Physics
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Physics I. Assignments - Winter Quarter 1968-69

Date Assignment & Problems Date Assignment & Problems

1/7 Chap 1I. /é}lS Chap VIII, 1,2.,5

1/8 Chap 11,.2.4,5,7 ;5 2/14 Chap VIII, 3.6.7.9

1/9 Chap 11,11,12,14.18 ii 2/18 Chap VIII, 11,12.,13.14

1/10 Chap II, 20,24 III., 2.5 EE%Q/IQ Chap VIII. 15.24.25.26
" 1/14 Chap III, 6,8,9,10 : 22/20 Test VII angdg VIII

1/15 Chap TIT. 12,13,15,16 é ‘5721 Chap IX, 1.5.6

1/16 Chap III. 23,24,29.31 2/25 Chap IX, 7.9.10,11

1/17 Test 11 & III é 2/26 Chap IX, 14,16,17

1/21 Chap IV, 2.4.5 7. § 2/27 Chap IX, 19,22, 27

1/22 ChapIV—8.-10.12-13 % 223% o Chap X, 2.,3.4.,6

1/23 Chap TV, 22.,24,29.34 __  3/4 Chap X, 9,10,13.15

1/24 Chap IV, 20. V, 1,4‘ § 3/5 Chap X, 19.22,27

1/28 Chap V. 5,6.7.8 ? 3/6 Chap X, 29,31,33

1/29 Chap V+—10712,15,-17 . ? 3/7 Test Chap. IX and X

1/30 Chap V, 19,20,22,29 ? 3/11 Chap XI, 3.4.6.8

1/31 Chap VI, 2.3.4.5 ; 3/12 Chap XI, 9,10,13,16

2/4 Chap VI, 9,10,11,12 é 3/13 Chap XII, 1.4.5

2/5 Chap VI. 16.18.20,25 £ 3/14 Chap XII. 13,

2/6 Test IV, V., VI }

P ; FINAL EXAM, )
2/7 Chap VITI, 2.3.5.56 X £
2/ Chap VII, 9,12.13.15 _{5 4 [C WS

1 2/12 Chap VII, 19,20,21,22
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Physics I

Score_

Ny =

I (i) Two vectors A and B lie in
— the xy plane as indicated.
Each has a magnitude of
10 units, A third vector N
C=-37%54+ 4k . Circle '
the correct statements of
those that follow., The
vectors i, 7§, and & are
unit vectors pointing
respectively along the x,
y and z axes,

0 %
A,
-60 k

=<
o
il

« (B + €) = 150 %
C =18

-
(ii) Sketch on the figure the vector B - /

-3 -
(iii) Calculate the angle between B and C,






Physics I Test I January 17, 1969

Name /4 .

Score

BREN

Two vectors A and B lie in -
the xy plane as indicated. :
Each has a magnitude of '
10 units, A third vector
C=-375+ 4k . Circle
the correct statements of
those that follow. The
vectors 1, 7, and k are
unit vectors pointing
respectively along the x,
y and z axes. sin 30° = .50

LSS

.87

Ay = 10 cos 30°
sin 53.2° = .80

cos 53.2° = .60

- —_
- (B + C) = 150 %
_—
- & = 18 )
- =3 %W? .
(ii) Sketch on the figure the vector B - A. e

— —>
(iii) Calculate the angle between B and C.




\@'lm,.m.

-2

2) An object moving in a straight line along the x axis starts
from the origin at time t=o,., The figure below shows how its
instantaneous velocity depends on time, motion to the right
being represented by positive values of v and motion to the
left by negative values.

v N\
{(§0/see;
Tt T T T T
//
{
!
S |
/’ s t {sec
— +
0 25
S

(6)

(6)

Determine:

(a) the magnitude and direction of the displacement of
the object over the interval from t = o to
t = 13 seconds,. :
(b)

the magnitude and direction of the average velocity

over the interval from t=o to t=15 seconds
;\}g:; (. e -




S S

(6) (c) The magnitude and direction of the average acceleration
over the interval from t=15 to t= 235 seconds. p
; i -
(6) (8) the magnitude and direction of the instantaneous
acceleration immediately after time t=13 seconds.
3.)

From a high cl1iff a man shoots a body A straight up and a body
B straight down with the same initial speeds Vo, = 29.4 m/sec.

(6) (a) At what time is the speed of body B twice that of

bod y A? §
_ +\/
oy WS dog
”?‘m ﬁ»@ 7;2? & §ﬁ§5
m@% i

e
e

‘wﬁg

b
]
%

E




——d——

(6) (b) What is the distance of separation between
the bodies at that time?

W

= = e @;?

g

o

N

. A shell is fired straight upward and travels a distance
of 543 .9m during the third second, Neglect air frictionm.
Assume gll motion is upward during the third second.

(6)

\ . S -
(6) \ (d) What was the initial speed of the shell as
*, @) left the ground?




Physics I Test 2 February 6, 1969

Name [

To receive credit on any test question it is necessary to
indicate clearly how you arrived st your answer,

I. (4) A projectile is fired with an initial velocity of
160 ft/sec reaches a maximum height of 200 ft. What

angle did its initial velocity vector make with the
ground?

(B) A 2000 1b. car is moving around a circular race track ;
at a constant speed of 90 ft/sec. The radius of the .
track is 500 ft.

What is the acceleration of the car? (Magnitude and
direction)

T e,
~
Ve

What is the frictional force exerted by the ground
on the car, (Magnitude and direction)

G,
L

i\fk‘%}hﬂ%&\;

¥



Coel l

LI. The figure shows a box of mass !
m=3 slugs sitting on the floor l
of an elevator which is accelerating { ] W
downward, speeding up 2 ft./second .
each second.

Ll
aV

(2a) Draw a free body diagram below showing the box and the

real forces exerted on it by other objects.

identified

(b) Determine the magnitude of each of the forces
in part (a). =

(¢) According to Newton's third law, for every force there is
an associated reaction force. What is the magnitude and
direction of the reaction force associated with each force

of part (a), and upon what object does the reaction force
act?



——3--

ITI. An 8 1b. block and a 21 1b. block are tied together by a
string running over a massless frictionless pulley as
indicated in the figure. Assume that any additional

weight added to the 21 1b. block would make the system move,

(a) Draw a free body diagram §3y@k__
for each block, showing -

§$3?

A . - -

the forces acting 7 7

I/

-

i

PRI S

yamEn

HIR

RN |

(3)

. % af»:»?
(b) If the table top and t
of oak calculate the
for cak on oak.

8 1b. block are both made
coefficient of static friction

&

(15)

(c) An additiomal 4 1b. block made of oak is placed on
the 8 1b. block and a new block B replaces the
21 1b. bleck. The 4 1b, block is tied to a vertical
post as shown. What is the maximum weight of
block B if the system is to remain at rest?
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Physics III Test 1 October 24, 1969

Name

SURE TO_ SHOW HOW YOU_ ARRIVE AT YOUR ANSWER

a) In the figure below what is the magnitude and direction
of E at the point x =y = a ?

“b) What value of the negative charge will give a field of

E=0at x=1y = a for positive charges as givén above?
{ “ =,

o




—2 e

II. Two large metal plates face each other as shown in the figure.
The surface charge densities are # 4.0 x 1076 coul/m2 and
- 4.0 x 1076 coul/m2 on plates (1) and (2) respectively.

(Circle the answer which is correct. All answers for E

; ; R
have the dimensions nt/coul,) 4§L7 g !ékﬁ*
a) The value of E at point A is ] T
L - B
1) 2.26 x 1077 ¢ | .
o PR = b
. 2) 9.04 x 10-7 ' 7
| ]
V@3 4.52 x 1077 i
4) 1.44 x 1075 A |
5) 0 N
— -
b) The value of E at point B is (1 (2)
5 10-7 © a=0.25cm d=0.35 cm
1) 2.26 x - b=0.35¢cm 1=1.0 cm
x 10-70 ¢ = 2.0 cm
x 10-7/0 -1 __=9x 109 nt-m2
5/ - 4ITE, coul
x 1079/« )
5) 0 E, = 8.85 x 10712

coulz/nt-m2
c) The value of E at point C is

1) 2.26

2) 9,04 USE BACK OF PAGE 1

3y 4.52 FOR_WORK AREA

d) The value

2.26

"2) 9.04

3) 4.52

4) 1.80



S S

CIII. Two charges one + and one - are located
with respect to a point P as indicated
in fig. 1.

a) Calculate the potential
at point P due to these
two charges (12)

1 x 10-6 coulombs is
placed at P. This
charge is now moved by
some extermal agent
from P to the point PIl.
At each point of its
path (dotted line) it is
acted on by a resultant
force due to the other two
charges., How much work is
done by this resultant force
as the 1 x 10-6 coulomb charge
is moved from P to Pl (12)

=15
3 {2
@V
<& NroT o]
c) What is the potential energv of the system consisting

of the two charges shown in Fig, 1.







