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CALCULUS OF EXTREMA
AND SINGLE-STAGE
DECISION PROCESSES

Many problems in modern system theory may be simply stated as extreme
value problems. These can be resolved via the calculus of extrema which is
the natural solution method whenever one desires to find parameter values
which minimize or maximize a quantity dependent upon them. In this chapter
we will consider several such problems, starting with simple scalar problems
and concluding with a discussion of the vector case. The method of Lagrange
multipliers will be introduced and used to solve constrained extrema problems
for single-stage decision processes. A brief discussion of linear and nonlinear
programming will be presented. Multistage decision processes, which can
be treated by the calculus of extrema, will be reserved for a variational treat-
ment which will result in a discrete maximum principle. Much of the work
in this chapter is very basic, and a selection of only references [1] through [5]
of direct interest to the systems control area is given,

2.1 Maxima and minima (scalar process)

A real function f(x), defined for a scalar x = «, has a relative maximum
or a relative minimum f(a) for x = « if and only if there exists a positive
real number & such that, respectively,

Af=fla+ Ax)—fla) <0 (2.1-1)
9



” | Af=f(a+ Ax) — f(@) >0 (2.1-2)

for all Ax = x — o such that f(a + Ax) exists and 0 < [Ax] < 8. Furthfar,_
if df (x)/d> exists and is also continuous at x = , then f(«) can be an interior .

maximum or minimum only if ,
d@)| -
ol W 0 (2.1-3)

If f(x) has a continuous second derivative for x = &, the nature of the
extremum at ¥ = ¢ can be determined. The following well-known procedure

AFX) AF(x)

|
|
|
|
| |
| i
] |
1 )
X

atd b X
X d [ X1+(7' § 0 a
(a) . (b)
fin=75=_el-ti-x20?] #x) = e*[ut) - ulx —al)

For x in the interval: [0,0)

f(x) has an absolute minimum

at x =0, and on absolute
maximumn of x =g~ & where d is an
arbitrarily small positive number.

Af(x) 7
/ Fx}

For x in the interval: (-~ 0,00}
f(x} hos an absolute moximum

ot x=x4.

N
Y
x

(d)
flxt=x2(2-x)
For x in the interval: (-~ m,+00)
f(x) has G relative minimum at
x =20, ond o relative maximum at
£=4/3,

(c)
f(x)= e¥u(x)
For x in the interval; (0,a]
f(x) has an absolute minimum
ot x=0, and an absolute
maximum ot x=a.
For  in the inferval: [0, +00]

* f(x) hos on absolute minimum
at x=0, »

Fig. 2.1-1, Tllustrations of extrema.

e S e

cant be used for the determination of the extrema of a gM lalar function -
= f(x).

1. Diflerentiate y with respect to x.

. 2. For each value of x, determine the specific values of & which satisfy
the equation dy/dx = 0.

3. Test to see what kind of extrema the function has for each value of o
thus obtained, This we can easily accomplish by the second-derivative
test in which we substitute each value of « into the second derivative
of y with respect to x and apply the following rule;

>0  then y has a relative minimum
If ;‘—5}% <0  then p hasa relative maximum  (2.1-4)
= ( then y has a stationary point

4, Evaluate the actual value of the extrema by substituting each value of
.« obtained into f(x),

There are three diflerent types of extrema possible. If a value of & can be
found such that f(«) is an extremum for all x throughout its domain of
definition, f(x) is said to have an absolute extremum. If a value of « can
be found such that f(@) has an extremum throughout a bounded neighbor-
hood of x, f(x) has a relative extremum at x = a. If f(x) is defined only for
a limited range of values of x, and if f(x) has an extremum at either boundary
of x (with respect to all the values /(x) has for all values of x contained within
the limited range of x), then f(x) has an extremum at its boundary. These
different types of extrema are illustrated in Fig. 2.1-1. We will have oppor-
tunity to apply these concepts to parameter optimization of control systems
in Sections 8.2 and 13.3-1.

2.2 Extrema of functions of two
or more variables

The extrema-finding technique can be extended to include functions of
more than one variable. Suppose y = f(x;, X3, . . ., X)) = f(X). A procedure
similar to the previous one is used, using partial derivatives instead of total
derivatives. A simple example will illustrate the procedure to be followed.

Example 2.2-1
Let us consider the maximization of

1

y(x) = G =1 F G, =1 F 1’ xT =[x, x,]




P ettt ol “AAR e &

where x7 is | to indicate transpose of the column vector x.} Following an
extended versiua of the foregoing scalar procedure, we take the partial derivatives
of y with respect to x; and x, and set them equal {0 zero to obiain;

8y _ (—D2x, —2) @ =1

% [ =D F Oy — 1 F 12 =

9y _ (—1)(2x, — 2) =1
y =

P (Fm ) ey (e LRy VA

Thus, since «; = «, = 1 are the only extrema, and since a simple computation
shows that the second derivatives are nonpositive at this extrema, we sce that
we have a maximum at the point x7 = [1, 1],

Example 2.2-2

Let us now supposc that the allowable range of x is constrained such that
l¥ | < $and]x,| < §. It is desired to find the value of x which yields a maximum
for the y = f(x) of Example 2.2-1 in the allowable or admissible range of x.
This region of state space is also shown in Fig. 2.2-1, From this figure, it is
apparent that, for this simple problem, y = f(x) has an extremum (maximum)
somewhere on the boundary of the admissible range for %, in fact precisely at
x7 = [{, 1. This is a very simple example of optimization with an inequality con-
straint. We will have considerably more to say about this very important type
of constraint when we consider dynamic systems and the calculus of variations.

Example 2.2-3

A slightly more difficult problem arises if the allowable range of x is con-
strained such that the Euclidean norm of x equals one, Symbolically, this means
that || x||? = x"x = x} + 2} + ... + &% = {x, x>. Since the dimension of the
example that we are considering is two, the Euclidean norm squared becomes
1% = xi + x&

One approach to the problem is to solve for x, in terms of x,, then solve for
y = f(x) in terms of x; alone. This will then allow us to use the standard scalar
procedure. From the given constraint on the length of the Euclidean norm, we
have x; = (1 — xJ)'/% Substituting this into the expression for y(x) of Example
2.2-1, we find that

M) = 2
(/1T =2 — 12 (o — 1) 1

where y(x,) has the given constraint imbedded into it. The next step is to differ-
entiate this expression with respect to the remaining variable, x,, and set the
result equal to zero. This yields two solutions. The second-derivative test shows
that a maximum (which is easily shown to be an absolute maximum) occurs at
x7 = [0.707, 0.707] and that an (absolute) minimum occurs at x = [—0,707,

—0,707].
We note that, in the absence of the equality constraint, this problem has no

tAppendix A contains a brief presentation of vector matrix notations and vector matrix .

calculus,

daah e d B Al SR A AREATLOL WA A WVIANMWASWVAT WA 4TV VAL WNWVING VAANAMAD ARy 1\

}Y(x)

]
|
f
|
|
|

= = X4
R R e —

Xa {a)
% rd Circles of constant ¥{x)
/L ' Xy
[
xE '
! @
X4 (b}
Xy : For any allowable range
of x maximum occurs
at this point

+1.0 Absolute maximum

0.707 occurs here, IIxl12<1

{c)

Fig. 2.2-1(a) y(x) = 1/[(x; — 1) 4 (x, — 1)I?; (b) Top view of Fig. 2.2-1a
showing the region defined in state space by |xi| = 1/2; |x < 1/2;
(c) Top view of Fig. 2.2-1a showing the region of state space defined by
Ixlf=1.



o = wesswamwa VTV AWM UAKILY CONSITAINTS
of this type, namely [|x}|* <1 and ||x}|? < 1. The first constraini set is closed
(and conve  'nce it includes the boundary ||x||? = x} + x§ = 1. The second is
open (and cu.avex) since it does not include the boundary. It is generally quite
difficult to work with constraints of this form. One method, satisfactory in quite
a few problems, is to ignore the constraint and find the maximum (or minimum),
If this turns out to be interior to the boundary of the constraint sef, we have the
solution, If the maximum (or minimum) occurs outside the boundary, the inequal-
ity constraint is treated as an equality constraint, and a solution is found with
this constraint. Another method, to be discussed later, is to convert the inequality
constraint to an equality constraint, Figure 2.2-1 illustrates salient features of

these examples,

2.3 Consirained exirema problems—
Lagrange multipliers

An alternate approach to extremizing a function (i.e., find those values of
the independent variables which cause the dependent variable to have an
extremum) with given constraints or accessory conditions is to meke appro-
priate adjustments on the independent variable by using an adjustable
multiplying parameter, commonly called a Lagrange multiplier, The proce-
dure is to form a new function by adjoining the given constraint to the
original function. This new function, then, is extremized, by means of the
previously developed method. We will solve an example first by the more
straightforward, but often more cumbersome, procedure and then by using
the Lagrange multiplier, Considerably more justification for the Lagrange
multiplier procedure will be provided in the next chapter on variational
calculus.

Example 2,3-1

A tin can manufacturer wants to maximize the volume of a certain run of
cans subject to the constraint that the area of tin used be a given constant. If a
fixed metal thickness is assumed, a volume of tin constraint implies that the
cross-sectional area is constrained.

The defining equations for this problem are:

' Volume = V(r,I) = nr¥] (1)
Cross-sectional area = A(r, 1) = 21t + 2nrl = A, )

Our problem is to maximize V(r, I) subject to keeping A(r, I} = A,, where A4, is
a given constant, The same approach can be used here as in Example 2,2-3, We
solve for ! in terms of r (or if preferred, » in terms of /) and then express the
volume as a function of r alone, noting that the constraint on the cross-sectional
area is now imbedded into the expression for the volume. We then examine the
first and second derivatives to discern the character and location of the extrema.

-

-

~

Method 1 \
From Eq. (2) we have

_ Ay = 2nr? ‘
S FT @
By substituting Eq. (3) into Eq. (1), we obtain
a5
Ve =54, -g@/ i @

We differentiate ¥ with réspect to r and set the result cqual to zero to obtain

v _ A
‘_———-d'(")=—2«"—~37rr9=0, r=¢%~ )

We now substitute Eq, (5) into Eq. (2) and solve for /:

7
I=N7z ©

It is interesting to obtain the optimum length-to-radius ratio. In doing this, we
see that, to get maximum volume, we make the length of the tin can equal the
diameter, keeping cross-sectional area equal to a given constant.

Method 2

By using the Lagrange multiplier, we again want to extremize (maximize)
the volume V(r, ) subject to the constraint A(r, /) = A,. First we form the ad-
joined function

VAr, D) = V(r, 1)+ MAG, D) — A

where A is the Lagrange multiplier. In terms of the parameters of the tin can,
this expression becomes

Ve, 1) = wr*l + A27r? 4 27rl — A,]
We take the first partial derivative with respect to each of the variables and set
each result equal to zero. Thus we obtain

3____Va(1r, ) = ar? + AM2znr =0, = =2

VD — 2 + Mdmr + 2211 =0, 1=2r

We now evaluate X subject to given constraint, A(r, ) = A, or
A, = 2mr? 4 2mrl
In terms of the obtained values of » and /, this becomes
A, = 2z(@NY) + 22 (—20)(—4N)
s0




) r=255" 247

We note that the negative square root is selected for A to make r and / physically
realizable quantitics, We further note that the length-to-radius ratio is the same
as obtained by the first method, as it well shquld be,

2.4 Vector formulation of extrema problems—
single-stage decision processes

Considerable notational simplification occurs if' functions of more than
one variable are written in state vector notation. Thus a scalar function of
several variables which is to be extremized

J=6(x1 x5 .0y Xn) (241
may be written as ‘ '
J = 6(x) (2.4-2)
where
X7 =[xy, Xay o o, X (2.4-3)

For the majority of systems problems, it is convenient to distinguish
between control vectors and state vectors. We generally desire to find a
control vector, u or u(k), or u(r) if we have a multistage or continuous process
which minimizes or maximizes some scalar index of performance of the
system. This performance index will be called J. Possibly the simplest si‘ng.le-
stage decision process with equality constraints is to minimize or maximize
the scalar index of performance

J = 6lx,u] (2.4-4)
subject to the equality constraint
f(x,0) =10 (2.4-5)
where x is an n vector
= xy %y, 000y Xi) | (2.4-6)
u is an m vector
W=, Uy . sy Ul - (2.4-7)

f'is an » vector function
fT(x: Il) = [fl(x’ u)’f;(X, “)» e ;fn(x> “)] (2'4'8)
The solution proceeds as follows. We adjoin Eq. (2.4-5) to Eq. (2.4-4)

A e

with a veclor Lagrange muitiplier in order to form a scalar ¢ «atity? which
we will call H(x, u, &), » ‘

H(x, u, A) = 6(x, u) -+ ATf(x, u) (2.4-9)
A=y Ny oy Al (2.4-10)
We now adjust x and u such that H is a maximum or minimum. This requires
OH __ 0§ | @ ¢p _
= =5 T ol s WA =0 (2.4-11)
OH _ 90 | 8 o _ )
u =T Z)Taf x, WA =0 (2.4-12)
where
QM _ [0l oM~ oH
[EEJ - [5&75% 5”_] 2.4-13)

Thus dH/ou may be interpreted as the gradient of & with respect to w, which
is commonly designated V,H. Also,

of of ., O
ox; Ox, ox,
3 T — ’ ' -
5§f (x, u) = (2.4-14)
of .
| 0%, ox, |

It should be noted that Eq. (2.4-14) is similar to the transpose of the Jacobian
of a vector

ax, ox; ax,

[ x 0] = - : (2.4-15)
of af,
ox, ¥ ox,

4
with at least two important differences: 2f(x, u)/ou need not be square and

. is a matrix rather than a determinant. In order that J be an extremum, not

only must
oH _ .. oH _
= 0; = G (2.4-16)

but also the second variation of H must be greater than zero for a minimum
or less than zero for a maximum (see second-derivative test, Section 2.1)

1This scalar quantity, the Hamiltonian, has a number of very interesting properties
that will be mentioned in later chapters.




&t;agf;i ;,V Ed 13t l:zvill provide us with considerably more information on
audtion than we present here, To see what this i
vay . . traint on th
second variation of H means, in term diti ;
s of the necessary conditions i
for making J(x, n) have , ‘ et e e
s an extremum, let us now formul '
m; : ate the sc
variation of H(x, u, A). The first variation of H(x, u, A) is ond

SH = OH\" & OHNT :
( ax) Sx -+ (EE) Su (2.4-17)
which is the linear part of
| AH = H[x + &x,u + Su] — Hix, u] (2.4-18)
To get the second variation of H, denoted §°H, we take the second-order

part of the expansion of Eq. - i i
e D to obta?n of Eq. (2.4-18) in a Taylor series about Su = 0,
SO — 18,.{[3 oH 9 o0H
2 X ox 0 Ox + du ax]au}

oo 42T ocr [23200)

In more compact notation, this becomes

20H 2 0H

9x 9% oudx |[Sx

20m7: éﬁﬂ[ ]
ou ou

(2.4-19)

_ s ‘
84 = - [8x" du] (2.4-20)

If we define

[ g
| 82 = [Bx &, P— ox Ox on @x]
H 2 aH]T 2 OH (24-21)
oudx | ou J

Eq. (2.4-20) reduces to

' 8'H = L07"POz = || 8z||% (2.4-22)
which i§ recognized as the standard quadratic form. A positive definit
quadra_tt’xc form. is defined as one for which 8z"P 8z > 0 for all nonzero 8116
A posxt;ve semidefinite matrix, P, is defined as one which has the propert .
that oz P'Sz >0 for all nonzero &z In a similar fashion, negative de?init}e’
and negative semidefinite quadratic forms and matrices art’: defined. Section
1.23 (.)f Appendix A delineates a method which we can use to discern. ositive
Qeﬁnxteness of a square matrix. Thus we can state the two necessar‘pcondi-
t10n§1[4]>f0r J(x,u) to have an extremum in a given interval of x fory convex
9r doncave J(x,u). If J(x,u) is not convex or concave, the second condition
is only sufficient, and a quantity known as the bordered Hessian must be
used to obtain the second necessary condition,

| 1. The following vectors are zero:
QE = U _3_—H-— = 0
0% ’ ou
II. The following matrix
o OH 0 (aH )

% 0x 2u\ox
(28] 2
ou 9x ou du

. {positive semidefinite for a minimum along f(x, w =0
negative semidefinite for a maximum along f(x, u) = 0

A sufficient condition for a function to have a minimum (maximum)
given that the first variation vanishes is that the second variation be positive
(negative) where the first variation vanishes [4]. These conditions are gen-
eral and need be modified only if the possibility of a singular solution exists.

Example 2.4-1
Suppose that we have a linear system represented by
f(x,u)=Ax+Bu+c=0
and wish to find the 7 vector u which minimizes T
T, 0 = Hlull + 41xIlG x &
B is an # X m matrix, X, ¢, and 0 are n vectors,
trices of dimensionality m X m and

[

where A is an n X n matrix,
R and Q are positive definite symmetric ma

n X .
The Hamiltonian function is formed by adjoining the cost function to the

given constraint via the Lagrange multiplier technique which gives us
H = LuTRu + £x7Qx + AIAX + Bu 4 ¢]

[n order to minimize J, it is necessary that

oH _ ) = oH _ 5 =
= Qx + AN =0, o =Ru+BA=0

o be adjusted so that the given equality constraint is satisfied, or
' ij—Bu+c'\=0 -
Thus we find that U="R & (AQ AT+ BER BT ¢
=t T A= R BPATO A Y
' A8 AR B TQATC whellion

Tn o*
is the optimum u vector, WMetie&th&H{-is-—necessary*thatﬂ'the"inversemf-@ﬁ‘
t. Fo-chieck if this solution does in fact

is
exstin—OLder_iior-the—rvccmr‘tO"exis
we find the second variation and check the
From Eq. (2.4—}93 and the specifications for
Zo

where N is t

cause J(x, u) to have a minimum,
necessary condition II given earlier.
this problem, we have

1 Q 077ox]_ 1 1
8J = 18x" SuT]‘:o R‘_\[Su]~ - 0x7Q 8x + - Bu'R du

(T
= -(R+B7»'T(>?A B) BTAGAC



For J(x, u) f

Hhat the 4ivsC variation of f(xuy= 0 yields

P YL II"}/I"'\""
jve a minimum, §2J > 0, ghevefere Q and R mwust be non-negative
definite, Sinv. dys-is-given-in-the statémeni-ef-the. pmblem, the.solution;-if-it

exists,.does-minimize J(x,u). /A Jurther %’%WVW“W’E is obtained ég nrfm?,
AJ‘M Bdlu=c anet

Example 2.4-2 25 dﬁma/m-e mdy /’ULMM(%; [0 53' 7 D, ol

*L

Suppose that we wish to minimize the cost function KC+B"A™ QA4 B e
. ‘QHXHQQ : ti«Z&M'frcp.L 5@0‘{_{‘,&\‘/&. ‘

subject to the consiraint:
x4+ bude=

where the scalar control is bounded such that [u] << 1,
This problem can be solved without the magnitude constraint on the control
with the result (from the last example)

u = —(b'Qb)~1h’Qe

If || obtained from the foregoing problem is less than 1, we obtain what is called
a singular solution, This is so because the A function is linear in the control
variable and 2H/8u = A"b = 0 is the equation for a stationary point which may
well be a minimum. If b7Qb is positive definite, it is at least a local minimum.
If the value of 1 obtained is within the boundary, that value solves our problem.
I\f/t\hg\v_g/l_tg_gbtamed is _greater | in magmtude de than 1, t won for u
must be on the boundary This type of problem is of concern in optimal control

N ¥ tHeory and will bé considered in some detail for dynamic processes.

T
A‘})éxample 2.4-3[2] /

}/’) .

