possible points of discontinuity of some of the derivatives of the state or control variables. This corner condition will ensure continuity of the state and control variables by forcing $\partial \Phi/\partial z$ to be zero everywhere since it is zero at the terminal time.

The transversality conditions for this problem are obtained in the usual fashion as explained in Chapter 3 and the previous three sections. For this problem, they are easily shown to be Eqs. (4.3-3), (4.3-4), and

$$\frac{\partial \theta}{\partial t_f} + \left(\frac{\partial \mathbf{N}^T}{\partial t_f}\right) \nu + \phi - \left(\mathbf{\dot{x}}^T \frac{\partial \Phi}{\partial \mathbf{\dot{x}}}\right) = 0, \quad \text{for} \quad t = t_f \quad (4.3-18)$$

Ŋ

$$\frac{\partial \theta}{\partial \mathbf{x}} + \left(\frac{\partial \mathbf{N}^{T}}{\partial \mathbf{x}}\right) \nu \bigoplus \lambda = 0, \quad \text{for } t = t_{f}$$

Also, we have for the final transversality condition

$$\delta \mathbf{z}^{T}(t_{f}) \begin{bmatrix} \frac{\partial \Phi}{\partial \mathbf{z}} \end{bmatrix} = \delta \mathbf{z}^{T}(t_{f}) \begin{bmatrix} 2\Gamma_{1}\dot{z}_{1} \\ 2\Gamma_{2}\dot{z}_{2} \\ \vdots \\ 2\Gamma_{r}\dot{z}_{r} \end{bmatrix} = 0, \quad \text{for} \quad t = t_{f}$$

which allows us to write because of Eq. (4.3-17)

$$\frac{\partial \Phi}{\partial \dot{z}} = 0, \qquad \forall t \in [t_o, t_f]$$

Since when $\Gamma_i \neq 0$, $\dot{z}_i = 0 = g_i$, and when $\dot{z}_i \neq 0$, $\Gamma_i = 0$ $\Gamma_i \dot{z}_i = 0$, i = 1, 2, ..., r, $\forall t \in [t_o, t_f]$ (4.3-20)

Also, with similar reasoning, we have

$$\frac{\partial \Phi}{\partial \dot{\mathbf{w}}} = \mathbf{0}, \qquad \forall t \in [t_o, t_f] \tag{4.3-21}$$

We shall now introduce the Hamiltonian formulation and use the Weierstrass condition to obtain the Pontryagin maximum principle. From the definition of Φ , Eq. (4.3-14), Eq. (4.3-15) yields

$$\dot{\lambda} = -\frac{\partial H}{\partial x} \oint \frac{\partial g^{T}}{\partial x} \Gamma$$
(4.3-22)

Equation (4.3-16) with the definition of Φ , Eq. (4.3-14), gives us

$$\frac{\partial H}{\partial \dot{\mathbf{w}}} - \frac{\partial \mathbf{g}^{T}}{\partial \dot{\mathbf{w}}} \Gamma = \mathbf{0}$$
(4.3-23)

and in a similar fashion, Eq. (4.3-17) results in

$$\Gamma_{ij} = 0, \quad i = 1, 2, \dots, r$$
 (4.3-24)

$$H[\mathbf{x}, \dot{\mathbf{w}}, \boldsymbol{\lambda}, t] = \Phi[\mathbf{x}(t), \dot{\mathbf{x}}(t), \dot{\mathbf{w}}(t), \boldsymbol{\lambda}(t), \Gamma(t), \dot{\mathbf{z}}(t), t] \\ + \boldsymbol{\lambda}^{T}(t)\dot{\mathbf{x}} + \Gamma^{T}(t)\{\mathbf{g}[\mathbf{x}(t), \dot{\mathbf{w}}(t), t] - \dot{\mathbf{z}}^{2}\}$$

we can show that

ż.

1

(4.3-19)

$$H = \Phi - \dot{\mathbf{x}}^{T} \frac{\partial \Phi}{\partial \dot{\mathbf{x}}} - \dot{\mathbf{w}} \frac{\partial \Phi}{\partial \dot{\mathbf{w}}} - \dot{\mathbf{z}} \frac{\partial \Phi}{\partial \dot{\mathbf{z}}}$$
(4.3-25)

because we know that $\dot{z}^2 = g$, $\dot{\lambda} = \partial \Phi / \partial x$, and have just found $\partial \Phi / \partial \dot{w} = 0$ and $\partial \Phi / \partial \dot{z} = 0$. This is in a form for direct application of the Weierstrass condition, Eq. (4.1-21), which can be written as

$$\frac{1/\sqrt[4]{2t/t}}{\sqrt{t}} \Phi(\mathbf{x}, \mathbf{w}, \mathbf{z}, \dot{\mathbf{X}}, \dot{\mathbf{W}}, \dot{\mathbf{Z}}) - \Phi(\mathbf{x}, \mathbf{w}, \mathbf{z}, \dot{\mathbf{x}}, \dot{\mathbf{w}}, \dot{\mathbf{z}}) - (\dot{\mathbf{X}} - \dot{\mathbf{x}})\frac{\partial \Phi}{\partial \dot{\mathbf{x}}} \phi}{\sqrt{t}} (4.3-26)$$

where lower-case symbols indicate optimum vectors and upper-case symbols indicate admissible vectors, as before. From Eq. (4.3-25), it becomes apparent that this condition is equivalent to

$$H[\mathbf{x}, \dot{W}, \lambda, t] \ge H[\mathbf{x}, \dot{\mathbf{w}}, \lambda, t]$$
(4.3-27)

In other words, the Hamiltonian is smaller when we use the optimal control within the admissible set of controls than it is for any other control which is in this admissible set. This is the basic contribution of the maximum principle —a necessary condition for optimality is the global minimization of the Hamiltonian, H, function.

4.3-2. Summary of the maximum principle

Since our development of the maximum principle has been necessarily long, it is desirable to give a summary of the results. It is also important to note that we can successfully use the maximum principle without following each and every detail of our "proof."

We wish to minimize

$$J = \theta[\mathbf{x}(t_f), t_f] + \int_{t_0}^{t_f} \phi[\mathbf{x}(t), \mathbf{u}(t), t] dt \qquad (4.3-28)$$

for the system described by

$$\dot{\mathbf{x}} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t]$$
 (4.3-29)

$$\mathbf{x}(t_o) = \mathbf{x}_o, \qquad t_o \text{ fixed} \tag{4.3-30}$$

such that, at the unspecified terminal time t_{f} ,

$$N[x(t_f), t_f] = 0 (4.3-31)$$

and where v is restricted such that under this condition

$$g[u(t), t] \ge 0$$
 (4.3-32)

In other words, u(t) is not restricted in control space as a function of the state vector, x(t), and

$$\mathbf{u} \in \mathbf{U} \tag{4.3-33}$$

The Hamilton canonic equations, solution of which minimizes the cost function and determines the optimum state and control vectors, $\mathbf{x}(t)$ and $\mathbf{u}(t)$, may be obtained if we define a Hamiltonian

$$H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] = \phi[\mathbf{x}(t), \mathbf{u}(t), t] + \boldsymbol{\lambda}^{T}(t)\mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t] \quad (4.3-34)$$

and then set the Hamiltonian with $\mathbf{u} = \hat{\mathbf{u}}$ less than any other value of H with $\mathbf{u} \in \mathbf{U}$.

Honnettonian 10	$H[\mathbf{x}(t), \hat{\mathbf{u}}(t), \boldsymbol{\lambda}(t), t] \leq H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t]$	(4.3-35)
to min when	u ∈ Ŭ	
TI al the	$\frac{\partial H}{\partial x} = \dot{x}$	(4.3-36)

$$\frac{1}{\partial \lambda} = \chi \qquad (4.3)$$

$$\frac{\partial H}{\partial \mathbf{x}} = -\dot{\boldsymbol{\lambda}} \tag{4.3-37}$$

subject to the two-point boundary conditions

$$\mathbf{x}(t_o) = \mathbf{x}_o \tag{4.3-38}$$

$$N[\mathbf{x}(t_f), t_f] = 0 \tag{4.3-39}$$

$$\frac{\partial \theta}{\partial t_f} + \left(\frac{\partial \mathbf{N}^T}{\partial t_f}\right) \boldsymbol{\nu} + H = 0, \quad \text{at} \quad t = t_f \quad (4.3-40)$$

$$\frac{\partial \theta}{\partial \mathbf{x}} + \left(\frac{\partial \mathbf{N}^T}{\partial \mathbf{x}}\right) \boldsymbol{\nu} - \boldsymbol{\lambda} = \mathbf{0}, \quad \text{at} \quad t = t_f \quad (4.3-41)$$

We frequently wish to transfer the system to the origin in minimum time so that we have

$$N[x(t_f), t_f] = 0 = x(t_f)$$
(4.3-42)

$$\theta[\mathbf{x}(t_f), t_f] = t_f \tag{4.3-43}$$

$$= 0$$
 (4.3-44)

In this particular case, the transverality conditions become

$$x(t_0) = x_0$$
 (4.3-45)

φ

$$\int_{a} \int_{a} \int_{a$$

Example 4.3-2

Let us consider briefly the time optimal control poblem for a linear timeinvariant system where the length of the control vector is constrained. We wish to minimize

 $J = t_f$

for the system

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{x}(t_o) = \mathbf{x}_o$$

where $u(t) \in \mathcal{O}$ means $||u(t)|| \le 1$.

The Hamiltonian, Eq. (4.3-34), becomes

$$\mathcal{H}[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] = \boldsymbol{\lambda}^{T}(t)[\mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)]$$

To make H as small as possible with respect to a choice of u(t), we must have

$$(t) = \frac{-\mathbf{B}^T \lambda(t)}{||\mathbf{B}^T \lambda(t)||}$$

The canonic equations become

$$\frac{\partial H}{\partial \lambda} = \dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t), \qquad \frac{\partial H}{\partial \mathbf{x}} = -\dot{\boldsymbol{\lambda}} = \mathbf{A}^{T}\boldsymbol{\lambda}(t)$$

with the boundary conditions

$$\mathbf{x}(t_o) = \mathbf{x}_o, \qquad \mathbf{x}(t_f) = \mathbf{0}$$

where we determine t_f by solving

$$H[\mathbf{x}(t_f), \lambda(t_f), \mathbf{u}(t_f)] = -1$$

But, from Eq. (4.2-24) we see that dH/dt = 0 since the Hamiltonian does not depend explicitly on t. Thus the above equation becomes

$$H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t)] = -1 = \boldsymbol{\lambda}^{T}(t)[\mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)]$$

which is the additional relation needed to determine the terminal time.

4.3-3. The maximum principle with state (and control) variable inequality constraints

We now wish to extend the work of Section 4.3-1 to include inequality constraints on some or all of the state variables. We will represent this inequality constraint by the s vector equation

$$h[x(t), t] \ge 0$$
 (4.3-48)

where each component of h is assumed to be continuously differentiable in state space. There are several methods whereby we may convert Eq. (4.3-48) to an equality constraint. We may define a new variable x_{n+1} by

$$\dot{x}_{n+1} = f_{n+1} = [h_1(\mathbf{x}, t)]^2 \mathbf{H}(h_1) + [h_2(\mathbf{x}, t)]^2 \mathbf{H}(h_2) + \dots + [h_s(\mathbf{x}, t)]^2 \mathbf{H}(h_s)$$
(4.3-49)

where $H[h_s(x, t)]$ is a modified Heaviside step defined such that

$$H[h_{s}(\mathbf{x}, t)] = \begin{cases} 0 & \text{if } h_{s}(\mathbf{x}, t) \ge 0 \\ K_{s} & \text{if } h_{s}(\mathbf{x}, t) < 0 \\ K_{s} > 0, \quad s = 1, 2, \dots, s \end{cases}$$
(4.3-50)

and where the initial condition is

$$x_{n+1}(t_0) = 0 \tag{4.3-51}$$

Thus we see t $x_{n+1}(t_f)$ is a direct measure of penetration of the state variable inequality constraint

$$x_{n+1}(t_f) = \int_{t_s}^{t_f} \dot{x}_{n+1}(t) dt = \int_{t_s}^{t_f} \{ [h_1(\mathbf{x}, t)]^2 H(h_1) + \dots + [h_s(\mathbf{x}, t)]^2 H(h_s) \} dt$$
(4.3-52)

We will require that the final value of $x_{n+1}(t_f)$ is zero,

$$c_{n+1}(t_f) = 0 \tag{4.3-53}$$

which will impose the restriction that we do not violate the inequality constraint. This approach is a modification by McGill [10] of a similar procedure by Kelley [9] which converts the s inequality constraint to s equality constraints of the form

$$\dot{x}_{n+1} = [h_1(\mathbf{x}, t)]^2 \mathbf{H}(h_1), \qquad x_{n+1}(t_o) = 0$$

$$\dot{x}_{n+2} = [h_2(\mathbf{x}, t)]^2 \mathbf{H}(h_2), \qquad x_{n+2}(t_o) = 0$$

$$\vdots \qquad \vdots \qquad \vdots \qquad (4.3-54)$$

$$\dot{x}_{n+s} = [h_s(\mathbf{x}, t)]^2 H(h_s), \qquad x_{n+s}(t_o) = 0$$

which are then added to the cost function to obtain

$$J_{\text{modified}} = J_{\text{original}} + \sum_{j=1}^{s} x_{n+j}(t_j)$$
(4.3-55)

The multipliers K_s are thus the penalty functions, and J_{modified} is minimized such that the constraint region is entered only slightly, if at all. If we require $x_{n+j}(t_f) = 0$ for j = 1, 2, ..., s, the constraint is of course not exceeded at all.

A slight modification of the penalty-function approach can be obtained if we define s new state variables

$$(\dot{x}_{n+s})^2 = K_s h_s(\mathbf{x}, t), \qquad x_{n+s}(t_o) = 0$$

Berkovitz [7] suggests yet another method for converting the inequality constraint to an equality constraint. For the case of a scalar constraint, a variable

$$\gamma(\mathbf{x}, \eta, t) = \begin{cases} \eta^4 - h(\mathbf{x}, t) & \text{if } \eta > 0\\ h(\mathbf{x}, t) & \text{if } \eta < 0 \end{cases}$$
(4.3-57)

is introduced and we convert the inequality constraint $h(x, t) \ge 0$ to an equality constraint by writing

$$\frac{\partial \gamma}{\partial \eta} \frac{d\eta}{dt} = \frac{\partial h}{\partial t} + \frac{\partial h}{\partial \mathbf{x}} \frac{d\mathbf{x}}{dt}$$
(4.3-58)

ł

Sec.

which satisfies the constraint if we have the end conditions

$$\gamma[\mathbf{x}(t_o), \eta(t_o), t_o] = \gamma[\mathbf{x}(t_f), \eta(t_f), t_f] = 0$$
(4.3-59)

The Euler-Lagrange equations can, of course, be used to determine the differential equations for an extremum, and the associated transversality conditions can be used to specify the two-point boundary values. If inequality constraints on the control variables are present, we must of necessity incorporate these into our problem formulation. The Hamiltonian formulation may also be used. These methods provide us with necessary conditions only.

From Eq. (4.3-14) it follows that the Lagrangian for the problem at hand is

$$\tilde{\Phi} = \Phi + \lambda_{n+1} [f_{n+1} - \dot{x}_{n+1}]$$

$$\tilde{\Phi} = H - \lambda^{T} \dot{\mathbf{x}} - \Gamma^{T} [\mathbf{g} - \dot{\mathbf{z}}^{2}] + \lambda_{n+1} [f_{n+1} - \dot{\mathbf{x}}_{n+1}] \qquad (4.3-60)$$

where Φ is the Lagrangian for no inequality state constraint. We are using the equality constraint method of Eqs. (4.3-49) and (4.3-50). The Euler-Lagrange equations yield

$$\frac{d}{dt}\frac{\partial\Phi}{\partial\dot{\mathbf{x}}} - \frac{\partial\Phi}{\partial\mathbf{x}} - \frac{\partial f_{n+1}}{\partial\mathbf{x}}\lambda_{n+1} = \mathbf{0}$$
(4.3-61)

$$\frac{\partial \Phi}{\partial \mathbf{u}} = \frac{d}{dt} \frac{\partial \Phi}{\partial \dot{\mathbf{w}}} = \mathbf{0}$$
(4.3-62)

$$\frac{d}{t}\frac{\partial\Phi}{\partial\dot{z}} = 0 \tag{4.3-63}$$

which are, except for the f_{n+1} term, exactly the same as Eqs. (4.3-15), (4.3-16), and (4.3-17). Also, we see that

$$\frac{d}{dt}\lambda_{n+1}(t) = 0 \tag{4.3-64}$$

with the transversality conditions exactly as before and, in addition,

$$x_{n+1}(t_o) = x_{n+1}(t_f) = 0 (4.3-65)$$

It is desirable to reinterpret these results in terms of the Hamiltonian, just as we have done for the case of control variable constraints only. We can do this easily by combining Eq. (4.3-60) with Eq. (4.3-61) and making use of the Weierstrass condition, Eq. (4.3-26), which yields

$$\dot{\boldsymbol{\lambda}} = \frac{d\boldsymbol{\lambda}(t)}{dt} = -\frac{\partial H}{\partial \mathbf{x}} - \frac{\partial f_{n+1}[\mathbf{x}(t), t]}{\partial \mathbf{x}} \lambda_{n+1}$$
(4.3-66)

$$\dot{\mathbf{x}} = \frac{d\mathbf{x}(t)}{dt} = \frac{\partial H}{\partial \boldsymbol{\lambda}} \tag{4.3-67}$$

$$\dot{x}_{n+1} = \frac{dx_{n+1}(t)}{dt} = f_{n+1} = [h_1(\mathbf{x}, t)]^2 H(h_1) + \dots + [h_s(\mathbf{x}, t)]^2 H(h_s)$$

$$\dot{\lambda}_{n+1} = \frac{d\lambda_{n+1}(t)}{dt} = 0$$
 (4.3-69)

where

$$H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] = \phi[\mathbf{x}(t), \mathbf{u}(t), t] + \lambda^{T}(t)f[\mathbf{x}(t), \mathbf{u}(t), t] \quad (4.3-70)$$
$$H[\mathbf{x}(t), \hat{\mathbf{u}}(t), \boldsymbol{\lambda}(t), t] \le H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t]|_{\mathbf{u} \in \mathbf{X}} \quad (4.3-71)$$

with the two-point boundary conditions (transversality conditions)

$$\mathbf{x}(t_o) = \mathbf{x}_o \tag{4.3-72}$$

$$N[x(t_f), t_f] = 0 (4.3-73)$$

$$\frac{\partial \theta}{\partial t_f} + \left(\frac{\partial \mathbf{N}^T}{\partial t_f}\right) \nu + H = 0$$
 at $t = t_f$ (4.3-74)

$$\frac{\partial \theta}{\partial \mathbf{x}} + \left(\frac{\partial N^{T}}{\partial \mathbf{x}}\right) \boldsymbol{\nu} - \boldsymbol{\lambda} = \mathbf{0}$$
 (4.3-75)

$$x_{n+1}(t_0) = x_{n+1}(t_f) = 0 \tag{4.3-76}$$

These are the equations whose solutions minimize the cost function and constraints of Eqs. (4.3-28) through (4.3-33), subject to the additional constraint $h[x(t), t] \ge 0$.

Equations analogous to these could be obtained in a relatively straightforward fashion for each of the other formulations of the inequality state constraint problem presented here. Computational techniques will be used to obtain numerical solutions to problems of this type in later chapters.

Example 4.3-3

As an example of optimization with a state variable constraint, we consider the brachistochrone problem previously treated by McGill [10] and Dreyfus [11]. A particle is falling for a specified time, $t_f - t_o$, under the influence of a constant gravitational acceleration g. The particle has initial velocity $x_3(t_o) = x_{3o}$. We wish to find the path that maximizes the final value of the horizontal coordinate $x_2(t_f)$. The final value of the vertical coordinate $x_2(t_f)$ and the velocity $x_3(t_f)$ are unspecified. The path is constrained by a line $h[x_1, x_2] \ge 0$ in the x_1x_2 plane, where it is known that the unconstrained solution intersects the line. The system dynamics are described by

$$\dot{x}_1 = x_3 \cos u, \qquad x_1(t_0) = x_{10} \\ \dot{x}_2 = x_3 \sin u, \qquad x_2(t_0) = x_{20} \\ \dot{x}_3 = g \sin u, \qquad x_3(t_0) = x_{30}$$

where the control u is the slope of the path. The cost function is

$$J = -x_1(t_f)$$

with no specified endpoint equality constraints, and the state vector inequality constraint

$$h(x_1x_2) = ax_1 + b - x_2 \ge 0$$

which is converted to the equality constraint

$$\dot{x}_4 = f_4 = [h(x_1, x_2)]^2 H(h)$$

We can easily compute the requisite nonlinear two-pc boundary value problem by direct application of the maximum principle given in this section. The equations for this TPBVP are

$$\begin{aligned} \dot{x}_1 &= x_3^2 \lambda_1 [(\lambda_1 x_3)^2 + (\lambda_2 x_3 + \lambda_3 g)^2]^{-1/2}, \quad x_1(t_0) = x_{1_0} \\ \dot{x}_2 &= x_3 (\lambda_2 x_3 + \lambda_3 g) [(\lambda_1 x_3)^2 + (\lambda_2 x_3 + \lambda_3 g)^2]^{-1/2}, \quad x_2(t_0) = x_{2_0} \\ \dot{x}_3 &= g (\lambda_2 x_3 + \lambda_3 g) [(\lambda_1 x_3)^2 + (\lambda_2 x_3 + \lambda_3 g)^2]^{-1/2}, \quad x_3(t_0) = x_{3_0} \\ \dot{x}_4 &= h(x_1, x_2) H(h), \quad x_4(t_0) = 0 \\ \dot{\lambda}_1 &= -2a\lambda_4 h(x_1, x_2) H(h), \quad \lambda_1(t_0) = -1 \\ \dot{\lambda}_2 &= 2\lambda_4 h(x_1, x_2) H(h), \quad \lambda_2(t_f) = 0 \\ \dot{\lambda}_3 &= -\lambda_1^2 x_3 [(\lambda_1 x_3)^2 + (\lambda_2 x_3 + \lambda_3 g)^2]^{-1/2} \\ &\quad -\lambda_2 (\lambda_2 x_3 + \lambda_3 g) [(\lambda_1 x_3)^2 + (\lambda_2 x_3 + \lambda_3 g)^2]^{-1/2}, \quad \lambda_3(t_f) = 0 \\ \dot{\lambda}_4 &= 0, \quad x_4(t_f) = 0 \end{aligned}$$

The solution of this set of nonlinear differential equations with the associated boundary conditions establishes the optimal trajectory and optimal control. Needless to say, this will not be an easy task. We shall examine this problem again, in Section 13.3-2, and determine a numerical solution for this optimization problem with a state variable inequality constraint.

4.4 Hamilton-Jacobi equation and continuous dynamic programming

Let us consider once more the problem of minimizing

$$J = \int_{t_o}^{t_f} \phi[\mathbf{x}(t), \mathbf{u}(t), t] dt \qquad (4.4-1)$$

subject to the equality constraints

$$\dot{\mathbf{x}} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), t], \qquad \mathbf{x}(t_o) = \mathbf{x}_o$$
 (4.4-2)

and the control variable inequality constraint

$$(t) \in \mathbf{U} \tag{4.4-3}$$

where \mathbf{U} is a possibly infinite or semi-infinite closed interval, the admissible input set, which may depend on $\mathbf{x}(t)$ and t. Let us further assume, for the moment, that t_f is fixed and $\mathbf{x}(t_f)$ is unspecified. Suppose that we have calculated $\hat{\mathbf{u}}(t)$ and $\hat{\mathbf{x}}(t)$ to be the optimal control and trajectory. The cost function is then a function of the initial state, $\mathbf{x}(t_o)$, and the initial time, t_o , only. It is convenient to give this a special symbol such as

$$V(\mathbf{x}_o, t_o) \stackrel{\Delta}{=} J(\hat{\mathbf{x}}, \hat{\mathbf{u}}) = \int_{t_o}^{t_f} \phi[\hat{\mathbf{x}}(t), \hat{\mathbf{u}}(t), t] dt \qquad (4.4-4)$$

so that $V(\mathbf{x}_o, t_o)$ is the minimum value of the performance index when the initial system state is \mathbf{x}_o and the initial time is t_o . $V(\mathbf{x}_o, t_o)$ is a function only of \mathbf{x}_o and t_o since $\hat{\mathbf{x}}(t)$ and $\hat{\mathbf{u}}(t)$ are known (optimal) values for all $t \in [t_o, t_f]$.

We now consider a time Δt between t_0 and t_f and rewrite the cost function, Eq. (4.4-4), as

$$V(\mathbf{x}_o, t_o) = \int_{t_o}^{t_o+\Delta t} \phi(\hat{\mathbf{x}}, \hat{\mathbf{u}}, t) dt + \int_{t_o+\Delta t}^{t_f} \phi(\hat{\mathbf{x}}, \hat{\mathbf{u}}, t) dt$$

= $J_1(\hat{\mathbf{x}}, \hat{\mathbf{u}}) + J_2(\hat{\mathbf{x}}, \hat{\mathbf{u}})$ (4.4-5)

If we now assume that ϕ is smooth over the interval t_0 to $t_0 + \Delta t$ and that Δt is sufficiently small, we may rewrite the J_1 term as

where the
$$J_1 = \Delta t \phi[\hat{\mathbf{x}}(t_o + \alpha \Delta t), \hat{\mathbf{u}}(t_o + \alpha \Delta t), t_o + \alpha \Delta t], \quad 0 < \alpha < 1 \quad (4.4-6)$$

 $V_2 = V[\hat{\mathbf{x}}(t_o + \Delta t), t_o + \Delta t] = \int_{t_o + \Delta t}^{t_f} \phi[\hat{\mathbf{x}}(t), \hat{\mathbf{u}}(t), t] dt$

The second part of the cost function is simply

= totat

Î

[Fig: This is so because of the fundamental theorem of dynamic programming any which asserts that any part of an optimal trajectory is an optimal trajectory. ¹ J To show that J_2 is $V[\hat{x}(t_0 + \Delta t), t_0 + \Delta t]$, we observe that the value of J_2

depends only on the state $\hat{x}(t_o + \Delta t)$ and the control $\hat{u}(t)$ in the time interval from $t_o + \Delta t$ to t_f . If J_2 was greater than V_2 , then there must have existed a control such that

$$J_{1}(\hat{\mathbf{x}},\hat{\mathbf{u}}) + \int_{t_{o}+\Delta t}^{t_{f}} \phi[\hat{\mathbf{x}}(t),\hat{\mathbf{u}}(t),t] > V(\mathbf{x}_{o},t_{o})$$

$$(4.4-8)$$

But this contradicts the assumption that $\hat{u}(t)$ is an optimal control. However, by the definition of V_2 , $J_2 \ge V_2$; thus $J_2 = V_2$.

We will now write the cost function along the optimal trajectory as

$$V(\mathbf{x}_{o}, t_{o}) = \Delta t \phi[\hat{\mathbf{x}}(t_{o} + \alpha \Delta t), \hat{\mathbf{u}}(t_{o} + \alpha \Delta t), t_{o} + \alpha \Delta t] + V[\hat{\mathbf{x}}(t_{o} + \Delta t), t_{o} + \Delta t]$$

$$(4.4-9)$$

By expanding the last term in this equation in a Taylor's series about $\Delta t = 0$, we have

$$V(\mathbf{x}_{o}, t_{o}) = \Delta t \phi [\hat{\mathbf{x}}(t_{o} + \alpha \Delta t), \hat{\mathbf{u}}(t_{o} + \alpha \Delta t), t_{o} + \alpha \Delta t] + V(\mathbf{x}_{o}, t_{o}) + \left[\frac{\partial V(\mathbf{x}_{o}, t_{o})}{\partial t_{o}}\right] \Delta t + \left[\frac{\partial V(\mathbf{x}_{o}, t_{o})}{\partial \mathbf{x}_{o}}\right]^{T} \dot{\mathbf{x}}_{o} \Delta t \quad (4.4-10) + [\Delta t]^{2} [\cdot] + \cdots$$

Upon taking the limit as Δt approaches zero and recalling the equality constraint of Eq. (4.4-2), we have, finally, the Hamilton-Jacobi equation

$$\frac{\partial V(\mathbf{x}_o, t_o)}{\partial t_o} + \phi[\mathbf{\hat{x}}(t_o), \mathbf{\hat{u}}(t_o), t_o] + \left[\frac{\partial V(\mathbf{x}_o, t_o)}{\partial \mathbf{x}_o}\right]^T \mathbf{f}[\mathbf{\hat{x}}(t_o), \mathbf{\hat{u}}(t_o), t_o] = 0 \quad (4.4-11)$$

In this expression, we see that if we define

$$\lambda(t_o) = \frac{\partial V(\mathbf{x}_o, t_o)}{\partial \mathbf{x}_o} \tag{4.4-12}$$

we may then rewrite the Hamilton-Jacobi equation, r dropping the subscript "o" for convenience, as

$$\frac{\partial V(\mathbf{x},t)}{\partial t} + H(\mathbf{x},\hat{\mathbf{u}},\boldsymbol{\lambda},t) = 0 \qquad (4.4-13)$$

It is important for us to stress here that this Hamiltonian is the Hamiltonian evaluated (at time t_o) for the optimum control $\hat{u}(t)$, since we have been assuming all along that ϕ was evaluated about the optimal control and state. Thus, yet another way for us to write the Hamilton-Jacobi equation is

$$\left(\frac{\partial V(\mathbf{x},t)}{\partial t} = -H\left(\mathbf{x},\frac{\partial V}{\partial \mathbf{x}},t\right)$$
(4.4-14)

where

(4.4-7)

$$H\left(\mathbf{x},\frac{\partial V}{\partial \mathbf{x}},t\right) = \operatorname{Min}_{\mathbf{u} \in \mathbf{U}} H\left[\mathbf{x}(t),\mathbf{u}(t),\boldsymbol{\lambda}(t) = \frac{\partial V(\mathbf{x},t)}{\partial \mathbf{x}},t\right] \quad (4.4-15)$$

When t_f is fixed and $\mathbf{x}(t_f)$ is unspecified, it is an easy matter for us to show from Eq. (4.4-4) that the initial condition for the Hamilton-Jacobi equation is

$$V[\mathbf{x}(t_f), t_f] = 0 \tag{4.4-16}$$

If we had obtained the Hamilton-Jacobi equation for the cost function

$$J = \theta[\mathbf{x}(t_f), t_f] + \int_{t_0}^{t_f} \phi[\mathbf{x}(t), \mathbf{u}(t), t] dt \qquad (4.4-17)$$

we would have obtained the same Hamilton-Jacobi equation (4.4-13) with the initial condition (at the terminal time)

$$V[\mathbf{x}(t_f), t_f] = \theta[\mathbf{x}(t_f), t_f]$$
(4.4-18)

Needless to say, the Hamilton-Jacobi equation cannot be easily solved in general. However, when it can, u(t) is determined as a function of x(t), or in other words, we find a feedback control law which is highly desirable. The Hamilton-Jacobi partial differential equation is equivalent to the functional equation of dynamic programming or Bellman's equation [11,12,13]. It is sometimes called the Hamilton-Jacobi-Bellman equation [14].