#

5
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November 14, 1969 Name §&3§

Physics III Test 2

In problem I circle correct answers,

I. &. The equivalent capacitance of the arrangement

of capacitors shown in the figure ~ ﬂ42 AL
: S e 3 : L —=5 "z
opposite ‘is in microfarads. c =
- cEE,_
,\ | 5
1) 10. 2) 11, 3) 6.2 4) 3.875 a ’*It‘"——é ——
A “:,/+ N
N " ‘“—ﬂ<~ L - g(j—
G 2.5006) 4.43 T) 30 e uAi ZE
A paraliel plate capacitor has a dielectric completely filling
the space between the plates. The area of one surface of each
plate is 0.01 m2, The dielectric constant of the dielectric is 2.0.
When a 50 volt battery is connected to the two plates, the total
free charge on each plate is 1oun§ to be 30 x 10-6 coulombs. =
(Note &, = 8.85 x 10-12 coul 2/n.m S
K=2 e
‘::t:ﬂffg
B. o The capacitance of this parallel plate capacitor is g=300 e
M) 0.6 € (T) 1.2 4 3) 150 4 4 TS5 4 5) 300 M 2 %10
6) 16.6 pf o
i L//’
C. The energy stored im this capacitor is (in joules)

1) 1.5 x 1073 2) 7.5 x 10-4 (&) 2.65 x 102 4) 1.47 x 10-15
5) 4.42 x 10710 6) 8.43 x 1072 7) 0.6 x 1070 g

/’%f ' = KE,4
V= T
f?/) w10

7
&
B85 A& O/j 2 (z.55x f{:ﬁ@@/

PXNC



o

fe=1

Which of the following is not true.

—

1) The polerization B is defined as the electric dipole
moment per unit volume,
-
2) For most materials P is proportional to the electric
field E
3) The polarizationgﬁﬂis zero at every point im 2 vacuum,
4) For a given electric field, the polarization will be

greater, the greater the dielectric constant of the
material,

Q} The polarization vector is sometimes referred to as the
electric displacement vector,

The capacitance of the parallel plate capacitor shown opposite
is

1) K €4S 2) %o S
- a___ Kd + a + b+ ¢ Y
3) €55 ) @/60 S |
d + a+b+c dg+@+c -
- K
K
5) €55 b 8) <, S (atc)
atc+X atec + d
d K
;,O\'-{‘%e'
7) K&y S | b
a+C+d l! < ‘:L “—-——-l—&_:*‘_;i:—;ﬂ T
Lsi cozpee T
< %‘ Sl U U e
,i ~<): i"v,!(:‘_":'“l‘( ~ -

- e

z

,
/s
bt phte

. - F
i LAY La e



2}

The power dissipated by a resistor is given by
P = i2R or P = V2/R. How does P change if R is
increased or decreased? Clearly justify your answer.

Explain 21l apparent inconsistancies or ambiguities.

@&y@

1S NYE

W

%ﬁ

gﬁwwﬁﬁﬁgﬁgw&ﬁ



I1I. For the circuit shown in the figure find the following

A. What is the potential difference AP
: . \/\' \/
Vg - Vy = Vap when the switch S3 Rl = 3.~

is left open and S, is closed?

=y ><<®

E 55

2 «éfyfﬂzflww il 3 eriforenn
/ﬂ‘g%!/,/;;&w VG, Lo Vi )

B. If sy is 1eft open, and R; is replaced by a battery with

its positive terminal connected to a and with an emf of

9 v, what is the power dissapation in Ry after S2 is closed?

(12 points)




C. If switch S, is replaced by a capacitor C = 4 unf, and the
resistors Rl, RZ' R3, and R4 are in their original

positions, what is the value of the charge g which appears
on C sometime after switch So has been closed?

(5 points) ; : .
C=g q =4\ «é/w;f’\’*
ﬁf
3., vV F3L(L, ~A5) 2O
ST A O A
,{,c/?’ '{"g.. . ’::} &\/{-12 VE\}— - G
T3grBe(4ga) #3(Lx ) =D
dplort ;éﬁ‘n”/ Ve
cuf =T
i/ \Vf
<
1v. The internal wiring of a multirange voltmeter is shecwn in

the figure., The galvanometer has a resistance of 1000
and will give a full scale deflection when a current of

1 x 10-3 amp passes through it, If the connections at

A, B, and C are for full-scale voltages of 1 volt, 10 volts,
and 100§ volts, respectively, what are the values for R;,@
Rp, and Rg ? ( A full-scale voltage will give a full-scale
deflection on the galvanometer.)

(10 points)

T o
+ 10w +100 v

S-S





















Physics III Lab. Fall 1969

Experiment 3

Forced Oscillations and Resonance

Purpose
To study forced oscillation and resonance of a mechanical system,

Reference

Study in H, & R. the linear harmonic oscillater (Sec. 15-2 and
15-3) and its rotational analog, the torsional pendulum (15-5).

Also study sec. 13-9 and 13-10. See H. & R., Chap. 35, section 3
and questions 2, 4, for discussion of damping mechanism used in this
experiment.

The oscillating system to be observed consists of a round flat
disc which rotates about its axis of (¢cylindrical) symmetry., The
"axle" of the disc moves in low-frictionbearings. A spring provides
an elastic restoring torque T (proportional to angular displacement
6 from equilibrium). An electromagnet provides a damping torque
proportional to the angular velocity d €/dt, providing in effect a
variable amount of "friction". (Too much damping would "brake”™ the
motion sufficiently to prevent oscillation.) You have seen references
(above,text) to linear and rotational analogs. The equation of motion
(15-6) of the linear oscillator, d2 x / dt2 + (k /m) x = 0 ,
its periodic solution (15-8) and the period (15-10), have their
analog, equationms (15-22), (15-23), and (15-10). There is a one-to-one
corregpondence between the sets of physical quantities:

linear angular
X e Sy e displacement
T e > t time
k oo K "elastic constant™
m SOV N | "inertial constant"”

In our experimental study we need to carry the analogy further
(S§ec. 13-9 and 15-10), Thus b, d amping const. — B in the (electro-
magnetic) damping torque, ( - B d & / dt), and Fp, max. driving
force —s C . maximum driving torque, and W™ driving freq.—= w & ,
freq. of driving torque. The equation of motion (15-40) of the damped,
driven linear oscillator becomesg, for the damped, driven angular
oscillator (our disc)

-K& - B de/dt + T costgt = I d2 @ /dt2 | (1)
Eq'n. (1) asserts that the sum of the spring's restoring torque, - K&,
- the damping torque, - B d ¢/dt, and the periodic driving torque,
YTm coswi g t, produces an angular acceleration‘r - i2 e / dt2 oA,

proportional to it: : . |
T (restor,) +_deamp.) + deriving) =1 .

I = constant



difference between the two periods (if amny) in the direction

3.

predicted by theory{ 1Is this difference too great to be explained by
experimental error?. :

I1.

I1T.

A,

A,

With no current in the electromagnet start the disc from
rest with a large initial amplitude x, and record peak
positive displacements for the first six successive cycles.

Repeat and average the corregponding peak digplacements

(amplitudes) A.

Repeat part A with the terminals of the damplng electro-
magnet attached to the 32 volt supply.

On a single set of axeg, plot graphs of In 4 vergus t from
the data of the two preceding parts and determine the
slopes at t = 0. Use these slopes to find out the
approximate relaxation times ty] and tyo

Hint: A= xge — t/ty
In A = ( -1/tp)t + 1n x4
and y = In A versus X = t should yield a straight line of

slope ( = 1/t.) if the damping torque igs always
proportional to the angular velocity

Plug in the motor controller and allow it to warm up,

With the damping termingls connected to the 24 volt supply
and the driving rod connected to the driving lever arm
record the driving frequency and amplitude of oscillation
for various motor speeds. Note: The apparatus must be
positioned so that the pointer swings just as far in one
direction as in the other. The driving rod should be
connected to the lever arm in such a way as to give a

large (on gscale) amplitude at resomnance. Observe phase
relations (ques. 4 below). The frequency may be determined
by timing several cycles. Be sure to cover the range of
amplitudes near resonance carefully; the amplitude should
be measured at several frequencies close to the resonant
(maximum amplitude) frequency on each side. Before

leaving this part make sure that you have enough points teo
plot a regsonable curve without having to guess at what
happens to the curve between points., How does the resonant
frequency compare with the natural frequency determined in
part 1?7

Repeat Part A with 48 volts oun the damping electromagnet
terminals. On one set of axes plot graphs of the amplitude
versus the driving frequency for this and the preceding
part. (See fig., 15-20, H. + R.)



Physics III Lab. Fall 1969

Experiment 1 - Penduium
Purpose

Determine quantitative relations between parameters of oscillating
physical pendulums: e.g., size,vmassfamplitude and frequency.

References

Text; and others on mechanicsg
Mechanics, Berkeley Physics Course, Vol, 1, by Kittel etal
(p. 197; p.225, topic 1) for anharmonic pendulum,

With a set of pendulums formed from metal rod in the shape of

isoceles triangles, use simple devices (clock, meter stick) to study
their behavior.

How can you improve the precigion of your meaguremeni of period
of oscillation? Partners should share in measuring techniques.

Record observations in a systematic way. Organize your work with
the above purposes in mind.

Compare empirical relationsg - those found from your measurements-
with theoretical relations - those deduced from physical laws. A
table or a graph might be used. Show whether any discrepancies between
theoryand experiment might be due to measurement uncertainties.