Suppose that observations of a constant vector are taken after being corrupted
with noise, Symbolically, we,express this as
: z.=Hx +v
where z which is composed of observed numbers is an m vector, H is an m X «
matrix, X is an » vector, and v is an m vector representing measurement noise.
It is desired to obtain the best estimate of x, denoted £, such that
= iz — B2 [k
is minimum where R is a symmetric positive definite matrix. We accomplish
this by setting
o) = H'R-1(z — H%) = 0

Thus to obtain the best Ieast-square error estimate of x we have

R = (H’R-'H)"H'R 'z
One of the simplest cases of interest occurs when we take m estimates of a scalar.
In that case it is reasonable to take H as a unit vector of dimension m or, in

other words, a column vector of 1’s, and R as the identity matrix, For thls sim-
plest case, we have for the “best” estimate of x ‘

ﬁ=7ﬁ—=m4>:‘,

[

" which is the well-known expression for the average of a num’

" observations,

Another interesting casc occurs when we have computeu .. for » measure-
ments and someone gives us an additional measurement. A great deal of effort
would be involved in multiplying and inverting H'R~'H if H is, say, a 1000 by
20 matrix. To repeat this procedure for a new 1001 by 20 matrix would probably

be prohibitive of computer time, particularly if “on-line” computatlon isa 1equ1rc- o

ment. We are thus led to seek a sglutmnyhlcﬁallows us_to.add the new measure-
ment WAtmmEating the entire calculation, A method which allows us to do
{hig 7§ called @ recursive of sequentlal esnmatxoﬂ Scheme, Such ‘scheémes are of
comsiderable-importines i modern system theory and will be explored in much
more detail in Chapters 10 and 185,

Assume a set of measurerents is represented by

z=Hx+v
Zy Thy My e s Xy vy
Zg hzl Xg Vg
z e » ey . L] + *
Zm, ~hm1 T R % Um

where &, is given by (H'R-'H)~'H7R-'z. Now suppose that we obtain an addi-
tional measurement such that we have ‘