Example 4.4-1

Let us consider the linear constant differential system described by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{b}\mathbf{u}(t), \qquad \mathbf{x}(0) = \mathbf{x}_{0}$$

where A is an $n \times n$ matrix and b is an n vector. Any u(t) is assumed to be admissible. We wish to find u(t) as a function of x(t) such that

$$J = \frac{1}{2} \int_0^\infty \left[\mathbf{x}^T \mathbf{Q} \mathbf{x} + r u^2 \right] dt$$

We now center a time Δt between t_o and t_f and rewrite the cost function, Eq. (4.4-4), as

$$V(\mathbf{x}_{o}, t_{o}) = \int_{t_{o}}^{t_{o}+\Delta t} \phi(\hat{\mathbf{x}}, \hat{\mathbf{u}}, t) dt + \int_{t_{o}+\Delta t}^{t_{f}} \phi(\hat{\mathbf{x}}, \hat{\mathbf{u}}, t) dt$$

= $J_{i}(\hat{\mathbf{x}}, \hat{\mathbf{u}}) + J_{2}(\hat{\mathbf{x}}, \hat{\mathbf{u}})$ (4.4-5)

If we now assume that ϕ is smooth over the interval t_0 to $t_0 + \Delta t$ and that Δt is sufficiently small, we may rewrite the J_1 term as

$$\int_{1}^{1} = \Delta t \phi[\hat{\mathbf{x}}(t_0 + \alpha \Delta t), \hat{\mathbf{u}}(t_0 + \alpha \Delta t), t_0 + \alpha \Delta t], \quad 0 < \alpha < 1 \quad (4.4-6)$$

The second part of the cost function is simply

$$V_2 = V[\hat{\mathbf{x}}(t_o + \Delta t), t_o + \Delta t] = \int_{t_o + \Delta t}^{t_f} \phi[\hat{\mathbf{x}}(t), \hat{\mathbf{u}}(t), t] dt \quad (4.4-7)$$

[r_{ij} /This is so because of the fundamental theorem of dynamic programming dy which asserts that any part of an optimal trajectory is an optimal trajectory. ^(I) To show that J_2 is $V[\hat{x}(t_o + \Delta t), t_o + \Delta t]$, we observe that the value of J_2 depends only on the state $\hat{x}(t_o + \Delta t)$ and the control $\hat{u}(t)$ in the time interval at from $t_o + \Delta t$ to t_f . If J_2 was greater than V_2 , then there must have existed

a control such that

$$J_{\mathbf{i}}(\mathbf{\hat{x}},\mathbf{\hat{u}}) + \int_{t_o+\Delta t}^{t_f} \phi[\mathbf{\hat{x}}(t),\mathbf{\hat{u}}(t),t] > V(\mathbf{x}_o,t_o)$$
(4.4-8)

But this contradicts the assumption that $\hat{u}(t)$ is an optimal control. However, by the definition of V_2 , $J_2 \ge V_2$; thus $J_2 = V_2$.

We will now write the cost function along the optimal trajectory as

$$V(\mathbf{x}_{o}, t_{o}) = \Delta t \phi[\mathbf{\hat{x}}(t_{o} + \alpha \Delta t), \mathbf{\hat{u}}(t_{o} + \alpha \Delta t), t_{o} + \alpha \Delta t] + V[\mathbf{\hat{x}}(t_{o} + \Delta t), t_{o} + \Delta t]$$

$$(4.4-9)$$

By expanding the last term in this equation in a Taylor's series about $\Delta t = 0$, we have

$$V(\mathbf{x}_{o}, t_{o}) = \Delta t \phi[\hat{\mathbf{x}}(t_{o} + \alpha \Delta t), \hat{\mathbf{u}}(t_{o} + \alpha \Delta t), t_{o} + \alpha \Delta t] + V(\mathbf{x}_{o}, t_{o}) + \left[\frac{\partial V(\mathbf{x}_{o}, t_{o})}{\partial t_{o}}\right] \Delta t + \left[\frac{\partial V(\mathbf{x}_{o}, t_{o})}{\partial \mathbf{x}_{o}}\right]^{T} \dot{\mathbf{x}}_{o} \Delta t \quad (4.4-10) + [\Delta t]^{2} [\cdot] + \cdots$$

Upon taking the limit as Δt approaches zero and recalling the equality constraint of Eq. (4.4-2), we have, finally, the Hamilton-Jacobi equation

$$\frac{\partial V(\mathbf{x}_o, t_o)}{\partial t_o} + \phi[\mathbf{\hat{x}}(t_o), \mathbf{\hat{u}}(t_o), t_o] + \left[\frac{\partial V(\mathbf{x}_o, t_o)}{\partial \mathbf{x}_o}\right]^T \mathbf{f}[\mathbf{\hat{x}}(t_o), \mathbf{\hat{u}}(t_o), t_o] = 0 \quad (4.4-11)$$

In this expression, we see that if we define

$$\lambda(t_o) = \frac{\partial V(\mathbf{x}_o, t_o)}{\partial \mathbf{x}_o}$$
(4.4-12)

we may then rewrite the Hamilton-Jacobi equation, rewrite the subscript "o" for convenience, as

$$\frac{\partial V(\mathbf{x},t)}{\partial t} + H(\mathbf{x},\hat{\mathbf{u}},\boldsymbol{\lambda},t) = 0 \qquad (4.4-13)$$

It is important for us to stress here that this Hamiltonian is the Hamiltonian evaluated (at time t_o) for the optimum control $\hat{u}(t)$, since we have been assuming all along that ϕ was evaluated about the optimal control and state. Thus, yet another way for us to write the Hamilton-Jacobi equation is

$$\frac{\partial V(\mathbf{x},t)}{\partial t} = -H\left(\mathbf{x},\frac{\partial V}{\partial \mathbf{x}},t\right)$$
(4.4-14)

where

$$H\left(\mathbf{x},\frac{\partial V}{\partial \mathbf{x}}, t\right) = \operatorname{Min}_{\mathbf{u} \in \mathbf{U}} H\left[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t) = \frac{\partial V(\mathbf{x}, t)}{\partial \mathbf{x}}, t\right] \quad (4.4-15)$$

When t_f is fixed and $\mathbf{x}(t_f)$ is unspecified, it is an easy matter for us to show from Eq. (4.4-4) that the initial condition for the Hamilton-Jacobi equation is

$$V[\mathbf{x}(t_f), t_f] = 0 \tag{4.4-16}$$

If we had obtained the Hamilton-Jacobi equation for the cost function

$$J = \theta[\mathbf{x}(t_f), t_f] + \int_{t_o}^{t_f} \phi[\mathbf{x}(t), \mathbf{u}(t), t] dt$$
 (4.4-17)

we would have obtained the same Hamilton-Jacobi equation (4.4-13) with the initial condition (at the terminal time)

$$V[\mathbf{x}(t_f), t_f] = \theta[\mathbf{x}(t_f), t_f]$$
(4.4-18)

Needless to say, the Hamilton-Jacobi equation cannot be easily solved in general. However, when it can, u(t) is determined as a function of x(t), or in other words, we find a feedback control law which is highly desirable. The Hamilton-Jacobi partial differential equation is equivalent to the functional equation of dynamic programming or Bellman's equation [11,12,13]. It is sometimes called the Hamilton-Jacobi-Bellman equation [14].

Example 4.4-1

Let us consider the linear constant differential system described by

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{b}\mathbf{u}(t), \qquad \mathbf{x}(0) = \mathbf{x}_o$$

where A is an $n \times n$ matrix and b is an *n* vector. Any u(t) is assumed to be admissible. We wish to find u(t) as a function of x(t) such that

$$J = \frac{1}{2} \int_0^\infty \left[\mathbf{x}^T \mathbf{Q} \mathbf{x} + r u^2 \right] dt$$

is a minimum) is a positive constant semidefinite matrix, and r is positive. The Hamiltonian for the problem is

$$H(\mathbf{x}, u, \lambda, t) = \frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \frac{1}{2}tu^{2} + \lambda^{T}\mathbf{A}\mathbf{x} + \lambda^{T}\mathbf{b}u$$

We need to find the control u which minimizes the Hamiltonian. This is

$$\frac{\partial H}{\partial u} = 0 = ru + \mathbf{b}^T \boldsymbol{\lambda}$$

so

 $u = -b^r \lambda r^{-1}$

and the Hamiltonian becomes

$$H(\mathbf{x}, \lambda, t) = \frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \lambda^{T}\mathbf{A}\mathbf{x} - \frac{1}{2}\lambda^{T}\mathbf{b}\mathbf{b}^{T}\lambda r^{-1}$$

Since the system and the Q and r terms are time invariant and since the optimization is for a process of infinite duration, it follows that V(x, t) will depend only upon the initial state x. This implies that

$$\frac{\partial V(\mathbf{x},t)}{\partial t} = 0$$

Therefore, since $\lambda = \partial V / \partial x$, the Hamilton-Jacobi equation becomes

V

$$\frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \left(\frac{\partial V}{\partial \mathbf{x}}\right)^{T}\mathbf{A}\mathbf{x} - \frac{1}{2}\left[\left(\frac{\partial V}{\partial \mathbf{x}}\right)^{T}\mathbf{b}\right]^{2}r^{-1} = 0$$

If we assume a solution

$$(\mathbf{x},t) = \frac{1}{2}\mathbf{x}^T \mathbf{P}\mathbf{x}$$

we see that

$$\frac{\partial V}{\partial \mathbf{x}} = \mathbf{P}\mathbf{x}$$

and the Hamilton-Jacobi equation may be written as

$$x^{T}[\frac{1}{2}Q + \frac{1}{2}PA + \frac{1}{2}A^{T}P - \frac{1}{2}Pbb^{T}Pr^{-1}]x = 0$$

which says that, for any nonzero x(t), the matrix P must satisfy the n(n + 1)/2 algebraic equations (the P matrix is symmetric)

$$\mathbf{Q} + \mathbf{P}\mathbf{A} + \mathbf{A}^{T}\mathbf{P} - \mathbf{P}\mathbf{b}\mathbf{b}^{T}\mathbf{P}\mathbf{r}^{-1} = \mathbf{0}$$

This equation is solved for P, and then the control is computed from

$$u = -\mathbf{b}^T \lambda r^{-1} = -\mathbf{b}^T r^{-1} \left(\frac{\partial V}{\partial \mathbf{x}} \right) = -\mathbf{b}^T \mathbf{P} \mathbf{x} r^{-1}$$

If we further consider the system

$$\dot{x}_1 = x_2, \qquad x_1(0) = x_{10}$$

 $\dot{x}_2 = u, \qquad x_2(0) = x_{20},$

and the cost function

$$J = \frac{1}{2} \int_0^\infty (4x_1^2 + u^2) \, dt$$

it is easy for us to show that the optimum control is given by

$$u=-2x_1-2x_2$$

Example 4.4-2

Consider the system

x

$$= -x^3 + u, \quad x(0) = x_0$$

with cost function

$$J = \frac{1}{2} \int_0^{t_f} (x^2 + u^2) \, dt$$

where it is desired to determine the optimal feedback control. We accomplish this by forming the Hamiltonian

$$H(x, u, \lambda, t) = \frac{1}{2}x^{2} + \frac{1}{2}u^{2} + \lambda u - \lambda x^{3}$$

We then set $\partial H/\partial u = 0$ and note that $\lambda = \partial V/\partial x$ to obtain $u = -\lambda$; then

$$H\left(x,\frac{\partial V}{\partial x}\right) = \frac{1}{2}x^2 - \frac{1}{2}\left[\frac{\partial V(x,t)}{\partial x}\right]^2 - \left[\frac{\partial V(x,t)}{\partial x}\right]x^3$$

The Hamilton-Jacobi equation is

$$\frac{\partial V(x,t)}{\partial t} - \frac{1}{2} \left[\frac{\partial V(x,t)}{\partial x} \right]^2 - \left[\frac{\partial V(x,t)}{\partial x} \right] x^3 + \frac{1}{2} x^2 = 0$$

with $V[x(t_f), t_f] = 0.$

If the optimization interval is infinite, then $\partial V/\partial t = 0$, and we need to solve the differential equation

$$\left[\frac{dV(x)}{dx}\right]^2 + 2\left[\frac{dV(x)}{dx}\right]x^3 - x^2 = 0$$

with V(0) = 0 as the initial condition. We may approximate the solution to this ordinary differential equation by a series expansion

$$V(x) = p_0 + p_1 x + \frac{1}{2} p_2 x^2 + \frac{1}{3!} p_3 x^3 + \frac{1}{4!} p_4 x^4 + \cdots$$

If we terminate the series after the fourth-order term, substitute the assumed solution into the differential equation, and equate like powers of x (up to x^4), we obtain $p_0 = p_1 = p_3 = 0$, $p_2 = 1$, $p_4 = -6$. Thus the approximate closed-loop control is

$$u = -\lambda = -\frac{dV}{dx} = -x + x$$

We naturally may question the stability of the approximate control. However, with u as obtained, the system differential equation becomes

 $x^{*} = -x^{3} + u = -x$

which is certainly stable.

A similar procedure to this could have been used to obtain an approximate solution to the nonlinear partial differential equation that is the Hamilton-Jacobi equation for this example. In this case, the p's would be functions of time, and we would obtain matrix Riccati-type equations [15]. This approach has many attractive features. In particular, only initial condition problems need be solved. However, there are two disadvantages: There is no assurance of system stability; the number of matrix Riccati differential equations which must be solved

increases gree " with the order of the differential system and the order of the polynomial in. For the approximate solution to V(x, t). If an expansion in x to the N order is used for an n vector differential system, the number of distinct Riccati-type differential equations is

$$E = \sum_{j=1}^{N} \frac{(n-1+j)!}{(n-1)! j!}$$

for an assumed solution of the form

$$V(\mathbf{x}, t) = \sum_{j=1}^{n} p_j x_j + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} p_{jk} x_j x_k + \frac{1}{6} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} p_{jkl} x_j x_k x_l + \cdots$$

If, for example, the solution to a four-vector differential system is approximated by terms up to and including the fourth power in x, we need to solve sixty-nine differential equations to obtain the closed-loop control.

Our discussion of the second variation technique, the invariant imbedding procedure, and specific optimal control using the quasilinearization approach will point out many interesting interconnections with the approach used to obtain the solution to this example.

In our development thus far, we have assumed that the terminal time, t_f , is fixed. It is possible to remove this restriction with the result that the Hamilton-Jacobi equation (4.4-13), (4.4-14), or (4.4-15) is still applicable. The initial condition for the Hamilton-Jacobi equation is still Eq. (4.4-18) and, in addition, the terminal time is determined by the relation

$$H\left(\mathbf{x}, \frac{\partial V}{\partial \mathbf{x}}, t\right) + 1 = 0, \quad \text{at} \quad t = t_f$$
 (4.4-19)

which holds if the problem is a minimum time problem such that

$$V(\mathbf{x},t) = t_f - t \tag{4.4-20}$$

If, further, the differential system is time invariant, the Hamiltonian is equal to -1 at all times along the optimal trajectory.

We may formally obtain the Pontryagin maximum principle by taking appropriate partial derivatives of the Hamilton-Jacobi equations (Problem 9). However, the resulting maximum principle is not applicable to as broad a class of problems as is possible. The reason for this is that it is necessary that $V(\mathbf{x}, t)$ be smooth or, in other words, twice continuously differentiable with respect to x in order to obtain the Hamilton canonic equations of the maximum principle. We shall illustrate these difficulties with a simple example.

Example 4.4-3

A second-order example will now be discussed to illustrate that the assumption of the differentiability of $V(\mathbf{x}, t)$ does not hold in some of the simplest cases. We will consider the problem of transferring the system represented by the differential equations

$$\dot{x}_1 = x_2, \qquad \dot{x}_2 = u$$

from an initial state x_0 to the origin in minimum time. W sume that the admissible set for the scalar control is described by $|u(t)| \le 1$.

This problem can be solved by the Pontryagin maximum principle. In the time optimal problem

$$t = \int_{t_0}^{t_f} (1) \, dt$$

Therefore, the Hamiltonian is

$$H[\mathbf{x}, u, \lambda, t] = 1 + \lambda_1 x_2 + \lambda_2 u$$

The adjoint equations are

$$\dot{\lambda}_1 = 0, \quad \dot{\lambda}_2 = -\lambda_1$$

The solutions to these equations are

$$\lambda_1 = C_1, \qquad \lambda_2 = C_2 - C_1 t$$

where C_j is the initial condition on λ_j . The control which minimizes the Hamiltonian subject to $|u| \leq 1$ is

$$u = -\operatorname{sign} \lambda_2 = -\operatorname{sign} \left(C_2 - C_1 t\right)$$

The initial conditions C_1 and C_2 are not arbitrary but must be such that $\mathbf{x}(t_f) = 0$ since it is desired to transfer the system \mathbf{x}_o to the origin in minimum time. When u = +1, the solution to the differential system equation is

$$x_2 = t + x_2(0)$$

$$x_1 = \frac{t^2}{2} + x_2(0)t + x_1(0)$$

If t is eliminated from the foregoing, we obtain

$$x_1 = \frac{x_2^2}{2} + x_1(0) - \frac{x_2^2(0)}{2}$$

When u = -1, the solution to the differential system equations is

$$x_2 = -t + x'_2(0)$$

$$x_1 = \frac{-t^2}{2} + x'_2(0)t + x'_1(0)$$

and if t is eliminated in the foregoing, we obtain

$$x_1 = \frac{-x_2^2}{2} + x_1'(0) + \frac{x_2'^2(0)}{2}$$

By determining the constants C_1 and C_2 in terms of x_1 and x_2 , it is a straightforward task for us to show that the control law is

$$u = -\text{sign}[x_1(t) + \frac{1}{2}x_2(t) | x_2(t) |]$$

These equations represent the optimal control and trajectories for u = -1 and u = +1, respectively, and they indicate that these trajectories are segments of parabolas. Figure 4.4-1 is a plot of some of these parabolas.

The segment of the parabola which is not an optimal trajectory has been represented by a broken line. The optimal control can be determined from Fig. 4.4-1 and a knowledge of the state of the system. The curve AOB repre-

sents the s hing curve. When x lies below AOB, u = +1 until the system state reaches the size AO, at which time the control switches to -1. If x lies above AOB, u = -1 until it reaches BO, where it switches to +1.

The optimal transition time $T(\mathbf{x})$, which is the cost function J or $V(\mathbf{x}, t)$, can be determined from the solutions for x_1 and x_2 . Figure 4.4-2 is a plot of $T(\mathbf{x})$, the minimum time to transfer to the origin for the case in which the initial x_2 is held constant ($x_{20} = -2$), and x_{10} is varied about the switching line.

Fig. 4.4-2 Minimum time to origin for fixed x_{20} Example (4.4-3).

From the graph it can be seen that $\partial T(\mathbf{x})/\partial x_1$ has a diminuity at the switching curve. It can be shown analytically that $\partial T(\mathbf{x})/\partial x_1$ "blows up" as x_1 approaches +2 from the left. Hence the Hamilton-Jacobi equation would not be applicable in examples of this type. This example indicates the loss of generality which results from deriving the maximum principle from the Hamilton-Jacobi-Bellman equations.

REFERENCES

- 1. Gelfand, I.M. and Fomin, S.V., *Calculus of Variations*. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.
- 2. Pontryagin, L.S., et al., *The Mathematical Theory of Optimal Processes*. Wiley, New York. 1962.
- Rozonoér, L.I., "L.S. Pontryagin's Maximum Principle in the Theory of Optimum Systems I." *Automatica i Telemekhanika*, Vol. 20, No. 10, pp. 1320–1334, October, 1959.
- 4. Rozonoér, L.I., "L.S. Pontryagin's Maximum Principle in the Theory of Optimum Systems II." Automatica i Telemekhanika, Vol. 20, No. 11, pp. 1441-1458, November, 1959.
- Rozonoér, L.I., "L.S. Pontryagin's Maximum Principle in the Theory of Optimum Systems III." *Automatica i Telemekhanika*, Vol. 20, No. 12, pp. 1561–1578, December, 1959.
- 6. Berkovitz, L.D., "Variational Methods in Problems of Control and Programming." J. Math. Anal. Appl., Vol. 3, pp. 145-169, 1961.
- 7. Berkovitz, L.D., "On Control Problems with Bounded State Variables." J. Math. Anal. Appl., Vol. 5, pp. 488-498, 1962.
- 8. Valentine, F.A., "The Problem of Lagrange with Differential Inequalities as Added Side Conditions." *Contributions to the Calculus of Variations 1933–1937*, University of Chicago Press, Chicago, Illinois, 1937.
- 9. Kelley, H.J., "Methods of Gradients." Optimization Techniques, G. Leitman, Ed., Ch. 6, Academic Press, New York, 1962.
- McGill, R., "Optimal Control, Inequality State Constraints, and the Generalized Newton-Raphson Algorithm." J. SIAM on Control, Vol. 3, pp. 291–298, 1965.
- 11. Dreyfus, S.E., *Dynamic Programming and the Calculus of Variations*. Academic Press, New York, 1965.
- 12. Kalman, R.E., "Contributions to the Theory of Optimal Control." Bol. Soc. Mat. Mex., Vol. 5, pp. 102-119, 1960.
- 13. *Mathematical Optimization Techniques*, R. Bellman, Ed. University of California Press, Berkeley, Calif., 1963.
- 14. Bryson, A.E., Jr., "Optimal Programming and Control." Proceedings IBM Scientific Computing Symposium on Control Theory and Applications, IBM Publication 320-1939, 1966.
- 15. Merriam, C.W. III, Optimization Theory and the Design of Feedback Control Systems. McGraw-Hill Book Company, New York, 1964.

'1. Find the TPBVP which, when solved, yields the control. u(t), and trajectory, x(t), which minimize

$$J = \frac{1}{2} \int_0^1 (x^2 + u^2) \, dt$$

for the system

 $\dot{x} = -x^3 + u_{\rm s}$ x(0) = 1

2. Find the control and trajectory which transfers the system

 $x_{i}(0) = 0$ $\dot{x}_1 = x_2$ $\dot{\mathbf{x}}_{2} = \mathbf{u}_{1}$ $x_{2}(0) = 0$

to the line

 $x_1(1) + x_2(1) = 1$

such that

$$J = \frac{1}{2} \int_0^1 u^2(t) \, dt$$

is minimized.

3. Find the control and trajectory which transfers the system

$$\dot{x} = -x + u$$

from x(0) = 10 to x(1) = 0 such that

 $J = \frac{1}{2} \int_{-1}^{1} (\dot{u})^2 dt$

 \checkmark is minimized.

• 4. Find the control and trajectory which minimizes

 $J=\frac{1}{2}\int_{-\infty}^{4}x^{2}(t)\,dt$

subject to the inequality constraint $|u(t)| \leq 1$ for the system $\dot{x} = u$ such that x(0) = 1, x(4) = 1.

5. Determine the Weierstrass-Erdmann corner conditions for the minimization of the cost function

$$J = \int_0^1 x^2 (2 - \dot{x})^2 \, dt$$

- 6. What is the Weierstrass E function for the cost function of Problem 5?
- > 7. For the system

$$\dot{x}_1 = x_2, \qquad x_1(0) = 10$$

 $\dot{x}_2 = u, \qquad x_2(0) = 0$

find the control and trajectory which minimizes

$$J = t_f^2 + \frac{1}{2} \int_0^{t_f} u^2 \, dt$$

if the desired final state is: (a) $x_1(t_f) = x_2(t_f) = 0.$ (b) $x_1(t_f) = 0$, $x_2(t_f) =$ unspecified.

1 58.1 1081 8. Develop a second- and fourth-order approximation to the dution of the Hamilton-Jacobi equation to find the closed-loop control which minimizes

for the system

 $\dot{x}_{1} = x_{2} + x_{2}^{3} + \frac{\partial \vee}{\partial x_{1}} (\chi_{1} - \chi_{1}) + \frac{\partial \vee}{\partial \chi_{1}} (\chi_{1} + \chi_{2}) + \frac{\partial \vee}{\partial \chi_{1}} (\chi_{1} + \chi_{2}) + \frac{\partial \vee}{\partial \chi_{1}} (\chi_{1} + \chi_{2}) + \frac{\partial \vee}{\partial \chi_{1}} (\chi_{1} - \chi_{2}) + \frac{\partial \vee}{\partial \chi_{1}} (\chi_{2} + \chi_{2}) + \frac{\partial \vee}{\partial \chi_{2}} (\chi_{2} + \chi_{2}) + \frac{\partial \vee}{$ * 9. Derive the Pontryagin maximum principle from the Hamilton-Jacobi equation by calculating $(d/dt)(\partial V/\partial x)$ and $\partial V/\partial \lambda$ as outlined in Section 4.4. Observe the differentiability requirement on V(x, t). V(x) = 12 + E 12) 10. Find the control vector which minimizes $J = \frac{1}{2} \int_0^1 (x^2 + u_1^2 + u_2^2) dt$ + EE P , X . X

 $J = \frac{1}{2} \int_{t_0}^{t_1} (x_1^2 + u^2) dt \quad \stackrel{\text{W}}{\longrightarrow} \frac{\delta \vee (t_0, b)}{\lambda \pi} + \frac{1}{2} \chi_1^{-1} - \frac{1}{2} \left(\frac{\delta \vee}{\delta \chi_1} \right)^{-1}$

for the system described by

$$\dot{x} = u_1 + u_2, \quad x(0) = 1$$
 pluy in and find

Use the maximum principle and the Hamilton-Jacobi equations to find the complicants. optimum control vector.

¹11. Set up the differential equations and boundary conditions to minimize for t_f unspecified

$$J=\int_0^{t_f}u^2dt+t_fx_2(t_f)$$

subject to the constraints

a)
$$\dot{x}_1 = x_2, \dot{x}_2 = x_3, \dot{x}_3 = u$$

b) $\mathbf{x}(0) = \mathbf{0}$
c) $|u| \le 1; |x_3| \le 10$
d) $x_1(t_f) = t_f^2, x_2(t_f) = x_3^2(t_f)$

* 12. Set up the equations and boundary conditions to optimize the system

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = x_3, \quad \dot{x}_3 = u$$

for the performance index with t_{f} unspecified

$$J = \int_0^{t_f} x_1^2 dt + t_f^2 x_2(t_f)$$

subject to all of the following constraints a) $\mathbf{x}^{T}(0) = [1, 0, 0]$ b) $x_1(t_f) = x_2(t_f)$ c) $x_3(t_f) = 0$ d) |u| < 1e) $\int_{0}^{t_{f}} u^{2} dt = 1$

13. Find the Hamilton-Jacobi equation for the system

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = -x_2 - x_1^2 + u$

if the pe nance index is

$$V = \int_0^{t_f} (x_1^2 + u^2) dt$$

¹14. Show that the solution of the Hamilton-Jacobi equation for the system

$$k = Ax + u, A^{T} + A = 0, ||u|| \le 1$$

and the cost function

 $J=\int_0^{t_f}dt=t_f$

is

$$V(\mathbf{x}) = ||\mathbf{x}||$$

 $J = \int_0^{t_f} dt$

 $\dot{x} = -x + u_{x}$

What is the optimal control?