For example, suppose a calculated quantity were I = m x2/3, the
moment of inertia of a rod about a certain axis perpendicular to it.
If m is measured with an experimental uncertainty +£m, and x with
uncertainty % nx, then the resulting uncertainty in I is found 2s
follows:

d I =4 (mx2/3) = (m/3) d (x2) + (x2/3) dm

(2/3) m x dx + x2 dm /3,
or d 1/ I = d I/ (M x2/3) =2 dx /x + dm /m.

This relates the fractional uncertainties {}I /I, etc. approximately,
if they are small, or Ax / x << 1.

In terms of percent uncertainty ("% error"), dividing through by 100
gives (% erxor in I) = 2 (% error in x) + (% error in m),

Questions to consider in report

Could g (acceleration of "free fall") be calculated from your data,
If so, indicate mow. (Do it if you have time.)

Is frequency dependent on amplitude? This question is discussed in you:
text for the analogous case of the gimple pendulum; see also Berkeley
text cited above. (The ambitious investigator might try to answer this
question quantitatively.) OVER



Physics Laboratory - General Instructions

I. Purpose of Laboratory

Laboratory work in physics has two important obiectives -
first, to give the student direct experience with some of the
natural phenomena uvupon which physical principles are based, and
second, to develop in the student some understanding of the
experimental procedures, It is felt that some experience in
the laboratory is necessary to give the student an insight into
the methods of physics (or for that matter any experimental
science), Without it he would be merely accepting principles
as they were handed to him without an understanding of the
experimental procedures on which they are based, .

In the laboratory the student will work with real, rather
than ideal, apparatus. This equipment (and the experimenter as
well) will be subject to limitations which cause errors that must
be taken into account before any conclusions can be drawn from
the experimental results. Therefore error analysis is an essent-
ial part of all good laboratory work,

Although you will be assigned a certain group of experi-
ments to do this quarter, and in many cases the procedure to be
followed in performing the experiment is described in an instruct-
ion sheet, it is hoped that the student will use some of his own
ingenuity in performing the experiments; it is intended that the
instructions be used as an aid to understanding rather than some-
thing to be followed mechanically without thought. We also want
to encourage students to think about possible experiments that
they might do in place of one of the prescribed set., Within
the limitations of equipment and time, substitution of an experi-
ment which 1s more interesting to the individual student is per-
mitted, provided it is a physics experiment and it is cleared
with the instructor,

II. Preparation for an Experiment

In order to perform an experiment thoroughly and accurately
in the time allotted, it is necessary to put in some time before-
hand thinking about the experiment, If an instruction sheef has
been provided it is to be studied carefully before the laboratory
period, You should come to the laboratory with as thorough an
understanding as possible of what you are going to do during the
period and why., This may require that you spend some time in
the library, looking up references etcetera.

I1II. Performance of the Experiment

An essential part of the method of solving an experimental
problem is the preparation of a clear, concise record of the data
taken during the performance of the experiment, This record
should contain, in a clear and legible form, all the "raw" data
and information with which to make corrections (don't try to make
corrections "in your head” while taking data) and also enough
explanation of what you are doing and why so that your pages of



——D e

data can be analyzed later without confusion or ambiguity. Your
instructor may require that this record be kept in a permanent
notebook or he may ask you to keep this record on data sheets
which are later included in a report on the experiment, In either
case, all observations should be recorded directly into the nocte-
book or on the data sheets (nothing on scratch paper and later
copied) and an estimate of the accuracy of each set of measure-
ments should be made and recorded also, Corrections can be made
by crossing out errors with a single line (no erasures). Before
leaving the laboratory, the student should do enough calculation
and graphical work to emsure that the data collected "makes sense”
and there are no gaps in it which need to be filled in before he
can continue the analysis without having to make any "wild guesses
or assumptions, Your data record must be approved by the instruct
or before you leave the laboratory.

v, Laboratory Notebook (Data Record)

The following are specific suggestiomrs. concerning the
form of the laboratory record of the experiments.

A, If the instructor has you keep a permanent laboratory
notebook it should be one having cross-ruled pages

(useful for graphs) and it must be labeled with the
following information,

1. On the fromt-eover imn ink: -
Physics Laboratory
Your Name

2. Inside the frent cover at the top:
Fall (or whatever) Quarter
Lab, day and hours
Group Number

B. For each experiment the student should record the
title of the experiment and the date performed at
the top of the data record, A very brief (not B
detailed) description of the procedure followed should
precede the data record, which is preferably in
tabular form, Label the data. carefully with the
‘proper column headings and units. Whenever possible,
the type and identifying number of instruments being
calibrated or used in measurement should be recorded
for later reference, '
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As suggested above the next step is to do the calcula-
tions required by the analysis of the experiment and
draw the graphs, Repeat any measurements which appear
doubtful and make new measurements where needed to
fill in gaps in the data.

If you are using a laboratory notebook rather than
data sheets and if the instructor informs you that
no report is required on a particular experiment,
then the experiment should be completed in the
notebook by writing a summary and conclusions,
Final calculations should be summarized in tabular
form and whatever additional graphs are required
should be completed. State a conclusion in your
own words and discuss the experiment briefly (for
example a discussion of accuracy is always desirable).
On graphs-and in your final summary give the page
number of the data or discussion referred to., The
summary and conclusions may be left for the report
when one is being written,

Report

When a report is required on an experiment it is due

at the beginning of the period one week after the experiment was

performed.

The report is to be written independently by each

student in ink (or typewritten) on white, unlined 8% x 11 paper
(graph paper for graphs). Each report must have:

A,

A cover sheet containing the following information --

course, experiment title, your name, laboratory period
day and hours, group number, date experiment was per-

formed, and date of report,

A statement of the purpose of the experiment and a
brief summary of how you went about performing it
(not detailed), data and observations (if you used
data sheets rather than a notebook these may be
submitted as they are), sample calculations,
tabulated results, graphs, conclusions, and a dis-
cussion of the experiment. The discussion section

of a report should be more thorough and complete than
the corresponding section in the notebook, It may
include a discussion of what was learned in doing the
experiment, as well as the results and the accuracy
of the results. It should also contain a discussion
of any points which the instructor may have brought
to your attention through questions written on the
instruction sheets, and of any other points of
interest that may occur to you,
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It is customary to use the passive voice in scientific
writing (e.g. "The time required for the pendulum to swing
through twenty complete cycles was measured,,.etc.”) thus not
calling attention to the observer. The following styles are not
to be used in a report: I" (we) swung the pendulum and,.." or
"Swing the pendulum and measure the time for twenty complete
cycles,.". If you quote or paraphrase any outside sources in
writing your report (including your own text book) give credit
to the original author in a footnote,

References:

1, Baird, "Experimentation”, chapter 7

2, Olson, "Experiments in Modern Physics”, section 1.4




Measurement, Probabilitv, and Experimental Errors

I. Tvpes of Error

Whenever a measurement is made of any physical quantity
there is a certain amount of uncertainty in the result.
Determination of the amount of uncertainty in a measurement
is not usually easy but an attempt should glways be made to do
so, even if it is no more than an educasted guess. Without
some estimate of the uncertainties associated with experimental
measurements one has no indication of the accuracy of the
results and it is difficult to come to any conclusion about what
the experiment has shown (or not shown)., Im all of the experi-
ments which follow in the physics laboratory sequence the
student will be expected to make some estimate of the accuracy
of his quantitative experimental results.

There are two types of errors which may occur in the
measurement process, systematic errors and random errors.
Systematic errors tend to make all the chservations of gne item
too _small or too large, For example if voltage measurements
were taken inm an electric circuit using a voltmeter which
consistantly read 0.1 volt too high, a systematic error would
be present. Other common examples of causes of systematic error
are worn weights, clocks which gain or lose time, friction, and
personal bias of the observer which causes him to make readings
which are consistently high or low, When systematic errors are
recognized in an experiment it is often possible to find out
how large their effect is and to correct for it. The error
in the voltmeter which reads 0.1 volt too high, for example, can
be discovered by calibrating the instrument against some sort
of standard (accurately known voltage), and a correction of
-0,1 volt made to all the readings. Error due to an observer's
bias may be minimized by having another observer make the same
measurement independently (bias is best eliminated if each
observer knows nothing of the other®s result until after both
measurements are completed),

Random errors result from chance variations in the quantity
being measured, in the measuring devices, or in the observer,
and are just as likely to produce too large a value as too small,
For example, if one measures the diameter of a metal rod several
times with a micrometer the readings will probably fluctuate
slightly in a non-systematic fashion due to actual differences
in the rod's diameter at different positions, variations in
pressure when the micrometers jaws are ciosed, and changes in
the observer's estimate of the scale reading. Random errors
are present in all measurements, although they may be too small
to be noticeable, and they cannot be corrected for because of
their random nature,
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Determination of Precision

Suppose that several measurements of the same quantity x
were made and all systematic error in the measurements
eliminated or corrected (assuming this were possible), As
discussed above there would still be a certain amount of
rnadom fluctuation apparent in the measurements if they are
“fine™ enough to make it noticeable, If a2 histogram was
plotted showing the number of measurements N falling within

different intervals of size aox it might look like that shown
in Fig. 1.