A H N
~~~~~ = |- B + AX] 4 | -
Zma1 ,hT Vinat
The problem now becomes one of obtaining the best estimate of X, &,.1, such that
4 H 2
] Bl
Zm+1 h”

is minimum. Following a procedure similar to the previous one, we find the best

estimate of X is
HITTHNHHTY] =
hT hT hT ' Zm+1

where for convenience we will now assume that the matrix R is an identity
matrix. This amounts to placing equal weight on each measurement. A recursive
scheme may be developed by the use of the matrix inversion lemma [2, 3], We

recall that
HITTHT !
—— . = [H™H + hh?}-!
kT W7

: H1"H
P;! = H'H, ~ly=|--| [-~| =P;! -+ hh7
h?| |h?

1

J:T

T

If we define



then the r ’)x‘invcrsion femma
Pm—H == Pm - th[hTth + i]—lhTPm

which will be developed in Section 10.4-1 in & more general forin, yields for the
recursion formula

R = P ni[H2 + hzp]
=P, H"z -+ Phzy, — PP 0 4 11707P . [HTZ + hzpa]
= gm + th[hTth + “-l[zmﬂ - hTﬁm]
Thus the new estimate is equal to the old plus & lincar correction term bascd
on (he new data and the old P, only, For m estimales of & scalar x with & as a
unit vector of dimension m, we have

M

=~I224

1
P"‘l = I, P = e X PR
m s ntt mr 1 ’ " n &

Zin+1

- L S P TP B
Rms1 = &y + s l[z’"” Kyl = ﬁm[m T 1] + m 1

£

which is, of course, the expected answer in this simple case.

2.5 Linear and nonlinear programming

The previous section contains several examples of what are commonly
called nonlinear programming problems, Basically, the nonlinear program-
ming problem is concerned with the extremization of a continuous differ-
entiable function of n nonnegative variables 8(x,, Xy, . . ., Xa) = §(X) subject’
to m inequality constraints A(x) <<0,i=1,2,...,m. Figure 2.5-T illus-
frates some basic ideas in a nonlinear programming problem. In nonlinear
programming, the @ function is called an objective function—the function to
be extremized, In this book we will commonly call such functions cos¢
Sfunctions.

As we have seen, ordinary calculus methods may be used to find the
extremum of unconstrained functions. If ordinary calculus is applied to
extremize 6, and if the resulting optimum vector x lies entirely within the
constraint set A; < 0, and if x; > 0, then that value of x solves the optimi-
zation problem with the constraint. We have seen examples of this in Section
2.2 and Example 2.4-2. If the optimum value of x computed by extremizing
6 is outside the constraint set A <C 0 then the optimum value of x lies on the

boundary of the constraint set. If we knew Which one of the »m constraints -

A determined the optimum, then we could apply the Lagrange multiplier
method and use an equality sign for that particular constraint and ignore
the other constraints since the optimum x will be on the boundary of one of
the known m inequality constraints. In general, we find it necessary to exploit

cach of the inequality constraints to determine which one of the inequality -

constraints to use. It is possible that more than one of the m inequality

e

-

constraints will determine the optimum x as iflustrated  Fig, 2.5-1, We
should remark that, in the typical nonlinear programming problem, the
functions A are convex, which insures that the possible region for an optimum

X2 )

(a)

X2 Ak

Omaxl X1y £2)

(c)

Fig. 2.5-1. Illustrations of nonlinear programming (a, b,¢) and lincar
programming (c).



x is also cor Also, § is convex if minimization is required and concave

if maximizativu is required. This requires that any local optimum is a global
optimui of the cost function in the possible region of & constraint A, [4].

A spcclal case of the nonlinear programming problem is the lincar pro-
grfifnln_ifn}g_n_gbl emwhich occurs when the § and A functions aré lifiear in

thie n vector x. In this case we are assured-that the o timum value of x lies
on the Boundary of two_or more clements of the linear constraint set

&I Yy =0, Cleatly, the major problem Is to o decide whlch ones. This i is a is a state~

ment_of the gencrat—linear programming problem OF several ‘methods”

available for solving the problem, the most used ‘method appears to. be the
simplex method [5]. In order to use the method, certain restrictions must be

applied. The variables x, must be nonnegative, the constraints A; must be
linear equalities, and the cost function must be minimized by the optimum x.
We may transform the general problem of lmmgrammmg, that of
maximizing the cost function (objective functior\) / Laker?
L) (v

J=a'x 2.5-1)

with the m inequality constraints

Bx<ec ngzsz)

into the restrictive form for the simplex method. Any number can be written
as the difference of two nonnegative numbers. For instance, if x, has no

restrictions on its sign, we may let
Xnst — Xpaz = Xiy Xpe1 =0, Xnez 20

This insures the nonnegativity of the variables. Unfortunately, every sub-
stitution of this type replaces one variable (x,) by two variables (X, and
Xn+2). If the original problem formulation contains inequality constraints, we
convert them to equality constraints by the introduction of nonnegative slack
variables. For example, if we had the constraints

2x; + 4x, + x; > 5, 6x; + x, + X5 < 4
we would introduce the nonnegative variables x, and x; to obtain equalities
2%, +dxy + % —xe =5, 6x +x,+ X+ x =4

The variables x; and x; “take up the slack” in the inequalities and are called
slack variables. Again, we increase the total number of variables to be
considered. The linear programmmg problem may now be solved by the

simplex method.
Since we are to be much more concerned with optimization in dynamic

()%'X Av "J '/’”"mﬂL)

discussions of both of these topics. We will consider nun  ‘al methods for
the optimization of single-stage decision processes in Section 13.3-1,

The extrema-finding techniques of this chapter, although quite sufficient
for many different situations, will not, in general, allow tlic solution to many
problems associated with control systems, Whereas the previously discussed
techniques deal with methods for extremizing functions of one or several
independent variables, in control-system design, we are typically concerned
with extremizing certain types of functions whose independent variables are
actually other functions. This type of function is called a functional. Although,
as we might expect, many of the basic approaches for extremizing func-
tionals are similar to those for extremizing functions, the end results are
sometimes quite different. The solution to a given problem in extremizing
a given function of one variable is, perhaps, a number associated with a
coordinate point, while the analogous solution to a functional problem is
a number associated with a function. The body of mathematics developed
for extremizing functionals is variational calculus. This subject is at the
very heart of optimal control theory and is a subject that we will explore in
some detail throughout the remainder of this text.
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PROBLEMS

Find « such that

.

J=x*4+ul
is minimized subject to the equation
' xu=1
Use the Lagrange multiplier technique as well as the basic method.

systems than static optimization, we will not develop the many theorems of ‘ 2. Discuss the singular solution problem where x is a two vector.,
linear and nonlinear programming. References [4] and [5] contain thorough 0_3, Find %, for a set of measurements where z = Hx, where




) 1,017 B!
2,03
3,00
3.05
1.95
| 0.97 ]
4, Now suppose that an additional measurement
2;=30; hT=1[}1]
is taken. Compute ¥, by the smoothing method and the matrix inversion lemma

method. Compare the effort involved via cach method.
5. Verify the matrix inversion lemma if

Pyl = P;! o hh"
Py = P, — PA(WTPh + 1)~ WP,

& ot peh e e O

bt D W e O

by showing that .
Pl Pre =1
6. From Egs. (2.4-14) and (2.4-17) calculate the third variation of H as given in
Eq. (2.4-9).
7. Find the maximum value of
66 = xt +x3, x>0, x,>0
subject to the inequality constraints
(e —4* + i<
o — D+ <4
8. Find the maximum value of
. J=x + xg x>0, X, =0
subject to the constraints
' x4 <1
X 4 x, <2

q.Two alternate m{grasskons were deue/oFed {or Hhe
optimunt u vedor o'f &mm/)le (2.4-1) Shaw Hhat He Tiro
w,greSSions are ej,uw/-ent Ang Mt Hhe fm'(:
Soludion will be caaier o }mIo/@/-nenf co,,t/,MJr;o,m//}
)—f Hhe cAimension 0{ W s lower Hane dhat a]C X,

3

i

VARIATIONAL CALCULUS
AND
CONTINUOUS OPTIMAL CONTROL

. In this chapter we will introduce the subject of the variational calculus
through a derivation of the Euler-Lagrange equations and associated trans-
versality conditions. The existence of the definite integrals defining the cost
function is assumed, and it is further understood that minimizing (maxi-

* mizing) functions are to be chosen from the set of all functions having

continuous second derivatives on the time interval under consideration. In
addition, we will assume that the integral of the cost function is at least twice
continuously differentiable. Thus, this chapter will deal with most of the basic
concepts necessary for solving the types of variational problems commonly
classified as control-system problems. Several such examples of continuous
control problems will be solved. Many of the restrictions posed here will be
removed in the next chapter,

3.1 Dynamic optimization without constraints

We will now examine a functional of the simple form where ¢, and ¢,
are fixed ‘ '

7y = | Z SIX(0), #(0), 1] dt (3.1-1)

27



Problems of  remization of this functional form are sometimes called
Lagrange problems. These include the Bolza problem

ey =60, |+ [ o, 0, e (31:2)
The inclusion is apparent if Eq. (3.1-2) is rewritten in the form
TR = j :’ AL, #(0), ]t | (3.1-3)
where
ALX(E), 20, 1 = $x(0), %1, 1] + S560x(2), 1] (3.1-4)

We would now like to find an x(r) such that the given J{x) is extremized
(i.e., maximized or minimized, depending on the given physical problem),
This x(¢) is called an extremal, and only an extremal can cause J{x) to have
an extremum. We will assume that we know the correct extremal curve;
denoted 2(¢). Thus we can write the expression (3.1-3) for a family of curves,
starting at ¢ = #, and ending at ¢ = ¢,, which includes the extremal curve

£(). _
x(8) = 2@) + en(t) (3.1-5)
where #(¢) is a variation in x(¢) and ¢ is a small number. A plot of J{x)>
versus e for various choices of 5(¢) might appear as shown in Fig, 3.1-1,
It is obvious that at e = 0, all curves are minimum since

(1) = x(t)! - (3.1-6) ,
Thus on the extremals we have

oI

e 0 3.1-7)
Jexu= independent of the value of #(t)
[t chosen. Strictly speaking, the solution
obtained from Eq. (3.1-5) could cause

Tt} . . .
_ J{x to have a maximum or minimum
n4(t) or be a stationary point. The con-
dition for a minimum is that 92J/9e?
be positive at e = 0 independent of

° € " y(t). However, in most physical prob-
Fig. 3.1-1. Minimization problem of ~ lems, it is apparent that if a solution
variational calculus, ' to Eq. (3.1-7) exists, it will be a solution

which minimizes (maximizes) the inte-
gral, J{x), as desired. Now we can extremize Eq. (3.1-1) by using Egs. (3.1-5)
and (3.1-7). By differentiating Eq. (3.1-5) with respect to ¢, we obtain

X(t) = (1) + en(1) : (3.1-8)

If we substitute Eqs. (3.1-5) and (3.1-8) into the given f  tional (3.1-1),
we then have

Iy = [ B0 + enfe), $0) + i), e (319

We should note that
lxm J(x) =J(R), ligol x(t) = £(¢)

Therefore, to find the extremals of J{x> we now use Eq. (3.1-7)t

UD| = [ HE b0 i 8RN 4o

or

0= "9 25500 4 [0 BEL0 g G0
After simplification Eq. (3.1-10) becomes,}
d 3¢ o9
f ()[ Z‘ajé]d‘ + n(t)l (3.1-11)

Since Eq. (3.1-11) must equal zero independent of the value chosen for
7(t), we have

Uden Juppoomr U« 99 3_5% 0 (3.1-12)

W cmdlign z_i,](t)= 0, for t=1t,1, (3.1-13)

1The following is given without proof: If u = f(x, y, z,...) is a function of several
variables, each of which is a differentiable function of #, v, w, ..., then u as a function of
these new independent variables, is differentiable, and the following chain rule applies
u __ duodx , duady
= axar T dyar vt
du__ dudx | dudy

5o~ oxdw Tayas T

TApplying the formula for integration by parts, which is
b b
f udv = uvl —_ J'»vdu
a (1 @

" by letting
o —
=25 dy = j(t) dt
du-—di—%d v = n(t)
we have




These relation” '8 follow as a consequence of the following lemma.,

-~ If x(¢) is cou....iuous on the closed interval ¢ € [t;, £5] and if [; x(t)y() dt
=0 for every 5(¢) contained in [r,, #,] such that 5(2,} = 9(t,) = 0, then
x(#) = 0 for all + in [t,, 1,}. Proof of this lemma is given in reference [1}.

y>©0 These two very important relationships form a good foundation for
solving variational problems, Equation (3.1- 12) is commonly known as the
Euler-Lagrange equation and Eq. (3.1-13) is the associated transversality

® condition. These equations specify a two-point boundary value differential
equation which, when solved, determines £ in terms of a known ¢.

3.2 Remarks on transversality conditions,

The various forms and uses of the transversality conditions will be covered
in some detail in this chapter. We do this because these conditions are among
the hardest things to correctly formulate for any variational problem, and
they are generally different enough for each problem to warrant comment,

We will now examine Eq. (3.1-13) and tabulate many of the possible
combinations for which this equation holds. In each case, £, and ¢, are fixed.

I. Fixed Beginning—Terminal Points

In this case we fix x(¢,) and x(¢,). Thus every admissible solution
must pass through these fixed points. Therefore from Eq@)
see that we must require that 7(#,) = 5(¢;) = 0. In this case the
correct boundary conditions are the specified x(z,) and x(z,).

II. Variable Beginning—Terminal Points
We now consider that x(¢,) and x(¢,) are variable or, in other words,
not constrained. Therefore from Eq. (3.1-13) we have (since #(¢) can
be arbitrary at the end points) 9¢/0% = O at ¢ = t,and ¢ = 7,, When
this particular situation results, the boundary conditions are called
the natural boundary conditions.

III. Variable Beginning—Fixed Terminal Points
In the case where x(¢,) is variable and x(¢,) is fixed, we must constrain
7(t,) to be zero but can allow any (admissible) 5(t,). Therefore from
Eq. (3.1-13) we have the two-point boundary conditions 9¢/8% = 0
at ¢ =1t, and g(¢;) = 0, which means that the other boundary
condition is the specified x(¢,).

IV. Fixed Beginning—Variable Terminal Points
For x(t,) fixed and x(¢,) variable, a situation which often occurs in
optimal control, we have from Eq. (3.1-13) that (since #(t,) is
arbifrary) the two-point boundary conditions are the specified x(¢,)
and 0¢/o% =0at t = ¢,.

With this tabulation, the analysis of the scalar Lagrange problem (which,

o)

as previously mentioned, includes the scalar Bolza probfc‘ ‘s nearly com-
plete. Figurc 3.2-1 illustrates graphically the essence of this abulation.

x(H)

xq(#)
(a) Case I

x(H 4 x(P

xy (1)

xp (1)

-~V

f

-~
-~

Xy )
{c) Case II

Fig, 3.2-1. Various combinations of end conditions.

(d) Case IV

3.3 The second variation: sufficient conditions

for (wiik) extrema &AW& VA0 'JWQ

Until now, in the study of extrema of functionals we have only con-
sidered a necessary condition for a functional to have a relative or weak
extremum. This was, of course, the condition that the first variation vanish.
In this section, we shall be briefly concerned with sufficient conditions for a
function to have extrema and shall thus introduce the second variation. The
next section on examples will illustrate the app]ication of the second variation
in a particularly simple case.

To establish the nature of an extremum, it is necessary to obtain 9%J/9e®
evaluated at e = 0 from Eq. (3.1-1) under the conditions of Eq. (3.1-5).
This is




LI{x>

362 l,ua B AN

a0 R ) | 4 BB, R D) L, PR, £, 0)
‘{7’ B v el B }d"
(3.3-1)

Applying integration by parts and the transversality conditions [Eq. (3.1-13)]
we have * i, LM\Q

) dowa et 2R, R, 1) ‘fda(xét 2
O'$(%, %, 1) OP(%, %, D) o .
N = O f,, T - c,{ di " o5 oF } a @3 21)
*®Chus the second variation of J becormes v A .
OO JOUR R d 2R, 40T | L 08, 4,0

I I:,{”z[ 2 PY Y J+ —La@*——} a

(3.3-3)

To establish a minimum (maximum) of J, the first necessary condition is
that 0J/0e = O at ¢ = 0 independently of the variation #(¢). The second
necessary condition for a minimum (maximurmn) is that the second derivative
of J with respect to e, evaluated at ¢ = 0, be equal to or greater than (equal
to or less than) zero. Sufficient conditions for a weak minimum (maximum)
require that the derivative be positive (negative). All of this must, of course,
be true independent of the variation #(f) and need only be true along the
optimal “trajectory,” £(z).

We can rewrite Eq. (3.3-1) as the quadratic form integral

PR, 2,0 P8, 8,0

rI(x)| (¢ , o a% o3 ) )
proal Wi f“ KOOI B850 B S D) L}@] dt (3.3-4)
% o o5

If the matrix in this expression is at least positive (negative) semidefinite,
we have certainly established a minimum (maximum). Alternately, from
Eq. (3.3-3) we are assured that the second derivative is equal to or greater
than zero if

2:p(R, £, 1) (R, £, 1) : '
e dt[ ¢a(\ 203 ]‘ | @33

and

—L—g’;f >0 " (3.36)

For many problems in which we will have interest, the foregoing conditions
are fulfilled, and we can establish necessary and sufficient conditions for a
minimum, It is still possible, however, for Eq. (3.3-1) or Eq. (3.3-2) to be
greater than zero even if the requirements of Egs. (3.3-4), (3.3-5), and (3.3-6)
arc not satisfied, since 7(¢) and #(¢) are not independent of one another.

Complete exploitation of this point is beyond the intent o” s chapter,
Chapters 5 and 6 of reference [1] provide an excellent and readaue discussion
of the necessary and sufficient conditions for a minimum. We will return
again to this point in Chapter 4, We must again emphasize here that we are
establishing conditions for a relative extremum, sometimes called a weak
extremum, which may or may not be an absolute extremum. In Section 4.1
we will discuss some requirements for an absolute or strong extremum,

Example 3.3-1
We desire to find the curve with minimum arc length between the point
x(0) = I and the linc ¢, = 2.
The first step toward solving this problem is to formulate the functional
J¢x). If we define the differential arc length as ds, the functional we desire to

minimize is easily seen to be
J{x) = J.z ds
)]
. with associated boundary conditions
' xt=0=1  x(t =2) = open
Noting that for é differential arc length
(ds)? = (dx)* + (dt)?

we have

Bt i

By substituting into the given cost function, we obtain
. 2
N

Upon referring back io the functional defined in Eq. (3.1-1), we sce that
| blx, %, 1) = [1 + 242
The Buler-Lagrange equation for this problem is therefore

op _ d o _
a8 di %

and thus we obtain

el

Upon integrating, we obtain

£

2
— % —¢—constant, #?=-S_ =4¢?
@+ &9 I—e
Thus we see that the extremal curve is given by

)=at 4 b



Therefore, ©~ shortest distance between a point and a straight line is another

straight line. ' '
We obtain the particular solution by properly applym‘g the iransversthty »
equation to the given boundary conditions. We note that this problem falls into

situation IV, i.e., fixed beginning—variable terminal point, Thus, x(¢,) = x(0) = 1
and

0 ‘ )
£=O=W, at ¢=2

or®=0ats=2 '
Differentiating the solution for £ with respect to 7, we have # = g, and using the
transversality conditions we obtain a = 0 and & = 1, "I‘h'cr(.a[‘prc, the ?xtromal
curve satisfying the given boundary condition and minimizing the given arc

fength is x == 1. ' N ‘
To mathematically demonstrate that we have obtained a minimum rather

than a maximum or stationary point, it is necessary to show that the second
variation, represented by Ed. (3.3-3), is greater than zero, The pertinent terms

in Eq. (3.3-3) are, for this example, )\(Q ’,}/— 9\
P o P L ALaT T
srod b Ay w g (W 20

Since $ = 0 is the extremal solution, &°¢/22? is always greater than zero. Thus
the second variation is greater than zero, and we have indeed established a

minimum. Physically this was, of course, evident from the start,

Example 3.3-2
Wc‘ desire to find the equation of the curve which minimizes the functional

(boundary conditions unspecified)

2 1) .

Jx) = f [%2 4 x% + % + x) d¢

1]

The Euler-Lagrange equation for this problem is
i+l —%—x%=0=1—2%
By integrating directly, we obtain the solution to this equation:
2
x(t) =5 + Cit + Cy

To determine C; and C, we must now apply the transversality equatioq to
the given boundary conditions. Since this is a variable begmnmg.—-termmal
point problem, situation IL is used, which is the natural boundary condition case.

% _ i tx+1=0 for t=0,2
5E x4+x+1 A
Therefore, from the solution for x and its derivative, we have
g-;ic’=z+c,+§+c,r+cz+1=o, for +=0,2

We can now solve for C; and C, from the simultaneous equations
C; +C2= —'1, 3C1 "l' C2= —5

i ¢

to obtain C, = —2 and C, = 1, Therefore the extremal curv which satisfies
the given boundary conditions, is ' ]

x(t)=’72—21+1

The actual value of the extremum is obtained when we substitute into the given
cost function and carry out the integration to obtai -‘@ 7 - SL
R

3.4 Unspecified terminal time problems

By slightly changing the cost function given in Eq. (3.1-1) we obtain a
very uscful problem formulation; it is called an unspecified terminal time
probiem and, as will be apparent liter, leads to the “minimum time” problem
of optimal control. The basic problem is onc of minimizing a given cost
function where ¢, is unspecified subject to the constraint that the final state
of the system be specified by a prescribed terminal line or, in higher-dimen-
sional problems, terminal manifold,

The cost function generally contains terms representing enecrgy expended,
distance traversed, elapsed time, and so forth, which may appear singly
or in combination, The original state of the system may be specified or
unspecified, and the terminal line or manifold may be time-varying or
invariant.

The approach used here will be general enough so that any of the fore-
going specifications can be included in the solution of a specific problem,
A graphical illustration of a variable terminal time problem is given in Fig.
3.4-1. Instead of calling J{x> a functional, we will now use the systems
control terminology, cost function, which for this problem will be given by

Gy = | : b(x, %, 1) di (3.4-1)

where #, is known, ¢, is unspecified, and x(¢,) may or may not be specified.

[

x(1) ‘ clt)

-t

. Fig. 3.4-1, lustration of variable terminal time problem where
x(t,) = C(ff).



e should note tnat 101 Lhe Prouviciii SilOwil 1 Mg, J.A%1 LUV LGl olathy
x(t,), is specifiec’  jhough, in general, as previously stated, it need not be,
As before, £ is the required curve, here referred to as the optimal
system trajectory. A family of curves, which includes the optimal trajectory
£(¢), starting at ¢, and ending at ¢, is given by |
x(t) = () + ena(r) - (34D
with time derivative
(1) = (1) + end(t) (3.4-3)
where 7,(¢) is a variation in x which depends on 1. o
Since the terminal time is unspecified, it must be treated as a variable

and, thereforc, must be examined to see if perhaps there is a final time, #,,
which is optimal. We will therefore define a family of final times, one of

which is the optimal final time £,:
ty=1ip 4 endty) (3.4-4)

where 7,(t) is a variation in ¢,. . .
Our first step in minimizing the cost function, Eq. (3.4-1), is to substitute

Egs. (3.4-2), (3.4-3), and (3.4-4) into it, which gives us

irrenity

Ky = | \
We now set 8J/de = 0 at e = 0 and obtain

2| 0= {00 % + 0 58} dt + n@I5C, 30,11 (G4

de
Integrating a portion of Eq. (3.4-6) by parts, we obtain

IR, 2C). T =0 G4

% o 1t
Jmsto[ 58 — G 58 ar +0- 3K,
At the terminal time, the terminal line, C(¢) or, in higher dimension.s,
&\terminal manifold, and .the optimal_trajectory x() intersect, as shown in
, Fig. 3.4-1. Therefore, using Eqs. (3.4-2) and (3.4-4); we have
$O e 4 o) + enddhy + en(dl = Cly A+ ent)] (348)
We take the partial derivative of this equation with respect to ¢ and evaluate
it at e = 0 to obtain

kDR + ) = (i) CEp) (3.4-9)
where £(f) = 8%/ot and C(t) = 2C/[ot at t = f,. Thus
| nall) = ndiAICE) — 26D (3:4-10)

By substituting Eq. (3.4-10) into (3.4-7), we have

BIR() + ena(D), () + ena(t), ¢] dt (3.4-5)

() | 55 = - =% | dt + 9,(E)CE,) — R(F,)]) AL A0 2/
R T N GEE
AUV 2 '
+ 9IS, 3, 1] — 10 28| =0
X t=te
Remembering that Eq. (3.4-11) must be identically equal to zero independent
of the variations, we see that the first requirement for the solution to our
problem (the second variation must also be non-positive) is that

%()é - 5;%*;; =0 (3.4-12)

no| (€ -@)% Fél=0, for 1=l (3413

7 / 7:(f) %ﬁ = 0\(\ for t=1, (3.4-14)
0 X

We recognize that Eq. (3.4-12) is the familiar Euler-Lagrange equation
while Eqgs. (3.4-13) and (3.4-14) comprise the transversality conditions for
this problem. As before, there are four different relationships obtainable
from the transversality conditions, but since they are so similar to those
discussed previously, the details of these relationships are left as an exercise.
We note that the ~ notation has been removed from Egs. (3.4-12) through

(3.4-14) for convenience. Let us now attempt to apply our results to a simple

problem,

Example 3.4-1

We wish to minimize
tr
Kxd> = [ [+ 222 ds

with x(0) = 1 such that x{(t;) = C(t;) =2 —t,. ‘

We should recognize that the cost function is actually the arc length, which
means that the distance between a point and a line is being minimized. Application
of the Euler-Lagrange equation yields the optimal trajectory x = at + b,
as in Example 3.3-1. To evaluate the arbitrary constants a and b, we make proper
use of the transversality Eqgs. (3.4-13) and (3.4-14). Here we specify x(0) = 1;
thus 7,(t,) = 0. And since ¢, is unspecified, Eq. (3.4-13) becomes

C-n¥ 10 a 1=y

Thus we obtain £ = 1 at the unspecified terminal time ¢;, From the solution to