15. Find the optimal control to minimize

for the system

when

 $x(0) = 1, \quad x(t_f) = 0$ $|u| \le 1 + |x|$

OPTIMUM SYSTEMS CONTROL EXAMPLES

In this chapter, we will illustrate some, but certainly by no means all, or even a majority, of the optimal control problems for which closed-form analytic solutions have been obtained. The problems we will solve in this chapter are very important in their own right and illustrate the use of the maximum principle for problems in which closed-form analytic solutions may be obtained. Specifically, we will discuss the linear regulator problem, the first solution of which was due to Kalman [1, 2, 3, 4]. We then discuss the minimum time problem which has been considered by Pontryagin [5], Bellman [6], LaSalle [7], and many others [8 through 13].

A characteristic of some minimum time problems is the possibility of a singular solution. The possibility of singular solutions is well-recognized in the variational calculus literature and has been extensively discussed for control problems by Johnson [14, 15, 16] and others. Minimum fuel problems for linear differential systems are then discussed. A variety of authors, but notably Athans, have discussed various aspects of minimum fuel problems including the possibility of singular solutions [17 through 20]. Finally, the minimum time, minimum fuel, and minimum energy control of self-adjoint systems are discussed. It is certainly true that the self-adjoint assumption, coupled with the need for as many control inputs as state variables, seriously restricts the practical usefulness of the solutions, particularly for high-order systems. However, the relative ease with which the control can be computed makes this an excellent example for a relatively thorough analysis.

87

Many other)imal control problems are solved in this book other than the ones in this chapter. Discrete and distributed parameter problems are reserved for the next two chapters. Chapter 11 discusses several optimal control problems with regard to observability and controllability. Nonlinear problems, which include the majority of optimal control problems, are discussed in Chapters 13, 14, and 15. The literature in this area is very extensive. For an excellent survey of many other problems plus a lengthy bibliography, we refer to the survey papers of Paiewonsky [22] and Athans [23].

5.1 The linear regulator

We will now study a particular control problem which has as its solution a linear feedback control law. It occurs where we have a linear differential system

$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x} + \mathbf{B}(t)\mathbf{u}, \qquad \mathbf{x}(t_o) = \mathbf{x}_o \tag{5.1-1}$$

and wish to find the control which minimizes the cost function (for t_f fixed)

$$J = \frac{1}{2} \mathbf{x}^{T}(t_{f}) \mathbf{S} \mathbf{x}(t_{f}) + \frac{1}{2} \int_{t_{o}}^{t_{f}} \left[\mathbf{x}^{T}(t) \mathbf{Q}(t) \mathbf{x}(t) + \mathbf{u}^{T}(t) \mathbf{R}(t) \mathbf{u}(t) \right] dt \qquad (5.1-2)$$

Clearly, there is no loss of generality in assuming Q, R, and S to be symmetric. We may obtain the solution to this problem via the maximum principle or the Hamilton-Jacobi equation. Here, we will use the former method. The Hamiltonian is

$$H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] = \frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \frac{1}{2}\mathbf{u}^{T}\mathbf{R}\mathbf{u} + \boldsymbol{\lambda}^{T}\mathbf{A}\mathbf{x} + \boldsymbol{\lambda}^{T}\mathbf{B}\mathbf{u} \qquad (5.1-3)$$

Application of the maximum principle requires that, for an optimum control,

$$\frac{\partial H}{\partial \mathbf{u}} = \mathbf{0} = \mathbf{R}(t)\mathbf{u}(t) + \mathbf{B}^{T}(t)\boldsymbol{\lambda}(t)$$
 (5.1-4)

and

$$\frac{\partial H}{\partial \mathbf{x}} = -\dot{\boldsymbol{\lambda}} = \mathbf{Q}(t)\mathbf{x}(t) + \mathbf{A}^{\mathrm{T}}(t)\boldsymbol{\lambda}(t)$$

with the terminal condition

$$\lambda(t_f) = \frac{\partial \theta}{\partial \mathbf{x}(t_f)} = \mathbf{S}\mathbf{x}(t_f)$$
(5.1-6)

(5.1-5)

Thus we require that

$$\mathbf{u}(t) = -\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\boldsymbol{\lambda}(t)$$
 (5.1-7)

and we shall inquire whether we may convert this to a closed-loop control by assuming that the solution for the adjoint is similar to Eq. (5.1-6)

$$\boldsymbol{\lambda}(t) = \mathbf{P}(t)\mathbf{x}(t) \tag{5.1-8}$$

If we substitute this relation into Eqs. (5.1-1) and (5.1-7), we see that we must require

 $\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}(t) - \mathbf{B}(t)\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\mathbf{P}(t)\mathbf{x}(t)$ (5.1-9)

Also, from Eqs. (5.1-8) and (5.1-5) we require

λ,

$$= \dot{\mathbf{P}}\mathbf{x}(t) + \mathbf{P}(t)\dot{\mathbf{x}} = -\mathbf{Q}(t)\mathbf{x}(t) - \mathbf{A}^{T}(t)\mathbf{P}(t)\mathbf{x}(t) \qquad (5.1-10)$$

By combining Eqs. (5.1-9) and (5.1-10) we have

 $[\dot{\mathbf{P}} + \mathbf{P}(t)\mathbf{A}(t) + \mathbf{A}^{T}(t)\mathbf{P}(t) - \mathbf{P}(t)\mathbf{B}(t)\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\mathbf{P}(t) + \mathbf{Q}(t)]\mathbf{x}(t) = \mathbf{0}$

(5.1-11)

Since this must hold for all nonzero $\mathbf{x}(t)$, the term premultiplying $\mathbf{x}(t)$ must be zero. Thus the P matrix, which we see is an $n \times n$ symmetric matrix and which has n(n + 1)/2 different terms, must satisfy the matrix Riccati equation — which, as we shall see later, must be positive definite —

$$\dot{\mathbf{P}} = -\mathbf{P}(t)\mathbf{A}(t) - \mathbf{A}^{T}(t)\mathbf{P}(t) + \mathbf{P}(t)\mathbf{B}(t)\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\mathbf{P}(t) - \mathbf{Q}(t)$$
 (5.1-12)

with a terminal condition given by Eqs. (5.1-6) and (5.1-8)

$$\mathbf{P}(t_f) = \mathbf{S} \tag{5.1-13}$$

Thus we may solve the matrix Riccati equation backward in time from t_f to t_o , store the matrix

$$K(t) = -R^{-1}(t)B^{T}(t)P(t)$$
 (5.1-14)

and then obtain a closed-loop control from

$$\mathbf{u}(t) = +\mathbf{K}(t)\mathbf{x}(t) \tag{5.1-15}$$

It is important to note that all components of the state vector must be accessible. We will remove this restriction in Chapter 11 when we discuss the ideal observer. A block diagram for accomplishing this solution to the regulator problem is shown in Fig. 5.1-1. If we compute the second variation, we find that

$$\delta^2 J = \frac{1}{2} \, \delta \mathbf{x}^T(t_f) \mathbf{S} \, \delta \mathbf{x}(t_f) + \frac{1}{2} \int_{t_a}^{t_f} \left[\delta \mathbf{x}^T(t) \mathbf{Q}(t) \, \delta \mathbf{x}(t) + \, \delta \mathbf{u}^T(t) \mathbf{R}(t) \, \delta \mathbf{u}(t) \right] dt$$
(5.1-16)

Fig. 5.1-1 Optimum linear closed-loop regulator.

Thus, \mathbf{Q} and \mathbf{S} must be at least positive semidefinite in order to establish the sufficient condition for a minimum. In addition, we know from Eq. (5.1-7) that \mathbf{R} must have an inverse; therefore, it is sufficient that \mathbf{R} be positive definite and that \mathbf{Q} and \mathbf{S} be at least positive semidefinite.

In some cases it may turn out that certain elements of the S matrix are large enough to give computational difficulties. In this case, it is possible and perhaps desirable to obtain an inverse Riccati differential equation; we let

$$\mathbf{P}(t)\mathbf{P}^{-1}(t) = \mathbf{I}$$
 (5.1-17)

and, by differentiating, we obtain

$$\dot{\mathbf{P}}\mathbf{P}^{-1}(t) + \mathbf{P}(t)\dot{\mathbf{P}}^{-1} = \mathbf{0}$$
(5.1-18)

such that we obtain an "inverse" matrix Riccati equation

$$\dot{\mathbf{P}}^{-1} = \mathbf{A}(t)\mathbf{P}^{-1}(t) + \mathbf{P}^{-1}(t)\mathbf{A}^{T}(t) - \mathbf{B}(t)\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t) + \mathbf{P}^{-1}(t)\mathbf{Q}(t)\mathbf{P}^{-1}(t)$$
(5.1-19)

with

$$\mathbf{P}^{-1}(t_f) = \mathbf{S}^{-1} \tag{5.1-20}$$

In this way, for example, it is possible to solve the Riccati equation such that $S^{-1} = [0]$, the null matrix, which will require that each and every component of the state vector approach the origin as the time approaches the terminal time. The "gains" K(t), or at least some components of them, become infinite at the terminal time in this case. It is also necessary to assume certain controllability requirements here, as we shall see in Chapter 11.

It is possible to write the nonlinear $n \times n$ matrix Riccati equation with a terminal condition as a 2n vector linear differential equation with two-point boundary conditions. We will use this approach, in part, to solve a Riccati equation associated with a filtering problem in Chapter 9. Our discussion of the second variation method in Chapter 13 will also make use of a Riccati transformation.

Example 5.1-1

Consider the scalar system

$$\dot{x} = -\frac{1}{2}x(t) + u(t), \qquad x(t_o) = x_o$$

with the cost function

$$U = \frac{1}{2}sx^{2}(t_{f}) + \frac{1}{2}\int_{t_{a}}^{t_{f}} [2x^{2}(t) + u^{2}(t)] dt$$

The Riccati equation, Eq. (5.1-12), becomes

$$\dot{p} = p + p^2 - 2, \quad p(t_f) = s \quad \bigvee$$

which has a solution that we may write as either

$$p(t) = -0.5 + 1.5 \tanh(-1.5t + \xi_1)$$

or

$$p(t) = -0.5 + 1.5 \coth(-1.5t + \xi_2)$$

where ξ_1 and ξ_2 are adjusted such that $p(t_f) = s$.

For example, if

(a)
$$s = 0$$
, $t_f = 1$, then $\xi_1 = 1.845$ radians, which gives

$$K(t) = -R^{-1}B^T P = 0.5 - 1.5 \tanh(-1.5t + 1.845)$$

Since s = 0, we are not particularly weighting the state at the final time, and the "gain" (and control) goes to zero at the final time.

(b) s = 10, $t_f = 10$, then $\xi_2 = 15.1425$ radians. In this case we are applying a great weight to the error at $t = t_f$, and the gain becomes large (-10) at the terminal time.

(c) $s = \infty$, the Riccati equation cannot be solved directly since it has an infinite initial condition. The inverse Riccati equation can be solved with zero terminal condition to give

$$K^{-1}(t) \equiv [0.25 + 0.75 \tanh(-1.5t + 1.5t_f - 0.346)]$$

As t_f becomes infinite, it is easy to show that K(t) becomes unity and, as is expected, the feedback gain becomes constant. Figure 5.1-2 illustrates K(t), the "Kalman gains" as they are sometimes called, for these three cases for this particular problem.

Example 5.1-2

Let us consider the optimum closed-loop control for a nuclear reactor system. Specifically, we wish to consider a very simple reactor model with zero temperature feedback. Only one group of delayed neutrons will be used.

The reactor kinetics are described by the equations

$$\dot{n} = \frac{(\rho - \beta)n}{\Lambda} + \lambda c, \qquad \dot{c} = \frac{\beta n}{\Lambda} - \lambda c$$

where the neutron density, n, and the precursor concentration, c, are the state variables, and the reactivity ρ is the control variable. The system has the initial

Fig. 5.1-2a (-1) times Kalman gain for controller, s = 0.

conditions $n(0) = n_o$ and $c(0) = c_o$. β , Λ and λ are constants, the average fraction of precursors formed, effective neutron lifetime, and precursor decay constant.

The problem is to increase the power from the initial state n_o to a terminal state dn_o , where d is some constant greater than 1.0. The performance index for the system is

$$J_1 = \frac{1}{2} \int_0^{t_f} \dot{\rho}^2 \, dt$$

The control variable therefore becomes ρ , and ρ , in effect, thus becomes a state variable. The kinetics equations may then be rewritten as

 $\dot{n} = \frac{(\rho - \beta)n}{\Lambda} + \lambda c$ $\dot{c} = \frac{\beta n}{\Lambda} - \lambda c$ $\dot{\rho} = u$

where u is the control variable. Chapter 14 on quasilinearization indicates how the nonlinear two-point boundary value problem resulting from the use of optimal control theory may be used to obtain the optimum control and trajectory, which are shown in Fig. 5.1-3, for the following system parameters

$$\lambda = 0.1 \text{ sec}^{-1}$$
 $n_o = 10 \text{ kW}$
 $d = 5$
 $\Lambda = 10^{-3} \text{ sec}$ $\beta = 0.0064$
 $t_f = 0.5 \text{ sec}$

We will now develop a method of feedback control about the optimal trajectory which minimizes a cost function J_2 ; it will be quadratic in deviation from the nominal (optimal for J_1) trajectory and control.

Having formulated a model for the nuclear reactor system and determined the optimal trajectories, we now desire to determine the linearized system coefficient matrix about the optimal trajectory. The deviations of the state and control variables about the optimal or nominal trajectories are expressed by

> $n = n_n(t) + \Delta n(t), \qquad c = c_n(t) + \Delta c(t)$ $\rho = \rho_n(t) + \Delta \rho(t), \qquad u = u_n(t) + \Delta u(t)$

Fig. 5.1-3 Optimal control (reactivity) and trajectory (flux density) for Example (5.1-2).

The state vect

$$\Delta \mathbf{x}^{T}(t) = [\Delta n(t), \Delta c(t), \Delta \rho(t)]$$

The linearized model becomes

$$\Delta \dot{\mathbf{x}} = \begin{bmatrix} a_{11}(t) & \lambda & a_{13}(t) \\ \frac{\beta}{\Lambda} & -\lambda & 0 \\ 0 & 0 & 0 \end{bmatrix} \Delta \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \Delta u$$
$$= \mathbf{A}(t) \Delta \mathbf{x}(t) + \mathbf{b}(t) \Delta u(t)$$

where

$$a_{11}(t) = \frac{\rho_n(t) - \beta}{\Lambda}, \qquad a_{13}(t) = \frac{n_n(t)}{\Lambda}$$

To complete our design of the closed-loop controller, we must evaluate A(t) and b(t) about the optimum or nominal trajectories, select the R, Q, and S matrices, and solve the associated Riccati equation. The nominal trajectory, control, and time-varying gains are then stored and used to complete the closed-loop controller design.

The choice of the R, Q, and S matrices to minimize

$$J_2 = \frac{1}{2} \Delta \mathbf{x}^T(t_f) \mathbf{S} \Delta \mathbf{x}(t_f) + \frac{1}{2} \int_{t_0}^{t_f} \left[\Delta \mathbf{x}^T(t) \mathbf{Q}(t) \Delta \mathbf{x}(t) + r(t) \Delta u^2(t) \right] dt$$

is somewhat arbitrary and can perhaps best be done here by experimentation. We can accomplish this only after we have obtained a knowledge of possible disturbances which may drive the system off of the nominal trajectory. Let us assume that we will use

$$\mathbf{Q} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 10^4 \end{bmatrix}, \qquad \mathbf{S} = 0, \qquad r = 1$$

In Chapter 13 the second variation and neighboring optimal methods of control-law computation will lead us to a method for choosing the proper weighting matrices for a variety of cases, in particular, for relating J_1 and J_2 .

The control, $\Delta u(t)$, is computed from

$$\Delta u(t) = -\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\mathbf{P}(t)\Delta \mathbf{x}(t)$$

= -[p₃₁(t)\Delta n(t) + p₃₂(t)\Delta c(t) + p₃₃(t)\Delta \rho(t)]

where it is necessary to solve the 3×3 matrix Riccati equation, having six different first-order differential equations, to obtain P(t). Figure (5.1-4) illustrates the Kalman gains $-K^{T}(t) = [p_{31}(t), p_{32}(t), p_{33}(t)]$ for this example. Figure (5.1-5) indicates how the complete closed-loop controller is obtained. It is interesting to note that, in an actual physical problem, the precursor concentration is not measurable, and therefore we need to add an "observer" of this particular state variable. We also need to discuss many more aspects of this problem such as disturbances and parameter variations. We will postpone further consideration of these important questions until we establish some foundation in state and parameter estimation and optimal adaptive control. We have, in this example,

Fig. 5.1-4 Kalman gains for Example (5.1-2).

Fig. 5.1-5 Structure of controller for Example (5.1-2).

illustrated how a basically nonlinear problem may be linearized, and a linear time-varying closed-loop controller obtained, if a nominal trajectory is known. Since this can be accomplished for a variety of problems, we see that the linear regulator problem is indeed an important one.

5.2 The par servomechanism

The linear regulator problem considered in the preceding section can be generalized in several ways. We can assume that we desire to find the control in such a way as to cause the output to track or follow a desired output state, $\eta(t)$. We may also assume that there is a forcing function (not the control) for the system differential equations. Therefore, we will consider the minimization of

$$J = \frac{1}{2} ||\eta(t_f) - z(t_f)||_{\mathrm{S}}^2 + \frac{1}{2} \int_{t_0}^{t_f} [||\eta(t) - z(t)||_{\mathrm{Q}(t)}^2 + ||u(t)||_{\mathrm{R}(t)}^2] dt \quad (5.2-1)$$

for the system which contains an input or plant noise vector w(t)

$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) + \mathbf{w}(t), \qquad \mathbf{x}(t_o) = \mathbf{x}_o$$
 (5.2-2)

$$\mathbf{z}(t) = \mathbf{C}(t)\mathbf{x}(t) \tag{5.2-3}$$

The requirements on the various matrices are the same as in the preceding section. We proceed in exactly the same fashion as for the regulator problem. The Hamiltonian is, from Eq. (4.3-34),

$$H(\mathbf{x}, \mathbf{u}, \boldsymbol{\lambda}, t) = \frac{1}{2} || \boldsymbol{\eta}(t) - \mathbf{C}(t)\mathbf{x}(t) ||_{\mathbf{Q}(t)}^{2} + \frac{1}{2} || \mathbf{u}(t) ||_{\mathbf{R}(t)}^{2} + \boldsymbol{\lambda}^{T}(t)[\mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) + \mathbf{w}(t)]$$
(5.2-4)

We employ the maximum principle and set $\partial H/\partial u = 0$ to obtain

$$\mathbf{u}(t) = -\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\boldsymbol{\lambda}(t)$$
(5.2-5)

and

$$\frac{\partial H}{\partial \mathbf{x}} = -\dot{\boldsymbol{\lambda}} = \mathbf{C}^{T}(t)\mathbf{Q}(t)[\mathbf{C}(t)\mathbf{x}(t) - \boldsymbol{\eta}(t)] + \mathbf{A}^{T}(t)\boldsymbol{\lambda}(t) \qquad (5.2-6)$$

with the terminal condition

$$\boldsymbol{\lambda}(t_f) = \mathbb{C}^{\mathrm{T}}(t_f) \mathbb{S}[\mathbb{C}(t_f) \mathbf{x}(t_f) - \boldsymbol{\eta}(t_f)]$$
(5.2-7)

In order to attempt to determine a closed-loop control, we assume

$$\lambda(t) = \mathbb{P}(t)\mathbf{x}(t) - \boldsymbol{\xi}(t) \tag{5.2-8}$$

We substitute this relation into the canonic equations and determine the requirements for a solution. By a procedure analogous to that of the preceding section, we easily obtain the following requirements

$$\dot{\mathbf{P}} = -\mathbf{P}(t)\mathbf{A}(t) - \mathbf{A}^{T}(t)\mathbf{P}(t) + \mathbf{P}(t)\mathbf{B}(t)\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\mathbf{P}(t) - \mathbf{C}^{T}(t)\mathbf{Q}(t)\mathbf{C}(t)$$
(5.2-9)

$$\mathbf{P}(t_f) = \mathbf{C}^{T}(t_f)\mathbf{S}\mathbf{C}(t_f) \tag{5.2-10}$$

and

$$\hat{\boldsymbol{\xi}} = -[\mathbf{A}(t) - \mathbf{B}(t)\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\mathbf{P}(t)]^{T}\boldsymbol{\xi} + \mathbf{P}(t)\mathbf{w}(t) - \mathbf{C}^{T}(t)\mathbf{Q}(t)\boldsymbol{\eta}(t) \quad (5.2-11)$$
$$\hat{\boldsymbol{\xi}}(t_{f}) = \mathbf{C}^{T}(t_{f})\mathbf{S}\boldsymbol{\eta}(t_{f}) \quad (5.2-12)$$

Thus we see that the linear servomechanism problem b mposed of two parts: a linear regulator part, plus a prefilter to determine the optimal driving function from the desired value, $\eta(t)$, of the system output. The optimum control law is linear and is obtained from Eq. (5.2-5) as

$$\mathbf{u}(t) = -\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)[\mathbf{P}(t)\mathbf{x}(t) - \boldsymbol{\xi}(t)]$$
(5.2-13)

Unfortunately, the optimal control is, in practice, often computationally unrealizable because it involves $\xi(t)$ which must be solved backward from t_f to t_o and, therefore, requires a knowledge of $\eta(t)$ and w(t) for all time $t \in [t_o, t_f]$. This is quite often not known at the initial time t_o .

Example 5.2-1

Let us consider the minimization of the cost function

$$J = \frac{1}{2} \int_0^{t_f} \left[(x_1 - \eta_1)^2 + u^2 \right] dt$$

for the system described by

$$\dot{x}_1 = x_2, \qquad x_1(0) = x_{10}$$

 $\dot{x}_2 = u, \qquad x_2(0) = x_{20}$

We first use Eqs. (5.2-9) and (5.2-10) to obtain the Riccati equation for this example

$$\dot{p}_{11} = p_{12}^2 - 1,$$
 $p_{11}(t_f) = 0$
 $\dot{p}_{12} = -p_{11} + p_{12}p_{22},$ $p_{12}(t_f) = 0$
 $\dot{p}_{22} = -2p_{12} + p_{22}^2,$ $p_{22}(t_f) = 0$

If we allow t_f to become infinite, we obtain the solution $p_{11} = p_{22} = \sqrt{2}$, $p_{12} = 1$. Thus we have for the closed-loop control

$$x = -R^{-1}B^{T}[Px - \xi] = -x_{1} - \sqrt{2} x_{2} + \xi_{2}$$

where we must determine ξ by solving Eqs. (5.2-11) and (5.2-12) which become for this example

$$\begin{aligned} \dot{\xi}_1 &= \xi_1 - \eta_1, & \xi_1(t_f) = 0 \\ \dot{\xi}_2 &= -\xi_1 + \sqrt{2}\xi_2, & \xi_2(t_f) = 0 \end{aligned}$$

If $\eta_1 = \alpha$, a constant, for t greater than zero, we are justified in obtaining the equilibrium solution for the ξ equation if $t_f = \infty$ by setting $\xi = 0$ to obtain $\xi_2 = 0.707\xi_1 = \eta_1 = \alpha$. If $\eta_1 = 1 - e^{-t}$, we will then find by a simple limiting process that for $t_f = \infty$,

$$\xi_2(t) = 1 + \frac{1}{2 + \sqrt{2}} e^{-t}, \quad t \ge 0$$

We may realize this solution as shown in Figure (5.2-1).

We note that if $w(t) = \eta(t) = 0$, or for that matter, any vector constant in time, the servomechanism problem reduces to a regulator problem except that it is an "output" regulator problem rather than a "state" regulator problem because of the presence of the output matrix C(t). It is not necessary

Fig. 5.2-1 Block diagram of optimum servomechanism for Example (5.2-1).

for the system to be controllable in order to find a solution to the regulator problem. The only exception to this is in the limiting cases where S becomes infinite or where t_f becomes infinite. It is, however, necessary that the system be observable in order for a solution to the output regulator problem to exist. We will expand considerably on these ideas when we consider controllability, observability, and the reachable zone problem in Chapter 11.

It is possible to give a frequency-domain interpretation to the regulator and servomechanism problem for the infinite time interval case for a constant system. We will present this method, due to Kalman, in Chapter 9 where the duality concept will allow us to treat both the estimation and the control problems.

5.3 Bang bang control and minimum time problems

Maximum effort control problems have become increasingly important in a variety of applications. It is natural that we ask under what circumstances optimal controls will always be maximum effort, or *bang bang*. To do this, we will restrict each component of the control vector, u(t), to some bounded interval. Let us consider the nonlinear differential system where the control enters in a linear fashion

$$\dot{\mathbf{x}} = \mathbf{f}[\mathbf{x}(t), t] + \mathbf{G}[\mathbf{x}(t), t]\mathbf{u}(t), \quad \mathbf{x}(t_o) = \mathbf{x}_o$$
 (5.3-1)

$$a_i \le u_i \le b_i, \qquad \forall i \tag{5.3-2}$$

and assume a performance index which, likewise, contains only linear terms in the control variable, such that the Hamiltonian will also be linear in u(t).

$$J = \theta[\mathbf{x}(t_f), t_f] + \int_{t_o}^{t_f} \{\phi[\mathbf{x}(t), t] + \mathbf{h}^{T}[\mathbf{x}(t), t] \mathbf{u}(t)\} dt$$
 (5.3-3)

$$H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] = \phi[\mathbf{x}(t), t] + \mathbf{h}^{T}[\mathbf{x}(t), t]\mathbf{u}(t) + \boldsymbol{\lambda}^{T}(t)\{\mathbf{f}[\mathbf{x}(t), t] + \mathbf{G}[\mathbf{x}(t), t]\mathbf{u}(t)\}$$
(5.3-4)

Since the Hamiltonian is linear in the control vector, $\mathbf{u}(t)$, minimization of the Hamiltonian with respect to $\mathbf{u}(t)$ requires that

$$u_{i} = \begin{cases} a_{i} & \text{if } \{h^{T}[\mathbf{x}(t), t] + \boldsymbol{\lambda}^{T}(t)\mathbf{G}[\mathbf{x}(t), t]\}_{i} > 0\\ b_{i} & \text{if } \{h^{T}[\mathbf{x}(t), t] + \boldsymbol{\lambda}^{T}(t)\mathbf{G}[\mathbf{x}(t), t]\}_{i} < 0 \end{cases}$$
(5.3-5)

Thus we see that when the control vector appears ary in both the equation of motion of the differential system and the performance index, and if in addition each component of the control vector is bounded, the optimal control is bang bang. The only exception to this occurs in cases where

with the component $h^{T}[\mathbf{x}(t), t] + \lambda^{T}(t)G[\mathbf{x}(t), t] = 0$ or \mathbf{U} $\mathbf{x}_{1} = \mathbf{0}$ (5.3-6)

for then the Hamiltonian is not a function of $\mathbf{u}(t)$ and cannot be minimized with respect to $\mathbf{u}(t)$. When Eq. (5.3-6) holds for more than isolated points in time, the optimization problem is said to possess a singular solution, a problem which we will discuss in detail in the next section. A singular solution is possible with respect to a particular control component, u_{t_1} , if the *i*th

component of Eq. (5.3-6) is zero.

For this problem, the canonic equations are obtained as

$$\dot{\mathbf{x}} = \frac{\partial H}{\partial \boldsymbol{\lambda}} = \mathbf{f}[\mathbf{x}(t), t] + \mathbf{G}[\mathbf{x}(t), t]\mathbf{u}(t)$$
(5.3-7)

$$-\dot{\lambda} = \frac{\partial H}{\partial \mathbf{x}} = \frac{\partial \phi[\mathbf{x}(t), t]}{\partial \mathbf{x}} + \frac{\partial \mathbf{h}^{T}[\mathbf{x}(t), t]}{\partial \mathbf{x}} \mathbf{u}(t) + \frac{\partial \mathbf{f}^{T}[\mathbf{x}(t), t]}{\partial \mathbf{x}} \boldsymbol{\lambda}(t) + \frac{\partial \{\mathbf{G}[\mathbf{x}(t), t] \mathbf{u}(t)\}^{T}}{\partial \mathbf{x}(t)} \boldsymbol{\lambda}(t)$$
(5.3-8)

where $\mathbf{u}(t)$ is determined via Eq. (5.3-5). Since we have not specifically stated the end conditions, we have carried the general problem about as far as is possible. When we specify information concerning the desired states at the terminal time and the initial condition vector, we have, as before, a <u>twopoint boundary value problem</u> with half of the conditions specified at the initial time and half at the terminal time. A possible method of solution of the canonic equations for this formulation consists of reversing time in the canonic equations. Starting at the determined or specified terminal vector, which often is the origin of the state vector, we integrate back from this point with a constant control until a switching point is obtained from Eq. (5.3-5). Since no terminal conditions are present for half of the state variables, the method is, of necessity, cut and try. Chapters 13, 14, and 15 provide more systematic methods for solving this type of two-point boundary value problem.