Fig. 1
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The meaning of the histogram is that one measurement of x fell
between 4.6 and 4.7 units, two between 4.7 and 4.8 units, four
between 4.8 and 4,9 units, and so forth, The completely
symetrical distribution shown usually results only if a large
number of measurements are made and if the fluctuations are
entirely random, In such cases the envelope of the distribution
often has a particular form called a "normal” or “"Gaussian®
distribution which is represented by the mathematical equation

= “(x=%)2 2
y=_1_ g ~(x-D2 20

(1)
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where Tis a constant which determines the "sharpness” of the
peak (high, narrow peaks are characterized by small values

of ). The quantity X is the average of the individual
measurements

xl“‘ X2 +oeccoscooee = zxi

% =

n n

where n is the total number of measurements, and beczuse of the
symmetry of the Gaussian function X corresponds to the most
probable value of x obhtained from a measurement of x (peak

of curve), [Thus %X is the best estimate that one may make 6?1

ithe true Walue of x from these measurements.

The individual measurements of x differ from the average

or most probable value X by an amount d called the deviation
of that measurement

d1=XI - % d2=X2 "‘§' s e s e e

The standard deviation i
Wé 2
6- ‘_'!lez + &22 + aoc‘&ec §=l.z(d1)2

L n - 1 } { .

is an indication of the precision of a set of measurements
since narrow Gaussisn distributions indiceste precise megsure-
ments with small deviations from the average and a3 small
_standard deviation &, [If e large number of measurements is
made, 68% of them will be in the range £ 4 ¢, 95% in the range
X+ 2G, and 99% in the range x + 3G, a fact which can be
verified by determining the area under a Gaussian curve between
the various limits,| If after having determined x and o from a
large number of messurements one makes a single measurement x,
he then will have about a two thirds chance of getting a value
between £ +0 and X -~ & , etcetera,

ok

Although increasing the number of measurements of quantity
x would have little effect on the standard deviation 0 (the
scatter of the data) except to give a more accurate picture of
what it really is, increasing the number of measurements should
improve the reliability of the average value X, It can be
shown from statistics that the standard deviation in the mean X
is given by the equation
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A.|The standard deviation of the result of addition and/or

S

which means that there is a 6B% chance that the true value of x
will be in range X £+ Om assuming the distribution is normal and
there are no systematic errors present, [ Thus the precision of

the mean X can be increased (Op, reduced) by taking more observa-
tions, but the improvement is slow because of the vn factor

(%0 readings only 3 times as good as 10 readings), The final
result of a set of measurements may be stated

x= X +0m

It is quite often useful to represent the standard deviation UOm
as a percentage of the value ¥, The calculation required is:

per cent std. dev. = @m/x)- (100%)

Although the normal or Gaussian distribution (equationm 1)
is very often a good representation of the kind of distribution
found in repeated measurements of physical quantities, it should
not be assumed that this distribution always gives an accurate
description of the results of such measurements, even when a
large number of measurements are made. There are a number of
cases where the distribution is non-Gaussiap and perhaps even
non-gymmetrical. For example, if one makes several determimations
of the number of nuclei which decay by particle emission im a-
certain time, he obtains the Poisson distribution

g X z
o< =%
4 x! e

(2)

where x is the average number of counts and y is the probability
of obtaining x counts in a given trial., This distribution is
very unsymmetrical about the mean X when the number of counts X
is small but closely resembles a Gaussian distribution with
standard deviation % when X is large.

Propagation of Errors If one uses experimental observations, with

their associated random errors, to calculate a result, the
precision of the result will be determined by the precision of
the quantities involved in the calculation. The standard
deviation of the result may be determined from those of the
separate quantities Tmy + §mge etc, by keeping in mind the
following rules,

substraction is the square root of the sum of the squares of
the standard deviations of the separate terms,

Example: Xy = 5.30 + 0.20 units
x2 = 1.70 + 0.10 units
X3 = 7.20 + 0.01 units



c=5--

X, = Xp + X3 = (5,30-1,70+7,20) = |

(0.20)2 + (0,10)2 +(0. 01)2§
= 10,80 + 0,22 units

Note that most of the standard devigtion in the result comes

from the largest standard deviation present in the separate
terms (0,22 = 0,20),

B, |The percentage standard deviation in the result of mulltpllcatzon
and/or division is the square root of the sum of the squares of
the std, deviations of the factors, |

————

example: Xye X2, X3 as above

(% std, dev.)1 = 0.20 x 100% = 3.8%
5,30

(% std., dev, )2 =_0.10 x 100% = 3.9%
f 1. “1.70

(% std, dev.}3 = 0,01 x 100% = 0,1%
7.20

y = (x1) (x9) = 1,25 + std, dev,

%3
(% std, dev.)y, = [(3.82 + (5.92 + 0.12]% = 7,0
(std, dev.)y = (.07) (1,25) = 0,09
y = 1,25 £ 0,09 units
Note that in this case the largest contribution to the standard

deviation in the result comes from that quantity with the largest
percentage standard deviation,

‘ -
C. !In case a quantity is raised to the ntP power its percentage
standard deviation is multiplied by n,

The process of carrying standard deviations through calculations
is useful not only indetermining the precision of the result but
also in determining which quantity contributes most to random
error in the result, It may be possible to reduce the deviations
in this quantity by using more care or different techmiques,

IV. Accuracy of Exverimental Results

Determination of the standard deviation in an experimental
result will tell you how much uncertainty is present due to
random errors, but this is an indication of the accuracy of the
result only in the case where systematic errors are negligible
compared to random errors, For example, if in a particular
experiment you obtained a percentace standard deviation of 1% but
the instruments used to obtain the measurements were accurste only
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to within 5% (a2ll readings may be too high or low by 5%), then
the 3% accuracy is a better indication of the reliability of the
results than the 1%, Some attempt should be made by the student
to determine the reliability of his results in each experiment,
although in some cases this will involve making some educated
guesses as to the accuracy with which a particular measuremaut
may be made with a particular measuring device, In all casecs

try to eliminate as much systematic error from the measurement

as possible within the time available, An experimental result
does not agree with a prediction of a theory unless the theoreti-
cally predicted result lies within the range given by the experi-
mental result plus and minus the probable error; an experiment

does not disagree with a theory unless the predicted result lies
outside this range,

Significant Figures

The term "significant figures"” refers to the digits of a
measurement made in the laboratory, including all the certain
digits and one additional doubtful one based on the observer's
estimate of a fraction of a scale division, The numbers which
represent data or the results of calculations should always be
given with neither more nor fewer significant figures than are
justified by the precision of the observations and computations.
The number of significant figures im a measurement (or a calcue="
lated quantity) may be determined using the following rules,

(a) The first significant figure is the
first non-zere digit.

(b) Zeros which occur between significant
digits are considered significant,

(c) Zeros which occur to the right of the
last non-zero digit are considered
significant when they are to the right
of the decimal point (the significance
of such zeros to the left of the decimal
point is indeterminate).

(d) If numbers having a different number
of significant figures are added,
substracted, multiplied or divided,
the answer is given so as to have the
same number of significant figures as
the term or factor which has the least,

Examples: .0001906 has 4 significant figures
10,937 has 5
93,000 has an indeterminate number
9.3x104 has 2
9.30x104 has 3



Vi,

I, S

Comparison of Results

Sometimes an experimental result is arrived at by two
different methods which should both theoretically give the
correct result, If there is no reason to believe that one
of the results is much more accurate than the other, it
might be instructive to sece how much difference there is
between the two, This difference is usually given in terms
of the "percentage difference”™ which is defined,

% diff, = diff, between values x 100%
average value

References:

i, Young, "Statistical Treatment of Experimental
Data™
2. Barford, "Experimental Measurementss: Precision,

Error and Truth®™

3. Baird, "Experimentation: An Introductiocn to
Measurement Theory and Experiment Design”

4, Braddick, "The Physics of Experimental Method"™

S, Pugh and Winslow, "The Analysis of Physical
Measurements”

6, Bevington, "Data Reduction and Error Analysis
for the Physical Sciences"”



METHOD OF LEAST SQUARES

One of the fundamental problems that comes up again and again
in the laboratory is that of finding, from simultaneous measurements
of quantities y and x , the dependence of quantity y on quantity x
(the dependence of the period of a pendulum on its length for
example), Often this dependence is revealed by making a graph of
y versus x from the data., However, a certain amount of judgement
is always involved in making a graph from experimental data since
deviations in the measurements usually make it impossible to draw a
smooth curve through all the data points. One usually tries to
draw a smooth curve among the points in such a way that it appears
that the deviations of the points from the line (positive and negat-
ive) add up to approximately zero, In other words, in the graph
shown below

id]_! + ldag + §d4§-{- e e 6o 6 e édzg +§d5g+ c2ses 068 60

where the deviations here and in the analysis to follow will be
assumed to be deviations in y for precisely known values of x,

Y

X

If a high degree of precision is required in the expression
relating y to x , this method of balancing deviations “"by eye"
might not be sufficient., In this case a more scientific approach,
based on statistics, is followed, It can be shown that{the most
probabie disposition of the line representing the dependence of y
on x is that for which the sum of the squares of the deviations of
\{the points from the line is a minimum (hence the name "least squares")




T(di)% =4 ° + d22 + d32 + d42 + cesee.= a minimum

This statement is called the "principle of least squares” and it
is the basis of a method for finding the relationship between

y and x which best fits the data points (for which the sum of the
squares of the deviations is a minimum),

Actually the problem of determining the line which "best®™
fits a set of data points (x; , »;) is several different problems,
depending on the type of curve which is to represent the relation-
ship between x and y. If it has been predetermined from the data
or from theory that y depends on x linearly so that y = Ax + B,
the problem becomes one of picking out, from all possible straight
lines, the one with values of slope A and intercept B such that
the sum of the dj2 will be as small as possible., If (xj, yi) are
the coordinates of the first data point, (x2, yo) the coordinates
of the second and so forth, and if it is assumed that the devia-

tions are only in the y measurement for precisely known x * s,
then

If the "best"™ straight line is that which makes the sum of the
squared deviations or a minimum.