the Euler-Lagrange equation and the specified initial condition, we have
x(t =0)=1; so we must have b =1 and Xt = t;) = a = 1. Therefore the
optimal trajectory is x(¢) = ¢ 4 1, and the final time ¢, is ¢, = }. Salient features
of this problem are indicated in Fig. 3.4-2. An interesting fact here is that the
optimal trajectory intersects the terminal manifold at right angles. In general,
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Fig. 3.4-2. Illustcation of variable ierminal time variable end point
problem, Example (3.4-1).

the optimal trajectory will always be nontangent to the terminal manifold.
This nontangency condition is, in fact, called the transversality condition.

3.5 Euler-Lagrange equations and fransversality
conditions—vector formulation

The previous results can be easily generalized to include scalar cost
functions in n-dimensional variables via the state-space approach. That is,
we desire to minimize

tr
Jxy = | [ b0x, %, 1) dr (3.5-1)
where x is the system state, an n vector such that x* = [x,, x,, .. ., Xal Loy

the starting time, is generally specified (it may not be); x(¢,) may or may not
be specified; x(¢,) is specified by a given terminal manifold denoted C(z,).t
As before, the terminal time ¢, does not have to be known. After following
a procedure quite similar to the scalar one, we have, after setting oJ/oe at
¢ = 0 and dropping the ~ notation the requirement that among other things

boonfo d a
7 —— et = L
f W7 (‘)[ﬁ @ ax] dt =0 @.5-2)
be true independent of 7(¢). This leads to the requirement that
op _ dop_ 3)
ox  dtox 0 (3.5-3)

+In general, all the states of x(¢) need not be specified at the terminal time, If this is
in fact the case for a given problem, great care must be exercised in applying the equations
derived for transversality conditions in this section. This point will again be stressed at an
appropriate time in the next chapter.
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which is simply an extended version of the Euler-Lagrany  guation. The
associated transversality conditions are given by

70, a 1=y (3.5-4)
228 L g=0, at t=1 (3.5-5)

where 7, can be related to %, by an equation obtained exactly as Eq. (3.4-8)
was obtained

A
dx dC \ \"')W
’”[E — 277] =0 & (3.5-6)
Although the notation of this section may appear somewhat cumbersome,
in an actual problem it is not, as the next example shows. Use of the
Lagrange multiplier technique, as in the yEXt sectiofpywill alleviate some of

the burdensome notation. “? : (
Al&ﬁ\ U e W s ~. B o M 1.b -
Example 3.5-1 Z;—l-:.
We desire to find the transversality conditions for the minimization of

173 .
J = L, b(x, X, £) dt

such that x(r,) = C(t,), where CZ(t) = [¢,(¢),0,0] and X* = [xy, Xz, %], %(t5) = Xo»
with ¢, specified and ¢, unspecified. The Euler-Lagrange equations are

0p _dop_o b _dop_, o _dop_,

ox,  dt 3%, ' Px, di ox, ' Ox,

with associated boundary conditions, x(¢,) = x,, which represents the initial

condition for the two-point boundary value problem, and o \- ¢
xib= € “\'
. S

Although it may seem that all unspecified terminal time problems may now | Y1
be worked by mere substitution into the derived relationships, Eqs. (3.5-3) U‘

L W9,

2% Ve — X

70 =0, x0=0,_ at 1=t

through (3.5-6), this is not the case. Many problems do not fall precisely into

|

a form which allows direct use of our derived formulas. When this type of Y\~

problem is encountered, a good procedure to follow is to derive the transversality

condition for the particular problem, An example demonstrating this type of YU

approach follows.

Example 3,5-2 ‘
We wish to find the transversality conditions for the minimization of
[2
J= L’ b(x, %, 1) dt

such that [|x¢ )l = 1, where X" = [xx,], with specified starting time ¢, and
terminal time ¢,. Thus, we would like to reach the region of state-space specificd

\ ( ,
U S
i 1 X



by xt + x§==1  |specified terminal time 7, given the state at the starting time

t,, denoted by x(s,). ‘
The transversality conditions are, from Eq. (3.3-4),

g 2
(%) 77"=0= 4)"3‘-!_3;!)7’:7” at t=ff

As before, we assume that x(¢) = &(¢) -+ enx(r) where x is the optimal trajectory.
For this problem, this relation in component form becomes x; = ¥( -+ ¢7,, and
Xy = &y - €7, Substituting these results into the given terminal manifold, we

obtain
G+ e + Ry - en ) =1, at r=14
Taking the partial derivative of the foregoing equation with respect to ¢ and
then sctting ¢ = 0, we have
Riffey + Xy =0,  £=1
We thus see that the specification of the terminal manifold
xi(te) + X3t =1

leads to a linear relationship between 7,, and 77,, at the terminal time, If we com-
bine this relation with the previously stated transversality condition, we obtain
for one of the terminal boundary conditions

Therefore the two boundary conditions at ¢ = ¢, are -
Xty + x30t) = 1

34) X2(rf) — ?d’ =(
ox (1) x.(t;)  oxy(ty)

Thus for a given ¢(x, X, 1), we can resolve this problem cbmpletely by solving
for the optimal trajectory through the Euler-Lagrange equations and the appro-
priate boundary conditions which we have just obtained.

3.6 Variational notation

Much of the notation in the problems that follow can be considerably
simplified if variational rather than differential notation is used. We wish to

minimize (for ¢, and ¢, fixed)

J= jz b(x, %, 1) dt G.6-1)

We assume, as in Section 3.1, that both x(r) and X(s) are representable by a
family of curves

xX(t) = 50 + en(n), () = 2) + en() (3.6-2)
wheré x(f) is the optimal (extremal) curve and 5(f) is a variation in x(¢)

depending upon ¢. We substitute Eq. (3.6-2) into Eq. (3.6-1  id expand
(x, X, 1) in a Taylor series about the point ¢ = 0.

GIR() + en(0), $) + i), f] = $(2, £, 1) + —g‘é’ en(t) + % en(t) + H.O.T.

(3.6-3)
where H.O.T. is used to indicate higher-order terms in 9;(1) and #(¢).
If we now let
AT = TR+ ey — I
we can write
o \ ¢ - .
AT = [0 + en(®,  + en, 1] — $I20), 2, 11} dr
N (3.6-4)

= :’{%3’% en(t) + g}geiy(t) +‘H.O_.T.}.d; A

Now we define the first variation of x(¢) and x(¢) as
en(t) = ox, en(f) = &% (3.6-5)
Thus \

AT = f[ 3x+_‘i§3x+H0T]dt (3.6-6)

Since the variation plays the same role in variational calculus as the differen-
tial in standard calculus, we use the property of linearity, which means that

the first variation of J, 8/, the Jin art of AJ, is

57 = | i [g% 8x + % ax} dt (3.6-7)

A necessary condition for an extremum at x(¢) = £(¢), i.e., e = 0, is that
the first variation of J, 8J, be zero. Applying this to Eq. (3.6-7), along with
the minor simplification of integrating by parts and dropping the ~ notation,
we obtain

“rog _ d _fé} f_’é l‘ v .

) [ 5t oxar - SR (3.6-8)

For Eq (3.6-8) to equal zero independent of the variation 8x, we must have
o _ dop _ :

x  drox 0 : (3.6-9)
0P 5y — - -

3% dx =0, for ¢ =t,1is (3.6-10)

We note that Eq. (3.6-9) is the Euler-Lagrange equation and Eq. (3.6-10)
is its associated transversality condition.



In a similar n  Jer, it is also easy to show that the second variation of
Eq. (3.6-1), written 8%, is

ol , ‘g 02 5 . 82 .
8 = %-jt:{(ax)*[?i’ A i/’] re e ee

Ixt 7 dr oxf

where the second variation is now defined as the quadratic part of Eq. (3.6.6)
or twice Eq. (3.3-4). As previously stated, the interpretations of the second
variation are that 82J > 0 implies a minimum of J and &%/ < 0 implies a
maximum of J, A quadratic form integral similar to Eq. (3.2-4) also follows
directly.

3.7 Dynamic optimization with equality
constrainis—Lagrange mu!tipliers

A constrained optimization problem may require extremizing a cost
function of the form

[2
J = f " b(x, %, 1) dt (3.7-1)
t
subject to the equality constraint
A%, 6)=0 (3.7-2)
where X7 = [X1, X35 . . ., ) and A" =[A;, Ay, ..o Al with m <n. Itcan

be shown that the solution to this problem is the same as that obtained by
extremizing

7= f (%, %, 1) + AT, %, £)] dt (3.7-3)

where AT = [Ag, Aoy - .+ 5 Al is the vector equivalent of the Lagrange multi-

plier discussed in Chapter 2 [4]. ‘ .
To illustrate the development of the Lagrange multiplier, let us consider
a special case where x is a two vector. Suppose that we wish to minimize

[2
J= [ e, %3, 3y, %0, ) dt (3.7-4)
subject to the constraint (with fixed end points)
Alxy, %0, 8) =0 (3.7-5)

We will use the variational notation just developed to establish a method for

treating the given equality constraint. To establish a minimum, it is necessary
that the first variation of Eq. (3.7-4) be zero, that is

— (“fsx.[ 22 _‘if’_‘k] [?.i_ifi]} dt =0 (376

8= t,{sx '[axl —arax,) T %o, ~ drox, (3.7-6)

If 8x, were independent of 8x,, we could simply set each term of Eq. (3.7-6)

equal to 0. Since the constraint provides a dependence on x, and v,, we must
take the given constraint into consideration, Taking the vai  n of Eq.
(3.7-5) we have

N F4a_4_A_ . aA Nya e -
bA‘ = o Sxy A Sxy =0 (3.7-D

It also follows that, for any A(f), we may multiply Eq. (3.7-7) by A(f) and
integrate so that

w_ TOA oA _
I ’”(‘)["a‘z o + 2 8x2] dt =0 (3.7-8)

If we add Eq, (3.7-6) to Eq. (3.7-8) we obtain

[y ‘ad) ___ai 952) ~ aA] - [é_([)_ d 3i) _ oA
Offt,{’sx‘{axl RS R e e SR R
(3.7-9)

We will now adjust A so that the term within the first brackets under the
integral is zero. It also must follow that, since 8x, is arbitrary, the term in the
second brackets under the integral is also equal to zero. It is apparent that
we would have obtained the same results had we reformulated the given
problem by adjoining to the cost function the constraint via a Lagrange
multiplier as in Eq. (3.7-3) and used the Euler-Lagrange equations on this
cost function. The resulting Euler-Lagrange equations would then be solved
subject to the equality constraint of Eq. (3.7-2).

Example 3.7-1
We are given the differential system
i = u(t)

which may be interpreted as the moment of inertia of a rocket in free space, and
we desire to minimize

2 .
J=4f @rar
such that ‘
0t =0) =1, 8¢t =2)=0
0 =0)=1, 0t =2)=0
To cast this problem in state space notation, we let
(1) =006), X =x), K=u(t)
Now the differential system can be.represented by
' % = Ax(f) + bu(t)
where

01

T"— =
xT=lx xl, A [0 :

], bT =10 1]




When we apply K3.7-3) (u(t) is treated as another state variable, x,), the prob-
lem becomes one of minimizing

J = f : (365(0) + MOIAXE) + bu(t) — X]} dt

= [L 0 + MO0 — £+ MO ~ 35 dt
The Euler-Lagrange equations yield
A =0, Xy = —N(0), u(ty = —Ay(¢)
The final solution is obtained by means of the given differential relationships
and boundary conditions, and it is
=40 =4t +1, =344+l w=3-}
This system, along with a plot of the system trajectories, is shown in Fig, 3.7-1.

6(1 = (1)

O=3+-7/2 = y(f)

|
]~

é=u(/)1 6 = x,(1)
s =5 —l— - G= ()

‘Fig. 3,7-1. Block diagram, optimal control and state variables for system
of Example (3.7-1).

Example 3.7-2 Linear Servomechanism?
Suppose that we wish to minimize

=4 [T 190 o + %) — 10 e d

for the general time-varying system specified by
% = A(6)x(¢) + B(#)u(r)

tA considerably more detailed treatment of this problem will be given in Chapter 5.

with x(t,) = x, as the initial condition vector. r(¢) is the desire Mue of the
state vector x(¢). As before, it is necessary to assume that all matrices and vectors

. are of compatible orders, We adjoin the differential system equality constraint

to the cost function by the Lagrange multiplier to obtain
¢ .
7= [ IO ho + H1%O = 1O lw + MOWOXO) + BOW - 11 dr

The exact nature of the cost function used depends upon the particular
problem being solved. Therefore R(¢) and Q(¢), both penalty-weighting matrices,
arc generally chosen with regard to the physical conditions present, We also
assume that both R(¢) and Q(r) are symmetric, since there is no loss in gencrality
by doing so. The control vector; u(t) is treated just as if it were a state vector,
Then we apply the Euler-Lagrange equations, which in this case are

o0 _dob_, 9B _dad_,
ox  df 3% g =

swhere
@ = 3|[u@ ke + £11x) — @O owy + NOIADOX() + BOu(?) ~ %]
Thus

%;[(I-) = QO[x(" — r()] + AT(OND), %%) — )

2 _ R +BOM), SR o

The Euler-Lagrange equations for this problem become
A= —ATOM) — QX)) — (],  u) = —R-OBYONE)

Since x(¢,) is unspecified, the transversality condition at the terminal time yields
At,) = 0. This solution can be block-diagrammed as in Fig. 3.7-2. We note that
the solution for the optimal control requires that R(¢) have an inverse. Also, certain
other requirements must be met to insure a minimum of the cost function;
specifically, R(#) and Q(#) must be nonnegative definite to insure a nonnegative
second variation. Thus we see that R(¢) must be positive definite.

Although it appears that we have solved the originally stated problem, there
are still some further refinements which are highly desired. Since the state of the
system is specified at 7,, we are given x(¢,), while the adjoint operator A() is
specified at the terminal time, M#;) = 0. What we, in fact, have to do is solve
a two-point boundary value problem (TPBVP), something which, in general,
cannot always be done without recourse to electronic computers. In this partic-
ular case, since the differential equations are all linear, superposition can be
invoked and a closed-form analytical solution obtained with great difficulty.

If we let r(¢) be either a constant vector or the null vector, the foregoing
problem reduces to a regulator problem, The treatment of the servomechanism
problem can be made more general if we assume that indirect state observation
is made available to us, that is, for the system

X = AW)x() + B)u()
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Fig. 3.7-2. Block diagram of a possible solution to the servomechanism
problem,

we can obtain dircctly only :
z(t) = C(O)x() + D()u(®)

The procédure and results are quite similar to the ones obtained in this example
except that requirements on observability and controllability, to be discussed in

Chapter 11, are present, .
To solve this two-point boundary value problem, we must requite a know-

ledge of r(t) for all time in the closed interval ¢, to ¢, or, in shorthand notation,
vt €[t,, t,]. Since a two-point boundary value problem must be solved before
we can determine the optimum control for this problem, it is clear that a closed-
loop control has not been found. After we have formulated the Hamilton-Jacobi
equations and the Pontryagin maximum principle, we will have a great deal
more to say about this important problem.

3.8 Dynamic optimization with inequality
constraints

In many physical problems of interest to the control engineer, there are
various inequality constraints on the control vector. For example, the
maximum thrust from a reaction jet is physically limited as is the maximum
input reactivity in a nuclear reactor. When inequality constraints are present,
it is necessary that we consider them in determining optimum system design,

Thus we are faced with minimizing a cost function of the f

[2
7= ; H(x, %, 1) dt (3.8-1)
j with equality constraints of the form
v A(x,%,0) = 0 (3.8-2)
} and inequality constraints of the form
I‘mh\ < F(X, ’.‘, t) < anx (3‘8'3)

When the inequality constraint involves the control vector, the control
vector which satisfies the constraint conditions is called an admissible
control vector. One technique which is generally satisfactory for resolving
the control incquality constraint problem consists of converting the inequality
constraint to an equality constraint. It can be easily demonstrated that the,
j cquations \Vj’ Moo e
‘ (Pmuxt - I‘t)(Pl - Pmin l) = 'Y%’ {= 1: 2: o (3-8'4)

i are equivalent to the constraints of Eq. (3.8-3 ach term on the left .
' side of Eq. (3.8-4) must be positive,Sr each negative)and thus have a positive
product. Thus the inequality constraints een converted to equality
. constraints and may be treated as such. Lagrange multipliers are then used
to adjoin the equality and inequality constraints to the cost function, Eq.
(3.8-1), and the Euler-Lagrange equations applied.t The technique can best
be illustrated by an example.

N

i Examplé 3.8-1
! Let us consider the same plant dynamics as in the previous example 3\7' |

Xy = xy(t), Xy = u(f)

with the jniti ditions x,(t,) = x, and xu{t,) = »,. The problem is to find the
controldwhich maximizes x,(¢,),)for fixed ¢, subject to the boundary condition

g A

cguality constraint that x,(f;) = v, and the inequality constraint on the scalar
~eontrol tpm < 4 < tnax. We convert the inequality constraint to an equality

‘ constraint by introducing a new variable «(f) and replacing the inequality
' constraint by
DL ‘s

Pty

w& % Wdraamay (# — i) (thpax — W) — a2 =0
- )‘\‘{%\ Thus the problem may be recast as one ofg—minimizing J = —x(t))subject to
the equality constraints
Xy = x0), xl(’o) = Xo xl(’f) = open
Xy = u(t), xa{ts) = v, Xty) = vy
(u - ”min)(”mnx - ") —at=0

, +Chapters 4, 13, and 14 will consider more varied aspects, theoretical and computa-
i _ tional, of the inequality constraint problem.



The cost £ ‘ion with the adjoined Lagrange multiplier becomes

S

7 = [t + [ = haley = ]l = 54

. N\s\ - + Ml = thitn)(Wtonnx — ) — ] dt
The Euler-Lagtange equation R
doh b )
"ﬁ"'a_{_'a_x'zo’ Qrztxhxm“]
with \ﬁ‘ 3 C';(“)(L, W,

D = N[xy — %] + Nalu — X)) + Ml — ttain)tmax — 1) — @¥] — ¥,
“yields ‘
M=0,  Ag=—N
0 = —Ag -+ N[2¢ — tymax — Ui, 0 =an,

Application of the natural boundary condition equation (transversality cone
dition) to determine the single missing terminal condition on x,(t,) yields

oP e
o A A O

Thus we have arrived at the two-point boundary value problem whose solution
determines the optimal state and control variables, This TPBVP is

Xy = x5(t), x1(ts) = X,

S X =u), Xt =0,
)'l = 0, M(lf) m' —'l
A= —=M),  x(tp) =

7\'2(‘) = 7\‘3(’)[2”(’) — Umax — Hmin]

dQ(t) = [u(t) — tow][¥max — H(“)]
This TPBVP is nonlinear because of the last thres coupling equations above
and is quite difficult to solve without recourse to a computer. In a usual version
of this problem, i, = —1 and u,,x = 1. In that case, it is possible to show

that a(f) = 0 and
u(ty = —sign Ay(0)

where - .
sign Ay =1 if Ay>0

sigh Ay = —1 if A <O
This does not, however, change the nonlinear nature of the two-point boundary
problem. In a later chapter we will devote considerable time to various gradient
methods, Newton-Raphson techniques, and other computational techniques for
solving nonlinear two-point (and multipoint) boundary value problems,
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PROBLEMS
' 1. A linear differential system is described by
% = Ax + Bu
where
01 1 0 ‘
A= [0 0],_ B= [0 1], X =[x, %), ' =[u,u]
Find u(f) such that
2
= 1 2
J=4[ uipar

is minimum, given x*(0) = [1, 1] and x,(2) = 0.

~ . oy IR )
2. Find the conditions necessary for minimizing

T = 6 + [ 0, £,0)

/ Biven x(t,) = x; and g(x, %, ) = 0.

N 3. Use the results of Problem 2 to find the control u(¢), which minimizes

=5 o
= 2x2(2)+%fou dt

such that x = u(t), x(0) = 1.

4. A linear system is described by

X = —x + U, x(0) =1

It is desired to minimize ,
2

J= ,:,j ( + u?) dt
0 .

A feedback law is obtained if we let u(t) = ax(t) where da/dt = 0 such that
« is a constant, Find the equations defining the optimum value of a.

N5, Find the differential equations and associated boundary conditions whose

solutions minimize
i
J=1% fo w? dt



6

8

for the difierential system described by
L X = =Xy + Xy
Ky o=y
with end points given by
x1(0) = x,(0) =0
xi(ts) + Xty = 1f + 1
Find the value of # which minimizes (for ¢, unspecified)

J = f :’ fa 4 w2t + ¥(O] de

for the differential systenz
Xo= —x(t)y 4 ul), x0) =1, x@;)=0

. A linear second-order differential cquation is described by
iy = xy(t), x(0) =1
X2 = U XQ(O) = 1

Find, by use of the Euler-Lagrange equations and transversality conditions, the
optimal control #(¢t) which minimizes;

-

1 w < (S t"[ &
@) J=[lwd,  xW=xm=0 y

! ‘ b ( 6” - >
®) J=[wd,  xm=0 w = L IS

- /3
© r={Twd,  x)=cty=—13 w- %(‘*”'Q
(Also determine ¢, and x,(is).)
@ J= f:’ @, () =) = —18  xty) =0
’L -

© P N AT PN e A

For all cases, sketch both the optimal system trajectory x(¢) and the optimal
system control u(¢).
For the fixed plant dynamics given by

X=u
determine the optimal closed-loop system which minimizes
. .
T=4[ e+ -y
[}

where i(f) = 1 — e,
For the fixed plant dynamics given by X = u(?), x(0) = x,, determine the optimal
closed-loop control which minimizes for fixed ¢,

tr
J=isxe) + 4 [[w

where s is an arbitrary constant. Do this by first determining the optimum
open-loop control and trajectory and then let u(r) = k(H)x().

4

THE MAXIMUM PRINCIPLE
AND
HAMILTON-JACOBI THEORY

In the previous chapter, we formulated many problems in the classical’
calculus of variations. A derivation of the Euler-Lagrange equations for
both the scalar and vector cases was presented. We discussed the associated
transversality conditions and some of the difficulties which we may encounter
if inequality constraints are present. Several simple optimal control problems
were stated and solved. In this chapter we wish to reexamine many of the
problems presented in the previous chapter and obtain more general solutions
for some of them, In addition, we will develop methods for handling some
problems which could not be conveniently formulated by the methods in
the previous chapter.

To these ends, we will present the Bolza formulation of the variational
calculus using Hamiltonian methods. This will lead us into a proof of the
Pontryagin maximum principle and the associated transversality conditions.
We will proceed then to a development of the Hamilton-Jacobi equations,
which are equivalent to Bellman’s equations of continuous dynamic pro-
gramming, Finally, we will give brief mention to some limitations of dynamic
programming. Examples to illustrate the methods will be presented. We
will reserve the next chapter for a discussion of some of the many problems
which we can formulate and solve using the maximum principle.

In order to fully develop our approach to optimization theory where
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the termine  me is not fixed and where the control and state vectors are
not necessaruy smooth functions, we must consider in more detail the first

variation for such problems,

4,1 Variation of functions with terminal times
not fixed—the Weierstrass-Erdmann conditions

In this section, we will consider problems which arise when the terminal
(or initial) time is not fixed (unspecified in the problem statement). We must
reexamine our concept of a variation in order to accurately treat problems
wherein the terminal (or initial) time is not fixed if we are to use the powerful
concept of the first variation. We thus wish to consider the extremization of

[2
J = f : DIx(), %(¢), 1] dt (4.1-1)
where all admissible trajectories are smooth and where the terminal time is
not fixed. We define a variation 8J as the part of
A‘] = J[X + h, tf + 8’/] - J[X’ tf] (4'1'2)

which is linear in b, h, 8x, 8%, and 8¢,. Since both x and ¢, vary, it is appro-
priate to consider the variation Ox as

Ox (t;) = h(t,) + x(1,) 8¢, (4.1-3)
For the cost function, Eq. (4.1-1), we find that
AJ = f " @x(t) + h(r), X(¢2) + h(D), 1) dt — j X, KO, 1t (4.1-4)

By taking the linear terms in this equation and performing an mtegratxon
by parts, we obtain the first variation ast

8J = Dfx(t)), %(t,), £,18t, + W(2,)
+[wolR - 75 @

where, for convenience;, we assume that h(¢,) = 0, Using Eq. (4.1- 3), the
first variation becomes

= {@lx(r), %), 11 — ¥°(1) ?‘I’["(gf;*(;‘gff% ) o,

+ Bxr(ey) 220 X, 1] (4.1-6)

aq’[x(ff) X(t), tr]
R (4.1-5)

+ f hT(’){ax Zld?%%} dt

11t is not correct to call h(¢) the first variation if the terminal time is not fixed. This
does not alter any resuits if differential notation, x(t) = ﬁ(t) + en(t), and ¢, = = Iy + eny
are used. Tt would, of course, be correct to use the symbol 8x(r) = h(¢), where 8x(¢) is the
variation in x only and does not include a variation in terminal time,

In much of out work, it will be convenient to define a qu 1y, called the
Hamiltonian, by

HRO,M), =0~ 0T = @ 4 372 (4.1-7)

where thd_ Hamiltonian is not a function of %) x(¢) and A(¢) are called the
canonical variables, In terms of the Hamiltonian, the first variation of Eq.
(4.1-1), which is Eq. (4.1-6), becomes
8J = —8x"(t)A(t,) + HIx(ty), Aty), t/] 8¢,
repy JOH dl} ' (4.1-8)
+ ['wo [+ 4 |
To establish a necessary condition for a minimum, it is necessary that
the integrand in Eqgs. (4.1-6) and (4.1-8) vanish and also that the trans-
versality condition, as obtained from Eq. (4.1-8)

—8xT (1)) + HIX(t)), A(t,), 1] 81, =0 (4.1-9)

be satisfied.
Thus far in our development we have considered functions with “smooth”

arcs, Let us now consider the problem of minimizing the cost function
1
J = f X¥2 — %) dt
]
subject to
x(0) =0, x(D) =1

Physically, it is clear that the absolute minimum for J is 0 and that this is
obtained for

x(1)=0 t €0, 4]
x()=2t—1 teld 1]
which is certainly a solution to the Euler-Lagrange equation for this problem
X%+ xk—4x=0

There is one disturbing feature about this solution, however, in that the
optimum x(¢) has a “corner” or discontinuous first derivative which gives
rise to formal difficulty since & is contained in the Euler-Lagrange equations,
Certainly, though, this particular function x(f) is smooth in a piecewise
sense, or piecewise smooth. We will define a function as being smooth in an

‘interval of time if it is continuous and has a continuous time derivative in

the interval. A function is piecewise smooth if it is smooth except for, at
most, a finite number of points, We may examine further the special require-
ments imposed by this “corner” by considering the Weierstrass-Erdmann
conditions [1]. ’

The Weierstrass-Erdmann corner conditions furnish us with the require-
ments for a solution at corners or jumps in the extremal curve. In all of our
work thus far (except Section 3.8), we have considered functions defined for



smooth ar  pad thus have allowed only smooth solutions of the associated