We shall now illustrate various solutions to a particular case which results in bang bang control—the minimum time problem for constant linear systems with a scalar input. In this problem, we desire to transfer an n vector constant differential system

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{b}\mathbf{u}(t), \qquad \mathbf{x}(t_o) = \mathbf{x}_o \tag{5.3-9}$$

to the origin, $\mathbf{x}(t_f) = 0$, in minimum time, such that we have for the cost function

$$J = \int_{t_0}^{t_f} (1) dt = t_f - t_o \tag{5.3-10}$$

al becomes jor the discrete Kalman (1) through (10.3-40) as well as the in algorithms of Equs. (10.3-51) through - Kalman filler algorithms of Fig (9.3-2)

i) $t_{12}t_{1}$ riance becomes $|t_{1}\rangle_{f} = \varphi(t_{1},t_{1}) \varphi(t_{1}) \varphi(t_{1},t_{1})$ $(k)Q(k)\Gamma^{T}(k) \varphi^{T}(t_{1},k_{1})$

Usion for the error variance in

int boundary value problem Eps. 19-4-19) two pt. boundary Value problem of ke). Show that the kalman filter poundary value problems result if $\lambda(|t_{4}| + \hat{\chi}(t))$ $k + \lambda(k | k_s) + \lambda(k)$. The areathing and fillering solutions.

CONTROLLABILITY AND OBSERVABILITY -THE SEPARATION THEOREM

In our previous work with the regulator and servomechanism problems, we noted that there were certain requirements, in addition to the definiteness of certain matrices, which must exist in order for the problem to have a meaningful solution. In this chapter we wish to examine these requirements, which we have postponed until now so that we might explore them using optimum control and filtering theory.

First we will examine an intrinsic characterization of the manner in which the output of a system is constrained with respect to the ability to observe system states. Then we will examine the dual requirement and find the characterization of the manner in which a system is constrained with respect to control of the system states or system outputs. We will consider these requirements for both continuous and discrete systems and will thus prove the observability and controllability requirements for linear systems. Original efforts in this area are due to Kalman Ho and Narendra [1, 2, 3, 4], Kreindler and Sarachik [5], Lee [6], and Gilbert [7].

We shall then turn our attention to systems that are partially observable in that the output vector contains all information necessary for the unique recovery of each component of the state vector. We discuss two methods for the construction of observers, the first due to Kalman [8], and the second to Luenberger [9]. Finally, we pose the problem of combined estimation and control in which we not only have the requirement for state estimation but also the requirement to use the estimated state in such way as to generate an optimal control law. This problem has been treated by Kalman [10], Joseph and Tou [11], Gunckel and Franklin [12], and others [13, 14]. It lays the foundation for the optimal adaptive problem which we shall consider in later chapters.

11.1 Observability in linear dynamic systems

In Chapters 8, 9, and 10 we developed various concepts concerning state estimation in linear continuous and linear discrete systems. To accomplish state estimation, it is necessary that certain requirements with respect to observability be met.

For a system to be observable, it must be possible to determine the state of an unforced system from the knowledge of the output of the system over some time interval. Specifically, in an unobservable system, it is impossible to determine an initial state vector $\mathbf{x}(t_o)$ from a knowledge of the output, $\mathbf{z}(t)$. Of course, we must be able to do this if we are concerned with control of system state variables as we are in the regulator problem. We shall first discuss the observability requirement for linear discrete systems and then proceed to a discussion of linear continuous systems.

11.1-1 Observability in time-varying discrete systems

Let us suppose that we have a system whose state is described by the unforced vector difference equation

$$x(k + 1) = A(k)x(k)$$
 (11.1-1)

and suppose that we observe a vector z(k) which is a linear combination of the system states plus an additive noise term

$$\mathbf{z}(k) = \mathbf{C}(k)\mathbf{x}(k) + \mathbf{v}(k) \tag{11.1-2}$$

We desire to find the best least-squares estimate, $\hat{x}(k)$, of x(k) by minimizing

$$I = \frac{1}{2} \sum_{k=k_0}^{k_f} ||\mathbf{z}(k) - \mathbf{C}(k) \hat{\mathbf{x}}(k)||_{\mathbf{R}^{-1}(k)}^2$$
(11.1-3)

subject to the constraint of Eq. (11.1-1) with x(k) replaced by $\hat{x}(k)$. This is a multistage decision process, and since Eq. (11-1.1) holds, we can write

$$\mathbf{x}(k_o+1) = \mathbf{A}(k_o)\mathbf{x}(k_o),$$

$$\mathbf{x}(k_{o}+2) = \mathbf{A}(k_{o}+1)\mathbf{x}(k_{o}+1) = \mathbf{A}(k_{o}+1)\mathbf{A}(k_{o})\mathbf{x}(k_{o})$$

Thus it is clear that

$$\mathbf{x}(k_{o} + k) = \varphi(k_{o} + k, k_{o})\mathbf{x}(k_{o})$$
(11.1-4)

where

$$\varphi(k_o + k, k_o) = \mathbf{A}(k_o + k - 1) \dots \mathbf{A}(k_o + 1)\mathbf{A}(k_o) = \prod_{k=k_o}^{k_o + k - 1} \mathbf{A}(k) \quad (11.1-5)$$

$$\varphi(k_o, k_o) = \mathbf{I} \tag{11.1-6}$$

Since matrix multiplication is not commutative, we realize that we must form the product in Eq. (11.1-5) in the proper order. Now we can write

$$\mathbf{x}(k) = \boldsymbol{\varphi}(k, k_o) \mathbf{x}(k_o) \tag{11.1-7}$$

By using Eq. (11.1-7), we can write the cost function as

$$J = \frac{1}{2} \sum_{k=k_0}^{k_f} ||\mathbf{z}(k) - \mathbf{C}(k)\boldsymbol{\varphi}(k, k_0) \mathbf{\hat{x}}(k_0)||_{\mathbf{R}^{-1}(k)}^2$$
(11.1-8)

which includes the constraint Eq. (11.1-1), since it has been used to formulate the equation.

We wish to minimize Eq. (11.1-8). To do this we will solve $\partial J/\partial \hat{\mathbf{x}}(k_o) = \mathbf{0}$, which is the usual necessary condition for a minimum. In doing this we obtain from Eq. (11.1-8)

$$\sum_{k=k_{o}}^{k_{f}} \varphi^{T}(k, k_{o}) \mathbb{C}^{T}(k) \mathbb{R}^{-1}(k) [\mathbf{z}(k) - \mathbb{C}(k) \varphi(k, k_{o}) \mathfrak{X}(k_{o})] = \mathbf{0}$$
(11.1-9)

We note that $\hat{\mathbf{x}}(k_o)$ may be removed from the summation sign. By doing this and solving the resulting equation, we obtain

$$\mathbf{\hat{x}}(k_o) = \mathbf{M}^{-1}(k_o, k_f) \sum_{k=k_o}^{k_f} \varphi^{T}(k, k_o) \mathbf{C}^{T}(k) \mathbf{R}^{-1}(k) \mathbf{z}(k)$$
(11.1-10)

as the best initial condition, where we have defined

$$\mathbf{M}(k_o, k_f) = \sum_{k=k_o}^{k_f} \varphi^T(k, k_o) \mathbb{C}^T(k) \mathbf{R}^{-1}(k) \mathbf{C}(k) \varphi(k, k_o) \qquad (11.1-11)$$

Clearly, $M(k_f, k_o)$ must have an inverse and, therefore, must be nonsingular. Kalman's condition for observability goes even further, in that it requires $M(k_f, k_o)$ to be positive-definite. We recall that a positive-definite matrix **F** is defined as one such that $x^T F x > 0$ for any nonzero **x**. Also real symmetric matrix **F** is positive-definite if and only if there exists a nonsingular matrix **D** such that $\mathbf{F} = \mathbf{D}^T \mathbf{D}$. We note that **D**, being nonsingular, implies that **F** is nonsingular also, since det (**F**) = [det (**D**)]². Since **M** is of the form $\mathbf{D}^T \mathbf{D}$, the positive-definite requirement really only requires that **M** be nonsingular. For observability, we are not at all concerned with the specific nature of the positive-definite weighting matrix **R**, and thus we set **R** = **I** in Eq. (11.1-11).

Example 11.1-1

Suppose we have two integrators in cascade as in Fig. 11,1-1a. We ask: Can we estimate $x^{T} = [x_1, x_2]$ by observing z? Obviously not, because we do not know the initial condition on the second integrator. In this case we would find M to be singular and thus not positive definite.

Now suppose that we add a switch to the system as shown in Fig. 11.1-1b. We begin by observing $z^{T} = [z_{1}, z_{2}]$ at some time $t_{0} < t_{1}$. Can we estimate x? We would find that M is singular for $t < t_{1}$ and nonsingular thereafter, indicating that the system is observable for $t > t_{1}$, and nonobservable for $t < t_{1}$. This is

what we could expect intuitively. Lastly, we add another switch, which we open at time t_2 as shown in Fig. 11.1-1c. In this case, the system would be nonobservable for $t < t_1$, but observable thereafter, even for $t > t_2$. This is because of the fact that, once we know the value of x_1 for some time t_0 , we know x_1 for all time, provided x_2 is known, and we are always observing x_2 . Thus, M will be singular for $t < t_1$ and nonsingular thereafter. There is a general theorem we could have applied to the third part of this example [2] which states that the rank of $M(k_f, k_o)$ is nondecreasing with increasing time or, here, increasing k_f .

It is not necessary that we interpret the observability condition through the use of a least-squares curve fitting procedure. From Eqs. (11.1-2) and (11.1-7) we can set up a vector Z composed of

$$Z = \begin{bmatrix} z(k_{o}) \\ z(k_{o} + 1) \\ z(k_{o} + 2) \\ \vdots \\ \vdots \\ z(k_{f}) \end{bmatrix} = \begin{bmatrix} C(k_{o}) \\ C(k_{o} + 1)\varphi(k_{o} + 1, k_{o}) \\ C(k_{o} + 2)\varphi(k_{o} + 2, k_{o}) \\ \vdots \\ C(k_{f})\varphi(k_{f}, k_{o}) \end{bmatrix} \hat{x}(k_{o}) = \Delta^{T}(k_{o}, k_{f})\hat{x}(k_{o})$$
(11.1-12)

such that

$$\Delta(k_o, k_f) = [\mathbf{C}^{T}(k_o) | \boldsymbol{\varphi}^{T}(k_o + 1, k_o) \mathbf{C}^{T}(k_o + 1) | \cdots | \boldsymbol{\varphi}^{T}(k_f, k_o) \mathbf{C}^{T}(k_f)]$$
(11.1-13)

To solve for $\hat{\mathbf{x}}(t_o)$, it is necessary that $\Delta(k_o, k_f)$ be of rank *n* (**x** is an *n* vector). This provides us with an alternative test for observability. If we premultiply Eq. (11.1-12) by $\Delta(k_o, k_f)$, we have

$$\sum_{k=k_{o}}^{k_{f}} \varphi^{T}(k, k_{o}) \mathbf{C}^{T}(k) \mathbf{z}(k) = \left[\sum_{k=k_{o}}^{k=k_{f}} \varphi^{T}(k, k_{o}) \mathbf{C}^{T}(k) \mathbf{C}(k) \varphi(k, k_{o})\right] \mathbf{x}(k_{o}) \qquad (11.1-14)$$

Thus we again have

$$\hat{\mathbf{x}}(k_o) = \mathbf{M}^{-1}(k_o, k_f) \sum_{k=k_o}^{k_f} \boldsymbol{\varphi}^{T}(k, k_o) \mathbf{C}^{T}(k) \mathbf{z}(k)$$
(11.1-15)

where $\mathbf{M}(k_o, k_f)$ has been previously defined by Eq. (11.1-11). The matrix $\mathbf{M}(k_o, k_f)$ is sometimes called the Gramian matrix and is nonsingular if and only if the matrix $\Delta(k_o, k_f)$ is of rank *n*. Thus there certainly must be at least *n* columns in $\Delta(k_o, k_f)$, which requires that the minimum sequence length, $k_f - k_o$ is (n/m - 1), where x is an *n* vector and z is an *m* vector.

For constant discrete systems where A and C are stage invariant, these results simplify somewhat since $\varphi(k, k_o) = A^{(k-k_o)}$, C(k) = C, and the observability requirement becomes that the matrix

$$\Delta(k) = [\mathbf{C}^T \mid \mathbf{A}^T \mathbf{C}^T \mid \mathbf{A}^T \mathbf{C}^T \mid \mathbf{A}^T \mathbf{C}^T \mid \cdots \mid \mathbf{A}^T \mathbf{C}^T] \qquad (11.1-16)$$

be of rank *n*. If a constant system is not observable on a sequence of length k = n, it is, of course, not observable on any sequence. This is not the case for stage-varying or nonconstant systems as indicated in Example 11.1-1. In many cases, it will be computationally more convenient to determine whether or not the $n \times n$ matrix $\Delta \Delta^{T}$ is of rank *n* rather than the $n \times nm$ matrix Δ of Eq. (11.1-16). This statement will apply to the many matrices of the form of Eq. (11.1-16) which we will encounter in this section and the next,

11.1-2 Observability in continuous systems

We have previously derived the observability condition for discrete static and dynamic systems. Now consider a continuous dynamic system represented by the n vector equation

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t)$$
 (11.1-17)

where we observe (measure) an m vector output

$$z(t) = C(t)x(t) + v(t)$$
 (11.1-18)

where v(t) is additive measurement noise. We wish to find the best least-square estimator, $\hat{x}(t)$, of x(t) such that the cost function

$$J = \frac{1}{2} \int_{t_0}^{t_f} ||\mathbf{z}(t) - \mathbf{C}(t) \hat{\mathbf{x}}(t)||_{\mathbf{R}^{-1}(t)}^2 dt \qquad (11.1-19)$$

is minimized, subject to the constraint

$$\mathbf{\dot{x}}(t) = \mathbf{A}(t)\mathbf{\dot{x}}(t) \tag{11.1-20}$$

We could obviously apply the maximum principle, but instead, we will use another, simpler approach as follows. The solution to Eq. (11.1-20) is

Ś

$$\mathbf{x}(t) = \boldsymbol{\varphi}(t,\tau)\mathbf{x}(\tau) \tag{11.1-21}$$

where

$$\frac{\partial \varphi(t,\tau)}{\partial t} = \mathbf{A}(t)\varphi(t,\tau), \, \varphi(t,t) = \mathbf{I}$$
(11.1-22)

Therefore, given $\hat{\mathbf{x}}(t_1)$ at some time $t_1 = \tau$, we can find $\hat{\mathbf{x}}(t_1)$ at any other time $t_1 = t$ by choosing the proper transition matrix $\varphi(t, \tau)$.

We can use Eq. (11.1-21) to replace $\hat{\mathbf{x}}(t)$ in the cost function, Eq. (11.1-19). In so doing, we are free to choose any value of t we desire. It seems that a reasonable choice is $t = t_f$, since we will then obtain a solution for that value of $\hat{\mathbf{x}}(t_r)$ (i.e., the final state) which gives least-square error. In addition, we have previously given the solution for $x(k_o)$ for the discrete case. Thus, the cost function becomes

$$J = \frac{1}{2} \int_{t_0}^{t_f} ||\mathbf{z}(t) - \mathbf{C}(t)\varphi(t, t_f) \mathbf{\hat{x}}(t_f)||_{\mathbf{R}^{-1}(t)}^2 dt \qquad (11.1-23)$$

To determine the particular $\hat{x}(t_f)$ that minimizes Eq. (11.1-23), we must solve

$$\frac{\partial J}{\partial \hat{\mathbf{x}}(t_f)} = \mathbf{0} = \int_{t_o}^{t_f} \varphi^T(t, t_f) \mathbf{C}^T(t) \mathbf{R}^{-1}(t) [\mathbf{z}(t) - \mathbf{C}(t)\varphi(t, t_f)\hat{\mathbf{x}}(t_f)] dt \quad (11.1-24)$$

which gives

$$\left[\int_{t_0}^{t_f} \varphi^T(t, t_f) \mathbf{C}^T(t) \mathbf{R}^{-1}(t) \mathbf{C}(t) \varphi(t, t_f) \, dt\right] \hat{\mathbf{x}}(t_f) = \int_{t_0}^{t_f} \varphi^T(t, t_f) \mathbf{C}^T(t) \mathbf{R}^{-1}(t) \mathbf{z}(t) \, dt$$
(11.1-25)

We now define

$$\mathbf{N}(t_o, t_f) = \int_{t_o}^{t_f} \varphi^{T}(t, t_f) \mathbf{C}^{T}(t) \mathbf{R}^{-1}(t) \mathbf{C}(t) \varphi(t, t_f) dt \qquad (11.1-26)$$

so that

$$\mathbf{\hat{x}}(t_f) = \mathbf{N}^{-1}(t_o, t_f) \int_{t_g}^{t_f} \boldsymbol{\varphi}^{T}(t, t_f) \mathbf{C}(t) \mathbf{R}^{-1}(t) \mathbf{z}(t) dt \qquad (11.1-27)$$

Clearly, the matrix of Eq. (11.1-26) must have an inverse or, in other words, must be nonsingular. Furthermore, by computing the second derivative $\partial^2 J/\partial x^2$, we see that we require $N(t_o, t_f)$ to be positive-definite in order to establish sufficient conditions for a minimum of the cost function. Thus, a system becomes observable at time t_f when the matrix $N(t_o, t_f)$ is positivedefinite for t_{f} , $t_{f} > t_{o}$. Again, it can be shown that the rank of the matrix $N(t_o, t_f)$ is nondecreasing with time. In other words, once a system becomes

297

observable at $t = t_1$, it remains observable for all $t > t_1$. For observability, the matrix **R** is again set equal to the identity matrix **I**.

We will again offer an alternate derivation of the observability requirement, The output of the system z(t) is from Eqs. (11.1-18) and (11.1-21).

$$\mathcal{I}(t) = \mathcal{C}(t) \hat{\mathbf{x}}(t), \qquad \mathbf{z}(t) = \mathbf{C}(t) \boldsymbol{\varphi}(t, t_f) \hat{\mathbf{x}}(t_f) \qquad (11.1-28)$$

By premultiplying this equation by $\varphi^{T}(t, t_{f})C^{T}(t)$ and integrating, we obtain

$$\int_{t_o}^{t_f} \varphi^{T}(t, t_f) \mathbf{C}^{T}(t) \mathbf{z}(t) dt = \left[\int_{t_o}^{t_f} \varphi^{T}(t, t_f) \mathbf{C}^{T}(t) \mathbf{C}(t) \varphi(t, t_f) dt \right] \hat{\mathbf{x}}(t_f) \quad (11.1-29)$$

Thus

$$\mathbf{\hat{x}}(t_f) = \mathbf{N}^{-1}(t_o, t_f) \int_{t_o}^{t_f} \boldsymbol{\varphi}^{T}(t, t_f) \mathbf{C}^{T}(t) \mathbf{z}(t) \, dt \qquad (11.1-30)$$

where $N(t_o, t_f)$ is as defined before:

$$N(t_o, t_f) = \int_{t_o}^{t_f} \varphi^T(t, t_f) C^T(t) C(t) \varphi(t, t_f) dt \qquad (11.1-31)$$

We can clearly solve for $\hat{\mathbf{x}}(t_o)$ also by

$$\hat{\mathbf{x}}(t_o) = \mathbf{M}^{-1}(t_o, t_f) \int_{t_o}^{t_f} \varphi^T(t, t_o) \mathbf{C}^T(t) \mathbf{z}(t) \, dt \qquad (11.1-32)$$

where

$$M(t_o, t_f) = \int_{t_o}^{t_f} \varphi^T(t, t_o) C^T(t) C(t) \varphi(t, t_o) dt \qquad (11.1-33)$$

and we can easily show that

$$\mathbf{M}(t_o, t_f) = \boldsymbol{\varphi}^{\mathrm{T}}(t_f, t_o) \mathbf{N}(t_o, t_f) \boldsymbol{\varphi}(t_f, t_o)$$
(11.1-34)

From Eq. (11.1-28) we see that a necessary condition for the system to be observable (on the interval $[t_0, t_f]$) is that the columns of $C(t)\varphi(t, t_f)$ be linearly independent. Mathematically, we may write this condition of linear independence in terms of an m vector η as [15, 16] citi bit, $\eta^T \mathbf{C}(t) \varphi(t, t_f) \neq \mathbf{0}^T, \qquad \forall t \in [t_o, t_f],$ $\eta \neq 0$ (11.1-35)

This condition may be developed into a test for observability as follows. If we assume that the conditions of Eq. (11.1-35) are not fulfilled, and differentiate Eq. (11.1-35) repeatedly, noting that $\partial \varphi(t, t_f)/\partial t = A(t)\varphi(t, t_f)$, we obtain the set of equations

Г

$$\eta^T \Gamma_j^T(t) \varphi(t, t_f) = 0^T, \quad j = 1, 2, ..., n$$
 (11.1-36)

where

$$\Gamma_{1} = \mathbf{C}^{T}(t)$$

$$\Gamma_{k} = \frac{\partial \Gamma_{k-1}}{\partial t} + \mathbf{A}^{T}(t)\Gamma_{k-1}$$
(11.1-37)

Now if we define

$$\Gamma = [\Gamma_1, \Gamma_2, \ldots, \Gamma_n] \tag{11.1-38}$$

CONTROLLABILITY AND OBSERVABILITY

CHAP. 11

we see that for $n\eta$ vectors which we call κ we have

$$\kappa^T \Gamma^T(t) \varphi(t, t_f) = \mathbf{0}^T \tag{11.1-39}$$

which, since φ is always nonsingular, implies that Γ is singular. But Eq. (11.1-35) does not express an equality, so none of these relations, Eq. (11.1-36), could hold, and Γ cannot be singular if the system is observable. Thus, if the Γ matrix of Eq. (11.1-38) is of rank *n*, where Γ_j is defined in Eq. (11.1-37), the system is observable.

The matrices $\mathbf{M}(t_o, t_f)$ and $\mathbf{N}(t_o, t_f)$ are known as Gramian matrices and must be positive-definite for an observable system. This is an alternate and equivalent criterion to requiring the Γ matrix to be of rank *n*. For a constant system, it is considerably simpler to determine the rank of the Γ matrix than to evaluate either of the Gramian matrices. Thus for a constant system, the easiest criterion for observability is to use the requirement that the $n \times nm$ matrix

$$\boldsymbol{\Gamma} = [\mathbf{C}^T \mid \mathbf{A}^T \mathbf{C}^T \mid \mathbf{A}^{T^2} \mathbf{C}^T \mid \cdots \mid \mathbf{A}^{T^{n-1}} \mathbf{C}^T]$$
(11.1-40)

be of rank *n*. This may be accomplished if we determine whether the $n \times n$ matrix Π^{T} is of rank *n*.

We may now distinguish between several types of observability. A system is said to be observable on the interval $[t_o, t_f]$ if, for a specified t_o and specified t_f , every state $\mathbf{x}(t_o)$ may be determined from knowledge of $\mathbf{z}(t) \forall t \in$ $[t_o, t_f]$. In other words, the M matrix is positive-definite or the rank test is satisfied for the fixed t_o and fixed t_f . If this is true for all t_o and some $t_f > t_o$, we say that the system is completely observable. If this is true for every t_o and every $t_f > t_o$, the system is said to be totally observable. The only modification to this statement needed to treat discrete systems is that there are a finite number of states, as discussed in Section 11.1-1, before a discrete system will become observable. Finally, we remark that application of the state estimation techniques of the previous two chapters to unobservable systems often leads to impossible computational problems in determining the solution to the error variance equation. A remedy is to attempt to estimate only those components of the state vector which are observable in the output vector.

11.2 Controllability in linear systems

In Chapters 9 and 10, we saw that the linear state estimation and the regulator problem were duals of one another. Thus it is reasonable to expect a dual of the observability criterion, and we shall call it the controllablility criterion. We will say that a system is state controllable if any initial state vector $\mathbf{x}(t_0)$ can be transferred to any final state vector $\mathbf{x}(t_f)$, where t_0 and

SEC. 11.2

>1

CONTROLLABILITY IN LINEAR SYSTE.

29

 t_f are fixed by means of some control $\mathbf{u}(t)$.[†] More precise definitions of co trollability, as well as a discussion of the implications of duality, will be give at the end of this section. We shall first consider state controllability ar output controllability for continuous systems. The close similarity of th results will then be noted. As suits the dual to observability, we shall initia our approach by considering the transfer of the system from the initial stat to a final state which, since linear systems are being considered, can be co sidered to be the origin without loss of generality.

Suppose we wish to determine whether the system described by

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$$
(11.2)

$$\mathbf{z}(t) = \mathbf{C}(t)\mathbf{x}(t) \tag{11.2}$$

is controllable. In other words, we wish to find whether there is a control $\mathbf{u}(t)$, such that $\mathbf{x}(t_o) = \mathbf{x}_o$ and $\mathbf{x}(t_f) = \mathbf{0}$. We will find the control which accorplishes this (if it exists) and which minimizes the cost function

$$J = \frac{1}{2} \int_{t_0}^{t_f} ||\mathbf{u}(t)||_{\mathbf{R}(t)}^2 dt \qquad (11.2)$$

We will use this cost function to "get a handle" on the problem, i.e. to determine if there is a u(t) such that we can bring the system from $x(t_0) =$ to $x(t_f) = 0$. Another "sensible" cost function would work equally we To do this, we shall use the maximum principle. Thus, we form the Ham tonian

$$H[\mathbf{x}(t), \mathbf{u}(t), \boldsymbol{\lambda}(t), t] = \frac{1}{2} ||\mathbf{u}(t)||_{\mathbf{R}(t)}^2 + \boldsymbol{\lambda}^T(t)[\mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)]$$
(11.2)
and obtain in the usual way

$$\frac{\partial H}{\partial \lambda} = \dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t), \quad \mathbf{x}(t_o) = \mathbf{x}_o \quad (11.2)$$

$$\frac{\partial H}{\partial \mathbf{x}} = -\dot{\boldsymbol{\lambda}} = \mathbf{A}^{\mathrm{T}}\boldsymbol{\lambda}(t), \qquad \mathbf{x}(t_f) = \mathbf{0} \qquad (11.2)$$

To obtain the minimum H, we set

$$\frac{\partial H}{\partial \mathbf{u}} = \mathbf{0} \tag{11.2}$$

which gives

$$\mathbf{u}(t) = -\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\boldsymbol{\lambda}(t) \qquad (11.2)$$

By combining these last four equations, we obtain

$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x}(t) - \mathbf{B}(t)\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\lambda(t), \quad \mathbf{x}(t_{o}) = \mathbf{x}_{o} \quad (11.2)$$

†In a similar way, a system will be called output controllable if there exists an inj u(t) which transfers an initial output vector $z(t_0)$ to any final output vector $z(t_f)$.