.igz (@)% = 0 = 2x (A%, + B - yp) + 2xy(Axy + B-yg) +.eue
dfZai)2] =0 =2(ax; + B - y) + 2 (Axg + B - 7,) +.eesns
dB

are the conditions which should lend to the "best”™ values of A and
B, These equations may be rewritten:

]
o

B Ix; + A T x;2 - IX;¥3 (1)
nB + A T x5 - Yvyi = 0 (2)
where n is the number of points,

The method is illustrated below for a set of n = 5 points.

Point
No. 1 2 3 4 5
X 1,00 1.90 2,60 3,20 4,00

y 0.90 3.00 4,00 5.50 6.90
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A table is made as follows:

b y X2 Xy
1.00 0,90 1.00 0.90
1.90 3.00 3.61 2.70
2.60 4,00 6.76 10.40
3.20 3.50 10,24 17.60
4,00 6.90 i6.00 27.60

xio=12.70 L y; = 20.30 Tx.%2 = 37,61 2 x3y; = 62.20

Substituting in (1) and (2),

12,70 B + 37,61 4 = 62,60
5B+ 12,70 4 = 20,30
Sclving simultaneously, B =-0.,989 A = 1.988

The equation of the straight line which best fits the data points
is
y = 1,988 =x -0,989

In other words the sum of the squares of the deviations of the
points fromt he straight line is a minimum for a line of slope
1,988 and y intercept -0.989,

It is generally shown in books on statisties that the
standard deviations in these values obtained for the slope A and
intercept B may be fcund using the equations (3 and 4):

Ty =22 1% =Tz 4+ - )2 gyz
nYx .o - (in)zj L nIx% - (Ixj X3
~ 4 ST )
og= 1 2%2) (%2 % J[z(8x; + B - 7 E%;2 1%
n23yxj¢ - n (le)zv i nz § X32 -n (G¥7)ei
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A table is made as follows:

X y x2 Xy
1.00 0,90 1.00 0.90
1,90 3.00 3.61 5.70
2.60 4,00 6.76 10.40
3.20 5.30 10,24 17 .60
4,00 6.90 16 .00 27.60

£xi=12,70 Ly; = 20.30 Ix;%2=37.61 Ix3y; = 62,20

Substituting in (1) and (2).

12,70 B + 37,61 & = 62,60
5B+ 12,70 A = 20,30
Solving simultaneously, B =-0,989 A = 1,688

The equation of the straight line which best fits the data points
is
y = 1.988 x -0,989

In other words the sum of the squares of the deviations of the
points fromt he straight line is a minimum for a line of slope
1.988 and y intercept -0.989,

It is generally shown in books on statistiecs that the
standard deviations in these values obtained for the slope A and
intercept B may be fcund using the equations (3 and 4):

o, = deiz 1y - ?E(Axl + B - 9i)2 é%
L = | |
L onTx e - (Ix;)=] L nEx? - (Ix;z 4
- - / . 5
g = 2%2) (5§52 B [zt + B - 70 YEX2 {VZ
1“22}‘5-& -n (Zx3)2 |~ 22 £xZ -0 G¥12
v
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In cases where a nonlinear curve is to be fit to a set of
data points in such a way as to make Z(di)2 a minimum, equations
(1), (2), (3), and (4) no longer apply., Often one can get around
this difficulty, however, For example, suppose some data points
are to be fit with a parabola of the type y = Az%2 + B, If the
quantity X = x2 is calculated for each of the points, the method
may then be applied to quantities y and X, since y versus X will
be a straight line (y = AX + B) even though y versus x is not,

The least squares method is not confined to finding the
constants of a straight line, however; it can be applied to any
kind of curve, For example, if one has a set of data points and
wants to determine the constants of the "best fit" parabola
y = AX2 + BX + C, he can apply the conditions that minimize
z:(di)2 with respect to variables A, B, and C and will obtain the
equations:

S %3%y; = CZxi2 + B in3 + AZ g4
bl Yi = nC + Bzxi + AZXIZ

which may be solved simultaneously for constants A, B, and C,

References:

1. Young, "Statistical Treatment of Experimental Data",
section 14,

2. Baird, "Experimentation®, Appendix 2

3. Barford, “"Experimental Measurements”, Chapter 3

4, Pugh and Winslow, "The Analysis of Physical
Measurements”™, Chapter 10.

5. Bevington, "Data Reduction", Chapters 6 and 11

6, Gerhold, "Least-Squares Adjustment of Weighted

Data to a General Linear Equation", American
Journal of Physics, Vol, 37, p. 156.
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Interference and Diffractio

According to Huygen's principle, each point along a wavefront
may be regarded as a new source of waves., Whenever something
obstructs part of the wavefronts, interference between “"wavelets"”
emangting from different parts of the unobstructed wavefronts produce
a diffraction pattern which is characteristic of the geometry of the
obstructicn (or opening in object which blocks the light) and of the
wavelength of the light. It is shown in nearly all introductory
physics textbooks, feor example (see Resnick and Hglliday, section
43-1), that when light waves pass through a double slit arrangement
like that shown below they-interfere constructively and destructively
at different positions to form fringes on the screen S such that
intensity maximum appear at positions
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In somewhat the same way wavelets passing through different parts
of a single slit interfere to produce a single slit diffraction pattern
with destructive interference causing diffraction minima at angles €
such that (see Resnick and Halliday, section 44-2)

a2 sin 8 = m & m=1,2,3,.......
with maxima approximately half way between (the exact intensity
expressions are given in section 44-3), where a is the slit width,

A circular aperture of diameter d results in fringes having circular
symmetry with the first minimum appearing at a distance from the

center such that (see Resnick and Halliday, section 44-53)

sin € = 1.22 A /d



Experiment:

Your light source will be a monochromatic beam from a helium-
neon laser having wavelength A = 6328 Z. This experiment is somewhat
open ended in that you are not told exactly what to do or how to do
it. The object is to investigate the nature of interference and
diffraction effects. The detszils are left to you. You might for
example put a single or double slit in the beam and determine the
spacing or width of the slits, perhaps checking your results with a
direct measurement using the optical comparator. You might try to do
an experiment which would confirm the constant 1.22 in the expression
for the first fringe minimum from a circular aperture or compare the

pattern ,
fringe/of aperture or slits of different sizes. An experimental study
of diffraction by rectangular openings or by a repeated pattern of

openings (such as found in a seive) might be of interest.
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7.

4, The method of least squares determines the most probzble line
of a certain type (e.g. straight line) through 2 set of data
points.

(2a)

The iine is placed so as to minimize

(b)

Use the method of least squares to determine the slopg
and y intercept of the straight line graph 1 versus V2
in question 3. How do your results compare with the
values taken directly from the graph in question 3 ?



GHAPHICAL ANALYSIS

Often one of the aims of an experimental investigation is the
determination, from measurements made in the laboratory, of how one
of two interdependent quantities, y, depends on the other, x,.

Graphical methods provide us with a very useful t oof in this type of
analysis.

I. Plotting;Gfaphs

Suppose one is interested, for example, in finding in a
particular experiment a methemical relationship which expresses the
velocity of a moving object v as a function of the time t. In this
case velocity is the "dependent variable" whose dependency on the

"independent variable" time is to be established from the following
data.

Time Velocity (magnitude)
(sec) (ecm/sec)
1,00 1.9
2,00 1.9
3.00 3.0
4,00 3.9
5.00 6.9
6.00 11,0

Suppose that in this experiment the time measurements are very
precise and their errors can be ignored while the velocity measure-
ments are estimated to have a standard deviation (see instruction
sheet on "Measurement, Probability, and Experimental Errors ) of
about + 0,30 cm/sec. The steps to be followed in constructing a
graph which illustrates the dependence of velocity v on time t

(or any quantity y on another quantity x) are summarized below,

(a) The dependent variable (quantity whose dependency
on the other is to be determined) is plotted
vertically (velocity versus time rather than
vice versa).

(b) Scales should be chosen which are easy to plot
and easy to read and which make the graph large
enough to be read easily and accurately
(occupying a full page if possible).



(c)

(d)

(e)

(£)

I, DU

Scales usually start at zero but sometimes
this would cause the data to be crowded into
one part of the graph, In such a case it is
a good idea to suppress the zero (start the
scale at some value other than zero or show

a break in the scale), However, it should be
made obvious to someone looking at the graph

that the zero has been suppressed.