variational problems. The Weierstrass-Erdmann conditions extend the
class of admissible arcs to include those which ar¢ only piccewise smootl,
Specifically, we wish to find the function &(s) among ali functions x(¢) which
are continuously differentiable for ¢ € [a, b], except at some pomt c E'(a, b),

m W@_baunda:y&ondxtlons such that tfc fuﬂchonal

u@=jq@mdmﬂm (4.1-10)

has an extremuin, It i is of course clear that forf € [a,cland ¥ € [¢, D], the
function x(t) must satisfy the Euler-L Lagrange equations for & minimum

dob _ob_ (@.1-11)

dt 9% 9ox

We may rewrite the cost function as a sum of two cost functions:

@ = [ @Ix(0, %), Ade + || Dbe(e), 20), Al |
= J(%) + Ji(x) (@41-12)

We may now take the first variation 8J,(x) and 8Jy(x) separately. We
assume, for the moment only, that @ and b are fixed, and we require that the

£(?) calculated from Ji(x) and Jy(x) is the same at ¢ = ¢ which is unknown.
ince ¢ is arbitrary, the first variation of Ji{x) 1§
T aci)[x(a), }'(((l), ﬂ]
SJi(x) = = &x (@) —ax@

+ {@ix(a), Kol - %@%ﬁﬁ& (4.1-13)

2y OP[x(c), %(¢), c] ¢emnfo®  d oD
+ 0x(0) o%{c) : + Lh (t){ﬁx dr 8x} dt

Since x(¢) satisfies the Euler-Lagrange equations for an extremal and since
Ox(a) = 0, we have

SJy(X) = axr(,r) OP[x(7), X(7), 7]

ox(7)
- {elsen), 10, ] — w0 PR XL 5, (411D
(forr=c¢ —0)

In a similar fashion, we can show that the first variation for the extremal
solution of Jy(x) is

8-]2()() = —.axT(T)M '

ox(7)
~ (o) 209,71 — 0 QIO T 5 (G119

(for 7 = ¢ + 0)

In order to obtain the extremum, the extremal solution mu  tisfy

SJ(x) = 8Jy(x) + 8Ju(x) = 0 (4.1-16)
Thus ‘
od _ b
OX |=c-0 3 t=ct0 (4.1 17)
| g 4l .
P — % R |y = D—x% 2% |oors (4.1-18)

since 9x and 8/, arc arbitrary, These requirements, Eqs. (4.1-17) and (4.1-18),
are called the Weierstrass-Erdmann corner conditions and must hold at any
point ¢ where the extremal has a corner. If we use the Hamiltonian canonical
variables

H=o— 2 _ o4 A (4.1-19)
_ o
- (4.1-20)

we immediately see that the Weierstrass-Erdmann conditions simply require
H and A to be continuous on the optimum trajectory at all points where there
are corners, ‘

It is possible to generalize the Weierstrass-Erdmann corner condition in
terms of the Weierstrass E function, defined as

7 .&:@@me¢mxo—@>xygﬁzo (4.121)
where 9®/dx is evaluated at the optimum solution vector x(f) and X is an
admissible vector, one which satisfies all constraints, This provides us with
necessary conditions for an extremum under constrained conditions [, 6].1

In the next section, we will examine, among other things, minimum time
problems for problems where the extremal arcs or trajectories are smooth
but where the terminal time is not fixed. Thus we will need to use the expanded
variational notation presented in the first part of this section. Then we will
consider the important case in optimal control where the admissible control
and state variables are restricted. We will then use the Weierstrass E function
to develop a maximum principle. In this work we will find it necessary to
interpret the vector x in this section as the generalized state vector, which
includes the control vector.

4.2 The Bolza problem and its solution

We will introduce the Hamiltonian approach to the solution of variational
problems by considering the Bolza problem of the variational calculus and

‘TCcrtain other conditions are also required, such as absence of conjugate points,
References [1], [6), and [11} provide much claboration on this point,



several exfer 15, We shall see that the results obtained are similar in many
ways to the results of the Pontryagin maximum principle which we will
present in the next section. Our approach to this section will be, as before,
to employ classical variational techniques,

4,2-1, Continuous optimal control problems—fixed beginning
and terminal times—no inequality constraints

We are given a nonlinear differential system operating over the fixed
interval ¢ € [t,, ¢/] of the form
% = f(x,u, ) 4.2-1)
where x(¢), the n vector state variable, is determined by u(¢), the m vector
control variable, and the initial condition vector
x(ta) =X, (4.2-2)
Actually, the statement that all components of the n-dimensional state

vector are fixed at the initial time, #,, is a bit restrictive, although it is

generally true for optimal control problems. However, in the state and
parameter estimation problem, not all of the components of the state vector
are specified initially, Thus a more general® statement of the specified initial

conditions is
M(2,)x(%,) = m, (4.2-3)

where m, is an r vector. In a similar fashion, some of the terminal states may

be specified. In this case, we may findt
N({t)x(t,) = n,

where n, is a ¢ vector, g < n,
We will return to a discussion of this point momentarily. But now we

desire to determine the control u(¢) such as to minimize
SGpat = em@,al T+ [ d
0 4, 4 =010, 1], + [ $1x0), w0, g
X

We use the method of Lagrange multipliers discussed in the last chapter
to adjoin the system differential equality constraint to the cost function,

fg/\ which gives us
7 =6, A+ [ b0, w0, £ + AU, u(e), 1] — K}t
M ko ()
b ol ‘ (4.2:6)
¥ We define a scalar function, the Hamiltonian, as
Hx(0), u(t), A1), 1] = ¢[x(8), u(®), 4 + A" OF[x(2), u(2), 1]

*These are, of course, still not the most general statements for the initial and terminal

manifold,
1These are, of course, not the most general statements for the terminal manifold.

(4.2-4)

(4.2-5)

(4.2-7)

‘i

Thus the cost function becomes
J = 0[x(t), 1] |:j + | :’ CHIX(), (), M), 1] —
If we integrate the last term in the integrand of Eq. (4.2-8) by parts, we obtain
= {lx0), 1~ MOx)| ) + f (HIx(), ), MO, 1] + M)t

4.2-9)
We now take the first variation of J for variations in the control vector
and, consequently, in the state vector about the optimal control and optimal

state vector. This gives us
- oA o] o)
8J = {6x [8x ot fz, ax'| 22 L 3] 4 u dt
A\ W
M o N (4.2-10)
ition for a minimum is that themmtioz in J vanish

Ar()x}de  (4.2-8)

A necessary co
for arbitrary variations 0x and &u, Thus we have as the necess

for a minimuny the very important relations |

ry condition

; axr[% — ]L] =0, for t=t,1 4.2-11)
Km*(“‘ﬂ ‘ ’ .
N ‘\ D e -—x- ) (4.2'12)
LIS IR o T e
Q‘ 38 T %’Ef —pg " au 54 (4.2-13)

Since Egs. (4.2-3) and (4.2-4), or alternate and perhaps more general
expressions for the terminal manifold, may interrelate the components of
the vector variation &x at the terminal time, and since an initial manifold
may interrelate the components of the vector variation &x initially, Eq.
(4.2-11) is the general statement for the transversality condition for the
problem treated here. For a large class of optimal control problems, the
initial state of the system is specified but the terminal state is unspecified. )

In that case, Eq. (4.2-11) yields the transversality condmons T 5 A e et
AT [ ety e
kbR Y =% Al =Bt - 42-14 4

m S“ 0 X( o) as ( f) 8x(t,) ( ):) @f’

- since OX(f;) =

x(t,) nor x(1,) are fixed (specified). In that case
¢ fL

= 0, x(t,) is fixed, and Ox(t,) is completely arbitrary. In another ¢}

broad class of problems x(t,) and x(¢,) are fixed. In this case dx(t,) and &x(¢,)

must be zero, and x(#,) and x(¢,) are the boundary conditions for the two-
point boundary value problem. For_many estimation problems, neither

A(t) = 02as the boundary conditions for the roblcm since Ox{¢,) and M
8x(tf) are arbitrary. In still another case, we might have x(¢,) = x,, § =
OX\l,) arc arolliaty.




and || x(z,, = 1. In this event, it is easy for us to show that the final
transversality conditions are obtained if we solve the two scalar equations,
¢ach in n variables. ‘
BXIX() =0, BX()AL) =0 (4.2:15)
We now give a more general and precise interpretation to the trans-
versality conditions. For the general case where the initial manifold is
Mx(t,), 6] = 0 N -vediv K o (4.2-16)
and the terminal manifold is ! e
. te e ke o
N[x(t,), t,]=0 " " (4.2-17)
we adjoin these conditions to the @ function by means of Lagrange multipliers,
& and ¥ and obtain for the cost function

7= O |‘=‘-’ - gTM[X('t")’ t] + p*N[x(t), t,]
-+ J:: {H[x(®), u(@t), A ), 1] — Af()i}dt

We now apply the usuval variational techniques to obtain for the trans-
versality conditions at the initial time:

(4.2-18)

J\(ta)——— (gf)é, M[x(), 1] =06 t=1, (4.2-19)‘

The # initial conditions are obtained from this, with r parameters to be found
in Eq. (4.2-19) such that we satisfy the .» conditions of Eq. (4.2-16). In a
similar fashion, the terminal condition is

A = (3;:1 )v, Nx(),1=0, t=t  (4.2:20)
n terminal conditions are obtained from this with g parameters v found in

Eq. (4.2-20) such that the ¢ conditions of Eq. (4.2-17) are satisfied,
The n vector differential equation obtained from Eq. (4.2-12) will be

called the adjoint equation. Equation (4.2-13) provides the coupling relation .

between the original plant dynamics, Eq. (4.2-1), and the adjoint equation,

the X equation of Eq. (4.2-12). This couplmg equation was obtained from .

X A
e

and it is important to note that Su must st be completely arbitrary in order for
us to draw the conclusion that 9H/du = 0 to obtain the optimal control,
For the problem posed here where the admissible control set is infinite,
Ou can be completely arbitrary. Where the admissible control is bounded,
Ou cannot be completely arbitrary, and 9H/ou = 0 may not be the correct
requirement, We will have more to say about this later. The solution we have

obtained for this problem is a special case of the Po: ,>agin maximum
principle

It is also interesting to note that, since H = ¢ -+ Mf we may compute
the total derivative with respect to time as

dH of7 2 of
=S+ w g+ (G- v+ (TR it +argy
' (4.2-21)
but from Egs. (4.2-12) and (4.2-7), we have
. 9 of? :
YR ww
and from Eq. (4.2-7),
_ 0 of”
= Gy ( ~ )A | (4.2-23)
Thus, since X*A = A7f, Eq. (4.2-21) becomes
AH_2% 2w (42:24)

We see that, if ¢ and f are not explicit functions of time, the Hamiltonian
is constant along an optimal trajectory where 2H/du = 0. It can be shown
that this is always true along an optimal trajectory, even if we cannot require
8Hzmnake use of this fact in a later development.

In order that J be a minimum, the second variation of J must be nonnega-
tive along all trajectories such that Eq. (4.2-1) is satisfied. Therefore we need
to compute the second variation of J in Eq. (4.2-9) and impose the require-
ment that the variation of Eq. (4.2-1) is zero, or that

5% — (Q‘f)ax —~ (Q’Z/) Su =0 (4.2-25)
ox ou ‘
Applying this condition and taking the quadratic part of the Taylor series

expansion of J(x + 8x,u + Ou) — J(x, u), Eq. (4.1-4), we have for the
second variation

3 = [6xTa 9 5x ]

t=1ly

2 t=t,
o H 8 oH
o Judx |[5x (4.2-26)
L f [6xT Bu”] dt
T2 [?.QE]T oH || u <
udx| o 3o

and this must be nonnegative for a minimum, This will be the case if the
n 4+ m square matrix under the integral sign and 2%0/9x® are nonnegative

definite.

A

¢

‘.
3

u\*
/\(‘\,ﬁ 9 W 12’
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Example 4.2-»
We are given the differeatial system consisting of three cascaded integrators
Xy =X x(0) =0
Xy =X %4(0) =0
Fp=u  x(0) =
We wish to drive the system so that we reach the terminal srianifoid
XA + X1 =1
such that the cost function
J=14 f: utdt

is minimized. The solution to the problem proceeds as follows. We compute
the Hamiltonian from Eq. (4.2-7) as
= 3‘;”2 + 7\:1.7('2 + 7\/2x;5 ‘+‘ 7\,314

and determine the coupling relation, Eq. (4.2-13),

and the adjoint Eq. (4.2-12)
U
)\‘1 o 3)»‘1 -
oH
M= g =M
oH
Xy = — g =N

From Egs. (4.2-17) and (4.2-20) we see that the transversahty condition at the .

terminal fime is

x?(l) + x5(1) =

) =2 (3;1 )v f=t,
where ' v
NIx(tp), e] = Xty + Xty —1 =0, =1
Thus

A1) = | M (1) | = 2x,(L)w
A4 L0
Thus the problem of finding the optimal control and associated trajectories for
this example is completely resolved when we solve the two-point boundary value
problem represented by
Jh = Xy x,(O) =0

M) éx«l)v}

Xy = X, 2,(0) =0

¥y =Ny X(0) =0

N =0 M) = 2x, (1w
j Rg= =Ny Ag(l) = 2x,(1)w

Ag =Ny A1) =0

Although the six firsi-order differential equations represented above are per-
fectly linear and time invariant, the solution to this problem is complicated by
the nonlinear nature of the terminal conditions, We shall discover various itera-
tive schemes for overcoming this difficulty in later chapters.

}x%(l) + 1) = 1

4,2-2, Continuous optimal control problems—fixed beginning
and unspecified terminal times—no incquality constraints

The material of the previous subsection may be easily extended to the
case where the terminal manifold equation is a function of the terminal time
and the terminal time is unspecified. For convenience, we will assume that
the initial time and the initial state vector are specified. Solution may then
easily be obtained for the case where the initial time and initial state vector
are unspecified. Therefore the problem becomes one of minimizing the cost

‘function
T =00 (), 01 + | ::gb[x(t), u(e), 1 dt (4.2-27)
for the system described by
% =1[x(t), u(t), 1],  x(t;) = X, (4.2-28)

where {, is fixed and where, at the unspecified terminal time ¢ = ¢, the ¢
vector terminal manifold equation '

Nx(t,), t,] =0 (4.2-29)
is satisfied. It may be noted here that the terminal manifold line, x(¢,) = ¢(¢,),

of the previous chapter becomes here N[x(¢,), #,] = 0 which is'more general.
We adjoin the equality constraints to the cost function via Lagrange multi-

pliers to obtain
7= 0050, 47+ VN, 1 4 [ O, 00, o
+ A‘T(t) f[x(t)’ ll(t), t] - X]} dt
As before, we define the Hamiltonian
- H[x(), u(), A, 1] = (), u(®), 1] + ATOI[x (), u(?), ¢]
and integrate a portion of the cost function, Eq. (4.2-30), to obtain
J = 0[x(ty), £ + VINIX(t), /] — M%) + A (t)x(t)

+ Ji’ (H[x(), u(t), A(t), {] + X7x(r)} dt (4.2:31)



We agair.  /m the first variation by fetting
x(0) = &{) 4+ h@),  u(@) = &) + Su(s), tp=={, 4 8t, (4.2-32)
and then we form the dificrence J[x, u, i, — J[8, 4, £,] and retain only the
linear terms, Thus we have, after dropping the A notation for convenience,
87 = 5t {H[x(t,), u(t,), A, 1] - ?}
. s
+ 8x7(t)) {%% —~ no,)}  (4.233)
+ [ {hT(t)[%‘g + x] n 8u’f(:)[%{!i]} dt
where ‘

®x(1), v, ;] = O[x(t,), t,] + V'N[x(z,), 1,] (4.2-34)

We must set this first variation equal to zero to obtain the necessary condi-
tions for a minimum, Therefore, the equations which determine the optimal
control and state vector are

H = $[x(1), u(t), {] + AT(DE[x(2), u(t), 1] (4.2-35)
A = % = f[x(1), u(t), ¢] (4.2-36)

OH & _ H"[x(D),u(t), 1] ap[x(t), u(t), 1)
M —d= ) 90, Dy + ¢ ) (4.2-37)

on

These represent the 2 differential equations for the two-point boundary
value problems. The conditions at the initial time are

X(t) = X, (4.2-39)

whereas those at the final time are
_ 00 a0 ON”
M) = a5ty = oty * vt (42-40)
NIx(t,), 1,1 =0 (4.2-41)
and .
| HIx(ty), u(t ), Mtg), 1 + 5 + (9;}‘ Jp=0 @2

Equation (4.2-40) provides n conditions with ¢ Lagrange multipliers to
be determined. Equation (4.2-41) provides q equations to eliminate the
Lagrange multipliers, and Eq. (4.2-42) provides the one additional equation
which we must have to determine the unspecified terminal time,

OH _ o 3P[x(0), u(e), 1] , of"[x(¢), u(@), 1]
OH _ o _ 29lx ) + AWM agy  42:38)

Example 4.2-2

For the first-order single integxatlon system
= {f, X(0) =1
we desire to find the control () which makes x(¢,) == 0, whete 1, is unspecified,
such as to make, for specified values of ¢ and B,
[
J =12+ }48 fo’ u dt
a minimum, For this problem
Nix(t), t]] = x(t;) =0, == jB8u*
6 =15  H=3Bu+r
The canonic equations are

’=u=—-—h—: r=0

B

with the boundary conditions x(0) = 0, x(¢;) = 0, where we determine the final
titne by solving Eq. (4.2-42) which b_ecomes, for this example,

A2 -
-—-2%~f)+olt, 1 =0

The solutions to the canonic equations are

?» t
O S N YORS Y
But since x(f;) = 0, ¢, = BA"N¢)), and in the particular case where 8 = a = 1,
we can easily show from the a foregoing that A(¢) = +(2)'/%, which determines
the solution to this example, The optimum control is u(f) = —-7\(t) = —22% The
corresponding trajectory is x(¢) = 1 — 2Y%, with ¢, = 2-'72,

Example 4.2-3

A problem which will be of consnderable interest to us later will be the
“minimum time” problem, In that case

Ox{t), ty =1, =0

and we specify the optimal control and corresponding trajectory by solving Egs.
(4.2-35) through (4.2-38), which become

Hx(), u(®), M#), 11 = M(OFIx(), u(®), 1]

OH — % = £Ix(t), u(), ]

OH o _ ofTx(D,u(0), 1]
WA= M
OH o AT[x(), u(), 1]



with the bou Y conditions specified by Eqgs. (4.2-39) through (4.2-42)
x(ty) = xo

Ats) = 3x(t g
NIx(t/), t1 =0
Hixtp, ey, 1= =1 = (G
In many cases, the system is brought to rest at the unspecified time, and the
terminal manifold is the origin, so that
NIx(tr), 8] = x(t) = 0
Then the foregoing expressions reduce to
X(1o) = o, x(ty) =0
HIx(ts), u(ts), Meg), 7] = —1

If the Hamiltonian is not an explicit function of time, Eq (4.2-24), which
applies here as well, yields dH/dr = 0; therefore, for this minimum time problem

Hx(0), u(®), M1), 1] = H[x(), u(), MO)] = —

It should be emphasized that we are not solving the usual minimum time
problem since we have imposed no inequality constraints on the control (or
state) variables. An alternate version of this problem would be to consider
¢ = 0 and ¢ = 1. This changes the Hamiltonian for this particular problem,
but it certainly does not change the optimal control and state vector, as the
reader can easily verify.

4.3 The Bolza problem with control and state
variable inequality constraints—the Pontryagin
maximum principle
In the prior work in this chapter we treated the Bolza problem with no

inequality constraints present on either the control or the state variable.
We found for example that a minimum of -

T =00t 1+ [ $Ix(0), w0, e
for a system described by
% = f[x(¢), u(e), 1], x(t,) = X,
with #, and 1, fixed may be obtained if we define a Hamiltonian as
Hx(2), u(?), A(t), t] = d[x(1), u(?), 1] + A7()E[x(), u(t), 1]
and set

=X X(1o) = %,

QD
SR

OH _ _ 5 _90Ix(¢)), t/]
wm=h M) ==
oH
ou =0
If the admissible control vector is unrestricted, then the first variation of
u(t), u(r), is also unrestricted, and in that part of Eq. (4.2-10) which reads

f [8|l(t)]"[ ]dt =0

we are free to set 9H/ou-equal to zero. Sections 4.1 and 4.2 describe a special
case of the maximum principle where this is possible. In many problems,
inequality constraints on the admissible control vector (the maximum thrust
from a reaction jet is limited, for example) are present, and we must there-
fore take this into account if we are to determine a realistic control strategy.

If u(t) is constrained, Su(r) may not be allowed to be completely arbitrary,
and therefore we may not in general set 2H/9n =1. Also, certain reglons

of the state space may be prohibited, and we must determine an optimum
control such that the state x(¢) does not enter the forbidden regions. We
examined a portion of this problem in Chapter 3 and found that we could
handle inequality constraints by converting them to equivalent equality
constraints. In this section, we desire to find the state and control vector
such that the cost function

T = 0x(ty), ]+ [ lx(e), o), el dr (43-1)

is minimized subject to
(a) the n differential system equality constraints
x = f[x(¢), u(¢), £] (4.3-2)
(b) the ¢ end point equahty constraints (g < n) at the terminal time
{which may be unspecified)

NIx(1,), 1] = 0 (43-3)
and the initial condition equality constraint ‘
x(t) = X%, 4.3-4)

" where we assume that 7, is fixed and x(¢,) is known. Actually, #, does
. not have to be fixed and the initial condition constraint can be
M[x(%,), t,] = 0, as was the case in Section 4.2. The required modifi-
cations to treat this case are small since the results are so similar to
the variable end-point and variable end-time case.
(¢) The r admissible control inequality constraints (r < m)

glx(0), w(6), ] = 0 (4.3-5)



where we will find it necessary to impose the requirement that the
ma  9g/ou be of maximum rank whenever g = 0.

(d) The s inequality constraints (with no control component in the
constraint) expressing the forbidden region of state space

- hx(),11>0 (4.3-6)
which does not satisfy the maximum rank test in (c).

As is apparent, we have formulated a rather formidable problem in the
variational calculus. We will solve the problem in such a fashion that we
obtain the Pontryagin maximum principle [2, 3, 4, 5]. However, due to a
slight change in the original problem statement, a more appropriate name for
the result of our development would be the Pontryagin minimum principle,
Our development will be patterned after that of Berkovitz who has unified

~many of the approaches to the optimal control problem [6, 7]. We will first
consider the case where the inequalities of part (d) on the admissible regions
of state space are not present and will then modify our maximum principle
and associated transversality conditions to include this important case.

4.3-1, The maximum principle with control variable inequality
constraints

We now wish to derive the first necessary condition for a minimum of
the problem just posed, except that we will assume that there are no bounded
state variables. Thus we are considering the first three of the four constraints
just mentioned. Constraint (c) is very similar to the inequality constraint of
Section 3.8, and we now find it desirable to expand upon that method of
treating an inequality constraint,

We are given the inequality constraint

glx(e), u(r), 1] = 0 (4.3-7)

We may convert this inequality constraint to an equality constraint by
writing for each component of g either

(2)* = gfx(@),u(®),d], z{t)=0, i=12,...,r (43-8)
or
()t =gdx(@),u@®), 1] i=12,...,r (4.3-9)

It is apparent that either of these two equations force g, to be greater
than or equal to zero since (2,)? and (y,)? must certainly be greater than or
equal to zero, This technique was apparently first proposed by Valentine [8]
and extended by Berkovitz [6]. It 1s quite similar to the penalty function
technique of Kelly [9] as we shall see in our chapter concerning the gradient
and second variation methods for the computation of optimal controls.
The choice between Eqs. (4.3-8) and (4.3-9) will depend largely upon the
particular computer (for an analog computer, Eq. (4.3-8) is generally easier

to implement than Eq. (4.3-9)) and the particular compute  jal aigOritiims
used (for the quasilinearization method, Eq. (4.3-9) is cona.\.‘erab.ly simpler
to use than Eq. (4.3-8) and also results in less computer solution time),

Example 4.3-1
It is quite easy to see that the constraint used here includes, as a special case,
that considered in Section 3.8. For example, if we require for a scalar control u,
Uain < U < tx, then we may write

g;[X(f), ll([), t] = thoax — U >0, gz[x(t), u(t), t] =t — Unin = 0
and we convert these inequality constraints to equality constraints by writing
(yl)2 == Hyax — s (.V2)2 =

for which ‘
(yly2)2 = (thyax — ) — Hnin)

which is_precisely the constraint used in Section 3.8. o
For the problem at hand, we adjoin, via the Lagrange mu'mpher, con-
straints (4.3-2), (4.3-3), (4.3-4), and (4.3-5) to Eq. (4.3-1) to obtain

T = Olx(t,), 1) + 7IX()] + VNI, 1]
+ [ {Ex, W, Ao, 1 = Ak (43-10)
— (g0, W), 1 — #} i

where

(@) =1[2,24,2, ..., ] (4.3-11)
HIx(), w(t), A1), 1] = o[x(#), w(t), 1] + AT(E[x(8), w(t), 1} (4.3-12)
w = u(?), w(t,) =0 (4.3-13)

We may now apply the Euler-Lagrange equations to the above cos}
function or take a first variation of it in order to obtain the necessary condi-

' tions for a minimum. It is thus convenient to define a scalar function ®,

the Lagrangian, as
Ix(0), %), WO, A0, T(0, &0), 1= HIXO, WO A, 5 14
— ATk — DI glx(0), W), 1] — £}
We will use the Euler-Lagrange Eqgs. (3.5-3). Since there are no w(t) and z(t)
terms in Eq. (4.3-14), we may write the Euler-Lagrange equations as

doad o2 _ g | (4.3-15)
qrox X
490 _ 4,3-16)
dt ow 0 (
d oo _ 4.3-17)
i A (



Each piec e continuously differentiable solution of the Euler-Lagrange
equations (4.o-15), (4.3-16), and (4.3-17) will be called an extremal curve or
an extremal trajectory of the associated variational problem. It can be shown
that the function & need be only piecewise smooth, and thus the Euler-
Lagrange equations require that every arc of the extremal trajectory on which
the first derivatives of @ have no discontinuities be a solution of the Euler-
Lagrange equations. The corner condition will answer our questions concern-
ing what happens at possible points of discontinuity of some of the deriva-
tives of the state or control variables. This corner condition will ensure
continuity of the state and control variables by forcing 2®/o% to be zero
everywhere since it is zero at the terminal time,

The transversality conditions for this problem are obtained in the usual
fashion.as explained in Chapter 3 and the previous three sections. For this
problem, they are easily shown to be Eqs 4.3-3), (4.3-4), and

; o0 3@ [/ f et 4.3-18
W ( ) @)\ =0, for te=i; 4.3-19)
Also, we have for the final transversality condition
' VIARS
oD ’ . —
sr)|Gr| = eyl 1 |=0,  for 1=,
T2,
which aHOWS us to write because of Bq. (4.3-17)
D=0, Vieltt]
Since when Iy # 0, ;.1 = (= g,;, and when Z, % 0, I, =0 .
Iz, =0, i=1,2,...,r, Vtel,t] (4.3-20)
Also, with similar reasoning, we have
S:Iv’ 06, Vieltt] (4.3-21)

We shall now introduce the Hamiltonian formulation and use the

Weierstrass condition to obtain the Pontryagin maximum principle. From
the definition of ®, Eq. (4.3-14), Eq. (4.3-15) yields

. __OH og" .
A == T 7X—I‘ ‘ (4.3-22)
Equation (4.3-16) with the deﬁnition of (I) Eq (4.3-14), gives us
(4.3-23)

V@?V%/ O(x, w, z, X, W, Z) - B(x, W, Z»_X,W z) — (X-—-x) x. Y

/Y

and in a similar fashion, Eq. (4.3-17) results in

I'di=0, i=12,. (4.3-24)
Since Eq (4.3-14), when solved for H, yxelds