In a fashion similar to that which we have used many times before, we obtain the solution to these two equations as

$$\mathbf{x}(t_f) = \varphi(t_f, t_o) \mathbf{x}(t_o) - \int_{t_o}^{t_f} \varphi(t_f, \tau) \mathbf{B}(\tau) \mathbf{R}^{-1}(\tau) \mathbf{B}^{\mathsf{T}}(\tau) \lambda(\tau) \, d\tau \qquad (11.2-11)$$

$$\boldsymbol{\lambda}(t) = \boldsymbol{\varphi}^{\mathrm{T}}(t_f, t)\boldsymbol{\lambda}(t_f) \tag{11.2-12}$$

By combining Eqs. (11.2-11) and (11.2-12), we obtain

$$\mathbf{x}(t_f) = \boldsymbol{\varphi}(t_f, t_o) \mathbf{x}(t_o) - \int_{t_o}^{t_f} \boldsymbol{\varphi}(t_f, \tau) \mathbf{B}(\tau) \mathbf{R}^{-1}(\tau) \mathbf{B}^{T}(\tau) \boldsymbol{\varphi}^{T}(t_f, \tau) \boldsymbol{\lambda}(t_f) d\tau \quad (11.2-13)$$

which must be zero. An alternate approach is to write

$$\mathbf{x}(t) = \boldsymbol{\varphi}(t, t_f) \mathbf{x}(t_f) + \int_{t_f}^{t} \boldsymbol{\varphi}(t, \tau) \mathbf{B}(\tau) \mathbf{R}^{-1}(\tau) \mathbf{B}^{T}(\tau) \lambda(\tau) d\tau \qquad (11.2-14)$$

which, since $\mathbf{x}(t_f) = \mathbf{0}$ becomes just

$$\mathbf{x}(t) = \int_{t_f}^{t_o} \varphi(t,\tau) \mathbf{B}(\tau) \mathbf{R}^{-1}(\tau) \mathbf{B}^{T}(\tau) \lambda(\tau) d\tau \qquad (11.2-15)$$

But, since

$$\mathbf{\lambda}(t) = \boldsymbol{\varphi}^{T}(t_{o}, t)\boldsymbol{\lambda}(t_{o}) \tag{11.2-16}$$

Eq. (11.2-15) can be written, if we choose $t = t_o$, as

$$\mathbf{x}(t_o) = \int_{t_f}^{t_o} \varphi(t_o, \tau) \mathbf{B}(\tau) \mathbf{R}^{-1}(\tau) \mathbf{B}^{T}(\tau) \varphi^{T}(t_o, \tau) \lambda(t_o) d\tau \qquad (11.2-17)$$

Now we can solve either Eq. (11.2-13) for $\lambda(t_f)$ or Eq. (11.2-17) for $\lambda(t_o)$. Suppose we choose the latter. Then

$$\lambda(t_o) = -W^{-1}(t_o, t_f) \mathbf{x}(t_o)$$
 (11.2-18)

where

$$W(t_o, t_f) = \int_{t_o}^{t_f} \varphi(t_o, \tau) B(\tau) R^{-1}(\tau) B^{T}(\tau) \varphi^{T}(t_o, \tau) d\tau \qquad (11.2-19)$$

If a system is state controllable, $W(t_o, t_f)$ must have an inverse and also be positive-definite as the second variation would show. Again R may be set equal to the identity matrix. In Section 9.2, we had a relation very similar to Eq. (11.2-19), which we converted to a differential equation. We found that it was very much easier to solve the differential equation than to evaluate the integral. Let us now try the same approach here. Differentiation of Eq. (11.2-19) gives

$$\frac{\partial W(t_o, t_f)}{\partial t_o} = -\varphi(t_o, t_o) B(t_o) R^{-1}(t_o) B^{T}(t_o) \varphi^{T}(t_o, t_o) + \int_{t_o}^{t_f} \frac{\partial \varphi(t_o, \tau)}{\partial t_o} B(\tau) R^{-1}(\tau) B^{T}(\tau) \varphi^{T}(t_o, \tau) d\tau \qquad (11.2-20) + \int_{t_o}^{t_f} \varphi(t_o, \tau) B(\tau) R^{-1}(\tau) B^{T}(\tau) \frac{\partial \varphi^{T}(t_o, \tau)}{\partial t_o} d\tau$$

- 34

which becomes, since $\partial \varphi(t, t_o)/\partial t = \mathbf{A}(t)\varphi(t, t_o)$ and $\varphi(t, t) = \mathbf{I}$, $\frac{\partial \mathbf{W}(t_o, t_f)}{\partial t_o} = -\mathbf{B}(t_o)\mathbf{R}^{-1}(t_o)\mathbf{B}^{T}(t_o)$ $+ \mathbf{A}(t_o)\int_{t_o}^{t_f} \varphi(t_o, \tau)\mathbf{B}(\tau)\mathbf{R}^{-1}(\tau)\mathbf{B}^{T}(\tau)\varphi^{T}(t_o, \tau) d\tau \qquad (11.2-2)$

$$+\int_{t_o}^{t_f}\varphi(t_o,\tau)\mathbf{B}(\tau)\mathbf{R}^{-1}(\tau)\mathbf{B}^{T}(\tau)\varphi^{T}(t_o,\tau)\mathbf{A}^{T}(t_o)\,d\tau$$

But, by Eq. (11.2-19), the two integrals are just $W(t_o, t_f)$. Therefore,

$$\frac{\partial \mathbf{W}(t_o, t_f)}{\partial t_o} = -\mathbf{B}(t_o)\mathbf{R}^{-1}(t_o)\mathbf{B}^{T}(t_o) + \mathbf{A}(t_o)\mathbf{W}(t_o, t_f) + \mathbf{W}(t_o, t_f)\mathbf{A}^{T}(t_o), \qquad \mathbf{W}(t_f, t_f) = \mathbf{0}$$
(11.2-2)

We have, therefore, succeeded in obtaining a differential equation for $W(t_o, t$ which should be easier to solve than the defining relation for $W(t_o, t_f)$ Eq. (11.2-19).

It is interesting now to evaluate the cost function of Eq. (11.2-3) which by Eq. (11.2-8), becomes

$$J = \frac{1}{2} \int_{t_0}^{t_f} \lambda^{T}(t) \mathbf{B}(t) \mathbf{R}^{-T}(t) \mathbf{R}(t) \mathbf{R}^{-1}(t) \mathbf{B}^{T}(t) \lambda(t) dt \qquad (11.2-2)$$

But $\mathbf{R}(t)$ is symmetric, so that

$$J = \frac{1}{2} \int_{t_0}^{t_f} \lambda^{T}(t) \mathbf{B}(t) \mathbf{R}^{-1}(t) \mathbf{B}^{T}(t) \lambda(t) dt \qquad (11.2-2)$$

From Eqs. (11.2-16) and (11.2-18), we see that

$$\mathbf{h}(t) = \boldsymbol{\varphi}^{\mathrm{T}}(t_o, t) \boldsymbol{\lambda}(t_o) = -\boldsymbol{\varphi}^{\mathrm{T}}(t_o, t) \mathbf{W}^{-1}(t_o, t_f) \mathbf{X}(t_o) \qquad (11.2-2)$$

From the defining relation for $W(t_0, t_f)$, we know that it is symmetric; hen-Eq. (11.2-24) becomes

$$J = \frac{1}{2} \int_{t_0}^{t_f} \mathbf{x}^T(t_0) \mathbf{W}^{-1}(t_0, t_f) \varphi(t_0, t) \mathbf{B}(t) \mathbf{R}^{-1}(t) \mathbf{B}^T(t) \varphi^T(t_0, t) \mathbf{W}^{-1}(t_0, t_f) \mathbf{x}(t_0) dt$$
(11.2-2)

By excluding those terms from the integral which do not involve t, we s that

$$J = \frac{1}{2} \Big\{ \mathbf{x}^{T}(t_{o}) \mathbf{W}^{-1}(t_{o}, t_{f}) \Big[\int_{t_{o}}^{t_{f}} \varphi(t_{o}, t) \mathbf{B}(t) \mathbf{R}^{-1}(t) \mathbf{B}^{T}(t) \varphi^{T}(t_{o}, t) dt \Big] \mathbf{W}^{-1}(t_{o}, t_{f}) \mathbf{x}(t_{o}, t_{f}) \Big]$$
(11.2-2)

Or, since the integral in the brackets is just the definition of $W(t_o, t_f)$, we ha finally

$$J = \frac{1}{2} \mathbf{x}^{T}(t_{o}) \mathbf{W}^{-1}(t_{o}, t_{f}) \mathbf{x}(t_{o}) = \frac{1}{2} || \mathbf{x}(t_{o}) ||_{\mathbf{W}^{-1}(t_{o}, t_{f})}^{2}$$
(11.2-2)

Equation (11.2-28) allows an interesting interpretation of controllabili Suppose that we are given some definite value for the cost J. Then, if can determine $W^{-1}(t_o, t_f)$, we can find all initial conditions such that I (11.2-28) is satisfied. We can thus plot a surface in *n*-space representing those initial conditions from which we can take the system to the origin with a cost of J. This problem is known as the reachable zone problem, which is considered in Problem 4 of this chapter.

We can offer an alternative approach to this problem. We shall do this now for the output controllability problem which reduces to the state controllability problem when C(t) = I. The solution to Eqs. (11.2-1) and (11.2-2) is the *m* vector output due to the *r* vector control

$$\mathbf{z}(t) - \mathbf{C}(t)\boldsymbol{\varphi}(t, t_o)\mathbf{x}(t_o) = \mathbf{C}(t) \int_{t_o}^t \boldsymbol{\varphi}(t, \tau) \mathbf{B}(\tau) \mathbf{u}(\tau) \, d\tau \qquad (11.2-29)$$

At time t_f , the left-hand side of this equation is simply equal to some specified value $z_d(t_f)$ such that we may write

$$\mathbf{z}_{d}(t_{f}) = \mathbf{z}(t_{f}) - \mathbf{C}(t_{f})\varphi(t_{f}, t_{o})\mathbf{x}(t_{o}) = \int_{t_{o}}^{t_{f}} \mathbf{C}(t_{f})\varphi(t_{f}, \tau)\mathbf{B}(\tau)\mathbf{u}(\tau) d\tau \quad (11.2-30)$$

A sufficient condition for output controllability on $[t_o, t_f]$ is that the columns of $C(t_f)\varphi(t_f, \tau)B(\tau)$ be linearly independent, which means that, for arbitrary *m* vector η , we have the *r* vector equation [15, 16]

$$\gamma^{T} \mathbf{C}(t_{f}) \varphi(t_{f}, \tau) \mathbf{B}(\tau) \neq \mathbf{0}^{T}, \qquad t_{o} \leq \tau \leq t_{f}$$
(11.2-31)

We may develop another output controllability condition from this condition. This proof will proceed by the method of contradiction. Suppose that there exists at least one nonzero vector η , such that Eq. (11.2-31) is, in fact, true. Repeated differentiation of Eq. (11.2-31) with respect to τ yields

$$\boldsymbol{\gamma}^{T}\mathbf{C}(t_{f})\boldsymbol{\varphi}(t_{f},\tau)\boldsymbol{\Gamma}_{j}(\tau) = \boldsymbol{0}^{T}, \qquad j = 1, 2, \ldots, n \qquad (11.2-32)$$

where, since $\partial \varphi(t_f, \tau)/\partial \tau = -\varphi(t_f, \tau) A(\tau)$,

$$\Gamma_{1}(\tau) = \mathbf{B}(\tau)$$

$$\Gamma_{k}(\tau) = \frac{\partial \Gamma_{k-1}(\tau)}{\partial \tau} - \mathbf{A}(\tau)\Gamma_{k-1}(\tau)$$
(11.2-33)

Then, if we define the *n* by *nm* matrix Γ

$$\Gamma = [\Gamma_1, \Gamma_2, \ldots, \Gamma_n]$$
(11.2-34)

the condition of Eq. (11.2-32) becomes, for the $n\eta$ vectors \mathcal{N} ,

$$\mathcal{N}^{T} \mathbb{C}(t_{f}) \varphi(t_{f}, \tau) \Gamma = \mathbf{0}^{T}$$
(11.2-35)

which would tell us that Γ could not be of rank *n* since φ is nonsingular (excluding for the moment the possibility of **C** being singular). But Eq. (11.2-35) cannot be zero by Eq. (11.2-31), and so Γ must then be of rank *n*, and Eq. (11.2-35) will not, in fact, be zero. Although this requirement holds for time-varying systems, it is particularly easy to apply in the case of constant systems, for then, as is easily verified, for $\Gamma' = [\Gamma_1, -\Gamma_2, ..., (-1)^{n+1}\Gamma_n]$,

$$\Gamma' = [\mathbf{B} \ \mathbf{A}\mathbf{B} \ \mathbf{A}^2\mathbf{B} \ \dots \ \mathbf{A}^{n-1}\mathbf{B}]$$
(11)

and this must be of rank *n*. This is only the requirement for state con lability since, if a constant system is controllable at all, it is control at $t_f = t_o$ (impulse control required). Therefore, from Eq. (11.2-35), the put controllability requirement is that

$$[CB CAB CA2B \dots CAn-1B]$$
(11.

be of rank *m*. For the general time-varying case, the $C(t_f)\Gamma$ term of (11.2-35) must be of rank *m* since we know that φ must be nonsingul If, in Eq. (11.2-30), we let

$$\mathbf{u}(t) = \mathbf{B}^{T}(t)\boldsymbol{\varphi}^{T}(t_{f}, t)\mathbf{C}^{T}(t_{f})\boldsymbol{\lambda}(t_{f}) \qquad (11.$$

we have

$$\lambda(t_f) = -\mathbf{V}^{-1}(t_a, t_f)\mathbf{z}_a(t_f) \qquad (11.$$

where

$$\mathbf{V}(t_o, t_f) = \int_{t_o}^{t_f} \mathbf{C}(t_f) \boldsymbol{\varphi}(t_f, \tau) \mathbf{B}(\tau) \mathbf{B}^{\mathrm{T}}(\tau) \boldsymbol{\varphi}^{\mathrm{T}}(t_f, t) \mathbf{C}^{\mathrm{T}}(t_f) d\tau \quad (11.$$

and must be positive-definite for a controllable system. For state collability, we may treat C = I; then we can easily show that

$$\mathbf{W}(t_o, t_f) = \boldsymbol{\varphi}(t_f, t_o) \mathbf{W}(t_o, t_f) \boldsymbol{\varphi}^{T}(t_f, t_o)$$
(11.)

where $W(t_0, t_1)$ is defined by Eq. (11.2-19).

It is quite easy for us to show that all of these results carry over ex to the discrete system described by

$$\mathbf{x}(k+1) = \mathbf{A}(k)\mathbf{x}(k) + \mathbf{B}(k)\mathbf{u}(k)$$
(11.)

$$\mathbf{c}(k) = \mathbf{C}(k)\mathbf{x}(k) \tag{11.}$$

except that discrete transition matrices and summations are used r than continuous transition matrices and integrations. The time interval | is then replaced by the sequence $k_0, k_0 + 1, \ldots, k_f$. Thus, for instanc discrete equivalent of Eq. (11.2-19) is

$$W(k_o, k_f) = \sum_{k=k_o}^{k=k_f} \varphi(k_o, k) \mathbf{B}(k) \mathbf{R}^{-1}(k) \mathbf{B}^{T}(k) \varphi^{T}(k_o, k) \qquad (11)$$

Analogous to the discrete observability requirement, a controllable dis system can be transferred to the origin in at most n stages, where x is vector.

Just as in the case of observability, there are several different typ controllability. We will give these definitions for the case of state collability. Output controllability definitions follow merely by replace of $x(t_f)$ by $z(t_f)$ in the definitions.

We will say that a system is state controllable for a given t_o and t_f if initial state $\mathbf{x}(t_o)$ can be transferred to any final state $\mathbf{x}(t_f)$ using any cc $\mathbf{u}(t)$ over the interval $[t_o, t_f]$. A system will be said to be completely state

SEC, 11.2

305

Fig. 11.2-1 Block diagram of uncontrollable system, Example (11.2-1).

Since the output $z_2(t)$ cannot be controlled by the input, the entire system is not output controllable. If the output were just $z_1(t)$, a scalar, then the system is not state controllable but is output controllable. This means that we could determine an input which could drive $z_1(t)$ to any given value but could not drive $x_1(t)$ and $x_2(t)$ to any value which lies off the line $x_1(t) + x_2(t) = 0$. We note that we were given a second order system but found first order transfer function from control input to state and output state variables. This implies that that the given system is "reducible" in order. Choate and Sage [16] have shown that systems which are not totally controllable must be reducible.

Earlier we remarked that the dual of an unobservable system is an uncontrollable system. This can easily be seen if we observe the observability criteria where the adjoint system $(A^* = -A^T, B^* = C^T, C^* = B^T)$ is used and if we note that the observability criteria becomes the controllability criteria. Thus we may say that a system is controllable if the adjoint system is observable. Since the dual system is defined by $A^*(t^*) = A^T(t)$, $B^*(t^*) = C^T(t)$, $C^*(t^*) = B^T(t)$, $t^* = -t$, we see that the similar statement for dual systems, a system is uncontrollable (unobservable) if its dual is unobservable (uncontrollable), applies.

For successful control, it is normally necessary that systems be both controllable and observable. For example, if a subsystem which is unobservable is part of a closed-loop system, instabilities in the unobservable part of the system cannot be detected or stabilized by the closed loop. If a system is not state controllable, it is not possible to control a portion of the system, and thus persistent transients may exist. If the system is not output controllable, then it appears that all is lost unless it is possible to change input and/or output state variables.

Even though a system may be observable, not all components of the state variable, $\mathbf{x}(t)$, may be recoverable immediately from the observation $\mathbf{z}(t)$. We recall that $\mathbf{z}(t)$ may well be a scalar, $\mathbf{x}(t)$ may well be a 100 vector, and the system may certainly be observable. In the next section we shall discuss methods of state-variable recovery from observable output vectors.

trollable if, for any
$$t_o$$
, each initial state $\mathbf{x}(t_o)$ can be transferred to any final state and given final time $\mathbf{x}(t_f)$ where, of course, $t_f \ge t_o$. To obtain total state controllability, the system must be completely state controllable for every t_o and every t_f .

Example 11.2-1

Let us consider the linear system described by

$$\dot{x}_1 = x_2(t) + u(t), \qquad z_1(t) = x_1(t) \dot{x}_2 = -x_1(t) - 2x_2(t) - u(t), \qquad z_2(t) = x_1(t) + x_2(t)$$

The system dynamics can also be written as

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}(t) + \mathbf{b}\mathbf{u}(t), \qquad \mathbf{z}(t) = \mathbf{C}\mathbf{x}(t)$

where

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

We wish to determine the observability and controllability of the system. From the preceding section we know that the system is observable if the $n \times nm$ matrix

$$[\mathbf{C}^{T} | \mathbf{A}^{T} \mathbf{C}^{T} | \cdots | \mathbf{A}^{T^{n-1}} \mathbf{C}^{T}] = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

is of rank 2. This is the case, and so the system is observable. To discern state controllability, we must examine the matrix

$$[\mathbf{B} | \mathbf{A}\mathbf{B} | \mathbf{A}^2\mathbf{B} | \cdots | \mathbf{A}^{n-1}\mathbf{B}] = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

to see if it is of rank 2. Clearly it is not, and so this system is not state controllable. Neither is the system output controllable, because the matrix

$$[\mathbf{CB} | \mathbf{CAB} | \mathbf{CA}^2 \mathbf{B} | \cdots | \mathbf{CA}^{n-1} \mathbf{B}] = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

is not of rank 2.

Let us now examine the reasons for this uncontrollability. Figure 11.2-1 illustrates a possible block diagram for this system. Appropriate transfer functions for the system are

$$\frac{x_1(s)}{u(s)} = \frac{1}{s+1}, \qquad \frac{x_2(s)}{u(s)} = \frac{-1}{s+1}$$

and we observe that the physical reason the system is not state controllable is that the state vector $\mathbf{x}(t)$ can be controlled only along or parallel to a straight line $x_1(t) + x_2(t) = 0$. This is certainly not in two dimensions; therefore the system is not state controllable. Appropriate transfer functions for the output state are

$$\frac{z_1(s)}{u(s)} = \frac{x_1(s)}{u(s)} = \frac{1}{s+1}, \qquad \frac{z_2(s)}{u(s)} = \frac{x_1(s) + x_2(s)}{u(s)} = 0$$

Η THE VARIATIONAL APPROACH TO OPTIMAL THUS It Ig + Sh X + Sh Idt J(U) = / to INCLUDE RESTRAINTS, WE SUBJECT TO $\dot{x}(t) = a[x(t), u(t), t]$ CONTROL PROBLEMS NECESSARY CONDITIONS FOR OPTIMAL CONTROL NON CENERAL PROBLEM IS TO MINIMIZE J(U) = h(x(ty), ty) + Jzo g[x(t), u(t), t]dt WE CAN UCU)= / le le Lx, u, e) + de h(x, e)] de SINCE h[x(to)to] is constant, WRITE THE AUGMENTED JAS $J_a(u) = I_{to}^{t} F \left[g + \frac{s_b}{s_x} x + \frac{s_b}{s_t} \right] + pT(t) \Gamma a(x, u, t) = x - \frac{1}{2} J dt$ Now Now NHER E $\frac{\partial U}{\partial t} h(x,t) = \left[\frac{\delta h}{\delta x} \right] x + \frac{\delta h}{\delta t}$ X -> nx1 VECTOR U-> mx1 VECTOR LAGRANGE MULTIPLIERS. p(t) ARE THE (n)

THUS $5J_{a} = \int_{c}^{t} \frac{1}{2} \left[\frac{5e^{2}}{2} + p^{2} \frac{5e^{2}}{2} + p^{2} \frac{5e^{2}}{2} + \frac{1}{2} \frac{5e^{2}}{2} + p^{2} \frac{5e^{2}}{2} + \frac{1}{2} \frac{5e^{2}}{2} $	APPLYING CHAIN QUE TO LAST TERM: SX X + SX	SPECIFICATION OF to AND X(to). THE TERMS IN THIS EXPRESSION WHICH ARE DEPENDENT ON h INSIDE INTEGRAL ARE SX [Sh X + St] - dt SX SX X	THE STANDARD PARTS INTEGRATION TRICK SIVES THE VARIATION SJA=0 = SOAT 6X + 10 - SEATION + 1to (1854 - 4 - 50 - 5X - 11to Sty + 1to (1854 - 4 - 50 - 5X - 11to Sty + 1to (1854 - 4 - 50 - 5X - 11to Sty + 1to (1854 - 4 - 50 - 5X - 11to Sty + 1to (1854 - 4 - 50 - 5X - 11to Sty + 1to (1854 - 4 - 50 - 5X - 11to Sty + 1to (1855 - 4 - 50 - 5X - 11to Sty + 1to (1855 - 4 - 50 - 5X - 11to Sty + 1to (1855 - 4 - 50 - 5X - 11to Sty + 1to (1855 - 4 - 50 - 5X - 11to Sty + 1to (1855 - 4 - 50 - 5X - 5X - 11to Sty + 1to (1855 - 4 - 50 - 5X	MINIMIZING, NOW BECOMES ONE OF Ja (U) = Jto go dt RECOGNIZING THAT go IS INDEPENDENT DE U AND P AND PERFORMING	DEFINE AUGMENTED S: $f_{x,x}, u, p, t] = \sigma(x, u, t) + \rho(t) \left[\alpha(x, u, t) - x \right]$ $+ \frac{\xi h^{TO}}{\xi x} + \frac{\xi h}{\xi t}$

)		
THESE THREE EQUATIONS ARE MORTANT. WE HAVE YET TO DEAL WITH THE BOUNDRY CONDITION: SX 6X/24 + LS+ SK + PTO 7 54 = 0	THE COFFECTENT OF SUMUST	CHOOSE P SUCH THAT THE SP ARE ZERO. COEFFICIENT OF SX IS ZERO: p(t) = - 50 P - 50	WE ARE READY TO MAKE OUR NECESSARY CONDITIONS WITH REGARD TO THIS EQUATION. FIRST OFF

(2) \bigcirc $\langle \omega \rangle$ (ω) N N OUR EQUATIONS BECOME, Y telte, ty. EQUATIONS THE HAMILTONIAN alo AX Xo 1 74Lx, u, p, t] = gLx, u, t] + pT(t) a(x, u, t)MAY SIMPLIEY Í T. BY INTRODUCING X 4 THE ap mp ABOVE 4 22 23 11

Þ BOUNDRY 0 SUBSTITUTING \bigcirc TIXED X(t) SPECIFIED WE MUST NOW, K ARE - INVAL 6/x (tr 0= + x 9 Kx)w 4 AMP 420 m./sx/ Str P V 17 42 1/1 ISSIMON xp S X N T R F F 0 X 5 1 1 1 1 1 1 1 ~ M CONDITIONS -TATE NA S m and the second s (tr) = X 11 NO スキゴンドイ 0 0 17 17 11 States. 3 N Ņ Sector Sector 240 6, Ŵ X (t オンジメ 12 CL 000 X X SURFACE 5 VALLES OF XLES 2 NERA IN TO n_{i} N N 1 HIS AND NORMAL 200 QADLANT: t to 4 X-41)-4=0 L Ctr M LX(t) Ø A P 0 0

ana a mara sa sa sa sa)	the second se				and the summary	to all a				- Activity and the second second	and the second sec)	
no na se de unero de				o o o a sua da cara da				-					۲				0				
									The set of a second a second the second se	The second of th	-TRACKING	- MINIMUM TIME: Un troto	PERFORMANCE MEASURES	HAS RANK D Y = CX	G=[cT]ATCTATET:ATTCT]	FOR LINEAR TIME-INVARIANT STSTEMS	OBSERVABLE	X HAX+BU	[B:AB: AB An B] HAS RANK M	FOR LINEAR TIME-INVARIANT STSTEMS	

	an annan a sharan ann a sharan an an ann an an an an an an an an an	· · · · · · · · · · · · · · · · · · ·)			do entre successo anto tra activitiente france. e una commente e						a mana a mana a mana a mana mana ana mana mangana a)					~		-	4 Contraction of the second se Second second sec		V)
		N X N X N X N X N X N X N X N X N X N X	$X(t_{r}) = O(t_{r})$	×(+= 75/26)= += 0	NON I ON	THUS th 75/26	> X= 5 > X= 5 + C= -5 + 15	5×41=0 . t= tx	+ × [5 + ×] = 1 + × ×	6¢ [····································	$\nabla + 40 = X \land 0 = X \land 0$	$\frac{\delta \phi}{\delta x} = \frac{d}{dt} \frac{\delta \phi}{\delta x} = 0 = \frac{d}{dt} \frac{1}{\sqrt{1 + \frac{1}{x} x}} = 0$	EXAMPLE J= Jto [1+ X2]/2 Jt	$=> \frac{54}{2} \left[0 - x \right] + 4 = 0$	$FOR X(t_1) = O(t_1)$ THEN ST = SXA	FOR TERMINAL STATE SPECIFIED: SXIO	FOR TERMINAL TIME SPECIFIED: St=0	$\frac{5d}{5x} \frac{t_x}{5x} + \frac{t_y}{5x} + \frac{5d}{5x} \frac{x}{2} + \frac{5d}{5x$	TRANSVERSALITY CONDITION	$\frac{5d}{2\pi} \cdot \frac{3d}{2\pi} = 0$	EULER'S EQUATION.	+ It's [and - d bd] & dt	SU= 50 x to + [4 - 50 x] St tr	THEN	$J = \int_{a}^{b} (A) \left[x (A) + x (A) + A \right] dt$	

EXAMPLE EXAMPLE SOLUTION IS Γ TURNS N D L MUST ALSO \$ \$ \$ \$ \$ \$ \$ \$ \$ $\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}$ AGRANGE ×. X=0,1,5 X(o) = 00R X (t-) = 1 10 0/5 10 5 × = 2× WE CAN HAVE DERIVATIVES ARE STRAS $= \sum_{x \in X} \frac{f(t+1)}{x} = \frac{f(t+$ 007 (t) = 0 NE 1 × 9/4 3 × - 4 = "+ 1 × 9 X(t+) REQUIRE X=0, \times EROMAN x=0, 2, 2 $(1-\hat{X})(3\hat{X}-1)$ 11 X SATISEY C3 cost + Cy sunt $(\overline{\gamma}_2) = 1$ CANSDECIELED × ~(+) TRANS. AND NT/2 AND NO CORVERS X = 0 t + D 1. 2. S -2× n $\sum_{x=x=1}^{\infty} \frac{x(t+1)=0}{t}$ X(++)= ORNER. 1 X, FE W La ter ON OI TIONS CONTINUOUS -۱ × ۰ ۵ X(t)]Zt 11 GAND TIONS ו × א וו SINCE ٦,

EULER'S 0 SUBJECT . W= · × CONSTRAINED XAMPLE MINIMIZE ₩ US M EXAMPLE FEERENTIAL Y 9-0-LE T f (w, w, = (0)0 Ja (4,p) = D j D LAGRANGE S WY-M X = 0 5 d, 6) 1 6904 24 70 A M VECTOR Alley Alley : (0)0 + 22 $|\omega|$ (1 Z. 40 NF EXTREMA Ś CONSTRAINTS WILL SOLVE IT MULTIPLIERS Pa (w. w. 50 1 plu, iu, t. 0 X N N in the second 0 ÷ W, t * [~~X * 1.5. Ş. t. ann agus Cost (\mathbb{D}) Ç $O=(2) \in O$ N IS IS 100 m w, 2 + w, 2 + + W2 11 R N $0, \lambda = 1, \dots, n$ N-200 0 Ņ T to AND (POINT SAME - AT N, t Lo dt, Wo, to, MA, to seecieve (x. - c) e, c Allocation of the second Q (2) WRITE 100 1 1 0 1 1 0 1 1 0 CONSTRA EQUATIONS 1 -NTS (ω)

XAMPIE EULER'S $\dot{x} = A \times + B U \qquad , \qquad x(t_o) = x_o$ $\dot{\phi}_o = \pm || U(t_c) ||_{R(t_c)}^2 + \pm || x - r ||_{R(t_c)}^2 + \lambda^T (A \times + B U - \hat{x})$ TRANSVER 11 11 NF 5 7 7 sto- \downarrow \sim $\int_{t_0}^{t} \left[|| (c_{t_0}) ||_{R(t_0)}^2 + || (\chi(t_0) - r(t_0) ||_{R(t_0)}^2 \right] d\tau$ 54-1++ = - X ante . C O 100 X 100 X 100 X 4 TION $= Q(x - r) + A^{T}\lambda + \frac{\delta \lambda}{\delta t} = \frac{1}{2}$ $= R U + B^{T}\lambda \Rightarrow U = -R^{-1}B^{T}\lambda$ CONDITIONS ARE $l_{\pm \pm} = -\lambda(\pm_{\pm}) = C$ 11 0 \bigcirc

TNEQUALITY CONSTRAINTS ISOPERIME TRIC TXTREMIZE $f(u, \hat{u}, t) = 0$ WINIMI T φa= φ + λT + + pT [α= (Imax D)(P - Imin). MPLE: SUBUECT 2 SUBJECT > \$ = \$ + 11 \$ ∜ $\mathbb{E}(t) = t$ N (te) = 0 N \$ to 2 (w = + w = 2 ed s \$ \$ \$ NOTE - W2 NA A A " CONST ton = 1m3 $W_2^{*}; = (t_0) = 0; = (t_f)$ $(u_1 + u_2 + z u_1, u_2) + \lambda$ $= u_1 - 2 u_2 = 0$ $\leq u_1 - 2 u_2 = 0$ $\leq u_2 - 2 u_2 + 2 \lambda u_2 = 2 u_1$ ~ W& + 2 \ W2 - 2 W1 = 0 **}**} 70 0 + C to Chymy t M a - -() (1 $(\Gamma - \Gamma_{m,n}) = Q^{2}$ = 1 to 1 -SUBUECT. r + 2 in in) de W, et. 170 100 N 1 (0 Gt L Net oft on a com Sw1 = 2 W2)dr n N e(u, ú, t) dt = C 10 ₽ V 10 \cap a const \bigcirc