The graph should have a title and each of the
axes should show the quantity plotted along
that axis and the numerical scale and units
for that quantity.

The experimental points are marked clearly on
the graph by drawing a small circle around each
of them and drawing an "error line" (in the
above example extending 0,30 cm/sec above and
below the data point) at each point,

Draw the simplest possible smooth line or curve
(i.e, the simplest curve is a straight line,

the next is a curve whose curvature is always

in the same direction zand doesn't change magnitude
suddenly, etc) among the points, with no more
details of shape and curvature than is justified
by the size of the estimated errors, If the
magnitude of the standard deviations are estimated
correctly and the line is drawn correctly the
curve should cut about two thirds of the error
lines (very roughly),

When these steps are applied to the example of the moving object

given above,

figure,
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a graph results such as that shown in the following

Velocity v Versus Time t
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) Determination of a Mathematical Relationship

. If a graph of dependent variable y versus independent
varigble x turns out to be a straight line, the dependence of
Yy on X is expressed by the equation

y = ax+ b (1)

The slope a and y intercept b of the lime can be taken directly
from the graph (see part III) thus establishing the relationship
between quantity y and quantity x in this experiment,

If the graph of y versus x is curved, however, as it
is in the case of the velocity of an object versus the time in
part I, the quantities must be related by some other equation,

For example, one might guess that y is related to x according to
an equation of the type

y = ax®™ + b (2)

where n might be an integer =1, + 2, + 3, + 4, c0000sv0s0.0F 2
fraction + 1/2, + 1/3, + 1/4, ..ccceveveeec..T0 decide which
values of n are truly possibilities one should study the graph

of y versus x and equation (2), 1In the case of the velocity versus
time graph of part I, for example, negative values of n should be
immediately discounted since equation (2) would predict a decrease
in y for increasing x, Fractional values of n are just as unlikely
since as x increases, the graph shows y increasing faster and
faster (perhaps indicating n = + 2 or + 3, etc.).

To see if the velocity - time (y = v, x = t) data for
the moving object example of part I fits equation (2) with n = + 2
one could graph ¥ = v versus X = t2 from the experimental values of
v and the corresponding values of t2, If the graph of Y versus X

from the data is a straight line, the experimental results fit a
relationship

Y

a X+ b
or v=atl+b (egquation 2 with n = + 2)

where a and b are the slope and intercept of the line. If such a
graph was not straight, but was straighter than a_graph of v versus
t, then one might try a graph of Y = v versus X = t3 and so on
until a straight line was found, The same general procedure could
be followed in cases where n is thought to be a fraction or have a
negative value, If the data are to be represented by the equation

y = ax _1/3+b (3)

then a graph of y versus x~1/3 should yield a straight line,
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Another type of relationship between quantities which appears
often is

y = AedX (4)

where A and a are positive or negative constants. If equation (4)
accurately represents the data, then

In y = ax + 1n A
or Y = ax+ b
making the substitutions Y = Ln y and b = In A, Therefore if
Y = 1ny is plotted vertically against x horizontally, a straight

line of slope a and intercept b = 1n A should result, The values
of a and A can be determined from this line,

III. Determination of Slope and Intercept

The slope and intercept of a straight line are found as
follows: First the x and y coordinates of two widely separated poials
on the line are determined (note that the points must be widely
separated for accuracy and the points are points on the line, not
data points). The slope of the line is defined

a =532 -1
X2 - x)
and should have the same value (for a straight line) regardless of
what two points are chosen, The y intercept is obtained by

extending the line back to x = o0 and noting the value of y at this
point on the line (this is the intercept b).,

A more reliable determination of slope, a, and y intercept,
b, results when one computes the slope and intercept of the straight
line which minimizes the sum of the squares of the deviations of the
data points from the line (see instruction sheet on "Method of
Least Squares").

References:

1. Kruglak and Moore, "Basic Mathematics for the
Physical Sciences", chapter 7.

2. G, Wootan, Inc,, "Graphs"”

3. Ford, "Basic Physics", section 7,6



Physics III Lab. Fall 1969

Experiment 2 'Mapping' an Electric Field in Two Dimensions

Purpose

To provide a look at equipotential lines im a two dimensional
system, Hopefully an electric field may become more real (less abstract.
to you,

The 2-D system is a thin layer of slightly-conducting graphite on
the surface of a board. The equipotenital lines (each, the locus of
points having a given constant potential) correspond to equipotential
surfaces in a three dimensional system., You know where to look these
up - refresh your memory!

When two points in a conducting body or circuit are at different
potentials a current flows between the points. You will use a
galvanometer G to determine a condition of zero-current flow; i.e.,
the condition of zero-potential difference between the points to which
the galvanometer is connected. If you have not learned the principles
of this instrument, you need only assume that zero-deflection means
zero-current in the galvanometer,

Map at least two field-electrode configurations (at least one
for the report of each student). Tentatively sketch some field lines
("lines of force™).

Take care: some galvanometers have two button switches to connect
them: Use R first until the deflection is very small, then use the
more sensitive O-button,

Discuss in report the relation between field lines and equipoten-
tials, and the theory behind this relation. Indicate the direction
of the E-vector on your plot.

Explain the analogy between your equipotential plot and anmother
kind of map. (Incidentally, can the energy concept be included in
your explanation?)
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OBJECT: Te calibrate a potenticometfter and to become familiar
with its use in measuring potential differences.

THEORY : One of the most obvious advantages of using ammeters,
voltmeters, ete. in making circuit measurements is their con-
venlence; they can be easily moved about from cne part of the

circuit to another. For this reason and also because their
accuracy 1is sufficilient for the purpose at hand in many in-
stances, they are widely used in mesasuring the currents, volt-
ages, etec. in a varlety of circuit applications. However, it
should be remembered that tThere are different types of volit-
meters, for example, having different charazcteristics and for
use under different conditions. One should not assume that all
voltmeters, if operating correctly, will automatically read ~
cerrectly the voltage he wishes To measure in any circuit.

One cause of inccrrect meter readings is of course
that the instrument is not properly calibrated. This can be
quickly remedied by recalibrating it against g standard and
making a calibrating graph which shows the correct value for
any meter reading.

Often, however, the difficulty is not in the calibra-
tion but in the use that is made ¢f a meter. Suppose in the
circuit below for example, tThat you wish to measure the volt-
it

N

age across the 200 ohm resistor with & voltmeter having only

200 ohms resistance.

An ideal voltmeter would be one with infinite resistance; if it
were placed in parallel with R it would draw no current and the
total resistance of the parallsl combination would remain 200
ohms {(there would be no change in the operation of the circuit
due to the introduction of the veolfmeter). In the case of a

200 ohm voltmeter, however, the introduction of the meter causes
the resistance of the parallel combination to be cut in half and
the total current tc Increas half going through R and the other
half through the voltmeter. The meter will correctly read the
voltage across its terminals, but that voltage is no longer the
same as it was when the meter was not present. This difficulty
can usually be avoided by taking care that the resistance of

the voltmeter be large compared to the total resistance of the
circuit between the points to which the meter is connected.
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The potentiometer is in effect an "ideal®™ voltmeter.
It draws no current from the circuit at the instant of measure-
ment and thus doesn't change conditions in the circuit from
what they were before its introduction.

The potentiometer circuit is shown on the next page.
The power source suprlies direct current through a variable
resistance to a uniform resistance sli de wire CD. The vari-
able resistance may be increased or decreased in order to
control the amount of current I flowing in the wire. Since
the slide wire is uniform along its length, its resistance per
unit length is the same everywhere so that

Veo I Rep Lop (1)
Thus if a certain fixed voltage or potential difference V”D
is impressed across points CD, the pctential difference V%D
may vary from zero to V»r depending on the position of the
sliding tap T. The laboratory potentiometers are equipped
with dials which tell where along the wire point T is for a
particular setting of the dial --- a reading of .400 for ex-
ample means lTD = 400 lCD (decimal point omitted on dial)

OPERATION:

The process of measuring an unknown potential difference
with a potentiometer is one of comparing the unknown to an accur-
ately known voltage. For example in the circuit shown on the

next page suppose an unknown voltage is placed across terminals

X and switech S, is to the right. Suppose in addition that it is
known that the voltage drop across CD 1is exaCELv v = 2.000 volts.

¢
Now Suppose. that tap T is moved along the wire unulg point is

found for wnlcn there 1s no ﬂOblueahﬁp deflection of the alvano=
BRECTCHBSE GIRPAE BRBrEntTrRofvibeh £5c618588 . v1 TRl HRYId mean

condition which could only arise if T and n were at the same
e po

poctential. Therefore at this balanc VX = VED = VmD'

But equation (1) tells us that if T is halfway between C and
D, VTD = 1,000 volts, or if it is 0.600 of the way from D to C,
Vrp

= (0.600) (2.000) = 1.200 volts, etc. Thus V, is determined
by noting what fraction of the wire (fraction of“the 2.000 volts
across the wire) it will balance against. However, the process
of getting an accurately known voltage (2.000 volts here)

across CD must be accomplished frist -- a process called
calibration.