Hx, W, A, ] = D[x(2), X(1), W(1), A(), T(r), (), 1]
-+ A% + T7()(glx (), W(e), 1] — %)
we can show that
He=d—x9®_ 30 _ o0 (4.3-25)

ox 6w 3z

because we know that 2* = g, A = 2d/dx, and have just found oDfow == 0
and 9®/9z = 0. This is in a form for direct application of the Weierstrass
condition, Eq. (4.1-21), which can be written as

S S SO |

(4.3-26)
/ o — 22

where lower-case symbols indicate optimum vectors and upper-case symbols
indicate admissible vectors, as before. From Eq, (4.3-25), it becomes apparent
that this condition is equivalent to :

Hix, W, A, 1] > H[x, W, A, 1] (4.3-27)

In other words, the Hamiltonian is smaller when we usc the optimal control
within the admissible set of controls than it is for any other control which is
in this admissible set. This is the basic contribution of the maximum principle
—a necessary condition for optimality is the global minimization of the
Hamiltonian, H, function.

i
(7300 acb

4.3-2. Summary of the maximum principle

Since our development of the maximum principle has been necessarily
long, it is desirable to give a summary of the results. It is also important to
note that we can successfully use the maximum principle without following

_each and every detail of our “proof.”

We wish to minimize

T = 0[x(t,), t,] + f j’ SLx (1), u(t), 1] dt (4.3-28)
. for the system described by
% = f[x(¢), u(®), 1] (4.3-29)
X(t,) = X,, t, fixed (4.3-30)
such that, at the unspecified terminal time ¢,,
N[x(t,), ] =0 (4.3-31)



s restricted such that pn kit A combifiot
glu(n), 11 =0 (4.3-32)

In other words, u(f) is not restricted in control space as a function of the
state vector, x(1), and

and where ¢

ue U C (433)

The Hamilton canonic equations, solution of which minimizes the cost

function and determines the optimum state and control vectors, x(t) and
u(f), may be obtained if we define a Hamiltonian

Hx(1), u(t), A@), 1] = dx(e), u(t), 1] + R @E[x(), u@), 1] (4.3-34)
and then set the Hamiltonian with u == & less than any othet value of H
withu e U.

umdmw & HIXW, 00, A1), (1 < HIx(z), u(s), A@), 1] (4.3-35)
ke WMv Wb Y,
b ab M o3 =x (4.3-36)
b Y
oH .
X (4.3-37)
SLIb_]CCt to the two-point boundary conditions
X(t) = X%, (4.3-38)
Nix(1p), t,] =0 ' (4.3-39)
29 _ ]
8[,+<8t,)v+H 0, at t=t (4.3-40)
26 . (N . e )
5)_(_;_(_9_{)1)-—&_0, at =1, (4.3-41)

We frequently wish to transfer the system to the origin in minimum time
so that we have

NIx(t)), t,] = 0 = x(i,) (4.3-42)

6lx(t,), 1] = ¢, (4.3-43)

$=0 (4.3-44)

In this particular case, the transverality conditions become

’;AN ¢ )4® (—»l’ ‘ X(to) = %, (4.3-45)

o 4 x(t,) =0 (4.3-46)

"‘ ~ \*0 e N H_.—1 N ooat t=1, (4.3-47)
' Example 4.3-2

Let us consider briefly the time optimal control pobilem for a linear time-
invariant system where the length of the control vector is constrained. We wish
to minimize

‘ i J = ff

for the system ,
% = Ax(t) + Bu()
%(t) = X,
where u(t) € U means |Ju@)|| < 1.
The Hamiltonian, Eq. (4.3-34), becomes
HIx(), u(e), MY), 1] = M @O[Ax() + Bu(n)
To make H as small as possible with respect to a choice of u(f), we must have

u() = =B

[IBTA@ |
The canonic equations become
oH oH
e % = Ax(f) + Bu(r), e —% = ATM(¢)
with the boundary conditions
X(f,,) = Xpy x(tf) =0

where we determine 1, by solving
HIx(ts), Mits), u(t)} = —
But, from Eq. (4.2-24) we see that dH/dt = 0 since the Hamiltonian does not
depend explicitly on ¢ Thus the above equation becomes
HIx(®), u(), M(0)] = —1 = AT(O)[Ax(!) + Bu()]
which is the additional relation needed to determine the terminal time.

4.3-3, The maximum principle with state (and control) variable
inequality constraints
We now wish to extend the work of Section 4.3-1 to include inequality
constraints on some or all of the state variables. We will represent this
inequality constraint by the s vector equation
h[x(2), 1] = (4.3-48)
where each component of h is assumed to be continuously differentiable in
state space. There are several methods whereby we may convert Eq. (4.3-48)

" to an equality constraint. We may define a new variable x,,, by

ey = S = [0 01 H(A - [ha(x, 0] Hhy) ‘( 43-49)
+ -+ [h(x, OFPH(A)
where H[/,(x, ¢)] is a modified Heaviside step defined such that
' 0 if h(x,6)>0
HA(x, 0] = {K, it h(x,£) <0
K, >0, s=1,2,...,§ (4.3-50)
and where the initial condition is

Xnaa(to) = 0 (4.3-51)



Thus we see t  jxn.(f,) is a direct measure of penetration of the state
. variable inequality constraint

Fuiltr) = | Snaa(t) dt = | ‘ (U, FHO) + -+ + D, DJFH(B)]
(4.3-52)
We will require that the final value of x,.,(t,) is zero,

Xnuity) =0 (4.3-53)
which will impose the restriction that we do not violate the inequality
constraint, This approach is a modification by McGill [10] of a similar
procedure by Kelley [9] which converts the s mequahty constramt to s
equality constraints of the form

Xpst = [h;(X, t)]QH(hl)’ CXpa(t) =0
Fnsa = [ha(x, O H(h,), Xnrg(8) =0
: : ' (4.3-54)

Furs = [h(X, O H(h,), Xnote) = 0
which are then added to the cost function to obtain

Jmodlﬂed = Jorlglnul + %3 xnﬁ(tf) (4-3'55)

The multipliers K, are thus the penalty functions, and J,,iee 18 mini-
mized such that the constraint region is entered only slightly, if at all. If we
require Xx,+;(¢,) =0 for j=1,2,...,s the constraint is of course not

exceeded at all,
A slight modification of the penalty-function approach can be obtained

if we define s new state variables
(Fns1)* = Kih(x, 1), Xn1i(fe) =0
(Kns2)t = Kohy(x, 1), Knsoly =0
: : ) (4.3-56)

. (Xnas)t = Kshs(x’ t), Xars(l) = 0

Berkovitz [7] suggests yet another method for converting the inequality
constraint to an equality constraint, For the case of a scalar constraint, a

variable _
nt—h(x,t) if >0

'Y(x’ 7, t) = . ’ .
hx,t) if p<0
is introduced and we convert the inequality constraint A(x, ) >0 to an.
equality constraint by writing

dydn _ oh | ohdx )
apdt —or T axdi (4.3-58)

(4.3-57)

which satisfies the constraint if we have the end conditions

yx(1,), 77(’0)’ to} = olx(ty), 7t tf] =0 (4.3-59)

The Euler-Lagrange equations can, of course, be used to determine the
differential equations for an extremum, and the associated transversality
conditions can be used to specify the two-point boundary values. If inequality
constraints on the control variables are present, we must of necessity incot-
porate these into our problem formulation. The Hamiltonian formulation
may also be used. These methods provide us with necessary conditions only.
From Eq. (4.3-14) it follows that the Lagrangian for the problem at hand is

5’ = + 7\:n+1[fn+l e Ji‘,,“]

d=H-— A% — IM[g — 2%] 4 Apeslfasr — Hnsd] (4.3-60)

where @ is the Lagrangian for no inequality state constraint. We are using
the equality constraint method of Egs. (4.3-49) and (4.3-50). The Euler-
Lagrange equations yield

d 3@_3(1)_9]”,,“ _ ]
3_—6; "9; >\'n-H - 0 (4'3 61)
3<I> d od
= Zoe=" (4.3-62)
dab
=0 (4.3-63)

which are, except for the f,,,, term, exactly the same as Eqs. (4.3-15), (4.3-16),
and (4.3-17). Also, we see that

I rnii(t) =0 | (4.3-64)
with the transversality conditions exactly as before and, in addition,
xn+1(’o) = xn+1(tf) =0 (4.3-65)

It is desirable to reinterpret these results in terms of the Hamiltonian,
just as we have done for the case of control variable constraints only. We
can do this easily by combining Eq. (4.3-60) with Eq. (4.3-61) and making
use of the Weierstrass condition, Eq. (4.3-26), which yields

A OH 8 fulx(®),1]
R ke - W v(4.3—66)
. dx(t)
% = X M (4.3-67)
v = B  p L — i, O H () F e o T, O1PH(R,)
(4.3-68)
gy = Paill) g - (4.3-69)



where /
H[x(1), u(t), A1), 1] = Hx(), u(t), 1] + R7OER(), w(e), &] (4.3-70)

Hx(t), A(r), A2), 1 < HX(0), u(@), A1), N ueys (4.3-71)
with the two-point boundary conditions (transversality conditions)

X(ts) = X, | (4.3-72)
N[x(¢), ]l =0 (4.3-73)
551—0; + (%Iff )v + H =0 (4.3-74)
26 at ¢ = lf
B (Y- =0 (4.3-75)
Xas1(fo) = Xpss(f) =0 {4.3-76)

These are the equations whose solutions minimize the cost function and
constraints of Eqs. (4.3-28) through (4.3-33), subject to the additional
constraint h[x(#), ¢] = 0.

Equations analogous fo these could be obtained in a relatively straight-
forward fashion for each of the other formulations of the inequality state
constraint problem presented here. Computational techniques will be used
to obtain numerical solutions to problems of this type in later chapters.

Example 4.3-3

As an example of optimization with a state variable constraint, we consider
the brachistochrone problem previously treated by McGill [10] and Dreyfus
[11]. A particle is falling for a specified time, ¢, — #,, under the influence of a
constant gravitational acceleration g, The particle has initial velocity x,(¢,) = x;,.
We wish to find the path that maximizes the final value of the horizontal coor-
dinate xy(t;). The final value of the vertical coordinate x,(¢,) and the velocity
x3(¢s) are unspecified. The path is constrained by a line Afx;, x,] > 0 in the
X;x, plane, where it is known that the unconstrained solution intersects the line,
The system dynamics are described by

Xy =xycosu,  xty) = Xy

Xy == Xy sinu, xo(to) = xyy

= gsinuy, X3(t0) = X30
where the control « is the slope of the path. The cost function is
= —x,(ts)

with no specified endpoint equality constraints, and the state vector inequality
constraint :
h(xyx)) = ax, 4-b — x>0
which is converted to the equality constraint
= fi = [h(xy, x)PH")

. We can casily compute the requisite nonlincar two-pc boundary value
problem by direct application of the maximum prmcnple given in this section,
The equations for this TPBYP are

K= X0 [nx;)? + (Naxg + N8 )14, xi{ts) = x4
= xa(’“zxs + Mg X3) A+ (Aoxy + M), xote) = X
= g (Mo -+ @) (Mx3)? + (haxy + 7\36’)2] 7 Xy(to) = Xy0
x4 = ll(x,, xg)l'l(,l), .l,g(fo) =(
>\:| = -—2(17»,;/1(:(,. XQ)H(/I), 7\/|(f0) = —]
Xy = 20l XY H(A), Myfts) =0
Xy = = Maal(Mx)? - (NaXy - Nyg)?] 12
= Mgy + M@ (xg)® A+ (Agxy - Ay g)1 17, Ay(tp) =0
=0, x(t)=0
The solution of this set of nonlinear differential equations with the associated
boundary conditions establishes the optimal trajectory and optimal control.
Needless to say, this will not be an easy task. We shall examine this problem

again, in Section 13.3-2, and determine a numerical solution for this optimi-
zation problem with a state variable inequality constraint.

" 4.4 Hanilton-Jacobi equation and continuous

dynamic programming

Let us consider once more the problem of minimizing

i
J = f : SIX(), u(e), ] dt (4.4-1)
subject to the equality constraints
X =1A[x(),u@), ], x(t)= %, (4.4-2)
and the control variable inequality constraint
| u(t) € O (4.4-3)

where O is a possibly infinite or semi-infinite closed interval, the admissible
input set, which may depend on x(¢) and t. Let us further assume, for the
moment, that 7, is fixed and x(#,) is unspecified. Suppose that we have

calculated i(f) and X(¢) to be the optimal control and trajectory. The cost

function is then a function of the initial state, x(t,), and the initial time, f,,
only. It is convenient to give this a special symbol such as

V(o ) 2 I8, 0 = [ G130, 6(0), ] d (4.4-4)

so that V(x,, t,) is the minimum value of the performance index when the
initial system state is x, and the initial time is #,. ¥ (x,,{,) is a function only
of x, and t, since &(¢) and fi(¢) are known (optimal) values for all ¢ € [¢,, ¢].



We now ¢ der a time Af between ¢, and ¢, and rewrite the cost func-
tion, Eq. (4.4-4), as
’ g+ Al (73
Vot = s and+ [ dxeod o
= 53, 0) + I3, O

If we now assume that ¢ is smooth over the interval ¢, to ¢, + Af and that
At is sufficiently small, we may rewrite-the J, term as

“f;:‘; = AUGIR(, + @), 0ty + @b 1o+ @b, 0<a <l (446)
" The second part of the cost function is simply

L€y Vi A+ A= [ RO, Ad (@44T)
w to+d

[vq/This is so because of the fundamental theorem of dynamic programming
2avwhich asserts that any part of an optimal trajectory is an optimal trajectory.
$JTo show that J, is V[&(¢, - At), 1, -+ Af], we observe that the value of J,

depends only on the state (¢, + Af) and the control &(¢) in the time interval
at from t, + At to 1. If J, was greater than V,, then there must have existed

a control such that

K&+ [ RO, 80,11 > V(e 1) (448

But this contradicts the assumption that é(¢) is an optimal control. However,

by the definition of V3, J; > Vy; thus J, = V.
We will now write the cost function along the optimal trajectory as

V(xo, i) = Atp[R(t, + alr), i(t, + als), t, + alt] (4.49)
‘ + VIR, + A, 1, + Al]
By expanding the last term in this equation in a Taylor’s series about Af = 0,
we have
V%o, 15) = Atp[R(1, + ale), 0L, + alst), t, + aAt]
4 V(o 1) + [a_’%@_’o—)}m + [?Kgﬁf‘:ﬁ]riam (4.4-10)

AL ]+
Upon taking the limit as At approaches zero and recalling the equality
constraint of Eq. (4.4-2), we have, finally, the Hamilton-Jacobi equation

Pt 1 gis(0a, e, 1] + [ M8, 80, 11 =0 (A1)

In thxs expression, we sce that if we define
— o) (Xo, ta) -
AA(IO) =% (4.4-12)

we may then rewrite the Hamilton-Jacobi equation, r dropping the

subscript “o” for convenience, as
V%0 1 Hx, 8, 4,0) =0 o (4413)

It is important for us to stress here that this Hamiltonian is the
Hamiltonian evaluated (at time #,) for the optimum control (), since we
have been assuming all along that ¢ was evaluated about the optimal control

-and state, Thus, yet another way for us to write the Hamilton-Jacobi equation

is

[oV(x1) oV

(D) H(x, &, t) (4.4-14)
where .

H(x 9, z) MinueuH[x(t), u(e), A = 241, t:l (4.4-15)

When ¢, is fixed and x(¢,) is unspecified, it is an easy matter for us to
show from Eq. (4.4-4) that the initial condltlon for the Hamilton-Jacobi

equation is

Vix(t,),t,] =0 ‘ (4.4-16)
If we had obtained the Hamilton-Jacobi equation for the cost function
{
J = 0[x(¢t,), t,] + J'; d[x(2), u(t), 1] dt (4.4-17)

we would have obtained the same Hamilton-Jacobi equation (4.4-13) with

. the initial condition (at the terminal time)

VIx(t,), t] = 6Ix(t,), 1] (4.4-18)

Needless to say, the Hamilton-Jacobi equation cannot be easily solved in
general. However, when it can, u(f) is determined as a function of x(¢), or
in other words, we find a feedback control law which is highly desirable.
The Hamilton-Jacobi partial differential equation is equivalent to the func-
tional equation of dynamic programming or Bellman’s equation [11,12,13].
It is sometimes called the Hamilton-Jacobi-Bellman equation [14].

- Example 4.4-1

Let us consider the linear constant differential system described by
% = Ax(f) + bu(r), x(0) = x,

where A is an # X n matrix and b is an 1 vector. Any u(f) is assumed to be admis-~
sible. We wish to find u(r) as a function of x(¢) such that

=1 J' ;” [X*Qx + ru?} dt



We now c. der a time At between #, and t; and rewrite the cost func-
tion, Eq. (4.4-4), as
L4+ At 7]
V(%o ts) = j L 9 G 0)dr+ j o SR D) 45)
= jl(ﬁ) ﬁ) + Jz(ﬁ, ﬁ)

If we now assume that ¢ is smooth over the interval f,,‘ to ¢, + Ar and that
At is sufficiently small, we may rewrite the J term as

Lo Hom
- Jy = A[R(t, + o), Gt + abe), f, +abi], 0<a<l (44-6) |

wt

, e The second part of the cost function is simply

’ {

LI AR 4 VORI WAY B M (OR OW) P R XS
w L +AL .

e This is so because of the fundamental theorem of dynamic programming
2 which asserts that any part of an optimal trajectory is an optimal trajectory.
tJro show that J, is V[R(t, + Af), 1, + Ar], we observe that the value of J,

depends only on the state (¢, + Ar) and the control {i(f) in the time interval
o+ from 7, + At to ¢, If J, was greater than V), then there must have existed

a control such that

F&O+ [ HRO 80, 0> Vi, 1) (“48)

But this contradicts the assumption that &(¢) is an optimal control, However,

by the definition of ¥y, J;, = Vy; thus J, = V).
We will now write the cost function along the optimal trajectory as

V(X0 t,) = AtP[R(1, + alit), §(t, + ), i, + alt] @.49)
+ V&, + A, 1, + Af]
By expanding the last term in this equation in a Taylox’s series about At = 0,
we have
V%, t,) = AtP[R(1, 4 alt), i(t, + aAt), t, + aAt)
+ V%, 1) + [?L”—(_a"tﬁ&]m + [?fi(ai)_gzlo_)]rﬁom (4.4-10)

0

AT T+ -
Upon taking the limit as At approaches zero and recalling the equality
constraint of Eq. (4.4-2), we have, finally, the Hamilton-Jacobi equation

aV(axt:, o) | pI(r2), (e, 1] + [Ql/%"__.):;%):"if[ﬁ(to), (i), 1] =0 (4.4-11)

In this expression, we see that if we define ‘
_ oV (%, L) )
Mty = el (4.4-12)

we may then rewrite the Hamilton-Jacobi equation, !t dropping the
subscript “o” for convenience, as

WD 4 Hex, 0,4, =0 (4.4-13)

It is important for us to stress here that this Hamiltonian is the
Hamiltonian evaluated (at time #,) for the optimum control {(?), since we
have been assuming all along that ¢ was evaluated about the optimal control
and state, Thus, yet another way for us to write the Hamilton-Jacobi equation

18

(VD ol OV
= H(x 57, 1) (4.4-14)

where

H(x,%{; , z) = Min.,EUH[x(t), u(e), Ay = X1, z] (4.4-15)

When ¢, is fixed and x(¢,) is unspecified, it is an easy matter for us to
show from Eq. (4.4-4) that the initial condition for the Hamilton-Jacobi

equation is

Vix(ty),t,]=0 (4.4-16)
If we had obtained the Hamilton-Jacobi equation for the cost function
tr
T =0[x(t), 1] + [ $lx(), (), ) (44-17)

we would have obtained the same Hamilton-Jacobi equation (4.4-13) with

. the initial condition (at the terminal time)

VIx(t,), t,] = 01x(1), 1] (4.4-18)

Needless to say, the Hamilton-Jacobi equation cannot be easily solved in
general. However, when it can, u{?) is determined as a function of x(¢), or
in other words, we find a feedback control law which is highly desirable.
The Hamilton-Jacobi partial differential equation is equivalent to the func-
tional equation of dynamic programming or Bellman’s equation [11,12,13].
It is sometimes called the Hamilton-Jacobi-Bellman equation [14].

- Example 4.4-1

Let us consider the linear constant differential system described by
x = Ax(?) + bu(r), x(0) = x,

where A is an n X n matrix and b is an z vector. Any u(r) is assumed to be admis-
sible. We wish to find u(¢) as a function of x(¢) such that

J=4 | wQx -+ nelde



is a minimur. ) is a positive constant semidefinite matrix, and » is positive,
The Hamiltonian for the problem is '

H(x, u, My t) = §x7Qx + Sru? 4 ATAX -+ Mbu
We need to find the control # which minimizes the Hamiltonian, This is

§C

and the Hamiltonian becomes
H{x, A, 1) = 3x7Qx + ATAx — LATbhTAp-1
Since the system and the Q and r terms are time invariant and since the
optimization is for a process of infinite duration, it follows that ¥(x, ¢) will
depend only upon the initial state x, This implies that

V)
ot =0

Therefore, since A = 9V/2x, the Hamilton-Jacobi equation becomes
L (Q’)T _L(a_’{T Pt
7r0x + (5r) Ax — [ (5) bt =0

If we assume a solution

Vix, t) = %xTPx‘

we see that

v o
E—PX

and the Hamilton-Jacobi equation may be written as
XL Q + LPA + LATP ~ LPbhTPr 1 x =0
which says that, for any nonzero x(¢), the matrix P must satisfy the n(n + 1)/2
algebraic equations (the P matrix is symmetric)
Q + PA + ATP — Pbb7Pr-t =0
This equation is solved for P, and then the control is computed from

V

u= bt = —b1r (20 = ey
X

If we further consider the system
Xy = X, x1(0) = x5
"22 = U, Xz(()) = Xap,
and the cost function
J=,}f:°(4x% + 1) dt

it is easy for us to show that the optimum control is given by
‘ = —2x — 2x,

Example 4.4-2 )

Consider the system
= xS b, x(0) = X
with cost functijon ‘
!
I=4[ @ +wya
where it is desired to determine the optimal feedback control. We accomplish
this by forming the Hamiltonian
H(x, u, 2 1) = 4x* + Ju® + e — Ax®
We then set dH/ou = 0 and note that A = 3V/dx to obtain # = —\; then

a3 e = {20 - [

The Hamilton-Jacobi equation is

L[] [y e

with Vx(fs), 1,1 = 0.
If the optimization interval is infinite, then 2V/or = 0, and we need to solve
the differential equation

with ¥(0) = 0 as the initial condition. We may approximate the solution to
this ordinary differential equation by a series expansion

2y 1 1
V) =po +px + %‘sz’ T+ gypeX’ A ggpaxt e

If we terminate the series after the fourth-order term, substitute the assumed
solution into the differential equation, and equate like powers of x (up to x*), we
obtain p, = p, = p; =0, p, = 1, p; = —6. Thus the approximate closed-loop

control is
Y | S 3
U= —A = s + x
We naturally may question the stability of the approximate control. However,
with u as obtained, the system differential equation becomes
¥= —xX U= —x
which is certainly stable.

‘A similar procedure to this could have been used to obtain an approximate
solution to the nonlinear partial differential equation that is the Hamilton-
Jacobi equation for this example. In this case, the p’s would be functions of time,
and we would obtain matrix Riccati-type equations [15]. This approach has
many attractive features. In particular, only initial condition problems need be
solved. Howcver, there are two disadvantages: There is no assurance Qf system
stability; the number of matrix Riccati differential equations which must be solved



increases gres’’ - with the order of the differential system and the order of the
polynomial ii. .or the approximate solution to V(x, ¢). If an expansion in x to
the N order is used for an # vector differential system, the number of distinct
Riccati-type differential cquations is
& (n—14+N1 +1)i
E=go=our
for an assutned solution of the form

% noon wnoonoc g '
Vix, 1) = Z]lmx; + %E kgl Pi¥kiXe + %E IE‘ g;lpfk:xjxkxz +oene

If, for example, the solution to a four-vector differential system is approximated
by terms up to and including the fourth power in x, we need to solve sixty-nine
differential equations to obtain the closed-loop control.

Our discussion of the second variation technique, the invariant xmbcddmg
procedure, and specific optimal control using the quasilinearization approach
will point out many interesting interconnections with the approach used to
obtain the solution to this example.

In our development thus far, we have assumed that the terminal time, ¢,,
is fixed. It is possible to remove this restriction with the result that the
Hamilton-Jacobi equation (4.4-13), (4.4-14), or (4.4-15) is still applicable.
The initial condition for the Hamilton-Jacobi equation is still Eq. (4.4-18)
and, in addition, the terminal time is determined by the relation

H@%KQ+1=Q at t=1f,  (44-19)
which holds if the problem is a minimum time problem such that
Vi, t)=1t,—1¢ ‘ (4.4-20)

If, further, the differential system is time invariant, the Hamiltonian is equal
to —1 at all times along the optimal trajectory.

We may formally obtain the Pontryagin maximum principle by taking
appropriate partial derivatives of the Hamilton-Jacobi equations (Problem
9). However, the resulting maximum principle is not applicable to as broad
a class of problems as is possible. The reason for this is that it is necessary
that V(x, ) be smooth or, in other words, twice continuously differentiable
with respect to x in order to obtain the Hamilton canonic equations of the
maximum principle. We shall illustrate these difficulties with a simple

example.

Example 4.4-3

A second-order example will now be discussed to illustrate that the assumption
of the differentiability of V(x, £} does not hold in some of the simplest cases.
We will consider the problem of transferring the system represented by the
differential equations

)21 _ xg, )2‘2 =Y

from an initial state %, to the origin in minimum time. W jsume that the
admissible set for the scalar control is described by [u(r)| < 1.

This problem can be solved by the Pontryagin maximum principle, In the
time optimal problem

J=ﬂmm
Therefore, the Hamiltonian is
Hx, u, &, ] =1 - Mg + At
The adjoint equations are
‘ 7('1 =Y, 7(‘2 =
The solutions to these cquations arc
M = (), Ay = Cy — Cyit

where C, is the initial condition on A; The control which minimizes the Hamil-
tonian subject to |u| < 1is

u = —sign A, = —sign (C, — Cif)

The initial conditions Cy and C, are not arbitrary but must be such that x(¢,) = 0
since it is desired to transfer the system x, to the origin in minimum time. When
u == +1, the solution to the differential system equation is

Xy =1 + x,(0)
x =L 4 201 + x(0)

If ¢ is eliminated from the foregoing, we obtain

5 =5+ 50 - 2O
When # = —1, the solution to the differential systqm cquations is
X, = —t + x{(0)

—2 '
X1 = - + x40}t + x{(0)

and if ¢ is eliminated in the foregoing, we obtain
=0 1 X0 + 20

By determining the constants C; and C, in terms of x; and x,, it is a straight-
forward task for us te show that the control law is

u = —signlx,(t) + dx() |2

These equations represent the optimal control and trajectories for # = —1 and
u = +1, respectively, and they indicate that these trajectories are segments of
parabolas. Figure 4.4-1 is a plot of some of these parabolas.

The segment of the parabola which is not an optimal trajectory has been
represented by a broken line. The optimal control can be determined from
Fig. 4.4-1 and a knowledge of the state of the system. The curve AOB repre-



sents the s wing curve. When x lies below AOB, w = -1 until the system state
reaches the _.rve A0, at which time the control switches to —1. If x lies above
AOB, u = —1 until it reaches BO, where it switches to +1. ‘

The optimal transition time 7T(x), which is the cost function J or V(x, #),can
be determined from the solutions for x; and x,. Figure 4.4-2 is a plot of 7(x), the
" minimum time to transfer to the origin for the case in which the initial x; is
held constant (x,, = —2), and x,, is varied about the switching line,

u=+1

Fig. 4.4-1 Switching curve and trajectories for minimum time Example
(4.4-3).

Vix, 1) =T(x)
ar

= N o
L]

S .

i >'X1|

Fig. 4.4-2 Minimum time to origin for fixed x,, Example (4.4-3).

10.

11.
12,
13.

14,

15,

From the graph it can be seen that 7(x)/ox, has a dit  ‘rinuity at the
switching curve. It can be shown analytically that 87(x)/ox; “vlows up” as x,
approaches +2 from the left, Hence the Hamilton-Jacobi equation would not be
applicable in examples of this type. This example indicates the loss of gencrality