TH M 2 × H[x, v, X, E] = * x PQ x + UTRU + RPPLY ASSUME * x T(ty) S X (ty) + 2 / ty (x TQX + UT THE THEN ALSO, WE ON W THIS GIVES COMBINING THESE N U S T ちょう ひ こ $\mathcal{O}^{\mathbf{0}}$ $p + PA + A^{T}P - PBR'B^{T}P + Q J X (t) = 0$ 1(4)= LINEAR $= -\rho_{A} - A^{T}$ MINIMUM PRINCIPLE: COEFFICIENT MUST BE RERO, TNTECRATE X=AX-BR-'BTPX X= Px+Px= qx-ATPX THAT REGULATOR $\overline{\mathcal{A}}$ QX+ATA Q Was The Par 04 100 C (++) = * TERMINAL ļ $\lambda(t) = P(t) \times (t)$ SXCtf R-L M (THUS, RICCATI Eq. BACKWARDS \bigcirc 70-0 CONDITION: XT(AX+BU, W. F R L L

[m]ASSUME XAMPLE K(t) USING THIS ON OUR V WITH P-1 . x ==== + 0 1 + (+) × × × (+) + + 10 計 OIFFERENTIATING: +2P+3P=P(1)(1)-(1)P-2=P+P= = pA - ATP-PBR-1ATP-Q h 1-d- < 0=1=dd+1=d,d U(t) = K(t) x(t) P-1(++)= 5-1 AP"+ P" A - BR" B T=1-00 Ą TIE KALMAN FEEDEACK ORIGINAL RELATION: GAIN. 1- d d . d = EQUATION: +0-100-1 NOW 8

A. FIXED BEGINNING AND THE BOLEA PROBLEM Y NININIZE SUBURGT $J_{q} = O[x, t] | t_{t} +$ Ja= O[x,t]to DEEINE 200 PERFORM VA 1 = 0 [x + 1 = 1 = 1 INTEGRATING $H(x, u, \lambda, t) =$ 15x7L Ч 0 10 THE 15×7 XHX 10 2 M 0 $V = \Theta [X(k), T]_{t_0}$ HCX 4U=(+7)×(+3)N M(to) X(to) = mo x = f(x, v, t)т ФСХ 1 = { d(x, u, t) + A [f(x, u, t) - x] } d t -ン レ ÷ ne XII 6 X HAMILTONIAN : x = +(x, y, t) = 0 = to, to ¢ ひょう、トント XXX N + (1 (x, 1) X, +) - X + X ->]3/t+ ->]3/t+ ->]3/t+ ۶l PARTSS $H(x, u, \lambda, t) = \lambda$ 14 14 st st TERMINAL TIMES and Notes A N VECTOR × Idt ∽ dr A +, \$(x, u, t) dt A 9 VECTOR < r vector A

AMPLE c F TERMINA C 11 × • 1 11 $N(\chi(t_{j}), t_{j}) = O = \chi_{1}^{2}(i) + \chi_{2}^{2}(i) = I$ ×. & " X = X X = X ч к ч к + 210 210 SYSTEM 11 100 100 12 27 . . . C 2 d d トイン MANIFOLD: x, (0) = 0 V=(0)=0 X * (c) * C X,=0, X=1, X=X2 , x, (e) = 0 0 71 $x_{3}(0) = 0$ $\lambda_2(1) = Z X_2(1) V$ 23 CU X2(0)=0 $\lambda(c) = 2\chi(c)\chi$ EQUATIONS ARE THUS 11 XrC $\gg \lambda_1(1) = 2X_1(1)$ + x * (1)= $\lambda_2(i) = 2 \chi_2(i) V$ x=(1)=0 $X_{i}^{2}(1) + X_{2}^{2}(1) = 1$

PRO SAME AUGMEN やしゅ THUS CONS MIXCES ()8 11 EEOING \bigcirc PRO 0 TRAINTS r X IN Q 1000 BLE M \times rt o Ø RODITION XD XD XOX 11 ×l< Wla M ≥ N S. Starry ~ NA N4. 4 \odot WITH 2 t 1 [X(ta) N[x(+1,+]=0 20100 X|2X 0 6 2.4 INITIAL I A 'AN tol \mathcal{O} CR S V 5 res B ~ PREVIOUS 60 | X | FTERMINAL X X 6MM and anon- \leq 11 Sector Market 4 1[x(r,), ++ 10 87. X, Jor 7×+60-54 RESTRAINTS;

Ø CIVES REARRANCING AND RECOGNIZING PEFORM 5 510= 11 5 NENT PERFORM Ø П à IXED 88 99 NLX(cf) 18 ж. И ¢ }{€ 40 (()\$ 31 O -tt 0 ь ц. x an 6) X T ea 1 Ø to p BEGINNING, ty ł X 2 T'n'X' 14 00 Xar to + V T/ 1-1-0 P-N Ŧ KTN N N r X + -S. 15xT (St + 1 * * LO N 1 \$ \$ × -RATION ¢ F. 44 1 + 5 + + FREE XCO)=Xo X TX dr x T b(x, u, t) dtHdt X 4 C ł 2 T SCT SET X(tf) BY PARTS: + 507 (54) x (0 + - ×)) \times 20 2 THA UA. 0 7 1 2 rt N 1 m 04

сл Пј TR I TTING ANS worker +++ 1 $c|\mathbf{r}|$ 66 ~ |n C Ľ 11 11 M S 1 1 0 t> C 11 ŅŶ 10 11 ¢Λ ITY 0 XGZ $\sim \tau$ NIN X CONDITIONS SIVE S in pr 0 5 ~1 x la 32 M

001 1 5 1 1 10 $| \ominus$ M 11 TRA Þ × S 17 Ø 01 2 折 \$ 0 49 PROBLEM ţ. 1 r 81 ļ NTRY X (and the second s -1 Ŷ n U lớ 2 7 20 -2 n M WITH Cte Ìd N X X 2 0 1 MAXIMUM § Ø (to) BECOME N0. 10 0 17 i01 NEQUALITY Ņ 4 M $\phi(x, u, t) dt$ X (te) = Xe 个 h LAGR h PRINCI × 1 BECOME (44) ANGIAN (Ч. рэ CONSTRAINTS 10

			4)	0	00.		×, <, 1 1 X X X X X X X X X X X X X)
					CURS WHEN	TIMUM WHE	XC XT AX+B	exter.	
						N XTBUZ	Ċ.	*	
			•		ngi = rgu	×-7 0 C 1			rener - " - " - management of an anti-section of management of management of management of the section of the s
					10 P				remains and and and a subject of the second s

"ADMISSABLE TRAJECTORIES"	X, (to)= 2 X, (to)= 0] THESE POINTS IS 0 IE THE CAR ONLY GOES FORWARD 04 X(t) 4 01 Y GOES FORWARD	STATE VARIABLE CONSTRAINTS X, (to) = lo=0 X2 (to)=0 ZCAR'S SPEED AT	IT IS IN "PHASE VARIABLE" FORM	$\begin{bmatrix} x \\ x \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 0 \\ x \end{bmatrix} = \begin{bmatrix} $	de d(t) = x (t) + B(t) to=0	TRAPLE CONTROL PROBLEM	

))
	= A(t)X(t) + B(t)U(t)	= $A(t) \left[\overline{\Phi}(t, t_{o}) X_{o} + \int_{t_{o}} \overline{\Phi}(t, r) B(r) u(r) dr \right]$	$\Rightarrow \dot{X}(t) = A(t) \overline{\Phi}(t, t_0) X_0 + \int_{t_0}^{t} A(t) \overline{\Phi}(t, r) B(r) u(r) dr$	BUT $\overline{\Phi}(t, r) = A(t)\overline{\Phi}(t, r)$ AND $\overline{\Phi}(t, r) = T$	$erooF: \dot{x}(t) = \frac{1}{2t} \overline{\Phi}(t, t) \dot{x}_{t} \int_{t}^{t} \frac{1}{2t} \overline{\Phi}(t, r) B(r) u(r) dr$	THE GENERAL SOLUTION TO X=AX+BU IS X(t)= D(tt) X_+ 1+ D(tr) B(r) U(r) dr	$PRODE: X(t_2) = \overline{\Phi}(t_2,t_1) X(t_2) = \overline{\Phi}(t_1,t_2) X(t_2)$	$(f_{1}, f_{2}) = \Phi(t_{3}, t_{2}) \Phi(t_{2}, t_{1}) \times (t_{3}, t_{2}) = \Phi(t_{3}, t_{2}) \Phi(t_{2}, t_{1}) \times (t_{1}) = \Phi(t_{3}, t_{2}) \times (t_{2})$	$PROOF: X(t_2) = \overline{\Phi}(t_2, t_3) X(t_2)$ $X(t_2) = \overline{\Phi}(t_2, t_3) X(t_2)$	(1) $\mathcal{Q}(t_0, t_0) = 1$ $PROOF: X(t_0) = \overline{\mathcal{Q}}(t_0, t_0) \times (t_0)$ (2) $\overline{\mathcal{Q}}(t_1, t_2) \overline{\mathcal{Q}}(t_2, t_3) = \overline{\mathcal{Q}}(t_1, t_3)$	HAS THE FOLLOWING PROPERTIES:	HOMOGENEOUS SOLUTION (U=0) IS $X(t) = \overline{\Phi}(t, t_0) \times_0$	$\frac{1}{10000000000000000000000000000000000$	STATE VARIABLE STATEM REPRESENTATION

N

13 A \mathcal{D} W $X(\mathcal{E}) =$ (\land) UTLON S H RECRE BO X (K) $\dot{X}(t) = A \times (t)$ THEN X (S) $\langle V$ 0 AGONALIZE EN VALUE APPROACH 191 C C TIO OUSLY . P A X(E) OR 11 A FOR. $\langle n \rangle$ X (0) = A 4 X(+) + 33 6 57-11/25 \mathcal{O}_{\leq} Ŵ 19-14-O (5 ¢ II -TIME J 許 Ø D = 1 6 1 (0)A. X (&) = X 6 CLOSED $\Phi(t - t_o) X(t_o)$ 1 \times \tilde{q} \mathcal{O} 0 \bigcirc MATRIX > () _ tr PUPTE 5 σ Æ INVARIANT CASE 4 C 11 HO4 $\langle 0 \rangle$ $\Phi(t-t_{o}) \times (t_{o})$ 0) pi C. ≪ †7 Œ TORM л к н Q 6 M X(to) 0 > > († 4 P ß

(v)

						and a function of the second s					
	NOW, IE Ma(ta, ty) is NON-SINGULAR THEN J X = Ma" (to, ty) Xd(ty)	PROOF: (SUFFICIENCY) LET U(T) = $\mathcal{M}_{x}^{T}(t_{f}, T) \lambda \neq 0$ THEN $X^{d}(t_{f}) = \int_{t_{a}}^{t_{f}} \mathcal{M}(t_{f}, T) H^{T}(t_{f}, T) dT \lambda$	→ X(ty) - X°(ty) = Xd(ty) = Jto Hx (ty, r) U(r)dr O is A NECESSARY AND SUFFICIENT CONDITION	$X_{o}(z^{T}) = \overline{\Phi}(z^{T}, z^{O}) \times (z^{O})$ $\mathcal{M}^{X}(z^{O}, z^{O}) = \overline{\Phi}(z^{O}, z^{O}) \otimes (z^{O})$ $\mathcal{M}^{X}(z^{O}, z^{O}) = \overline{\Phi}(z^{O}, z^{O}) \otimes (z^{O})$	$\dot{\mathbf{x}}_{(t_{1})} = \mathbf{A}(t_{1}) \times (t_{2}) + \mathbf{B}(t_{2}) \times (t_{2}) = \mathbf{\Phi}(t_{2}, t_{2}) \times (t_{2}) + \int_{t_{2}}^{t_{2}} \mathbf{\Phi}(t_{1}, t_{2}) \mathbf{A}(t_{2}) = \int_{t_{2}}^{t_{2}} \mathbf{\Phi}(t_{2}, t_{2}) \times (t_{2}) + \int_{t_{2}}^{t_{2}} \mathbf{\Phi}(t_{1}, t_{2}) \mathbf{A}(t_{2}) + \int_{t_{2}}^{t_{2}} \mathbf{\Phi}(t_{2}, t_{2}) \times (t_{2}) \times (t_{2}) + \int_{t_{2}}^{t_{2}} \mathbf{\Phi}(t_{2}, t_{2}) \times (t_{2}) \times (t_{2}$	ARE DEFINED AS FOLLOWS	(to, ty] IFF Mo(to, ty) & / to Hx(ty, r) Hx(ty, r) dr O	X=AX + BU Y=CX X=AX + BU Y=CX	X(to) CAN BE TRANSFERKED TO X(to) IN FINITE TIME to to Coo.	$I = V X_0 = X(t_0) AND X(t_0) = U(t) > U(t) < 00$	$ControllAbility x = f[x, u, t], x(t_{o}) = x_{o}$

5 (NECESSITY) NOTE ASSUME Mo (to, to) IS SINGULAR & THE DCTM&C = STATE CONTROLLABLE, ITEN 3 H T RROOF LET N= HT(tr SCTMOC NE FOR CONTROLLABILITY THE MUST BE TRUE & Xthe TEX X(F)=C RSSUMPTION THAT CZO $x(t_{f}) = x^{o}(t_{f}) = \int_{t_{o}}^{t_{f}} H_{x}(t_{f}, \tau) u(\tau) d\tau$ COUNTERDICTS THE ASSUMPTION CTM.=0 THIS $\Rightarrow c^{\intercal}c^{\perp}c \Rightarrow c_{1} = c_{2} = c_{3} = \dots = c_{n} = 0$ (t+, r) C 15 THAT Mo = Mo 67 MoC=O > V $\int_{t_{0}}^{t_{1}} H_{*}(t_{1},r) H_{*}^{T}(t_{1},r) dr = 0$ " CC = /2: HAVE 11 CTMOC = BY COUNTERDICTION Mat = 0 to to 40 • >t+ >t COUNTERDICTS THE INITIAL 15 t to the $[74^{T}(t_{f}, \tau) C]^{T}$ CT14x(Ex, T) HX (Ex, T) C d T $e^{t_{+}}H_{x}(t_{+},r)u(r)d$ A POS, DEF, MATRIX WHICH A MXL COLUMN VECTOR and a tric C mandr 27 Hx (++, +) u(r) dy 0×0 0 > CTM = 0, 0R, 3 (AND, WLOG, 2 + 1/2 + c + 2/m [HT(t+r)c]dr ×(+.)=0 0 VI 2 7 2 7 6 010) Ly G

NETLOT CONTROLLABULITY Y= CX = C[I(t,t_a) X_a +]t_a^{t_i} I(t,r) B(r) U(r) dr] + C[I(t,t_a) X_a +]t_a^{t_i} I(t,r) B(r) + Y= Y_a +]t_a^{t_i} P_{Y}(t,r) U(r) dr THE IS THE SAME THE ANTRIX No(t_i,t_a) = J_{t_a}^{t_i} H_{Y}(t,r) M WE HAD GEFORE. WHEN THE MATRIX No(t_i,t_a) = J_{t_a}^{t_i} H_{Y}(t,r) M HT (t_i,r) dr IS COMPLETELE THE SYSTEM IS COMPLETELE DUTE IN TERVAL [t_a, t_i] THE SYSTEM IS NON-SINGULAR, THE THE COLUMN VECTORS OF H ¹ (t,r) ARE LINEARLY NO EPENDENT, H ¹ (t,r) ARE LINEARLY ARE	

$= 2 2 \overline{\Phi}(t_{f}, r) \Gamma(r) = 0$ $= 2 2 \overline{\Phi}(t_{f}, r) \Gamma(r) = \Gamma(r) - A(r) \Gamma(r)$ $= 2 2 \overline{\Phi}(t_{f}, r) \Gamma(r) = \Gamma(r) = 0$ (7)	$ \begin{aligned} &\int \mathcal{F} = \mathcal{F} \left(\xi, \xi_{0} \right) = A(\xi) \mathcal{F} \left(\xi, \chi \right) \\ &\int \mathcal{I} = \left[\mathcal{F} \left(\xi, \chi \right) \right] = A(\xi) \mathcal{F} \left(\xi, \chi \right) \\ &\int \mathcal{I} = \left[\mathcal{F} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{F} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{F} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{F} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{F} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{F} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{F} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi \right) \right] \\ &\int \mathcal{I} = \left[\mathcal{I} \left(\xi, \chi$	CONSIDER NON-CONTROLLABITY SITUA NOW, WE KNOW & (tf. T) IS NON-SINGULA dr & (tf. T) = - & (tf. T)A(T) dr & (tf. T) = - & (tf. T)A(T)	CONTROLLABLE IF ALL COLUMNS OF 74, THUS, Y NZ (E, T) NZO OR NZ (E, T) NZO OR NZ (E, T) NZO OR NZ (E, T) NZO	SIMPLE TEST FOR CONTROLLABILIT X = AX + BU $Y = CXM_{a}(t_{0}, t_{1}) = \int_{t_{0}}^{t_{1}} H_{x}(t_{1}, r) B(r)H_{x}(t_{1}, r) = \tilde{D}(t_{1}, r) B(r)M_{a}(t_{0}, t_{1}) = \tilde{D}(t_{1}, r) B(r)H_{x}(t_{1}, r) = \tilde{D}(t_{1}, r) B(r)$																
		R AND	(t, t). , (t, r),																	
				a an an inclusion of the manufacture and the manufacture	 NUTURA DIA MANJARAMANA MANJARANA MANJARANA MANJARANA MANJARANA MANJARANA MANJARANA MANJARANA MANJARANA MANJARANA		10 at a second secon)					· · · · · · · · · · · · · · · · · · ·			n		, .)	
--	--	--	--	--	--	--	---	---	----------------------	-----------------------------	------------------------------------	-------------------------	---------------------------------------	--	---	---------------	--------------------------	---------	---------------------------------------	--
									(STATE) CONTIDATIATI	THE NEODALITY NEORACABY FOR	THEOR WE HAVE ONCE ACAIN INTONIORO	A SINGLE EQUATION OIVES	COMBINING ALL OF THESE RELATIONS INTO	$\prod_{k=1}^{n} (r) = \prod_{k=1}^{n} (r) - A(r) \prod_{k=1}^{n} (r) = \prod_{k=1}^{n} (r) - A(r) \prod_{k=1}^{n} (r) = $	where $f_n(r) = f_{n-1}(r) - A(r) f_{n-1}(r)$	\mathcal{I}	THE N=1 ST DERIVATIVE IS		FROM (2) AND (2) WE LAVE TT A DATE ON	

			and the second)					A come and Academic at Second and Academic at Second and Academic at Second at S	additionant action of a constraint and the first of a contract formula of a contract of the co			Adv. 101 - 1		· · · · · · · · · · · · · · · · · · ·	
	ARE "CLOSE" IF 1191-92/1 15 "SMALL	-CLOSE: TWO FUNCTIONS OR FUNCTIONALS	$(2) q_1 + q_2 \leq q_1 + q_2 $	(1) 1/9/1 20 WITH 1/9/1 20 1/6 9=0	THE NORM 11911 MUST SATISEY	CORRESPONDENCE ASSINING EACH POINT	SPACE, THE NORM IS A RULE OF	-NORM: IN AN N DIMENSIONAL EUCLIDEAN	= LINEAR; f(2) IS LINEAR IFF f(aq, + 6q2) = a f(q1) + b f(q2)	NUMBERS ARE THE "PANSE"	THE FUNCTIONAL AND THE ASSOCIATED	REAL NUMBER, IL IS THE DOMAIN OF	EACH EUNCTION X IN A CLASS DA	-FUNCTIONAL: J IS A MAPPING ASSIGNING	THE DOMAIN, R THE RANGE	BA UNIQUE ELEMENT IN A SET Q. 245	TO EACH ELEMENT & IN A CERTAIN SET	- FUNCTION : I IS A MAPPING ASSIGNING	A. FUNDEMENTAL CONCEPTS	CALCULUS DE VARIATIONS

INCREMENT OF A FUNCTIONAL $\Delta f \stackrel{?}{=} f(q + aq) - f(q)$ $a \downarrow \stackrel{?}{=} f(q + aq) - f(q)$ SLOBAL EXTREMUM VARIATION OF A FUNCTIONAL df = St Aq1 + St Squart ... + Squaqn UNCTION 1F ABOVE CONDITIONS HOLD FOR $WINNINN = \frac{1}{2} \left(\frac{1}{2} + \frac{1$ 00 ALL CO. ME OBTAIN SJCX, 5X) NETION MINIMA & MAXIMA AT 9* SERIES, AND RETAINING ONLY BY EXPANDING QJ IN A TATLOR $\Delta V(X, \delta X) = \delta J(X, \delta X) + g(X, \delta X) | \delta X |$ A ₽ ¥ 0

	Annual of the second		an anna an an anna an an an an		annuar on the of the and the other to be a				· ·					-	A first start and the second start start and the second start sta						
						FOR ALL ADMISSIBLE SX	S (X * S X) O	IF X* FXTRENINES J. THEN	BY ANY BOUNDRIES THEN,	IF IL IS NOT CONSTRAINED	DIFFERENTIABLE EUNCTION OF X.	THAT X (T) E D AND J(X) AH A	CAUCULUS OF VARIATIONS	VCALIS GLOBAL EXTREMUM	I CONDITION HOLDS YE, THEN	$\Delta J = J(\chi) = J(\chi *) \leq \forall MAX$	$\Delta J = J(x) - J(x*) \ge 0 = M M$	$\forall \forall x \in \Omega x - x^* < \varepsilon$	U IS MXTREAUS O X* IN DAVO	- FUNCTIONAL MINIMA & MAXIMA	

Ġ, ON V 5J11 NOW EXPANDING IN A $a J(x, \delta x)$ FUNCTIONALS THIS NE WISH TO FIND X* $\mathcal{J}(x) =$ 6 4 4 ° t t + 2 { 5 20 + + 0 { 52x, 52x E() IS TWICE DIFFERENTIAGLE FUNCTION GIVEN 1 2 (X, X, E) 4 SIMPLEST x 2 x x + đ $X_o = X(t_o)$ to the AND to ARE ¢ 147 147 147 S 5 20 (x (2) x (2) PROBLEM(to,ty 50 50 3 dt (X, X, t) X KLOR SERIES · ナナン× トナ - 5(x, x/z) $(6g(x, \dot{x}, t))$ SINGLE TO EXTREMIZE TIX RO XXX t) Jdt Xy SPECIFIED] d r TUNG TION d 5 × 5 × 9

and a many set of a set where the set of the set										
		THEN h(t)=0 on [to, ty]	$A = \int_{t_0}^{t_1} h(t) \leq x(t) dt = 0$ $A = \int_{t_0}^{t_1} h(t) \leq x(t) dt = 0$	- FUNDEMENTAL LEMMA OF THE	$SU = 0 = \int_{t_0}^{t_0} \left[\frac{\delta x}{\delta x} - \frac{d}{\delta x} \frac{\delta x}{\delta x} \right] S \times dt$	DE VARIATIONAL CALCULUS \$ WRITE	SINCE to AND to ARE FIXED	> SJ = 50 SX to + St 5x - dt 5x] 5x dt	du = de	NEXT, INTEGRATE BY PARTS, NOTE THAT & X(t) = SX(to) + Jto SX(t)

SATISFIES THE 1-3PE ARE FIXED. OPTIMAL SOLUTION FOR THE EQUATION " RERUC THUS, CUR EXT WHERE THE ENDPOINTS VALUE And the second "BOUNDRY CONDITIONS A A A 70 a, 9 THIS 210 nd PELTA ngagani Tangang EULERS NO Tom X II X 15 OUR 700230 Same Contractions 1 James & Come James 0 0

2 OF THE PREVIOUS SECTION STILL, X(to)=0. THUS, IN THIS 2 11 20 51(x, 5x) = 52 5x SINCE THE "INTEGRATION BY PARTS CONDITION" SECOMES SINCE 4 SATISEVING 0 t MUST SATISFY 15 6 g[x(t+), x(t+), t+] 5 × (++) 400 A. SPECIELED XLtry AND SOLVE THIS CASE A MATURAL SE de 1 = +5 X(to) SPECIFIED 15 ARBITRA 1 5 min 1 × time O 4 have been have been have X YXX S BOUNDRY encio encio WW K THIS KOVATION ADDITION r r c C R 105 REC 0

	PLUS THE CONDITION $\frac{5g}{5x} \delta_x \Big _{t_0}^{t_1} = 0$ NOW, SINCE $x_0 = \chi(t_0)$ is specified, THIS REDUCES TO $\frac{5g}{5x} \delta_x \Big _{t_0}^{t_1} = 0$	2. ty, to, Xo SPECIFIED, X(ty) FREE IN OUR LAST SECTION, THE RESULT GIVEN AFTER PARTS INTEGRATION WAS: SU(X, 5X) = SE SX to SO, AS BEFORE, WE MUST SATISFY FULER'S EQUATION; EULER'S EQUATION; SX - At SX = 0
--	---	---

)

Ŷ THUS D NOW 115 7 7 BOTH 00 SECONDLY M VI TH N m IRST et o FEORE 99 C to tt 4 X 729122 Stold XX to dt = 1 + 1++ 5++ 1 26 5 60 í i đ APPROXIMATE X (*) -17 17 $g[x, \dot{x}, t]dt = g[x(t_{g}), \dot{x}(t_{g}), t_{g}] \delta t_{g}$ st. 4 4 0 *(*† the state RECOGNIZING × to g(x*, x* t)dt INTERATE lon (ふべ WISH 00 ZNA AND 自己 $\sum x(t), \dot{x}(t), t] dt$ `× * 0 [x, x, t] dt APPROXIMATE 5x(te)+g[x(ty),x(ty),ty] 5ty 70 メイトか X(tj) FREE x * x * t] dt t + L Sq dt Sq] dt 6x чр BY PARTS \$^` X-WININ 2 THAT たかからたか TRA Con . SXOT 0 (fa) × 5 6x(ta)=0: \widehat{M} CAS 4 .×-×

NG THUS Q SUBSTITUTING s t t INTERRETATIONS 5 THIS HERE, 5 ty =0 CONSIDERED ty SPECIFIED 61 -MUST 40 1 top AND A 80 Ś (x*(+; h ph Xhai \$x/x3 0 5 g [x *(ty) x *(ty) ty] $, x(t_{f})$ NOW 4 X Q - 4 5 x M 7 H G xx (tree 15 THIS RELATE ** 5 X X ONA SAM E TWO ox x at -14-5x, 5g[x*(ty) x*(ty), ty] 4× 5 500 6 () STORE NO. COLLECTING PAGES x (tg) 6 tg 0 A-S (5) A/S $(t^{t}) \times g$ f1g(f2)×+ ×(f2)gf2 200 A60 H O TERMS Sxdt いたい 15t

0 4 THUS SPEC THE HERE HERE THEN SUBSTITUTING X(ter) AND X(tf LEAVESI 11 -101x.M 00 AND X(t) = FICALLY . X(tf) × × × 8/82 × × × -14-RELATIONS NN × × * N A SPECIFIED + EULER'S 4 - d O (t) - X (t) UNSPECIFIED and the second NUS. MUST SATISFY ת ה - × 3/23 = 0 19 h 0=++ SATISFY -Uf-1-1 × 1+ ATED 0 1 n R 1N (a) \$(b) Sect > 6x2 = Sect SIMPLIFYING 2.40 X.40 AND MLL SXdt INDEPENDENT 0 No.