The potential difference V is controlled by the variable
resistances in series with resistance RCD If the variable
resistance is increased, the current I is decreased and thus
The voltage Vgp -IRCD aecreasea; decreasing the variable
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resistance increases VC”' Suppose now that switch Sl makes
U .

contact with the standard cell (left) which 1s an accurately
known, constant emf. having the value (for example) & = 1.500
volts. As before, if at any position of the tap T there were
no current through the galvanometer when the R or U switch is
closed, the voltage drop across TD would have to equal & . If
one puts the tap T three~fourths of the way from D toc C, then
adjusts the variable resistance until there is no galvanometer
current, he is assured of having placed 1.500 volts across

TD (3/4 of the wire) and by proportion [equation (1) ] of
having placed 2.000 volts across CD (the whole wire). The
process of calibration becomes one of placing the standard
voltage across a certain fraction of the wire in order to have
the desired voltage VCD across the whole.

IMPCRTANT NOTE: In balancing the potentiometer always tap
switch R first until the galvanometer shows no deflection and
only then start using switch 0. Do nct hold either switch down;
do not touch switch O until btalance is made with R -- very small
currents drawn from the standard cell for a short time will

ruin it.

INSTRUCTIONS:

I. A. Calibrate the potentiometer to read
potential V.p = 3.00 volts using the standa
on the potenticmeter board.

a maximum
rd cell mounted

B. Connect a dry cell to terminals X (note correct

polarities) and measure 1its emf. Next, check the calibration
again to see if . has changed, ZIf 1t has, repeat the

L
calibration and mggsurement.

C. Set up a circuit as shown below and measure the
voltage VB using a voltammeter and again using the
potentiome%er.
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Assuming the internal resistance r of the 32 volt source
to be negligible compared to the other resistances, what
should voltage V_.be according to theory (rocughly -- the
source voltage iS5 only approximately 32 volts)? How do

the voltages measured using the voltmeter and potentiometer
compare with this value? Explain discrepancies and cal-
culate the internal resistance of the voltmeter from these
measurements assuming that the meter is calibrated correctly.
From your data what Is the best value that you can obtain
for the actual emf of the "32 velt" source?

A. Connect the unknown ("black box") tc terminals X (this
contains a source of emf. and an internal resistance) and
measure the emf.

Now set the dials of a resistance box on 500 ohms first
and then connect it across the terminals of the unknown as
shown below.

e

T 5'3
+h l /\__! /'L
i T
Potentiomeler | ’
tentiomeler | ogpy T
! i !

'\Qé\,
X

| O——n—
L

-

Measure the terminal voltage V., of the "black box" with a

N . . L . .
500 ohm resistor drawing current from it. Repeat with
R = 200, 100, 70, 50, 40, 30, 20, and 10 ohms checking the
calibration occasicnally (caution: be very careful to have
switch S, open while turning dials on the resistance box --
arr—geridental resistance of less than 5 ohms across the ter-
minals will draw enough current to burn ocut the box).

B. Plct a graph of the terminal voltage V, of the "black
box™ versus the current I it supplies to the series loop
shown above. Since

V=g -1Irs=IR

this graph should be a straight line with slope (-r) and
intercept £ (if it is not, perhaps £ is changing as current
is drawn from the box). Determine the value of the internal
resistance of the unknown from the slope of the line or, if
it is curved, from the siope of the tangent at I = 0. Record
the values of £ and r for the unknown.




EXERCISES:
Given a circuit such as that shows below.
oo
SR, (507
b (( : (
E= /W0 ’
> 0
B > e 3
-~ rd j{
) 2
/ B
! -'-9
1. Show that potential difference V ﬂ =
iy + Rp
If V (S to be eqgual te (1/10) £ , what fr
R2 be of Rl ? This circult arrangement is
voltage divider.
2, If R, = 200 ohms, R, = 1800 ohm, and £ =
B

what is the smalilest resistance

that

called a

10

C

fraction must
i

volts,

a (100% accurate)

voltmeter can have if it is to measure the voltage V

with an errcr cof less

than 5%?
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MEASUREMENT

OBJECT: To measure a high resistance using the ballistic
galvanometer,

CIRCUIT:

P * ©
' B

s O
D C A/

THEORY :
A, Capacitor Discharge

If a capacitor is charged so that charge g,. is on each

- 2 g o}
plate and then allowed to discharge through a resistor as shown
below, the potential difference across the capacitor must equal
that acrcss the resistor \uhey are across the same two points
in the circuit ab) at all times during the discharge.

N EX]
S g = charge on plates at any
time t
Qti :b
L AN i = current at the same time
K dq
=q= = aw
Vab = iR i ac
C
dag
lg=-R__
C at (1)

from which one can derive the expression for the charge still
on the plates at any time t after discharging starts

- t/RC

fie}
n
Q
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n
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or

In(g/qy) = ~
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B. The Ballistic Galvanometer

The moving element of this type of galvanometer consists
of a rectangular colil which 1s suspended between the poles of a
magnet by a fine wire. When a charge g passes through the coil,
the forces exerted by the magnetic field on the moving charges
produce a furning moment or torque on the coil. The torque gives
the coil an angular momentum, but the coil has a relatively large
moment of inertia so that very little actual moction ocecurs in the
Time that it takes for charge g to pass through the coil. The
coil continues to rotate however, twisting the suspension wire.
The twisted suspension wire now exerts a restoring torque which
decreases the angular momentum of the rotation, brings the roctation
to a stop at some angle ©, and increases the angular momentum in
the opposite direction. The result would be coscillatory motion
of angular amplitude & as long as no mechanical energy was lost
from the system (it is almost frictionless). It is not difficult
to show that the angle 8 is proportional to the charge g which
passed through the galvanometer coil.

If one wishes to damp the oscillations of the galvanometer
it is useful to recall that a coil rotating in a magnetic field
generates an induced emf. Short-circuiting the galvanometer ter-
minals completes an external circuit so that this emf can cause
a current flow in the low resistance short-circuit. Thus the
mechanical energy of the rotating coil is converted to electrical
energy as in a generator, and this electrical energy is in turn
dissipated as heat by the circuit resistance. The loss of mechani-

cal energy by the system results in a quick damping of the oscilla-
tion.,

INSTRUCTIONS:

I. A. Charge the capaciter to the battery voltage by shorfing
A to B. Then short R to C and allow the capacitor to
discharge through the galvanometer, noting the deflection
D,e

o]

B. Recharge the capacitor as before, but this time connect B
to D for a measured time t (5 seconds, 10 seconds, or
whatever proves suitable) and allow the capacitor to dis=-
charge through resistance R for that time interval before
discharging the remaining charge thrcough the galvanometer.
Again record the galvanometer deflection D.

C. Repeat step B for longer and longer time intervals ¢t.
Plot a graph of galvanometer deflection D versus discharge
time t. How does this graph relate to a graph of the

charge g on a discharging capacitor as a function of time?

II. A. Prove that 1n (D/DO) = - 1 <

RC

o v}
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B. Plot a graph of some Ffunction of D versus t which may be
reasonably expected to yield a straight line. Determine the
value of the resistance R from the slope of this line.#®

III. To see 1if leakage of charge off the capacitor's plates 1s
a factor which might cause error, charge the capacitor
once again and let it sit for 5 minutes before discharging
through the galvanometer. Compare the deflection due to

the charge which remained on the plates with that due to the
original charge qo.

¥ The capacitors have the following values for the different

circuit bcards:

no. 1 C = 0.88pF
no. 2 ¢ = 0.90 x4f
no. 3 C = 0.88 #F
no. 4 c = 0.88‘/¢§

o

\un
)
1
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Electrical Conduction in Semiconductors

References: Halliday and Resnick, Physics, part II, Chap. 31,
sec. 1-4; example 2; chap. 32, prob. 13 on Wheatstone bridge;:
Holden, A,, "The Nature of Solids”, chap. 13,14: Feynman,
"Lectures on Physics"™, Vol. III, chap 14, sec. 1-3; and
Purcell, "Electricity and Magnetism™ (Berkeley Physics Course)

Chap. 4.
Object
1 - to investigate the temperature-dependence of resistance

of a semiconductor

2 - to use a d.c. bridge circuit as a2 null-reading
technique,

Theory

According to quantum mechanics an electron which is moving
along in a crystalline solid may only have certain energies, these®
allowed energies being grouped in bands with gaps of forbidden
electron energies befween, There is a limit to the number of
electrons which can take up energies within a given band; when this
limit is reached the band is said to be filled. The distribution of
electrons among the allowed energies is different in different
solids but it is found inm all pure semiconductors at T equals (°K,
that the lower bands are completely filled and the upper ones
completely empty. The highest emnergy filled band is <¢alled the
“valance™ band and the next higher energy band the "conduction® band,
The energy gap E, between these two bands is small (—~1 electron volt)
in these materials (in comparison with insulators).