which results from deriving the maximum principle from the Hamilton-Jacobi-
Bellman equations.
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) PROBLEMS

‘1. Find the TPBVP which, when solved, yields the control, u#(f), and trajectory,
x(#), which minimize
1
=~1sj0(x2 + uf) di
for the system

V4 &= -3t AU, x(0) =1
) 2, Find the control and trajectory which transfers the system
Xy = Xy, %0) =0
Xy == U, Xx5(0) ==
to the line

xi (1) + x(1) =
such that
1
J= ;f W) dt
0
is minimized.
3, Find the control and trajectory which transfers the system
X=—x-+u
10 to x(1) = 0 such that

J———{;f;(d)zdt

from x(0) =

et
J=1 fo X2(s) dt

subject to the inequality constraint |u(¢)| < 1 for the system % = u such that
x(0) =1, x(4) = 1.

5, Determine the Welerstrass-Erdmann corner condmons for the minimization of
the cost function

. .
J= J X2 — B dt
1]
6. What is the Weierstrass E function for the cost function of Problem 57

~ 7. For the system
x;(o) =10

¥, = u, x,(0) = 0
find the control and trajectory which minimizes

¢
J=6 +%L’u2dt

Xy = Xy,

if the desired final state is:
@ x,(ty) = x,(tp) = 0,
(b) x,(¢;) =0, x,(ty) = unspecified.

P -

o e

S, S W

8.

"9

B

10.

1.

v/

~ 12,

13,

Rl T FLUgu) Them ‘
Develop a second- and fourth-order approximation to tt  lution of the
Hamilton-Jacobi equation to find the closed-loop control whicu minimizes

=J,f::(xf + u?) dt NS,YL’EL&.( 2‘{ v J(j: )V
for the system ) ‘E Sv g
X = x3 4 xi ‘”((XI 7“'\‘,)’ (42
Xo=x —x, -+ u $len b“7‘° =) b\/
Compute and compare the actual numerical results when ¢, is mﬁmte 2 t’

Derive the Pontryagin maximum principle from the Hamilton-Jacobi equation -
by calculating (d/d1)(2V/ox) and aV/8) as outlined in Section 4.4. Observe the
differentiability requiremcent on V{x, ). Vil e PR b

Find the control vector which minimizes e,
. \/(ﬂ =P N :E, Ve
J=%I(x2+u?+u%)dt L
0 + 2 i' )QA‘ N Y s y —,;
for the system described by {e))z 0

=1 phy i ad £l A

Use the maximum principle and the Hamilton-Jacobi equations to find the
optimum control vector. M . .

Set up the differential equations and boundary conditions to minimize for ¢,
unspecified

J’.‘ = ul "l“ 1(2,

73
. J = J‘O uzdt + t_,x}(tf)

subject to the constraints

a) X, =x2,5c2 =X, Ky =U

b) x(0) =

o) jul< 1 fxs] < 10

d) x,(¢)) = 3, xu(ty) = xs(ff)

Set up the equations and boundary conditions to optimize the system
Xy =u

Xy ==, Xy =X,

for the performance index with ¢, unspecified
‘ .
J = L i+ )
subject to all of the following constraints
a) xT(O) =[1,0, 0]
b) x,(t;) = xa(ty)

©) x5(ty) =0
d) lui<1

tr
& [ war =1
Find the Hamilton-Jacobi equation for the system

32‘1=x2 )22=—x2—x%+u



- ifthe pe  mance index is
f

J = fo’(xf + ) de

A 14. Show that the solution of the Hamilton-Jacobi equation for the system
X=Ax-+u AT+ A4=0 Julj<i
and the cost function
b
J = .[0 dl’ = ff
is
V(x) = || x||

What is the optimal control?

15, Find the optimal control to minimize
!
J= J. " dr
0

for the system
K== Uty

when
x(o) = 1) x(t,) ={
el <1 + |x|

e

8}

OPTIMUM SYSTEMS
CONTROL EXAMPLES

In this chapter, we will illustrate some, but certainly by no means all,
or even a majority, of the optimal control problems for which closed-form
analytic solutions have been obtained. The problems we will solve in this
chapter are very important in their own right and illustrate the use of the
maximum principle for problems in which closed-form analytic solutions
may be obtained. Specifically, we will discuss the linear regulator problem,
the first solution of which was due to Kalman [1, 2, 3, 4]. We then discuss
the minimum time problem which has been considered by Pontryagin [5],

" Bellman [6], LaSalle [7], and many others [8 through 13].

A characteristic of some minimum time problems is the possibility of
a singular solution, The possibility of singular solutions is well-recognized
in the variational calculus literature and has been extensively discussed for
control problems by Johnson [14, 15, 16] and others. Minimum fuel problems
for linear differential systems are then discussed. A variety of authors, but
notably Athans, have discussed various aspects of minimum fuel problems
including the possibility of singular solutions [17 through 20]. Finally, the
minimum time, minimum fuel, and minimum energy control of self-adjoint
systems are discussed. It is certainly true that the self-adjoint assumption,
coupled with the need for as many control inputs as state variables, seriously
restricts the practical usefulness of the solutions, particularly for high-order
systems. However, the relative ease with which the control can be computed
makes this an excellent example for a relatively thorough analysis.

87



Many other  jimal control problems are solved in this book other than
the ones in this chapter. Discrete and distributed parameter problems are
reserved for the next two chapters, Chapter 11 discusses several optimal
control problems with regard to obscrvability and controllability. Nonlincar
problems, which include the majority of optimal control problems, are
discussed in Chapters 13, 14, and 15. The literature in this area is very
extensive. For an excellent survey of many other problems plus a lengthy
bibliography, we refer to the survey papers of Paiewonsky [22] and Athans

(23],

5.1 The linear regulator
" We will now study a particular control problem which has as its solution a
linear feedback control law. It occurs where we have a linear differential system
% = A(X + B()u, %(t) = X, (5.1-1)
and wish to find the control which minimizes the cost function (for ¢, fixed)

= 18X + § [ FOQOXO + ORI (5.1:2)

Clearly, there is no loss of generality in assuming Q, R, and S to be sym-
metric, We may obtain the solution to this problem via the maximum
principle or the Hamilton-Jacobi equation. Here, we will use the former
method. The Hamiltonian is
Hx(t), u(t), A(), ] = £x"Qx + ju"Ru + A%Ax 4 A'Bu  (5.1-3)
Application of the maximum principle requires that, for an optimum
control, .

| %E = 0 = R(u(#) + B (OA() < (5.1-4)
and ' s
A = Qoo + AOM®). (5.1-5)
with the terminal condition o
- .
Altyy = 5% (l, 5= Sx(tr) (5.1-6)
Thus we require that
u(t) = —RY(OBIOA) .1-1

and we shall inquire whether we may convert this to a closed-loop control
by assuming that the solution for the adjoint is similar to Eq. (5.1-6)

A@) = P)x() (5.1-8)
If we substitute this relation into Egs. (5.1-1) and (5 1-7), we see that we must
require

x = A(Ox(t) — BOR(OB()P()x(t) I (5.1-9)
Also, from Eqgs. (5.1-8) and (5.1-5) we require :
X = Px(t) + Pk = —QO)x(t) — AT(OPWx(t) - (5.1-10)
By combining Eqs. (5.1-9) and (5.1-10) we have
[P + P(OA®) + AT(HP(r) — P(OB(R-'(O)B7()P(r) + QO)]x(0) = 0
(5.1-11)
Since this must hold for all nonzero x(¢), the term premultiplying x(z)
must be zero. Thus the P matrix, which we see is an r X n symmetric matrix
and which has n(n -+ 1)/2 different terms, must satisfy the matrix Riccati
equation—-— which, as we shall see later, must be positive definite —
= —PA() — A"(HP(1) + POBOR(OB'(P(1) — Q1) (5.1-12)
with a terminal condition given by Eqs. (5.1-6) and (5.1-8)
, P(t) =S58 (5.1-13)
Thus we may solve the matrix Riccati equation backward in time from
1, to t,, store the matrix

K@) = —R'(0)B"(OP() (5.1-14)
and then obtain a closed-loop control from ' .
u(r) = +K@)x(@) (5.1-15)

It is important to note that all components of the state vector must be
accessible. We will remove this restriction in Chapter 11 when we discuss
the ideal observer. A block diagram for accomplishing this solution to the
regulator problem is shown in Fig. 5.1-1. If we compute the second variation,

we find that

88 = § Ox7(¢))S 8x(t,) -+ 4 j [Bx7()Q(0) Bx(t) + Bu (OR(t) Su(r)] dt
(5.1-16)

u() X
— B )2 L xt) — x(1)

Al

A

K

Fig. 5.1-1 Optinium linear closed-loop regulator.



Thus, @ and S must be at least positive semidefinite in order to
establish the sufficient condition for a minimum. In addition, we know
. from Eq. (5.1-7) that R must have an inverse; therefore, it is sufficient that
R be positive definite and that Q and S be at least positive semidefinite,

In some cases it may turn out that certain elements of the S matrix arte
large enough to give computational difficulties. In this case, it is possible
and perhaps desirable to obtain an inverse Riccati differential equation; we let

POP'(@) =1 (5.1-17)
and, by differentiating, we obtain '
PP-1(r) ++ PP = 0 (5.1-18)

such that we obtain an “inverse” matrix Riccati equation

-1 = AOP~() + P-I(OAT() — BOR()BY() + P(OQUP()
(5.1-19)

with
P-i(t,) =St (5.1-20)

In this way, for example, it is possible to solve the Riccati equation such

that S-' = [0], the null matrix, which will require that each and every

component of the state vector approach the origin as the time approaches the
terminal time. The “gains” K(z), or at least some components of them,
become infinite at the terminal time in this case. It is also necessary to assume
certain controllability requirements here, as we shall see in Chapter 11.

It is possible to write the nonlinear # X n matrix Riccati equation with
a terminal condition as a 2n vector linear differential equation with two-point
boundary conditions. We will use this approach, in part, to solve a Riccati
equation associated with a filtering problem in Chapter 9. Our discussion
of the second variation method in Chapter 13 will also make use of a Riccati

transformation.

Example 5.1-1
Consider the scalar system
%= —5x() +ut), x@) =%
with the cost function
7= 453t7) + 4 [ 1) + Ol

The Riccati equation, Eq. (5.1-12), becomes /
p=p+p—2 plt)=s

which has a solution that we may write as either .
p(t) = —0.5 + 1.5 tanh (—1.5¢ + &) / %
/ ,

or
p(6) = —0.5 + 1.5 coth (—1.5¢ + £)

where & and &, are adjusted such that p(t;) = s.

For example, if }
(@) s =v0l, ty éﬁl, then &, = 1,845 radians, which gives
K@) = —R'\BTP = 0.5 — 1.5 tanh (—1.5¢ +- 1.845)

Since s = 0, we are not particularly weighting the state at the final time, and
_ the “gain” (and control) goes to zero at the final time.

(b) 5 =10, 1, = 10, then & = 15.1425 radians. In this case we are applying

a great weight to the error at ¢ = 1, and the gain becomes large (—10) at the

terminal time.

(c) s = oo, the Riccati cquation cannot be solved directly since it has an

infinite initial condition. The inverse Riccati equation can be solved with zero

terminal condition to give

K-1() s&zs +0.75 tanh (—1.5¢ + 1.5¢, — 0.346)]

As t; becomes infinite, it is easy to show that~K(r) becomes unity and, as is
expected, the-feedback gain becomes-constant.—Figufe 5.1-2 illustiates K(#), the
“Kalman gains” as they are sometimes called, for these three cases for this
particular problem.

Example 5,1-2

Let us consider the optimum closed-loop control for a nuclear reactor system.
Specifically, we wish to consider a very simple reactor model with zero tempera-
ture feedback. Only one group of delayed neutrons will be used.

The reactor kinetics are described by the equations

R e ) VR TP

‘where the neutron density, #, and the precursor concentration, ¢, are the state
variables, and the reactivity p is the control variable. The system has the initial
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Fig. 5.1-2a (—1) times Kalman gain for controller, s = 0.
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conditions #(0) = n, and ¢(0) = ¢,. B, A and A are constants, the average fraction

of precursors formed, efféctive neutron lifetime, and precursor decay constant.
The problem is to increase the power from the initial state », to a terminal

state dn,, where d is some constant greater than 1.0, The performance index for

the system is )
¢,
L=y g
The control variable therefore becomes p, and p, in effect, thus becomes a state
variable, The kinetics equations may then be rewritien as

pu

where u is the control variable, Chapter 14 on quasilinearization indicates how
the nonlinear two-point boundary value problem resulting from the use of
optimal control theory may be used to obtain the optimum control and trajectory,
which arc shown in Fig. 5.1-3, for the following system paramecters

» = 0.1 sec™! n, = 10 kW

d =5
A = 1073 sec B = 0.0064
ty = 0.5 sec

We will now develop a method of feedback control about the optimal trajectory
which minimizes a cost function J,; it will be quadratic in deviation from the
nominal (optimai for J)) trajectory and control.

Having formulated a model for the nuclear reactor system and determined
the optimal trajectories, we now desire to determine the linearized system coef-
ficient matrix about the optimal trajectory. The deviations of the state and
control variables about the optimal or nominal trajectories are expressed by

n=m) + An@),  c=c () + Ac(t)
p = pa(t) + Dp(), u = uy(t) + Au(r)

5.0 T T T T /u
.
o
4.0 -%)(IO3 ~
3.0 -
2.0 .
1.0 -
! | I . J
0 O.1 Q.2 0.3 0.4 0.5 0.6
Time (sec)

Fig. 5.1-3 Optimal control (reactivity) and trajectory (flux density) for

Example (5.1-2).



The state vect
AX) = [An(t), Act), Do)

The lincarized model becomes

() Moty 0
Ak = -j-’{i ~x 0 |Ax@)+| 0 |Aw
6 o0 0 3
T = AWBX(E) - bOAU(E)

where
an(t) = pg‘"(tk—- B, ay(t) = EZ_X@

To complete our design of the closed-loop controller, we must evaluate
A(r) and b(¢) about the optimum or nominal trajectories, select the R, Q, and S
matrices, and solve the associated Riccati equation. The nominal trajectory,
control, and time-varying gains are then stored and used to complete the closed-
loop controller desigi. . '

The choice of the R, Q, and 8 matrices to minimize

T =3x8 )SAx() + 4 :’ [AXT(NQAX() + FEOARE)] de

is somewhat arbitrary and can perhaps best be done here by experimentation.
We can accomplish this only after we have obtained a knowledge of possible
disturbances which may drive the system off of the nominal trajectory. Let us
assume that we will use

10 0
Q=0 0 o], §=0, r=1

L0 0 104]

In Chapter 13 the second variation and neighboring optimal methods of con-
trol-law computation will lead us to a method for choosing the proper weighting
matrices for a variety of cases, in particular, for relating J; and J,,.

The control, Au(#), is computed from

Au(t) = —RIOBI(OPEAx()
= —[pa(OARE) + Py Ac(E) - Poa()Ap()]

where it is necessary to solve the 3 X 3 matrix Riccati equation, having six
different first-order differential equations, to obtain P(#). Figure (5.1-4) illustrates
the Kalman gains —K7(¢) = [p;:(t), ps2(t), p5:(t)] for this example. Figure (5.1-5)
indicates how the complete closed-loop controller is obtained. It is interesting
to note that, in an actual physical problem, the precursor concentration is not
measurable, and therefore we need to add an “observer” of this particular state
variable. We also need to discuss many more aspects of this problem such as
disturbances and parameter variations. We will postpone further consideration
of these important questions until we establish some foundation in state and
parameter estimation and optimal adaptive control. We have, in this example,

14.0
2.0
100
80
60
40

20

\ | . I 1 | 1 |
0 - 0lo 0.20 0.30 0.40 0

Time, seconds
Fig. 5.1-4 Kalman gains for Example (5.1-2),
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Fig. 5.1-5 Structure of controller for Example (5.1-2).

illustrated how a basically nonlinear problem may be linearized, and a linear
time-varying closed-loop controller obtained, if a nominal trajectory is known.
Since this can be accomplished for a variety of problems, we sce that the linear
regulator problem is indeed an important one.



5.2 The yar servomechanism

The lincar regulator problem considered in the preceding section can be
generalized in several ways, We can assume that we desire to find the controt
in such a way as to cause the output to track or follow a desired output
state, 9(¢). We may also assume that there is a forcing function (not the
control) for the system differential equations. Therefore, we will consider

the minimization of
T=4l70) = 2+ 4 [ 90 ~ 20 o + 190 ol (52:1)

for the system which contains an input or plant noise vector w(t)
k= AOx(0) + B(Ou(t) + w(t),  x(lo) = %, (5.2:2)

z(1) = C(Ox() (5.2-3)

The requirements on the various matrices are the same as in the preceding
section. We proceed in exactly the same fashion as for the regulator problem.

The Hamiltonian is, from Eq. (4.3-34),
H(x) u, A’) t) = "3’: “ ?(’) - C(t)x(t)HQQ(t) + '5' ” u(t) “fl(t) (5 2_4)
+ AT @D[A@X() + B(nyu(e) + w(o)] '
We employ the maximum principle and set dH/du = 0 to obtain

u(t) = —R-(OB(OA) ‘ (5.2-5)
and
%g— = =& = CI(OQMIC)x(r) — ()] + AT(OA()  (5.2-6)
with the terminal condition
A(ty) = C)S[CU () — 5] (5.2-7)
In order to attempt to determine a closed-loop control, we assume
A(r) = P(e)x(t) — &(1) (5.2-8)

We substitute this relation into the canonic equations and determine the
~ requirements for a solution. By a procedure analogous to that of the preceding
section, we easxly obtain the following requirements

= —P()A(t) — AT()P(r) : (5.2:9)
+ P(OB(OR™ ()BT ()P(r) — C*(1)Q()C(r)
P(t)) = C*(t,)SC(t,) (5.2-10)
and .
é = —[A(") — BOR(OB(OP(]'E + P(Ow(r) — C* Q)  (5.2-11)
§(t,) = C7(tSy(t,) (5.2-12)

Thus we sce that the linear servomechanism problem  bmposed of two
parts: a lincar regulator part, plus a prefilter to determine the optimal
driving function from the desired value, 7(s), of the system output, The
optitnum control law is lincar and is obtained from Eq. (5.2-5) as

u(t) = —R=OBT(OP)x(r) — §(0)] (5.2-13)

Unfortunately, the optimal control is, in practice, often computationally
unrealizable because it involves &(¢) which must be solved backward from
¢y to t, and, therefore, requires a knowledge of »(r) and w(¢) for all time
t € [ty t;]. This is quite often not known at the initial time .

Example 5,2-1
Let us consider the minimization of the cost function
J = ’:TJ:, [Cey — 70 + MQJ dt
for the system described by
Xy o= Xy, x1(0) = x4
Xy =u, x5(0) = Xz
We first use Egs. (5.2-9) and (5.2-10) to obtain the Rxccatl equation for
this example
Py =rh — 1, Pulty) =0
D1z = —Pu + PizPas Pulty) =0
P = —2p1s + Ppy Palty) =0

foa

) T If we allow 7, to become infinite, we obtain the solution P =Dy =42,
< Do =1, Thus we have for the closed-loop control

u = —R™'B[Px — E] = —x —A 2 %+ &
where we must determine £ by solvmg Egs. (5.2-11) and (5.2-12) which become for
this example _
E =& —m, &) =0
éz = —El + A/TE'.!’ ‘fz(’.r) =0
If 5, = o, a constant, for ¢ greater than zero, we are justified in obtaining

the equilibrium solution for the & equation if ¢, = oo by setting & = 0 to obtain
£, =0707E =9 =a. If 5, =1 — e, we will then find by a simple lxmltmg

process that for £, = oo,

J— —— o1
&) 1+2_|_ '_Zve s t>0
We may realize this solution as shown in Figure (5.2-1).
We note that if w(t) = 9(¢) = 0, or for that matter, any vector constant

" in time, the servomechanism problem reduces to a regulator problem except

that it is an “output” regulator problem rather than a “state” regulator
problem because of the presence of the output matrix C(¢). It is not necessary



“

X
.35+ 2

X1

|-~

@f—

Fig. 5.2-1 Block diagram of optimum servomechanism for Example(5.2-1).

for the system to be controllable in order to find a solution to the regulator
problem. The only exception to this is in the limiting cases where S becomes
infinite or where ¢, becomes infinite. It is, however, necessary that the
system be observable in order for a solution to the output regulator problem
. to exist. We will expand considerably on these ideas when we consider
controllability, observability, and the reachable zone problem in Chapter 11.

It is possible to give a frequency-domain interpretation to the regulator
and servomechanism problem for the infinite tine interval case for a constant
system. We will present this method, due to Kalman, in Chapter 9 where
the duality concept will allow us to treat both the estimation and the control
problems.

5.3 Bang bang control and minimum time problems

Maximum effort control problems have become increasingly important
in a variety of applications. It is natural that we ask under what circum-
stances optimal controls will always be maximum effort, or bang bang. To do
this, we will restrict each component of the control vector, u(¢), to some
bounded interval. Let us consider the nonlinear differential sysjem where the
control enters in a linear fashion 6 $vden, cmbonad g “

% = {[x(?), 1] + G[x(2), tlu(),  %(to) = %, (5.3-1)

a; < uy < by, Vi (5.3-2)

and assume a performance index which, likewise, contains only linear terms
in the control variable, such that the Hamiltonian will also be linear in u(t).

t - ©
T = 0%t 1] + [ IO, 1+ W), du} e (53-3)
HIO, U0, A0, 4 = 60,0 WO,
+ MOUEIX), 1 + CIx(O), a0}

Since the Hamxltoman is linear in the control vector, u(t), minimization of
the Hamiltonian with respect to u(¢) requires that

e {a¢ it {W[x(e), 1] + A(OGIx(2), eI} > 0
i = b,

it {(WIx(0), 1] + AT(OGX(), 1]k < 0 (5.3-5)

PR

Thus we see that when the control vector appears  Jarly in both the
¢quation of motion of the differential system and the performance index,
and if in addition each component of the control vector is bounded, the
optimal control is bang bang. The only exception to this occurs in cases where

A W0, 1 + AMOCIX@, 1 =0 Tt G20 (53:6)

e o .
Sfor then the Hamiltonian is nof a function of u(¢) and cannot be minimized
with respect to u(?). When Eq. (5.3-6) holds for more than isolated points in
time, the optimization problem is said to possess & singular solution, a prob-
lem which we will discuss in detail in the next section. A singular solution
is possible with respect to a_particular control component, w;, if the ith

component of Eq. (5.3-6) is zero.
““For this problem, the canonic equations are obtained as

X = 2 = Tx(), 1] + GIx(2), Qu(t) (5.3-7)

k= %Ixi 3¢[x(t), 4. hT[x(t) D)
+ Qf["T(;).’_’] A + —G[x—%XL(t,]—)“QLMt)

where u(¢) is determined via Eq. (5.3-5). Since we have not specifically stated
the end cenditions, we have carried the general problem about as far as is
possible, When we specify information concerning the desired states at the
terminal time and the initial condition vector, we have, as before, a two-
point boundary value problem with half of the conditions specified at the
mmtiar time and half at the terminal time, A possible method of solution of
the canonic equations for this formulation consists of reversing time in the
canonic equations, Starting at the determined or specified terminal vector,
which often is the origin of the state vector, we integrate back from this
point with a constant control until a switching point is obtained from Eg.
(5.3-5). Since no terminal conditions are present for half of the state variables,
the method is, of necessity, cut and try. Chapters 13, 14, and 15 provide
more systematic methods for solving this type of two-point boundary value
problem,

We shall now illusirate various solutions to a particular case which
results in bang bang control—the minimum time problem for constant linear
systems with a scalar input. In this problem, we desire to transfer an »n vector
constant differential system

ko= AX() + bu(t),  X(t) = %o (5.3-9)

to the origin, x(¢,) = 0, in minimum time, such that we have for the cost
function

(5.3-8)

7= : ()dt =1, — 1, (5.3-10)
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11

CONTROLLABILITY
AND OBSERVABILITY
—THE SEPARATION THEOREM

In our previous work with the regulator and servomechanism problems,
we noted that there were certain requirements, in addition to the definiteness
of certain matrices, which must exist in order for the problem to have a mean-
ingful solution, In this chapter we wish to examine these requirements,
which we have postponed until now so that we might explore them using
optimum control and filtering theory.

First we will examine an intrinsic characterization of the manner in which
the output of a system is constrained with respect to the ability to observe
system states, Then we will examine the dual requirement and find the charac-
terization of the manner in which a system is constrained with respect to
control of the system states or system outputs. We will consider these require-
ments for both continuous and discrete systems and will thus prove the
observability and controllability requirements for linear systems, Original
efforts in this area are due to Kalman Ho and Narendra [1, 2, 3, 4], Kreindler
and Sarachik [5], Lee [6], and Gilbert [7],

We shall then turn our attention to systems that are partially observable
in that the output vector contains all information necessary for the unique
recovery of each component of the state vector. We discuss two methods
for the construction of observers, the first due to Kalman [8], and the second
to Luenberger [9],

»
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Finally, we pose the problem of combined estimation and control in
which we not only have the requirement for state estimation but also the
requirement to use the estimated state in such way as to generate an optimal
control law. This problem has been treated by Kalman [10], Joseph and
Tou [11], Gunckel and Franklin [12], and others [13, 14]. It lays the foundation
for the optimal adaptive problem which wé shall consider in later chapters.

11.1 Observability in linear dynamic systems

In Chapters 8, 9, and 10 we developed various concepts concerning
state estimation in linear continuous and linear discrete systems. To accom-
plish state estimation, it is necessary that certain requirements with respect
to observability be met. ‘

For a system to be observable, it must be possible to determine the state.

of an unforced system from the knowledge of the output of the system
over some time interval. Specifically, in an unobservable system,; it is impos-
sible to determine an initial state vector x(¢,) from a knowledge of the output,
z(?). Of course, we must be able to do this if we are concerned with control