 $\hat{\mathbf{D}}$ NOTIONS TO D SPACE, EULER'S EQUATION BECOMES FOR EXAMPLE HERE, JUST GENERALIZE PREVIOUS FUNCTIONS INVOLVING WHERE ENDEPENDENT FUNCTIONS WE HAVE NEQUATIONS \$ Xi, THE EQUATION IS SECTION SX: - AT SECTION IS AT SECTION IS - O X SUR AND 102 $\frac{6 e(x)}{6 x} - \frac{d}{dt} - \frac{6 e(x)}{2 x} = 0$ ls SELX*X*t] d SELX*X*t] 5 { X (tq), X * (tq), tq 3 UNKNOWNS, EQUATIONS BECOME FOR R AN . n 5 2 × (tr) × (tr), tr} × (tr) 5 tr $\frac{1}{1}$ IS A SCALER ty AND X(ty) FREE VECTOR. SEVERAL より より 後 AND

 \mathcal{O} エ SATISFIED EULERS s pa LET P NOW m ×× SSUME × 1000 March CEWISE (x) =in the XCt ļ 1 6 1 and a y la by ex RANSVERSALITY X x-m × 2 * * EQUATION 11 9300 1 67 i, i 1 A. 0\ X\ 100 202 さーシャー SMOOTH Q X Сŀ. st. X XV * \times x, X, } BOTH \times , 1-10 1-10 NCX 1 * -S st. ++30+ X 0/ EXTREMAL P P Ã Xe/ ARE NTE gdt CONDITIONS - Million RVALS SXd Sxdt n ar IN ARE

D N f O えよう W 6 1 5 NI FOR OND, TIONS WHEN No los ¢φ ang 111 (00) (0) RSTRASS 44 4 MANY Xolon Diex 5 「雨みい 8) X0 x h X SIV ES the state 100 X CL TION n lov 5 ×۰ H FUNCTIONS H († + 91000 るやえる 4 anity (H C Signer 210 ck 5 X(キチ) and the second R (t 02 Z 1000 1 ST No. DMAN 1 \square 50 17 0A9 R d, 9 A R M 1 OMAN $\mathcal{N}\mathcal{O}$ r‡ • 4 NO. ch lon Xiero CORNER NDEPENDENT (\times , $\left(\right)$ ORNER 4 $\left|\right\rangle$ r + 4

)											
			Y= 2.5, Y= 2.5, p= -5	VE HAVE 3 EQS. 7 3 UNKNOWNS. SOLUTION IS	242+p=0 AND 24+p=0	VE MUST ALSO REQUIRE THAT	$d_{q}(x, x_{2}p) = 0 = \frac{b_{12}}{b_{1}} \frac{b_{12}}{b_{1}} \frac{b_{12}}{b_{1}} \frac{b_{12}}{b_{1}} \frac{b_{12}}{b_{1}} \frac{b_{12}}{b_{2}} \frac{b_{12}}{b_{1}} \frac{b_{12}}{b_{1}$	NOW PELAGRANGE MULTIPLIER	$f_{a} = Y_{1}^{2} + Y_{2}^{2} + p(Y_{1} + Y_{2} - 5)$	NUR AUGUST TO X++X=5	1, EXAMPLE: SCALER USE OF LAGRANGE MULTIPLIER MUNIMIZE JCT. T2)= Y, 2 + Y2	E. CONSTRAINED EXTREMA

RICONSTRAINED ٩ $at_a = \sum_{k=1}^{n+m} \frac{\delta f_a}{\delta f_a} dx_k + \sum_{i=1}^{n} \frac{\delta f_a}{\delta p_i} dp_i$ $at_a = \sum_{k=1}^{n+m} \frac{\delta f_a}{\delta f_a} dx_k + \sum_{i=1}^{n} \frac{\delta f_a}{\delta p_i} dp_i$ EXAMPLE: MINIMIZE: f(1,1213)=Y,2+Y2+Y2 MINIMIZE SUBJECT TO Now: fa(r, r2r3p,p2) = (Y,2+r2 SUBJECT TO Y3=X, Y3+5, Y, + Y2+ Y3=1 FORM, FIRST, THE AUGMENTED FUNCTION: to (Y, Ke, ... YArm, p, ... pa) = I(Y, Yz ... KArm) a: (1, ... Yn+m) = a: (1, 12 13) =0 SOLVING Q: (1, ..., 1, +m)=0; 1=1,2,..., 1 V tan = 9 (x, x2 x3)= > 1.12+5-13=0 + p 1 1 12+5 - 13] + p 2 [1 + 12+ 11 0 prop dta=0, THE EQUATIONS Y+Y2+Y2-1=0 X=0=2X,+p,Y2+ - a; (4, ... + m)= 0; i=1, ... S KAS = = 0 = 213 - p, + P== C PROPLEM USING LAGRANGE MULTIPLIERS f(t, tz, ..., Ynom) =0=242+ p14+ P2 N N 2 + 7 2 - 1 N N 1 - t - <u>v</u> 5 5 ARE 520+m Equations N

3. CONSTRAINED MINIMIZATION OF POINT (yr V 3 2 TWININ HERE, p(t) is AN N VECTOR OF B (THESE LAGRANGE MULTIPLIERS. ARE $J_a(w,p) =$ NOTE a (W Sw) OF THE ATM COMPONENTS 10/10 2./t> r't FORM THE VARIATION OF Ja X Z 40 74us L N CONSTRAINTS 1 4 7 7 7 7 7 7 A to LOO J A A 21-2 0= 77 Stn/5 41 A NT NO VE C C R p, 5p ~ (u, iu, t) + INDEPENDENT, POINT CONSTRAINTS. AUGMENTED FUNCTIONAL $(w, w, t) + \sum_{i=1}^{n}$ 5. 01 +pT(2) 5+ ٢ Lts , 2 \$ \$ 4. 4. an an e, 1 PTG. J CTOR, SUBJECT TO [w, w, t]dt-\$ 10 84.8 30 6 FUNCTIONALS Swntin Swn+m. c, , 10 p: (c) f. (m, c)/dt W.t. \$. * S 4

5 Ja (w, 5w, p, 5p) = Jeo N T NOTE THAT CHOOSE OUR LAGRANCE MULTIPLIERS TERMS BOUNDRY CONDITIONS, ARBITRARILY. **LOO** 太い シュッシュ THIS THEN AUGMENTED 1. ab 00T THAT FIRST OFF NOW 20- 1- 0 ms + ms 11 202 LIKE WE'VE , V 89+PTf WHOLE MESS BY STARTING W 174 THIS 5 INTEGRATE BY PARTS CONTAINING to go [w, w, p, to] dt ap CONSTRAINT IF WE SPECIFY NE COULO HAVE SIMPLIFIED AKIN 079 くすく OUR OTHER EQUATION 15: + (w, w, t) = 0. WE A A S 0=[0.45 + 245]=0 70 210 SPECIFIED 7 5 9 S 4 5 . TULERS 5 PT ST BECOMES ALL - de + pT St JSW THE RESULT 000 THE n Q CAN Сл "°

EXAMPLE EXAMPLE; MININIZE SUBJECT MINIMIZE: J(X, U)= Jto Z [X, + X, + UZ]dt SUBJECT TO: XI = X2 - X - 7 X2 - 2X - 3X2 + U THEN $LET W_1 = X_1, W_2 = X_2, AND W_3 = 0$ $\Rightarrow J(w) = \int_{t_0}^{t_f} \frac{1}{2} \left[w_1^2 + w_2^2 + w_3^2 \right] dt$ 8a = 2 W 2 + 2 W 2 - 0 THUS > W, + p=0 3 EQUATIONS & THREE UNKNOWNS ALSO E= 2 W2+ 2 W2+ 2 W3 + P+ [W2-W+-W] 5 EQUATIONS \$ 5 UNKNOWNS 5 8 8 - at 5 8 8 3 = 0 TICN THE CONSTRAINTS: UTILIZE THESE EQUATIONS $w_{2} + \rho_{1} - 3\rho_{2} - \rho_{2} = 0$ $0 = \frac{1}{2}d = \frac{1}{2}dz = \frac{1}{2}dz = \frac{1}{2}m$ M3+P2=0 $w_1 = w_2 - w_1$, $w_2 = -2w_1 - 3w_2 + w_3$ W- = w = W W2 = ZW/ - ZW2 TW3 0 = d + 2 m H 0 W = W 2 J(w) = . $r + p(t) L w_2 - w_1 J$ ٩ W = W2 1 = = = [w = + w = + w =] dt +p2[-2W-3W2+W3-W2] H 1 1 12

6 LSOPERIMETRIC CONSTRAINTS ARE THE C'S ARE SPECIFIED CONSTANTS SPLVING AS 20-23 4 PLUS DEFINE La free me NOW PLUS WE STILL HAVE ILA ARE to Ale WAYS Sold Statement and a second se THIS GIVES galu, i, p, =, t) = g(u, i, t) + p (t) [e; - =] Z(t) = O(w, w, t)10 17 17 HTS EQUATION IS THUS $THUS: = Zi(t_g) = Ci$ Zi(t) = Ito Ci(w, w, t)dt THE NOTE AND 52 8a = - p(t $e_i(u, u, t)dt = c_i$ $\frac{2}{2}(t) = C_2(u, u, t) - \frac{1}{2}(-1, 2, in)$ THE PCONSTRAINTS, o(t) = cCAGRANCE THAT BEFORE C ht Mt2r EQUATIONS HAVE NOT EQUATIONS FROM CONSTAINTS 0 29/239 GIVES US r MULTIPLIERS 14 (1=1,2, - , r) 0 0 FORM: ALLIA YS EQUATIONS

EXAMPLE: SUBJ RXTR 100 100 11 NOW 100 200 200 N 963 ALSO, WE N AND E MIT L V 10000 ₩ Ø Ń 5 Neg / N IN II \Downarrow 3 NN NN 34][10 TH E A. S. ţ) N 540 4 1 br (t No. 0 0 Suma. 1 N N.S. HAVE 100 200 200 BOUNDRY CONDITIONS Z 4 0 \bigcirc 0 and the second (% 45 Z +2042 n a W. 20 A THEFT ۴N • 2 11/12 + P2:3 CONSTRAINS N Nº N 曊 11 North Contract 1 and and and えた。 2W/W2 1 dr NR p(t) ۹ ج and the second 傷 K (w)(J (N) N

EXPNPL F SUBJECT Ŷ \mathbb{V} \mathbf{V} N M T Sa= zw+ zw2 + p, [-w, +w2 + w3 S MIN and a S 590 - 2 59 Sw at 59 J (X, U) = N 2 I NV . CONSTRAINTS 50 WI = WITWZIW3 N2+ P1-3P2-SH XX Me. W-p-2p2+ A. 0=0 n N X " X Y = Kz -2W, - 3W2TW3 -W-10 the second Support of the second s p 1 C = tec N R 10 SW2+W3-W2-+P3-W3 67-0 p=0 4 44 P= =0 1† 0 WV+ X 11 0 The the part of the second sec)(17 42 C N WZTWZ g n N UR(t)dt -2×1-3×2+0 (+) d T = C X C I K W S 1 1 5 4 N X 4 W2= 2W1-3W2+W2 and the second dt angles . WY allowing the M

056 POT BOU BANG YAMIL DIFFER \geq V .. 0 × 3000 X >. 11 Accession and a second F + TONIAN C. BANC 01 1 S S X(tep), tey. NDS ÷ MINI (N) 275 2,2 Q ASK 70 V 5-04 5 2 15 ONTROL MUM Aligana Willio-SOL Č, N 14400 + And and a second CONTROL. IN þ 40 H N N O NCIPL 1 + + C - C -SCX, t) NEAR 60 67 NCS X en i TSOL V O 6 5

2 MOWING W SOLVE LET SOLUTION THUS X = A X + THEN としい 4 = (2) \$ f 1 Ņ MINIMUM PRINCIPLE tond to th 1 + XT(Ax+bu $\lambda(t) = C - A^{T}(t - t_{\phi}) \lambda(t_{\phi})$ 2 = t+ - t x= A= - 5 Agn 1 TIME PROBLEM April (NTb. σ XT60 Jor e-A(r-s) b Agn [AT(t) eAS b] ds × 11 = $A = b A g = b A g = b A f = b }$ HX t AND - 60= $A x - b Agn (\lambda^{T}b)$ $X(\varepsilon) = X(-\gamma + \varepsilon_{f}) = \operatorname{S}(\gamma)$ F. N THUS O = O X'

NOW PLOT FOR 0 NOW FOR EXAMPL Q U=-1, THE (______) × \times (a) (E) < 2 " 1 FOUR (a)2 Constant of 10 18 \sim († 0 T M rt 45 ς Λ USE - + ųş, 0 0 0 (A \approx USE C 88 M POSSIR 01 è C N BA ----{| 0 × C3t+C4; = X2= 1 × 16 29 Ø 0 W D I S Current A m N NON SIGN (6) - Agent A. Azer D FROM -1 TO! XzCte N OPTIMAL C II 0 V IN => X,2 = C 18 U Ct 9 P × 11 H 17 CONT មិន 100000 100000 させれよ くっと + くっと + C=>X/===t=c3t+C4 har X N NT XN N X D D FROM +1 TO (きた~- C3た) + C4 $C_1 = 0_1 C_2 < 0 = 2 U = 1$ (この, ビスナのー 270 X 1 N X (t+)=0 X(te)= X0 15 2 A + - sync a 2 1 C + C 2 2 ... X-ARE Å AX+bu 1+ 54 C.>

 $\langle N \rangle$

MIN INDM 4 PPLY DENOTE APPLYING MINIMUM PRINCIPLE NOW $\sum c_{1} | \hat{v}_{1} | + \lambda T G \hat{v} \leq$ 50. . $\mathcal{W} = k + \sum_{i=1}^{n} C_i |u_i| + \phi + \lambda^T (f + c_i u)$ $\sum_{i=1}^{m} c_{i} \left[\hat{U}_{i} \right] + \lambda^{T} \sum_{i=1}^{m} g_{i} \hat{U}_{i} \leq \sum_{i=1}^{m} c_{i} \left[U_{i} \right] + \lambda^{T} \sum_{i=1}^{m} g_{i} \hat{U}_{i}$ 160 = 11. Az ... ha ASSUMING C:= 1, M N H O SPECIAL "+ 140 5 1 U:1 + X + 8; U: = 160 = 121 ··· 2 ··· $\int_{t}^{t} \frac{f}{r} \int_{t}^{t} \frac{f}{r} \int_{t}^{t}$ H S I S DO SO, WE MUST CONSIDER NUMBER FUEL PROBLEM MIN PRINCIPLE TERMUISE. COLUMNS OF G OY G. ... gr $[k + Z_{i}^{m}, C_{i}|v_{i}| + \phi]dt$ POLARITY CONDITIONS ON _II Z TO MINIMIZE 007 M Ciluil + XTCU ; x (t.) = x. THIS EXPRESSION C 3 C-PC ° o 9 x(ty): SOME , v v v

 (\mathcal{A})

E. E Ŷ. 3 E. てエーム $\frac{1}{1} \frac{1}{1} \frac{1}$ L W J SMALL AS POSSIBLE -0 CHOOSE (-) + > 0 < XT Prog. BANG Vi (t) à ron MINIMIZE, WE WOULD CHOOSE 99 ->TQ;>1 90 ~ 200 0 1 U, SO FOR MINIMIZATION N 47 - 1 V V. NO ą 2 10 10 ⇒ c: = 0 20:20 ONC D 0 $\left(1+\lambda^{T}g_{T}\right)\left(1+\lambda^{T}g_{T}\right)$ ter free CONT Ċ, C> | ~ | 0 FOR U, > O N O N N 0 404 0 < 0 FOR EOR 0, -AS. ¢ V V V C> < N O

0

))			P P		T C)
SINGULAR POINTS OCCUR WHEN K,= 0,	Kiro X, SINSULAR	$\frac{-\frac{6}{5}}{\frac{5}{2}} = \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} 1$	OR U= = 1, WE HAVE THE EAME PROBLEM A	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	TURNS OUT $\mathcal{M} = \frac{1}{2}q_1^2 \times \frac{1}{2} + \frac{1}{2}q_2^2 \times \frac{1}{2} + \frac{1}{2}u + \frac{1}{2}u$	$A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ $
	POINTS		x2(t)=0 x2(t)=0			

(°) († + N M THU CONSLOE 202 Ot + t ALSO C to = tox (b)MA \cap ₽ t = t, NIN Por la 20 0 1 W 15H 2. A N Q X.(+)= K,++ K 67 0 6 A 9 6 U GOES THAT $(t_1-t_2)=2$ 0 S S M 10 6 4 1 ODES FROM O TO -1 => /2 (t2)= - 0 t2 + \mathbb{V} for here here 1 2 Xn (n) t + X, (t) - Xz(t) t X X, (t.) = K, t, + K, = X, (t.) t, + K SHOW HAVE \$ S 1, = -at + b T III O 0 メッイナン(ナーキ) $X_{(\pm 2)} = -\frac{1}{2} \times \frac{2}{2} (\pm 2)$ FROM > k2=×1(\$1)=×2(\$1)\$ 6 $X_{i}(t_{z}) = X_{i}(t_{i}) = K_{i}$ THAT Solution of the second ; /2 x/x AZ Z 121 17 X 0 / TO C (0 Sum a ß 0 0 N -> 12 (t,)="at, +b="] 0 201 0 ai i \cap 0 78

 \sim

))					
						THIS PROBLEM CAN BE ALEVIATED BY USING J= / + (10) + k) /+	14=0. THIS GIVES 0=0, BUT t2=t= 12 = 8	FOR U=0, A IS EXPLICITLY TIME INDEPENDENT.	FOR U=0 $M = \lambda T \Lambda X = (1 \lambda_1 \lambda_2) = 0$ $M = \lambda_1 X_2 = 0$ $X_2 = \lambda_1 X_2 = 0$	North NT (Ax+bc)

1 EXAMPLE J= ± THE SINGULAR THEN OUR HAMILTONIAN IS BANG - BANG CONTROL ASSUME FOR X=0; 1 1 0 0 0 ASSUME >. ×, 11 ×。 11 C $\dot{X} = A X + b U$ 38 ₩ < </ ١ . Z M ≻. ∥ a la a la > X= U= 1 => X= ⇒ ×=∪⇒×==t+C Ø > 11 0 ... × - Agres XT " 0 \sim XHAVE K = + × 2 11 PROBLEM C t 1--1 -N-GENERAL AND AND T 2 × 5 Ú ty =0 N×0 + + C == 0 0 × 0=(+2)× (X (P) = (0) X 176<0 176=0 2-1 6 11 $\left| \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right|$ i - \cap

OUR FOR OURING c(=)(0) => XIIIt+/ 0 -- 1 1=0=1=0= $\lambda(u) = 0 \Rightarrow \lambda(e) =$ N- $\lambda' = -x = 0$ 4 X(0) = 1(+)X xCr Che. SOLUTION THE 190000 X $\lambda(t) = \frac{1}{2} t^2 - t + \lambda(c)$ () ··· · 入= -x= た-1 =>入(を)= えて~- た+C SINGULARITY N S NY NT NI-< No. HAVE ¢ 2. °3 0 X(0)=1 - (0)X 6 THUS 17 ¢ Sing. 48 В 7

15 VHEN NE Θ HMP L TH 62 S FOR OPTIMAL CONTROL NOW, EROM (2) FOR SINGULAR R X = AX + B C THUS, 10 m $X_1(t_{t_1}) =$ " だ 0 l. 11 × Ø Ø T HAVE 1 X · X WHAT ナメアノセチ · BANG => U = - regen / TB XTQXT ļI And and a second N-X ηŀ 0 " X2+0" FROM THE \sim 33 S. h)-11 \times 1 1 11 -0=(++) 1 5 \times 11 P 4 \bigcirc OUR 0 SX(th Νŀ $[-x, -\lambda, -\lambda]$ XXX X Ø С > ~ $= \lambda - \lambda_{2} = 0$ 0 SINGULAR > 5 0 47 > $(A \times + BU)$ AND X, PROBLEM X = 1) M X ndty N И X ¥ ~~~ 11 0 ĝ STATE NN G (2--2-) X \mathbb{V} 17 どもしろ × + 0 44 V -ul XX C SOLUTION L. OR A, = A R 12 - 1 10 X TPX QTX 0 ł 100m C EQUATIONS 0= V - 0 = 1 = 0 = 0 BUXXT rt F 17 X X IS IEIXED ا بر ج $\chi_{2}(0) = \chi_{20}$ $X_{i}(o) = X_{io}$ '× NF 000 (u)(N)

ω
NO р П AT SOLVING FOR X2 GIVES CONSIDER and the second \mathbb{V} 6 | < G x,=xz+0=x2-(x++x2)=x1 2 XIIX2+K THE => x 2 (z) = K, @ TIME $X_{2}(t) = [X_{2}(t_{1}) + \frac{1}{2}X_{1}(t_{1})]$ $(+=) \cdot X = (+)^{X}$ R BR λ = λ ₂ 大 -11 Π \mathfrak{D} SINGULAR ARC MS OF Xz (t) + = x, (t) NOW LIMITING NF XF TAUS Xz(E) X_{i} (4) μ ST R $\sim \sim$ 419 × 19 ≠ X, (t,) C- (t-t) X X X Ν }1 $\approx \rho$ NOT + X, X ۱ = \$ · XXZ = = < => ×2 = - K t + × 20 - Mt * + (x * * X) t + X to キストキ Н 11 · · × (t.) C 0 AN 37) (e - e .) NH + X20 - X2 × XZXXX × * m XPLICIT U = + K SING X N C 0 14 TON SNO M Reak XD

F

S 0 THE GENERAL SOLUTION NO W WLOG, ASSUME $X^{+}(o) = 0$, $\lambda^{+}(o) = 1$ CONSIDER HOMOGENEOUS SOLUTIONS THESE ARE DERIVED ALSO CONSIDER 70 Z M QUASTLINEAR LZATION FOR. NOTE : $\lambda = a_{21} \times + a_{22} \lambda + e_2$ $X_{\rho}(t_{o}) = X_{o}$ $X(t_0) = X_0$ $X_{H}(t_{0}) = O$ 7. X = q X X + q z X + $X = C_1 X^{+} + X_p$ × $\lambda(t_{f}) = \lambda_{f} = c_{1}\lambda_{\mu}(t_{f}) + \lambda_{\rho}(t_{f})$ SUPERPOSITION $\lambda = C_1 A + \tau \lambda \rho$ CAN = 011 X + 0121 + 0 " Q 21 X + + Q 2 USING C.C. × $X(t_0) = X_0 = C_1 X^{t} +$ STRAIGHTFORWARDLY 4 1 2 4 1 A USING TORINCIPLE 15 SATISPIED 1-2) (4-4) A(to)=1 $\lambda_{\rho}(t_{o}) = 0$ 1 the N N シャート FROM Nr (tr) $\lambda_p(o) = o$ $X_{\rho}(o) = X_{o}$ NOULD BE Xp (to HAMILTONIAN $X(t_o) = X_c$ $\lambda(z_{2}) = \lambda_{2}$ SOL V R 11

GUESS T m J NO. ME X C) (E 15 G (1) e REARRANGING STOP ×°° Xno × , 11 E A · × の問題 CAN D N THEM 11 N 6 5 6 ITERATION WNEN \times +09 ×12 x M nnt 2 $\phi_{\tilde{f}}$ (1 < +1)301705 A TION (14+1) ×°X () X Ci) ARE OF 022 0 17 (T 70 2 ATE П П 2NT ÷ COSTATE 1 4 C 0 0 2 st st st st RIE 15×1~~) \sim 30 140 REDUCES STATE Ŕ + R EQUATIONS (0) 14-11 X(m) X and Xa Ê Ference $\hat{0}$ U C R -**j**. 40007 X INITIAL + 1 ONB , | | | | NOUT THEM GIVES 0 HOJ X (1) - X (0) \square 212 1 1 4 22 2 XCta C (they h X

EXAMPLE S O \mathbb{V} 100 X $\sum_{i=1}^{n} (i)$ X NN × (;) WW 11 11 11 ZX(0)X(1) 2+ 17- $(\lambda = -4x - 1)^{(n)} + \frac{1}{2} + \frac{1}{2}$ 1+2/- × = × = × \sim 704 2+02)dt X(0) = 3 $-4x - z\lambda x =$ ہ _ ا (1) 1 4 --4X - 2XX × (1) NX of aller . 5 x (x = + U Keng. 2×0× ci)+ 2×0 po $\langle \circ \rangle$ X (O) N (0) C (Xno ~ × -~ ~)) () 19 N Č 6 6

 $\widetilde{\mathbf{0}}$

20 H K M \bigcirc -L L 7-15410 ×° WH E 4 44 11 11 T D COT X ħ ω 3 r \times Z \mathbb{O} (6) 11 1 6 5 $\left| \theta \right|$ \boldsymbol{w} HOMOG 1 ×, × X 4> ~~~ a SE ŝ X 6.1 5 10 [th NEARIZA)1 714 6 11 ION 6 P (**) 0 11 S (+)× 5 6 Ş 24 0 0 († (f)× + Sec. -(1)-NEO 41 3 D -4-000-000 11 11 1 ~ 11 0 Г 0 \gtrsim 23 Q 0 ģð X ARE TION Þ 201102 and a second 4 24× Ý -...00....00 \bigcirc M M P 6.9 0 2 0 TH E × $\langle \rangle$ OND ~ NOW \emptyset 3 0-0 000 Sec. r 1 1 ENE TH D (A PARTICULAR \emptyset ~ D. 4 (I) $\langle x \rangle$ \bigcirc NOITISS Ά, 5 RA CONDITIONS 100 0 and a 3 N VECTORS -2000 hale à - \cap NOILEN $\langle f_1 \rangle$ $\overset{h}{\times}$ 3 000000 λ. 1 (イナリ) 3 DIL VZ 3 n ROM 201 10 0 \cap 1 4 -11 4 3 S 2 X \hat{s} N. A-2 6 2 6 Ŕ $\stackrel{\scriptscriptstyle 0}{\times}$ ANE 0 2

EACH C t = ty THUS XCty 1(4) 9 11 11 ęţ City (to) + to the the (to) + Np (to ENTRY IS AN A COLUMN. [An, (t+) Ana (t+) ... Ann (t+)] 4 $LA(e_{f}) - Ap(t_{f})$ SQUARE MATRIX 5 9 9 9 $\mathbf{\hat{U}}$ Ļ p(t)

N 0

CONSIDER OR THE METHOD OF 4 X D オイラン $\frac{M(N)M}{S} \leq \frac{1}{S}$ WE DEFINE DIANT : WANA N D P M 11 Y=STEPSIRE NX N X CU CALCULUS 9 11 1 44 6 80 IN 11 x + w la 8/07-(24(1) XCI × + STEEPEST DESCENT S. × UNIT 11 11 0 $\langle \circ \rangle$ (× OFPOSITE \times 0) 4 1=x1 LUBTEN d N/S/ VECTOR: 1 x s/t s + × 3/4 3 N 1. ~ (.) M 810 (Co))1 ECTION \sim N) ~~

ASSUME SU . NOW, PROBLEM BOUNDRY MINIMIZATION OF FUNCTIONA Equality T THEN 1 11 C 8 $X^{(i)}(t_o) =$ $\langle x \rangle$ Г А., рт 536=7 STEEPEST AL. 0 14 6 ENERAL (t) =M 0 C+32 O BUT 1241:=0 CONDITIONS: 1 and failer from S. from +> 0 * + ~ 4 0 \times 4120 S R/ SX 1: X (ri) u(i)N K DESCENT la. CONDITIONS HOLD, 1 C S. X + SX ARE DOES NOT 502 tp n 3 674 (x) = 0 $\lambda (i) (t_j) =$) đ SATISFIED, THEN 6 $5x + 5u = 5u + 15\lambda$ Q t SR(i) M BY 11 x vlo 0 50 6.6 V 0 94

N P

'n 5 ω 0 A. STEEDEST EVALUATE t = X. FOR M CAL 1 NTEGRA DONE CHOOSE COMPUTE (@) • 200 6 3 A]/ $\times^{^{o}}$ nase N 475 M 1 (++) C co) NOT Å v \times° 4 11 0 (°) X (°) (⁽) SCENT 6 8 0 14 1 70 ~) R T N P 2 Ŵ M x |0 20 (M) 5760 ALSORIT >(チナ) = > 1 (BACISWARDS V X°(++) 0 6 0 X @ # X N SF. 42 ated 3

ц Ю

1000 ~ ~ ~ m $\lambda (t_{\varphi}) = \frac{1}{2} \frac{1}{2}$ XAMPLE ASSUME X0 11 - X0 + 10 0 $J = X^{2}(i) +$ × . 11 000 LINEAR $\lambda_{o} = \gamma_{o}$ $\lambda'(t) =$ - X + U h 11 $\frac{x}{x}$ ×-+ U = ; × (0) = 4 11 + 20 1 () N U o t C o 7 REGULATOR TYP $(t) = -\frac{8}{8} \frac{7}{4}$ 0 1 = 2×(+)=> -9 5 11 1 (0) 1 Ø × 0 0 1 NH K V Ut (t)dt 17 N a H= (0) X 23 11 $(e^{+}+)e^{+}$ 20"(30" m 20 0 1 1 1

DIFFERENTIAL ASSUME \times , 40 $\frac{\delta v}{\delta a} = \frac{1}{2} \frac{\delta v}{\delta a} \left[\frac{1}{2} \frac{1}{2} \frac{\delta v}{\delta a} \frac{1}{2} \frac{1$ THUS, BY = f(x, u, a, t)V. AMPLE × 11 PICIE Q TO MINIMIZE $|(q) = \pm \int_{t_0}^{t_1} \frac{1}{|x - f(x, y, q, t)|} \frac{1}{|q|} dt$ LOULUS OF VARIATIONS: L'ty Str RXdt = Jet (Sa) fdt - Q X 2 /4 (X 2) WE KNOW X AND WANT FUNDEMENTAL L t e [e, 4] xdt= / 4 (-xz) (-axz) dt APPROXIMATION FPr× r/ EMMA OF T O APPROXIMATE N N

)) $\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	(a) de = de de BUT de = Bealfmin BUT de = Bealfmin BUT de = Bealfmin THUS: de = Bealfmin THUS: q = Soq (Eal) THE RATE OF CHANGE OF SALT WILL TANK B IS THE RATE OF CHANGE OF SALT WITANK B THAT LEAVING THUS:	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	BOB MARKS EE 5312 OUE 9/10/70
--	---	--	-------------------------------------

$\begin{bmatrix}adj & 0 \\ adj & 0 \\ \vdots & 0 \\$	$ \frac{(c)}{\sqrt{\left[\frac{\sigma}{\sigma}(t)\right]}} + \frac{(c)}{\sqrt{\left[\frac{\sigma}{\sigma}(t)\right]}} = \frac{(c)}{\sqrt{\left[\frac{\sigma}{\sigma}(t)\right]}} =$		(b) SINCE WE HAVE MODELED THE SYSTEM AS LINEAR TIME INVARIANT LET'S USE A SIGNAL ELOW GRAPH. STATE EQUATIONS: [SP] = [-8/50 0 [0] + 60] SP] = [-8/50 0 [0] + 60] WHICH GIVES:	
--	---	--	---	--

p(t) = the test pounds of SALT	or (c) (c) (c) (c) (c) (c) (c) (c)	$X(t) = \Phi(t - t_0) X(t_0)$ $SETTING to = 0, WE THUS HAVE \begin{bmatrix} q(t) \\ p(t) \end{bmatrix} = \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} = \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} = \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} = \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} = \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} = \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_0 t} & 0 \\ \theta_0 t \end{bmatrix} \end{bmatrix} \begin{bmatrix} e^{-\theta_$	(d) NOW FOR THE LINEAR TIME INVARIANT SYSTEM WITH NO INPUTS	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	
--------------------------------	--	--	--	--	--

THE SIGNAL. FLOW GRAPH IS THEN SX2 X2 X SX1 X1 THE SX2 X SX1 X1 SX2 X2 X3 SX1 X1 THEN	(b) USING LAPLACE TRANSFORMS:		$\frac{T+CS}{M} = \frac{1}{2} \frac{1}{2}$	(2) FORCE FROM MASS = M day FORCE FROM MASS = M day FORCE FROM MASS = M day day		
---	-------------------------------	--	--	--	--	--

	$\frac{\pi}{3}$	$P = WE WISHED TO DO THE GLOCK$ $P = WE WISHED TO DO THE GLOCK$ $S \times 2 = \frac{1}{M} \times 2 = \frac{1}{M} \times 2 + \frac{1}{M} E(S)$ $P = \frac{1}{M} \times 2 + \frac{1}{M} E(S)$ $P = \frac{1}{M} \frac{1}{S+6/n} + \frac{1}{M} \frac{1}{S+6/n} E(S)$
--	-----------------	--

E $\langle c \rangle$ (~~ L *) NOW ∜ 0 = \downarrow M = 120 (ST-A)" dat 0 = s(s+2) + 2 =(=++)(5+1-j) С Н • × • K (<+1+) = [-(1+j)+1=j] <+1+j Ч 4 2 V2 Co.4 1 -----11 11 5 + 7 い ナ Oligopoint \circ 51 1 + Nr A Lo S C Lan UN 0-2H 0.1 11 $\frac{\left(S+1+j\right)\left(S+1-j\right)}{J-2}$ 10 to 4 4 1 и † (Л р - Z 5 () 11 1 11 (5+1+0-() + NJ. 12 N 14 N 15 N GN . 火 R N 14 °) - A-71+5 3 1 + 1-9 0 K 23 + [-(-j)+1+j] 5+j-1 (1-1+5) (+1+5) - (Peres) (P.+ 5) + 1 - P J. J. N 2 * (2 1) 0-24 1 - 2

(60) (\mathcal{V}) 1: MOW 「キロら (-++-)(-++-) $\phi(t)$ 10 (+1+) (S+1+) = [(++) 4+1 + + 2MC.2t 6-1+S)(6+1-S S+2 S+2S+2) 11 50+25+2 11 Cord. P-1+5)(5+1+5) M -20-t AM t 1 3 3 99 (D t 0178 11 N ţ, Q 11 NF P+++(P-1)-1 = V2 C-tox (t - 4 > 2001 ĺ٨ 11 12 PO C'd'T'A)+1-j](s+(+)) 4 1 10 -(b)ĥ (\mathbf{I}) ١ 11 ana Na S+1+ \mathbb{D} 巾 P + + 2 5+0+2-4 12 Cot O 1414 105+ Por 1 h. ŧ Qa, + (1 (1 2 C t din 541 1 The to any · (0° 7/2 ł 1/2 N -----(+ 1+ >) [- 1+ (+ 1)-] t.t D () 4 4 NP- N+S 4 N 5410 KSTI d J (A † d. Ø (+ + 1)

(d) Y (d) = FIND Y (+) NA $f(t) = 2D^{-2t}$ 1 FOR INTEGRALS $For t_0 = 0$ $X(t) = \Phi(t) \times_0 + \int_0^t \Phi(t-r) B \quad u(r) dr$ 24 END C. t. 0 ____N -33 MUST $V_{2} e^{-(t-r)} e^{(t-r-T)} e^{-(t-r)} e^{-(t-r)} e^{-(t-r)} e^{-(t-r)} e^{-(t-r)} e^{-(t-r)} e^{-(t-r)} e^{-(t-r-T)} e^{-(t-r)} e^{-(t-r-T)} e^{$ 4 - - - t 0 ц > - 2 Cot sint e (t - T)NA C-t 4)2 (7) NOW EVALUATE AND Y(E) Y t20 k (t 000 (t - # $\sqrt{(0)} = 0$ 0 $e^{-r}\cos\left(t-r+T\right) dr$ THESE 2-0 2e-27 dr 0 Zn

Stor I I I I NON ⇒ × (t) ; THUS $X_{1}(t) = \frac{2\sqrt{2}}{10}$ THUS 入したし NOW e^{-r} $in(t-r)dr = \int_{t}^{0} e^{-r}$ swar to $\frac{BUT}{t} = \frac{N=1}{t} e^{-t} e_{0} e^{-t} \left(t - \frac{T}{t} \right)$ $= \frac{1}{2} - \frac{$ " N+ 18 lines and 212 19/14 11 10 0 M x ... (x - 5) dx = q = 1 0.0- t = V21 р т (). (). + the e-trunt -+ C C C LUN (D rt $ca2(t - \pi) + \frac{2}{3}e^{-t}$ 000 sint -"(12 002 (t - 37 $(r-t) + con(r-t)]_t$ 17 000 (t - 37 1000 (t -HI- H sintsin Ant - and t and t С × х + 31 0 ain (r-t)dr 000 t to to east 692) + (0 - r Lasin (xx) - cos (x-x) E G L (*b* ł

IN SUMMARY: (1 S $Y(t) = X_2(t) = -\frac{4}{10} e^{-t}$ $Y(t) = X_1(t) = \frac{2\sqrt{2}}{10} e^{-t} \cos_2(t - \frac{\pi}{4}) + e^{-2t}$ + $\sqrt{2} \cos_2(t - \frac{\pi}{4}) e^{-t}$ SINCE (S= Z)= sin S; WE $= \frac{1}{2} e^{-t} \left[+ 4m(r-t+T) + corr (r-t+T) \right]$ $= \frac{1}{2} e^{-t} \left[+ 4m(r-t+T) + corr (r-t+T) \right]$ $= \frac{1}{2} e^{-t} \left[+ 4m(r-t+T) + corr (r-t+T) \right]$ $= \frac{1}{2} e^{-t} \left[+ 4m(r-t+T) + corr (t+T) \right]$ $= \frac{1}{2} e^{-t} \left[+ 4m(r-t+T) + corr (t+T) \right]$ $= \frac{1}{2} e^{-t} \left[+ 4m(r-t+T) + corr (t+T) \right]$ X2(E)= 10 C-E THUS CORCE-IT) ALSO MUST EVALUATE BUT 10+ C-2 = <u>10</u> e-t 11 = V2 02 + 1 m = 4 m = V2 02 + 1 m = 4 m 12/202) - sin(t - 4 + 12 000 t sint+2120-+-+=+==+= +2014 AM2 t + 2 C-2 t MARC - 20-20 H. COD (t - 4) Contra C 12 + 20. Color and Color EQUIVAL, HAVE Con t ¢

W, (t) WAT 3<u>20</u>(F) W 10g 25 ~> <u>() - ()</u> h (E) THE ASSUME VSING SIMILAR TH U S DYE A Val No1 NO N DENSIT nij TC H-01 やる語や TANK I 8 and the second 601 12 - 02.2 0 1K ha The second secon 207 = 2/2 -R. APLAN ALLAN m Kh, + W, (t BOTH TANK A b 2 mm TANK A 0 1 to the second TANKS Ņ W. Ct $\overline{\mathcal{N}}$ AREA TANK 1 3 (t) + m(t) - q(t)rt Ì -q-1 5 Q P +170 N P K hat wa Wz(t) Ct HOMOSENEOUS. hz (t. 1 W Z (t) \bigcirc Xw) (\mathcal{P})

 \bigcirc ASSUMING 0 REN NV F SINC SIMILARLY ŵ 4 5 = DENSI (t) ×. ð A R R Ą N A 5-N 1 010 V V N N rt $\left[\mathbf{t} \right]$ d-MATRIX Ť 10/2 THE and are -T. 0)) 1 11]] 11 \bigcirc 4 11 \bigcirc () <u>n</u>+ 5 OU 100 -4 3000 1000 No. W R IT RIT Sec. PENSITY 0 <u>t 00</u> <u>у</u> ~ м x|x 利之之 1) (A \bigcirc O $\overline{X} \leq 1$ ×1 (+) F OR M 14 V 2 \times \leq SX X R D N and a 0 712 712 A K \bigcirc \mathcal{N} M BOTH VZCt NO L N -IA 11 1 VXSS -· \$1-3 O $\left(\mathbf{F} \right)$ \bigcirc \cap $\langle c_1 \rangle$ 1 Gh $||_{\delta}$ A 21 1-0 ()(A) E MAC) EMM.

PREVIOUS AND THE IN TANK & AND DZ (t) IN TANK DYC THE ASSUMPTION THAT THE CONFORM UNREALISTIC, AS SUCH, LET'S AND A (UNIFORM) DYE THE REWORK THE NI-S OBVIOUSLY. J Y W Y L 02 NOTE DENSITY IN BOTH TANKS VOL 101 1 = 01 h, (+) LARLY SAME $\mathcal{P}_{t}(t) =$ 1 1 1 1 1 1 1 1 1 1 201 VOLUMES $a_2(t) = \alpha_2 h_2(t)$ ARE $2 = \alpha_2 h_2(t)$ $1 = \alpha_{1} \frac{dh_{1}(t)}{dt} = W_{1}(t) + m(t) - q'(t)$ = $W_{1}(t) + m(t) - k [h_{1}(t) - h_{2}(t)]$ $a_n h_1(t) - \frac{1}{\alpha_n} h_n(t) + \frac{1}{\alpha_n} W_n(t)$ $d_{1}w_{1}(t) t_{2}m(t) + d_{1}h_{2}(t) - d_{2}h_{1}(t)$ CASE SEEMS THE (2)Z/ $\langle - \langle - \rangle$ PROBLEM Vor 1 A-R M SAME AS (Eq. 2 + 3 SOMEWHAT DENSITY STILL - $V_{1}(t)$ Q, h, (t ASSUMING N O IT 15 $\int (t)$ THE 68 (\mathfrak{g}) N \bigcirc (-0)

200 SUBSTITUTING (80) SINCE OR 24 DROPPING dt = m(t)THE TANK#1 DEPENDS ON WHETHER WHERE 0 0 < − SUPPEYING DYE TO TANK#2 (9(+)>0 IS GETTING DYE FROM TANK #2 (g(t) SO). THUS 11 11 11 RATE OF CHANGE OF DYE IN -= m(t)m(t) -1- K L h ((2) - h 2 (2) L p, (2) h E h, (2) - h 2 (2) 3 u [q(t)] = n [$M(x) = \xi$ ~ ~ ~ ~ TIME W(t) +p2(t) 1 Eh2(t) - h1(t) 3] d(z) fb (z) n Ed(z) 2 + b= (z) n Ed(z) 2 de hay $p_{1}(t)q(t) \mu \left[q(t)\right]$ $= p_{2}(t)q(t) \mu \left[q(t)\right]$ ARGUMENTS 5 0 WSh2-1,3 SE AND Early AShi-hz3 , x 20 HE QUIT $h_{1}(t) - h_{2}(t)$ × 0 STEP: 17-1

 $\frac{dh_{(t)}}{dt} = \frac{1}{2} \frac{h_{1}(t)}{h_{1}(t)} + \frac{1}{2} \frac{h_{2}(t)}{h_{2}(t)} + \frac{1}{2} \frac{h_{1}(t)}{h_{2}(t)} + \frac{h_{1}(t)}{h_{2}($ N N 412 TIME - IN VARIANT THE STATE EQUATIONS FOR THIS dhate = k h(t) - k ha(t) + d wa(t) FROM D, D, M, AND (2), $\frac{dv_{z}(t)}{dt} = k \left\{ h(t) - h_{z}(t) \right\} \left\{ \frac{v_{1}(t)}{\alpha_{1}h(t)} / k \left\{ h(t) - h_{z}(t) \right\} \right\}$ $dV(c) = 1 < (h, (t) - h_2(t))$ = q(t) (q(t)) + p2(t) (-q(t)) $= k \left[h_{1} - h_{2} \right]$ $= \rho_1(t)q(t)\mu(q(t)) + \rho_2(t)q(t)\mu(-q(t))$ CAN ALSO WRITE Ŧ $\frac{v_2(t)}{\alpha_2 h_2} k \sum_{k=1}^{\infty} h_2(t) - h_1(t) - h_1(t) \sum_{k=1}^{\infty} h_2(t) - h_1(t) - h_1(t)$ Lahiter MEhi-hez TV1(t) $\sqrt{2(t)}$ $\sqrt{2h_2(t)}$ + d2 h2 / 2 h2 - h 3 NON-LINEAR a, h, (t) / { h, (t) - h, (t)} $\vee_{i}(t)$ $\mu \left\{ h_2(t) - h_1(t) \right\} + m(t)$ ARE THUS MODEL RE

PG. 27 ۱ ۵ SUB 100 M NOR dry tty \mathbb{V} VARIABL U A M ١ 000 (C + < 0) @ + V6 (b)NING STITUT 2 đợ 0 Q--Q 012 212 小 5 + 1/2 1 1 1 S S S 0) 1 FOR 5 51 in fra 11 11 1000 $\overline{\mathbb{A}}$ I -, and a N A. T N 6 ~ RR Richt ()07 4 9 Ð 0/0 Λ S Ν a l'i D N 6200 1 \mathcal{T}_{\downarrow} 11 Q $\overline{\mathbb{A}}$ $\left| \mathcal{D} \right|_{\mathcal{N}}$ M. Rrr ŃΛ 2 N Z 10 下 N RZLI 1 ġ, A (N) N a y Р М + 5 212 P S × P 660 NN. R Prod. , 1 \leq N. M dite 1 2 m Am NX Ś 12 124 7 Z N S 210 -- Maraz 퀡 (\mathcal{D}) -(L) 010 N. N anista Alian 0 0 Į ((6) $\langle n \rangle$

SUBST SOLVING A CAL 00 <u></u>р $\frac{USING(4)}{L_2R_1}L_1 + R_2L_2 + \frac{L_2}{M}V_2$ a ^x U t Q. R a sh STATE MOR. 11 1 10 1 11 2 V N · [] K 2 Ray א א 10 -19/2 2 TAU QU Z + 12 40 Rach - MR3 L1 - 2 - 1 - 2 701 D N 1201 Ą $-\frac{L_2}{M}e + \frac{K_2}{M}\frac{dx_1}{dx_1} = 0$ × 10 × + 22 ALC ALC X X ~~~ + PT a dire (ω) z]ŗ 6 11 0 (n) \bigcirc

					REARANGING: : XI= ZX2 (S+1)X2=SX2=S+1 U BLOCK DIAGRAM IS THEN;
--	--	--	--	--	---

(f)1 ANTOIN LET C NOTE $\sqrt{1}$ \bigcirc 6(3) 6 ACE N N 1) |) $\leq \leq \geq$ ۲ ۱۱ Ŵ7 ~< 5; MON THAT \times N X 4 10000A Ý, 1 17 3 V + (101 11 (s+1)-1 N V N. \gtrsim 18 . Z ANS 6 Q Ŵ $[\mathcal{M}]$ NM 0 NN X 0 υ 0 D W (s + 2 い す い W (S) $\forall P$ 205 X E. N N + (\approx Ķ CAN k X 2 1 1 * 1 CAN CONTRACT S ξ, 4 ~ $(\mathbf{N}$ NG WRITE 5. and an W(S) X a 165 C 11 N 1 ()5: V 0 5 7 (2) N

		TO DRAW BLOCK DIAGRAM, WE WE $SX_1 = X_2 \implies X_1 = \frac{1}{2}X_2 = \frac{1}{2}X_1 = \frac{1}{2}X_2 = \frac{1}{2}X_2$ $Y = \frac{1}{2}X_1 + \frac{1}{2}X_2 + U$

¢. 70 SIGNAL C 12 DRAW E KX S 2 X Y S X1 = X2 ₹XS hSine. TLOW - 2 X X 15 BLOCK \times 4 Ŵ λ^{\times} I Ŵ N.A W 12 V 40405 腳 OXP P (N) (N) 0 X 46 2 b \mathbb{V} X 1º NN 仍卜 N (\mathbf{M}) × (3 44 CONSIDER ¢ in X \mathbf{X} N Mp ω Ì Ŵ X V IA N IN 12 × X 6 4 5 10 N 3

		CLOCK DIAGRAM	SIGNAL FLOW GRAPH	$\begin{pmatrix} 1 & -1 & u \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & X_{0} \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & U \\ -1 & U \\ -1 & u \end{pmatrix} = \begin{pmatrix} 0 & -1 & U \\ -1 & U \\ -1 & U \end{pmatrix} = \begin{pmatrix} 0 & -1 & U \\ -1 & U \\ -1 & U \end{pmatrix} = \begin{pmatrix} 0 & -1 & U \\ -1 & U \\ -1 & U \end{pmatrix} = \begin{pmatrix} 0 & -1 & U \\ -1 & U \\ -1 & U \end{pmatrix} = \begin{pmatrix} 0 & -1 & U \\ -1 & U \\ -1 & U \\ -1 & U \end{pmatrix} = \begin{pmatrix} 0 & -1 & U \\ -1 & U \\ -1 & U \\ -1 & U \end{pmatrix} = \begin{pmatrix} 0 & -1 & U \\ -1 & U \\ -1 & U \\ -1 & U \\ -1 & U \end{pmatrix} = \begin{pmatrix} 0 & -1 & U \\ -1 & U \\$
--	--	---------------	-------------------	--
OBSERVABILITY CONTROLLABILITY · JSYSTEM AB A 1 × ۱۱ \rightarrow 11 \mathbb{V} 0 0 12 }--> O SYSTEM 42 0 O \bigvee 0 0 ř × T G S T 0 BA B IS CONTROLLABLE TESJ V $\overline{\mathcal{O}}$ 1 V)1 0 ATCT OBSERVABLE 0 Juil (NONSINGULAR 1-2 0 }-> 4 1-2 0 (NONSING ULAR

0 A Z 6 V FOR D A B= AB: T II TEST Ν Ŷ turis. × FA S A 2B SINGULAR EQUIVA SINCE COME SYSTEM M = 0 1 $\sum_{n=1}^{\infty}$ K R R 11 0 FOR 0 0 0 (1) P · Ru Le 0% 11 1 Þ 0 \bigcirc 0 CONTRO U T L (n)11 0 5 in R jo No 20 n n N, 0 ANSWER NOT N 5 27 MATRIX 120 Racha Ņ 0 () \bigcirc \approx Ò TNONL 0 1 PONTRO 15 H O H R Rin N \mathcal{K} X NX " 0 5, P. S n PROBLEM \mathcal{N} ÷ " vi Ν , x 5 L.C 5-1-0 0 0 PR C p (k) 9

GIVEN THUS: \cap D T as all ١ (4)) 1000 SYSTEM D.T. Ņ Ν SNW RANK 11 -----{ 1) ____] 11 11 N-00 1 P. CTN CTN - RN/ - RULC ∂q 0 1540 0 \bigcirc h0 0 O. . . 1 1 he Revil R 0 0 14030 20 - R 2/ 0 \bigcirc V 0 MAR 0.4/20 OBSEVABLE À. \bigcirc W Π \bigcirc (σ) C ()0 ht 0 ARE 0+0 |O|5/2 \cap t) X 0 March = 3 0 47 0 12 LINEARLY 5/20 ,1 5120 51-1-12 0 \bigcirc TT DEPENDENT 0 444 0 11 0 1 A

TESTING A 2 AB= V \bigcirc \bigcirc 11 ENTIRE 11 D 11 Ν AB \bigcirc I N I N ļ AB 0 0 11 0 0 N N N 0 I NOT 0 ا ح ROR ا 2 1 N 1000000 C 0 I 0 0 $\left(\right)$ 9 S <u>r</u> iller- \bigcirc N \cap 0 N 0 9 0 OND 0 CONTROLLAB N CONTROLL 0 0 I N N 2 (C) ROW ſ 1 0 M N N AB (N () Kan 1 0 Les free とろ MARO N. 0 N r 1

À AT -1 5 STING Ν RANK= 3 0 1 1 Y(+)= J SYSTEM 1 1 0 \bigcirc I N 1 PT CN 1 -F FOR. \mathcal{O} 00 0 apaiopa O OBSERVABILITY 0 11 2 Wald In. N 1 N 12 W Streets 0 0 \bigcirc OBSERVABLE ()n N $\left(\right)$ X(H) \bigcirc 11 11 1 7 and the state N 0

10AY [V2(2) - M] dt OF COURSE MANT E J. ELOWS MUST BE INFE, THUS (t) & MMAX (t) & MMAX (t) & MMAX (t) & MMAX STATES, MAX NORE, SINCE TANKS AVE FINITE HIEGHTS; AVE FINITE HIEGHTS; AVE FINITE HIEGHTS; AVE TANKS MUST BE INFE ASSIGNMENT IS E Q; HIMAX = Q; HIMAX = Q; HIMAX	FORMANCE MEASURE TO t) AS CLOSE TO M SLE OVER A 24 HOUR	BOB MARKS OUE 9/27/76
---	---	--------------------------

)) $k_{\rm e}$ $k_{\rm $	OR $K_{e} \dot{L}_{e}(t) + B w - \lambda - T \frac{dw}{dt} = 0$ OR $\frac{dw}{dt} = \frac{K_{e}}{T} \dot{L}_{e}(t) + B w - \lambda - T \frac{dw}{dt} = 0$ USING STATE VARIABLES W = $\lambda_{e} \dot{C}$ WITH INPUTS $\lambda_{e}(t) + A NO E(t) = 0$	Id = Id = Id = Id = ; WERTIAL T SUMMING TORQUES: (OPPOSES 0)	THE MECHANICAL TORQUES ARE A (t) = K i (t) ; DEVELOPE B W = B de ; DUE TO VIS A (t) = B de ; DUE TO VIS	(a) = Rom THE CIRCULT (a) = Rom THE CIRCULT $e(t) = R_{1} i_{1}(t) + i_{2} dis dis dis dis dis dis dis dis dis dis$	20247 20
	$\frac{dw}{dt} = \frac{d}{dt} = \frac{d}{dt}$	PROSES DEVELOPED TORQ) PROSES DEV. TORQUE)	EVELOPED TORQUE RD TORQUE RD TORQUE	$\frac{\lambda(t_{1})}{\lambda(t_{2})} = \frac{\lambda(t_{2})}{\lambda(t_{2})} + \lambda($	

}

)

NHERE M INTRODUCE, BETWEEN REQUIREM ABSORBED) THE COMP MEASURE J= Jet/Ne	CONTROL DI THUS A S MEASURE	WHERE to k HAS UNITS O HOUR, FOR ENERGY EX)
IS A WEIGHTING FACT	POSITE PERFORMANCE	SECOND PERFORMANCE	IS THE MISSION TIME, TS OF MILES, AND W(t) OF REVOLUTIONS PER LJ=0, THE TOTAL XPENDED BY THE	

E: AGAIN FACTOR. MEASURE THUS BECOMES THE THE TOTAL PERFORMANCE SUM OF 1 - 1 - 1 VALID, GENERAL FORM ENERGY, HOWEVER, BE WRITTEN IN THE MORE FOR LIZO, Eq. 3 15 STILL IALID, THE TOTAL EXPENDED 12= E= 100 K IS A WEIGHTING 47 ~ THIS Me(t)i(t) + { Kw(t) - 5 }? e(t) i(t) dtAND (3); MUST NOW

, note if the expension of ut it.	VELOCITY REQUIREMENT, WE WILL NOT PLACE ANY CONSTRAINTS ON X2(E)= de/dt (b) IN THAT WE REQUIRE 30 SEC TO RTTAIN THE STATE CONSTRAINT UNDER THE INPUT CONSTRAINT, AND SINCE THE CONTROL ENERGY IS HERE PROPORTIONAL TO U ² (E), LET THE PERFORMANCE MEASURE BE	Por 48 (2-4)(2) THE TORQUE PRODUCED BY THE (2-4)(2) THE TORQUE PRODUCED BY THE BOUNDED, SO THE INPUT CONSTRAINT BOUNDED, SO THE INPUT CONSTRAINT NOULD BE JU(2)] & ZMAX THE STATE X, (2) & O(2) IS SPECIFIED AT t=ty. THUS I4.9° & O(2;30) & IS.1° SINCE THERE IS NO ANGULAR
-----------------------------------	---	--

(2-5) (a) THE INPUT AND STATE 100 4 B (b) THE BEST PERFORMANCE MEASURE mangers freed from OR, SETTING FOR HERE ARE THE SAME $|U(t)| \leq \overline{U}_{MAX}$ $|U(t)| \leq \overline{U}_{MAX}$ MINIMUM TIME WOULD BE PREVIOUS PROBLEM:) = ty - to "Allowed and the second CONSTRAINTS A-S IN

PR48 (2-6)(3) INPUT CONSTRAINTS (2-6)(3) INPUT CONSTRAINTS THE THRUST MUST DE POSITIUE AND DEERE BOUNDED THE THRUST ANGLE MUST DE 2 THE THRUST ANGLE MUST DE 2 ATTE CONSTRAINTS ALLOWERT OF A TRIAL EURETER, SINCE IN ERINGIALE, THE SECONT DE 2 IN ERINGIALE, THE SECONT DE 2 IN ERINGIALE, THE SECONT SECONT ATTE MASS, MICH, IS LOWER BOUNDED BY THE ROCKET'S ATTE: DUS FOUL FUEL LORD AT X:0, SINCE THE ROCKET'S MARK ATTX: 0 Y=0: ATTX: 0 Y=0: ATTX: 0 X3(to)=0
--

SINCE IT STARTS FROM REST: X2(t2)=0 X4(t0)=0 (b) BAN ADDITIONAL CONSTAINT IS CARIOUSLY Y(t2)= X3(t2)= 3 MILES PERFORMANCE MEASURE IS PERFORMANCE MEASURE IS V(t2)= X(t2)= X1(t2) X(t2)= SOCMINES=X1(t2) Y(t2)= 3 MILES=X1(t2) Y(t2)= 3 MILES Y(t2)= 3 MILES=X1(t2) Y(t2)= 3 MILES Y(t2)=	
---	--

E Ģ, 1 X 2 \times andres. X \bigcirc Q H and a 0 66 Ò d + 0 800 8 12 naft, Ann vor t X Ŋ, 11 Q M

10 W

N C 11 MUS \times , 11 * * and a second ĩ 0 UTIONS ç 94 98

Nin Mex N (2) 1 XE R S Xr 11 (Ala 10 0/0 -The second s \mathcal{F}_{n}^{n} * (N) (4) + 5 X N N 1 6 (\mathcal{N}) * W N × *

M H= XTQX+ JUTRU+ XT(AX+BU. C]) \times PATATP-PBR-BTPX + 11 AXTBU S=(\$)2 PA +ATP -SX TQX+BTX Class 11 11 PAX- PBR-1 CAX + PAX LAX+BU $\lambda(t_{1}) = S \times (t_{1})$. 7000 SR BTPX + Q X = 6 V a H Q A р Х C \mathbb{O} W.

N]| 100 X NT N -N N

aparts, 14 1 Q, <u>n</u> 8 ZG + P12 \mathcal{O} Ja. \mathcal{O} Z, 0 \bigcirc 0 N N đ, Ω NOR! 0 N T P P P P N 1402 0 0 a 0 10+P22 N 0 N N

eres Lizh ę., ern Gester South \sim $\mathcal{C}^{(\alpha,\alpha)}(x)$ i ha transford from an inited white z to the Concident This supplies The way on the show in Fig. 1. The show is the show i My The America by Inter a y apply and a second of the action with the is small Court the definition on that the the form of afford a milline we created. Determine the Three optimel control from. Support The test gitting? Detroine the full of filling control The apprend to the con And the input smaller is fixed over the dame. a shared a factor N.S. ha ha in he This problem and The 1999 1997 . contrad laws and a plan $\mathcal{J}_{q}^{(r)}$ ~~ đ. and the second s 0 - 10 2 Conception of the second s

) and the factor 10 10 11

)