of system state variables as we are in the regulator problem. We shall first
discuss the observability requirement for linear discrete systems and then
proceed to a discussion of linear continuous systems.

11.1-1 Observability in time-varying discrete systems
Let us suppose that we have a system whose state is described by the
unforced vector difference equation
x(k + 1) = A()xk) (11.1-1)
and suppose that we observe a vector z(k) which is a linear combination of
the system states plus an additive noise term

z(k) = C(k)x(k) + v(k) - (111-2)

We desire to find the best least-squares estimate, ﬁ(k), of x(k) by minimizing
.

J=14 % l|2(k) — CURGE) e (11.1-3)

* subject to the constraint of Eq. (11.1-1) with x(k) replaced by ®(k). This
is a multistage decision process, and since Eq. (11-1.1) holds, we can write

x(k, + 1) = A(ko)x(ko),
x(k, + 2) = Ak, + Dx(ko + 1) = Ak, + DAGk)x(k,)
Thus it is clear that ‘
xX(ko + k) = ko + k, ko)x(k,) (11.1-4)
where

@o + K, Fo) = A(ks + k — 1) .. Ak + DAk, = ‘kﬁ‘ Ak)  (11.1-5)
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@(ko, ko) =1 (11.1-6)

Since matrix multiplication is not commutative, we realize that we must
form the product in Eq. (11.1-5) in the proper order, Now we can write

x(k) = e(k, ko)x(k,) (11.1-7)
By using Eq. (11.1-7), we can write the cost function as '
\ ] ‘
J= %,’;Z’k l2(k) — C(K)p(k, ka)X(ko) llf-100 (11,1-8)

which includes the constraint Eq. (11,1-1), since it has been used to formulate
the equation,

We wish to minimize Eq. (11.1-8). To do this we will solve aJ/ak(k,) = 0,
which is the usual necessary condition for a minimum, In doing this we obtain

from Eq. (11.1-8) ‘
k}ifk @™(k, k,)CTRR-1(i)z(k) — CUlo)p(k, k)& (k)] = 0 (11.1-9)

We note that £(k,) may be removed from the summation sign. By doing
this and solving the resulting equation, we obtain

ko) == M (ko k) kgfk @ (k, k,)C"()R(k)z(k) (11,1-10)
as the best initial condition, where we have defined '
M(ko, ky) = :21 p’(k, k)C'(RR()C(k)pk, ko) (11.1-11)

Clearly, M(k,, k,) must have an inverse and, therefore, must be nonsin-
gular. Kalman's condition for observability goes even further, in that it requires
M(k,, k,) to be positive-definite. We recall that a positive-definite matrix F
is defined as one such that x”Fx > 0 for any nonzero x. Also real sym-
metric matrix F is positive-definite if and only if there exists a nonsingular
matrix D such that ¥ = D7D. We note that D, being nonsingular, implies
that ¥ is nonsingular also, since det (F) == [det (D)]*. Since M is of the form
DD, the positive-definite requirement really only requires that M be non-
singular. For observability, wo are not at all concerned with the specific
nature of the positive-definite weighting matrix R, and thus we set R =1

in Bq. (11.1-11).

Example 11.1-1

Suppose we have two integrators in cascade as in Fig. 11,1-1a. We ask: Can
we estimate xT = [x,, x,] by observing z? Obviously not, because we do not
know the initial condition on the second integrator, In this case we would find
M to be singular and thus not positive definite,

Now suppose that we add a switch to the system as shown in Fig, 11.1-1b,
We begin by observing 27 = [z, z,] at some time ¢, < ¢;. Can we estimate x?
We would find that M is singular for # < ¢, and nonsingular thereafter, indicating
that the system is observable for ¢ > ¢,, and nonobservable for ¢ < ¢,, This is
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Known T xo(b) 7 X (k) J
input | =271 1-Z271
- 7(b)
{a)
Closed at #4
Known .| 7 Xo{b) 7 x1(b)); -
input | 127 1=z . > z(b)
T ‘Zz(b)
(b)
. Closed at # Open at 1,
Known 7 7 _)g ‘
input T 7 o——-o;-»o—,-q(b)
3= 7,( b)
(c)
Fig, 11.1-1 A simple system which is a) unobservable b), c) observable for
t> 1t

what we could expect intuitively. Lastly, we add another switch, which we open
at time ¢, as shown in Fig, 11.1-1c. In this case, the system would be nonobserv-
able for ¢t < ¢, but observable thereafter, even for ¢ > #,. This is because of
the fact that, once we know the value of x, for some time ¢,, we know x, for all
time, provided x, is known, and we are always observing x, Thus, M will be
singular for ¢ < ¢, and nonsingular thereafter, Therc is a general thcorem we
could have applied to the third part of this example [2] which states that the
rank of M(k , k,) is nondecreasing with increasing time or, here, increasing k.,
It is not nccessary that we interpret the observability condition through
the use of a least-squares curve fitting procedure. From Egs. (11.1-2) and
(11.1-7) we can set up a vector Z composed of

["2(k,) T [—C(k.,) ]
2k, + 1) Clk, + Dok, + 1, k,)

[ 2ke +2) | | Cllky + (ks + 2, ko) R(k,) = ATy, kR0
' , 0 — 0y VS 0

(11.1-12)

k) LCkpoths, k) i
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such that

Al k) = [C7(,) | @7k + 1, Ko)C2ko + 1) - -+ | @7(ky, Ko Tk
(11.1-13)

To solve for &(2,), it is necessary that A(k,, k,) be of rank n (x is an »
vector). This provides us with an alternative test for observability. If we

premultiply Eq. (11.1-12) by A(k,, k), we have
kkg’l;c @"(k, ke, )Cr(k)z(k) = [:if o (k, ko )CT(l)C()plk, ko)x(k,)  (11.1-14)

Thus we again have
Ky
R(k,) = M~ (k,, k,)kgk @T(k, k,)C(k)a(k) (11.1-15)

where M(k,, k) has been previously defined by Eq. (11.1-11). The matrix
M(k,, k,) is sometimes called the Gramian matrix and is nonsingular if and
only if the matrix A(k,, k,) is of rank n. Thus there certainly must be at
least n columns in A(k,, k), which requires that the minimum sequence
length, k, — k, is (n/m — 1), where x is an » vector and z is an m vector,
For constant discrete systems where A and C are stage invariant, these
results simplify somewhat since @(k, k,) = A%* C(k) = C, and the observ-
ability requirement becomes that the matrix
A(k) = [CTIATCTIAT'CT AT CT] . . [ ATV'CT) (11.1-16)
be of rank ». If a constant system is not observable on a sequence of length
k = n, it is, of course, not observable on any sequence. This is not the case
for stage-varying or nonconstant systems as indicated in Example 11.1-1.
In many cases, it will be computationally more convenient to determine
whether or not the n X # matrix AA” is of rank » rather than the » X nm
matrix A of Eq. (11.1-16). This statement will apply to the many matrices
of the form of Eq. (11.1-16) which we will encounter in this section and the
next,

11.1-Z Obscrvability in continwous systems
We have previously derived the observability condition for discrete
static and dynamic systems. Now consider a continuous dynamic system
represented by the # vector equation
(1) = A()x(r) (11.1-17)

“where we observe (measure) an m vector output

z(t) = COx() + v(t) (11.1-18)
where v(f) is additive measurement noise, We wish to find the best least-
square estimator, &(¢), of x(¢) such that the cost function

¢
T =420 — OOl (11.1-19)
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is minimized, subject to the constraint
() = AQR() (11.1-20)
We could obviously apply the maximum principle, but instead, we will use
another, simpler approach as follows. The solution to Eq. (11.1-20) is
() = o(t, T)X(r) (11.1-21)
where

3¢(f ™ — AWp(t, ), @lt, 1) =1 (11.1-22)

Therefore, given (¢,) at some time #, = 7, we can find ®(¢,) at any other
time ¢, = t by choosing the proper transition matrix @(#, 7).

We can use Eq. (11.1-21) to replace &(z) in the cost function, Eq. (11.1-19).
In so doing, we are free to choose any value of ¢ we desire. It seems that
a reasonable choice is ¢ = ¢,, since we will then obtain a solution for that
value of %(¢,) (i.e., the final state) which gives least-square error. In addition,
we have previously given the solution for x(k,) for the discrete case. Thus,
the cost function becomes

=4[l ~ Ot RNt (11123)

To determine the partlcular R(¢,) that minimizes Eq. (11.1-23), we must
solve

5o = 0= [ $T)CTOR Q) — COP(, LR (11.1:24)

which gives
([} o7 et 1) dtfsa) = [ 97, 1)CT R ate) d

’ (11.1-25)
We now define |

Nto 1) = [ 970, (DCORTOCOP, 1)t (11.1:26)

so that

(1) = Nt 1) [ 970, DCOR @) (11.1:2)

Clearly, the matrix of Eq.(11.1-26) must have an inverse or, in other
words, must be nonsingular. Furthermore, by computing the second deriva-
tive 92J/0x?, we see that we require N(¢,, ;) to be positive-definite in order
to establish sufficient conditions for a minimum of the cost function. Thus,
a system becomes observable at time ¢, when the matrix N(z,, ;) is positive-
definite for ¢, t, > 1,. Again, it can be shown that the rank of the matrix
N(#,, ;) is nondecreasing with time, In other words, once a system becomes
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observable at ¢ = ¢, it remains observable for all ¢ > ¢,. For observability,
the matrix R is again set equal to the identity matrix I
We will again offer an alternate derivation of the observability require-
ment, The output of the system z(¢) is from Eqs. (11.1-18) and (11.1-2]),
Fns i RO 20) = COP(t, 1IR() (11.1:28)
By premultiplying this equation by (¢, 1,)C"(¢) and integrating, we obtain

[ o7 1pC @ty dt = [ [ 97, 1DCTOCWRE ) de | 80 (11.1:29)

Thus :
2(17) = N1, 1) | :’ @™(t, 1)CT()a(t) dt (11.1-30)
where N(1,, ¢;) is as defined before:
| Ntot) = [ @ 1)COCOPE 1) de (113D
We can clearly solve for &(¢,) also by »
R(1,) = M-t 1) | :’ @(t, 1,)CT(1)(t) it (11.1-32)
7’ where
| M(¢,, ty) = f :’ 7@t t)CT(OC(OHp(, 1) dt (11.1-33)

and we can easily show that
M(t,, ) = @™(ty, t)No, 1/)p(ts, 1) (11.1-34)
; From Eq. (11.1-28) we see that a necessary condition for the system to
! ¢~ be observable (on the interval [£,, ¢,]) is that the columns of C(f)e(r, /)

- be linearly independent, Mathematically, we may write this condition of
' lingar independence in terms of an m yector 9 as [15, 16] 5 etk bty

' \ e
PC(Np(t, t,) %07, X Vit elt,t], p#0 = (11135
This condition may be developed into a test for observability as follows.
If we assume that the conditions of Eq. (11.1-35) are not fulfilled, and dif-
ferentiate Eq. (11.1-35) repeatedly, noting that de(1, 1,)/0t = A()e(t, 1)),
we obtain the sct of equations

POt t) =07,  j=12,...,n - (11.1-36)
where
T, = C'(¢)
11.1-37
r, =Lt 4w, (1197
Now if we define .
=D,y ..., T, (11,1-38)
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we sce that fo@vectors which we call .c we have
T (p(t, 1) = 0° (11.1-39)

which, since @ is always nonsingular, implies that I' is singular. But Eq.
(11.1-35) does not express an equality, so none of theserelations, Eq. (11.1-36),
could hold, and T' cannot be singular if the system is observable. Thus,
if the T" matrix of Eq. (11.1-38) is of rank n, where I, is defined in Eq.
(11.1-37), the system is observable.

The matrices M(¢,, ¢,) and N(¢,, ¢,) are known as Gramian matdces and
must be positive-definite for an observable system. This is an alternate and
equivalent criterion to requiring the I" matrix to be of rank n. For a constant
system, it is considerably simpler to determine the rank of the I' matrix
than to evaluate either of the Gramian matrices, Thus for a constant system,
the easiest criterion for observability is to use the requirement that the n X nm

matrix

CHAP. 11

D = [CT{ ATCT{ AP'CT - | ATV (7] (11.1-40)

be of rank ». This may be accomplished if we determine whether the » X »n
matrix I'TY is of rank n,

We may now distinguish between several types of observability. A system
is said to be observable on the interval [¢,, ¢,] if, for a specified ¢, and spe-
cified #,, every state x(t,) may be determined from knowledge of z(t) V ¢ €
[t t7]. In other words, the M matrix is positive-definite or the rank test is
satisfied for the fixed ¢, and fixed ¢,. If this is true for all 7, and some ¢, >> ¢,,
we say that the system is completely observable. If this is true for every ¢,
and every t, > t,, the system is said to be totally observable. The only
modification to this statement needed to treat discrete systems is that there
are a finite number of states, as discussed in Section 11.1-1, before a discrete
system will become observable, Finally, we remark that application of the
state estimation techniques of the previous two chapters to unobservable
systems often leads to impossible computational problems in determining the
solution to the error variance equation, A remedy is to attempt to estimate
only those components of the state vector which arc observable in the

output vector,

11,2 Controllability in linear systems

In Chapters 9 and 10, we saw that the linear state estimation and the
regulator problem were duals of one another, Thus it is reasonable to expect
a dual of the observability eriterion, and we shall call it the controllablility
criterion, We will say that a system is state controllable if any initial state
vector x{t,) can be transferred to any final state vector x(¢,), where ¢, and
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1, are fixed by means of some control u(¢?).t More precise definitions of co
trollability, as well as a discussion of the implications of duality, will be givc
at the end of this section. We shall first consider state controllability ar
output controllability for continuous systems. The close similarity of t!
results will then be noted. As suits the dual to observability, we shall initia
our approach by considering the transfer of the system from the initial sta
to a final state which, since linear systems are being considered, can be co
sidered to be the origin without loss of generality.
Suppose we wish to determine whether the system described by

x() = A(Ox(@) + B(Hu(r) (11.2-
o) = COx@) (11.2-
is controllable. In other words, we wish to find whether there is a contre

u(t), such that x(¢,) = x, and x(¢,) = 0. We will find the control which accor
plishes this (if it exists) and which minimizes the cost function

. ‘,
J=4{ 1@k d

We will use this cost function to “get a handle” on the problem, i.
to determine if there is a u(¢) such that we can bring the system from x(z,) =
to x(f;) = 0. Another “sensible” cost function would work cqually we
To do this, we shall use the maximum principle. Thus, we form the Ham
tonian

HIx(), u(®), M0), 1] = $ @) e + MOIANX() + B(Hu()] (112

and obtain in the usual way

(11.2-

%’g — % = AQX(D) + BOND),  x(t) =%, (11.2
%;’. — — % = AT\, x(t;) =0 (1.2
To obtain the minimum /7, we set
OH _ ,
| = (11.2
which gives .
u(e) = —R1(OBON) (11.2

By combining these last four equations, we obtain
% = AO)x(t) — BOR(OB(HOM1),
A= —ATOM),  X(t) =0

x(t6) = %, (112
(11.2-1

+In a similar way, a system will be called output controllable if there exists an in
u(r) which transfers an initial output vector #(t,) to any final output vector z(r,).
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In a fashion similar to that which we have used many times before, we
obtain the solution to these two equations as

X(tp) = plis, 19Xt = [ pley, DBER @B Mr) dr

At = @(t,, M)
By combining Eqs. (11.2-11) and (11.2-12), we obtain

X(t)) = @ltp, tx(ts) — | : P(t DIBOR(IB ()@ (1, IME) dr (11.2-13)

(11.2-11)
(11.2-12)

which must be zero. An alternate approach is to write

&*
x(t) = (¢, t)x(ts) + ft (t, IB(TR (OB (M) dr  (11.2-14)
hich, since x(t,) =0 be(qomes just
x(t) =«ft° o, T)B(T)R ()BT (T)M(T) dT (11.2-15)
But, since
M) = @T(t,, OA(2,) (11.2-16)

Eq. (11.2-15) can be written, if we choose ¢ = ¢,, as

) =‘»f: (o, TBER (DB (1)@ 1oy IMt) dr (112-17)

Now we can solve either Eq.(11.2-13) for A(t,) or Eq.(11.2-17) for
Mt,). Suppose we choose the latter, Then

M) = —W~(1,, 1)x(t,) (11.2-18)

where

11

Witay 1) = [ plto DBR @B ()Pt 1) dr (112:19)
If a system is state controllable, W(r,, £,) must have an inverse and also
be positive-definite as the second variation would show. Again R may be set
equal to the identity matrix, In Section 9.2, we had a relation very similar
to Eq. (11.2-19), which we converted to a differential equation. We found that
it was very much easier to solve the differential equation than to evaluate
the integral. Let us now try the same approach here, Differentiation of Eq.

(11.2-19) gives
3w(’0y tf)

ot —@(to, to)B(1,)R™(2)B"(:)p" (85, to)

b [ e DR e (12:20)

+ L, P(to, T)B()R(r)B7(r) 22 (s T) (,fl’a ™) dr

finally .

|
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which becomes, since 9p(t, 1,)/0t = A(t)p(t, t,) and @(t, 1) =1,
‘ al(atrt—f) = —B(t,)R!(t,)B"(t,)
- AG) f:, @(to, T)B(T)RN(T)BY (M) (t,, T) dT (11.2-2

-+ f:’ ¢(fo, T)B(T)R—l('T)BT(’T)¢T(fo, 'T)AT(la) dr

But, by Eq. (11.2-19), the two integrals are just W(z,, #,). Therefore,

aW(f,,, tf) —

ago _B(to)R-l(to)BT(to) + A(to)w(toa tf) (11.2_2

+ W(to, 1)AT(t), Wty t) =0

We have, therefore, succeeded in obtaining a differential equation for W(z,, ¢
which should be easier to solve than the defining relation for W(t,, ;)

Eq. (11.2-19).
It is interesting now to evaluate the cost function of Eq. (11.2-3) whic

by Eq. (11.2-8), becomes
J=1 J.z, AT(OB(ORT(OREOR (OB ()M(¢) dt (11.2-2
But R() is symmetric,o so that
=4 z’ MOBOR-(OB M) df (1.2
From Egs. (11.2-16) and (11.2-18), we see that

AMt) = @ (to, OM2,) = — @ (to, OW (15, 1,)%(t0) (11.2-
From the defining relation for W(t,, ¢,), we know that it is symmetric; hen
Eq. (11.2-24) becomes
J=4 j KE(t YWty 1) (t0r BEOROBTOP 10, YW (80, 1,)%(20) dt
(11.2-
By excludmg those terms from the integral which do not involve t we ¢
that
7= [ W10, )] |7 900, OBOR BT OD o 1) Wt 1
(1.2
Or, since the integral in the brackets is just the definition of W(t,, ¢), we ha

I = 3xT(t)W oy £)X(t) = 41| X(1) [fiv-1ctut0r (1.2

Equation (11.2-28) allows an interesting interpretation of controllabili
Suppose that we are given some definite value for the cost J. Then, if
can determine W-'(t,, £,), we can find all initial conditions such that I
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(11.2-28) is satisfied. We can thus plot a surface in n-space representing
those initial conditions from which we can take the system to the origin
with a cost of J. This problem is known as the reachable zone problem,
which is considered in Problem 4 of this chapter.

We can offer an alternative approach to this problem. We shall do this
now for the output controllability problem which reduces to the state control-
lability problem when C(r) = I. The solution to Egs. (11. 2-1) and (11.2-2)
is the m vector output due to the r vector control

21) — C(DP(t, t)x(t) = C(t) L o(t, BT dr (11.2-29)

At time ¢, the left-hand side of this equation is simply equal to some speci-
fied value z,(¢,) such that we may write

7alty) = 2(ty) — CUtplt, tx(t) = | : Ct )ity DB(M(T) d7  (11.2-30)

A sufficient condition for output controllability on {t,, ;] is that the
columns of C(t,)p(t,, 7)B(7) be linearly independent, which means that,
for arbitrary m vector 3, we have the r vector equation [15, 16]

'CUNPts, TIB(T) A 07, 1, <7<t (11.2-31)

We may develop another output controllability condition from this condition.
This proof will proceed by the method of contradiction. Suppose that there
exists at least one nonzero vector %, such that Eq. (11.2-31) is, in fact, true.
Repeated differentiation of Eq. (11.2-31) with respect to = yields

' CU )Pty MT(r) = 0%, J=1,2,...,n (11.2-32)
where, since 9g(t , 7)1 = —(t, T)A(T),

Ly() = B(7)
Iyr) = 2T — AT () (11239
Then, if we define the » by nm matrix I’
D=0y, T (11.2:34)
the condition of Eq. (11.2-32) becomes, for the nyp vectors 4",
N TCU)P(ty, T = O (11.2-35)

which would tell us that T' could not be of rank » since ¢ is nonsingular

(excluding for the moment the possibility of C being singular). But Eq.

(11.2-35) cannot be zero by Eq. (11.2-31), and so I’ must then be of rank

n, and Eq. (11.2-35) will not, in fact, be zero. Although this requirement

holds for time-varying systems, it is particularly easy to apply in the case

of’ constant systems, for then, as is easily verified, for I = [I‘l. T .
)n+l[1 ]

SEC. 11.2 CONTROLLABILITY IN LINEAR SY, fs
= [B!ABiA’B!.,.|A""'B] (11
and this must be of rank . This is only the requirement for state con
lability since, if a constant system is controllable at all, it is control
at t, = t, (impulse control required). Therefore, from Eq. (11,2-35), the
put controllability requirement is that
[CB:CAB{CA’B: ... CA"'B] (11.
be of rank m. For the general time-varying case, the C(t,)T' term o!
(11.2-35) must be of rank m since we know that @ must be nonsingul
If, in Eq. (11.2-30), we let
u(t) = B ()" (t,, DCT(1 M1 ) (1.
we have
Mtp) = =Vt )21 ) (1.
where ‘
L
Vit 1) = [ Clt)plty, BB MRt OCTt) drm (11,

and must be positive-definite for a controllable system. For state cor
lability, we may treat C = I; then we can easily show that

YV(tor 17) = @ty t)W(to, 1)@ty 1) (11
where W(i,, t,) is defined by Eq. (11.2-19).

It is quite easy for us to show that all of these results carry over ex

to the discrete system described by
x(k + 1) = A(k)x(k) -+ Bk )u(k) (11,
2k = Clyx(k) (11.
except that discrete transition matrices and summations are used r
than continucus transition matrices and integrations. The time interval |
is then replaced by the sequence ko, ko + 1, .., ks Thus, for instanc

discrete equivalent of Eq. (11.2-19) is

Wik k) = 31 Pl IBGOR™ ()BT (D)7 (ks ) (11,

Analogous to the diserete observablhty requirement, a controllable di:
svstem can be transferred to the origin in at most » stages, where X is
vector,

Just as in the case of observability, there are several different tyy
controllability, We will give these definitions for the case of state co
lability, Output controllability definitions follow merely by replacc
of x(¢,) by =(r,) in the definitions.

We will say that a system is state controllable for a gwen t,and ¢, if
initial state x(r,) can be transferred to any final state x(¢,) using any cc
u(r) over the interval {#,, 7,]. A system will be said to be completely stat
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trollable if, for any #,, each initial state x(#,) can be transferred to any final
state and given final time x(¢,) where, of course, t, > t,. To obtain total
state controllability, the system must be completely state controllable for

every t, and every I,

Example 11.2-1
Let us consider the linear system described by
2y = xy(8) + u(®), z(1) = x(8)
Ry = —x(f) — 2x,(6) — u(®), z:() = x:() + x:(0)
The system dynamics can also be written as
% = Ax(t) + bu(), 2(t) = Cx()

a=[ 0 b =[] e[ ]

We wish to determine the observability and controllability of the system.
From the preceding section we know that the system is observable if the n X nm

matrix

where

110—1]
011 —1

is of rank 2. This is the case, and so the system is observable. To discern state
controllability, we must examine the matrix

| 1 -1
gAnulBh[l 1]

to see if it is of rank 2. Clearly it is not, and so this system is not state control-
lable. Neither is the system output controllable, because the matrix

(CrAnCr - ATen = |
[B{AB{A’B; ...

1 -1
[CB CAB; CA?B} .- | CA"1B] = [o o]

is not of rank 2,

Let us now examine the reasons for this uncontrollability, Figure 11.2-1
illustrates a possible block diagram for this system, Appropriate transfer func-
tions for the system are

xl(f) xz(-") —1

uls) s + s1° sy  sF1
and we observe that the physical reason the system is not state controllable is
that the state vector x(r) can be controlled only along or parallel to a straight
line x,(f) + x,(#) = 0. This is certainly not in two dimensions; therefore the
system is not state controllable. Appropriate transfer functions for the output

state are

%(8) + x(8) _ )

a0 _n@) _ 1 rils) _
u(s)

u(s) uls) s+1

Zo(8) _
TouGs)
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ult) UIEYe N x(h

> Zq(f)

> 2(1)
+

Fig, 11.2-1 Block diagram of uncontrollable system, Example (11.2-1).

0|

12

L)

N

(3
3

Since the output z,{(¥) cannot be controlled by the input, the entire system is
not output controllable, If the output were just z,(¢), a scalar, then the system is
not state controllable but is output controllable. This means that we could
determine an input which could drive z,{t) to any given value but could not
drive x,(t) and x,(f) to any value which lies off the line x,(¢) + x,(t) = 0. We
note that we were given a second order system but found first order transfer
function from control input to state and output state variables, This implies that
that the given system is “reducible” in order. Choate and Sage [16] have shown
that systems which are not totally controllable must be reducible.

Earlier we remarked that the dual of an unobservable system is an
uncontrollable system. This can easily be seen if we observe the observability
criteria where the adjoint system (A* = — AT, B* = CT, C* = B”) is used and
if we note that the observability criteria becomes the controllability criteria.
Thus we may say that a system is controllable if the adjoint system is observ-
able. Since the dual system is defined by A¥(t*) = A7(¢), B¥*(¢*) = C7(¢),
C*(t*) = B7(t), t* = —¢, we see that the similar statement for dual sys-
tems, a system is uncentrollable (unobservable} if its dual is wnobservable
(uncontrollable), applies,

For successful control, it is normally necessary that systems be both
controliable and observable. For example, if a subsystem which is unobser-
vable is part of a closed-loop system, instabilities in the unobservable part
of the system cannot be detected or stabilized by the closed loop. If a system
is not state controllable, it is not possible to control a portion of the system,
and thus persistent {ransients may exist. If the system is not output control-
lable, then it appears that all is lost unless it is possible to change input and/or
output state variables,

Even though a system may be observable, not all components of the
state variable, x(¢), may be recoverable immediately from the observation
z(t). We recall that z(r) may well be a scalar, x(¢) may well be a 100 vector,
and the system may certainly be observable. In the next section we
shall discuss methods of state-variable recovery from observable output
vectors,
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