T = 0°K e ’ d ~_ Conduction Band
/// ///////// /// (empty)
Increasing D o : : _
- fé‘Eg

Electron ,
Energy // —— Valence Band (filled)
/
/// R
;- (filled)
forbidden £7
gaps

(filled)




p. 2

It can be shown that electrons of a completely filled band do
not contribute to the conduction process; they can not be given,
as a group, a net drift in one direction by applying an electric field.
Thus a pure semiconductor at absolute zero would be a perfect insula-
tor (conductivity =0), since the application of an electric field
produces no current, However, if one puts some energy into such a
system, raising its temperature, some of this energy will be taken
on by electrons in the valence band which then (in the energy absorp-
tion process) jump the forbidden gap and appear in the conduction
band. Thus at finite temperatures there will be some electrons in
the conduction band and an equal number of "holes" in the valence
band., When an electric field is applied to the sample the electrons
in the ¢. b, are given a drift velocity in the opposite direction to
that of the field; the val. b, holes act like positive particles and
drift in the same direction as the field, The conductivity of a
given sample is determined by the numbers of conduction electrons and
holes per unit volume and by the mobilities (average drift velocity
per unit applied field E of these charge carriers,

00 = noe b, 4 poe Fh (1)
where n = concentration of electrons in c¢.b,
p = conc, of holes in v.b,.
e = electronic charge magnitue, hole charge magnitude

Ph | Pe=mobility of holes, electrons

Note that increasing the temperature of one of these materials causes
more electrons to absorb energy and jump from the valence to the
conduction band, increasing the number of conduction electrons n and
holes p. So raising the temperature of 3 pure semiconductor increases
its conductivity instead of decreasing it as in the case of metals
where the number of carriers is not a function of temperature and the
controlling factor is the decrease of mobility with increasing
temperature., In pure ("intrinsic™) semiconductors the relationship

between temperature and the number of each type of carrier per unit
volume is

n = p = ¢ 13/2 g"Eg/2KI

(2)
where k is the Boltzmann constant, and ¢ is a constant,

Note that increasing T increases the number of both types of

carriers and that decreasing the energy gap Eq has the same effect

since this makes it easier for valence band electrons to gain enough

energy to jump to the conduction band,.

If one substitutes equation (2) into equation (1) and takes the
natural logarithm of both sides he obtains

r 03721
In o= = - Eg/2kT + 1n I‘ce(iue-ﬁ- R
or in terms of the resistivity CE of the sample,
— “3 2‘.’
in Q‘:: Eg/ZRT - In Lce(pe +-uh)1 / J .

The first term on the right varies much more strongly with temperature
than the second; over a limited temperature range one can consider
the second term nearly constant. Therefore if a graph of lngj versus



p. 3
1/T is plotted, the result should be a straight line of slope
(Eg/2k). to a good approximation. In this way the energy gap
may be found,.

Instructions
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The resistance of the sample is measured using a Wheatstone
bridge. The sample is placed in a calorimeter containing water,
which may be heated .

I. Before coming to lab review the bridge theory and operation,
Derive the fact that if no current flows throught the galvanometer
in the above circuit when the switch is closed, R3/Rg4 = Ry/Ro

(from which one of the R's may be determined if the other three are
known). In the set up you will use, there are two switches. Verify
for yourself that when ome of these is used Ry = By, and that use of
the other produces a 10 to 1 ratio in these two resistances.

ITI. Connect the circuit as shown and measure the unknown resistance
Rq by adjusting R4 until there is no deflection of the gslvanometer
when you tap the O button on its case., (Start by using the less
sensitive R button until you are close to the balance point.) Record
Ra and the temperature, Turn on the heater and raise the temperature
0% the sample about five digrees C., Disconnect heater, wait til T
stabilizes, and again measure R and T. DMeasure four more points or
so. Do not allow the temperature to exceed 90°C or R to go below 15

oBmS. 7f time permits, measure at water-ice temperature.

I1I. Determine the energy gap graphically. Discuss errors carefully.
Note that the meter you used need not be calibrated, as only zero
{("null™) deflections were used at bridge balance. This fact removes
one source of systematic error, namely, an improperly calibrated
scale,

Compare your results with those you would expect were the sampke
a metal, such as copper. Discuss reasons for any differences.



Linear and Nonlinear Circuit Elements

Object: This experiment actually has two objects, (1) to demon-
strate the use of the method of differences in the determina-
tion of the mathematical relationship between two variables
and (2) to find out how the current through various circuit
elements depends on the potential difference applied to them.

Theory: The resistance of a circuit element is defined as the
potential difference acreoss the terminals of the element
divided by the current flowing in the element. (If the potent-
ial difference is in volts and the current in amperes, then
the resistance is in ohms.) In a number of circuit elements,
for example the common resistor, the current through the element
is directly proportional to the voltage across it, provided
that the current is not large enough to cause a significant
amount of heating or the voltage large enough to cause electrical
breakdown, When the current is proportional to the voltage the
resistance R in the equation I = V/R is constant and the element
is referred to as being linear since a graph of I versus V would
yield a straight line through the origin.

Nonlinear elements are those in which, for one reason or
another, the current is not directly proportional to the potent-
ial difference across them. Ore c¢can still define R = V/I for
these elements but it is apparent that R is no longer a constant
in this case,but is a function of the current through the element.
One example of a nonlinear element is an ordinary light bulb
which, as the current is increased, heats up more and more, re-
sulting in an increase in the filament resistance. Some other
circuit elements are intrinsically nonlinear (without any temper-
ature change or other changes in experimental conditions), such
as the vacuum tube diode or solid state diode. These particular
examples are not only nonlinear but zlso non-symmetric, having
a much higher resistance to current flow in one direction
("backward”) than to flow in the other ("forward"). Some diodes
are nearly linear in the forward direction and are useful in
circuits where it is desirable to have I proportional to V when
the current flow is in the forward direction, and negligible
current in the backward direction when the voltage tends to cause
a flow in that direction (rectification). There are other elem-
ents which are symmetric but nonlinear,

The circuit elements investigated in this experiment are
(1) a wire wound resistor, (2) a globar resistor which is
actually a semiconductor {(whose resistance changes with tempera-
ture), and (3) a solid state diode. Further information about
semiconductors and solid state diodes is contained in the follow-
ing references:

Shortley and Williams, "Elements of Physics",
4th edition, pp. 712-14

Feynman, "Lectures on Physics®™, Vol., III,
Chapter 14.
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Instructions:

1.

rc»«di"ﬁ

Connect the circuit as shown in the preceding diagram and have
the instructor check your connections. Record the voltage across,
and the current through, the resistor Ry as the voltage is varied
in 0.1 volt steps from O to 1.5 volts. The voltage is varied by
changing the resistance in series with resistor Ry using the
variable resistance rheostat in series with the 680 or 330 ohm
resistor, or by itself. The 22 ohm resistor is never to be
taken out of the circuit or electrically byv-passed during the
entire experiment. When you have obtained your highest voltage

and current readings reverse the polarity of the power source

and the voltmeter and ammeter and record the voltage and current.
Does the direction of the current have any effect on the resist-

ance? Plot graphs of I versus V, making one direction of current
flow and one potential difference polarity positive on the graph

and the other negative. Also plot the resistance R of the

resistor for positive (one direction) and negative (the other
direction) current.

Repeat part 1 for the diode R (1IN10G) and the globar resistor
Ra (Workman Electronic Products, model FR9). The 180 ohm
resistor should alwavs be left in series with the dicde and the

voltage across the diode may be varied in 0.03 volt steps from
about 0.6 volts to 1.0 volts. Increase V across the globar
resistor in 0.2 volt steps between 2 and 5 volts. 1In the case

of the globar resistor you will need to keep readjusting the
voltage after you set it since the resistance of the element will
continue to change until the temperature levels off at the new
value. Record voltage and current readings only after equili-
brium is obtained at the required voltage.



3.

Using the method of differences (see separate instruction

sheet) determine power series I = A + BV + CV4 +....which
approximate the behaviour of these three circuit elements (for
one direction of current flow only....the direction in which

you have complete data). 1In each case make a table such as that
shown below and compute first, second, etcetera differences.
Stop taking differences when the last column shows no trend but
only random deviations.

TABLE I
Potential First Second
Difference Current Difference Difference
V_(volts) I (ma) AL (ma) £°1 (ma)
0 0
11
0.1 11 ; 16
a7
0.2 38 : 14
41
6.3 79 - 18
59
0.4 138
etc.

Record a decision as to the number of fterms that must be kept in
each case (resistor, diode, globar resistor) inm order to closely
approximate the correct relationship between I and V for each

of these elements,

Finally, take the three expressions which approximately
relate I to V for the three circuit elements {(e.g. I =A +BV+CV2}.
and substitute equally spaced values of voltage O, Av, 2av, 3av,
4 av.,...into the expressions. DMake another differenc# table for
each of the three expressions such as that shown below. By
comparing each table with the corresponding table made from the
data determine the constants A,B,C....for that circuit element.



Av

24V

34v

4 Av

TABLE I1

13}

I AT N
A s BAV + CAV2 2 C/.\v2
}/ % g
A + Bav + CAVZJ‘)/ BAv + 3 CL\av2 ,\» 2 Cav?
é g ~
.
A + 2BAv + 4 Cavlly _Bav + 5 CAve /N . 2 Cav2
2/ (7
y {
2/ 7 cav? )

A+ 3 Bav + & CAv 7}'BAV

A+ 4 BAv + 16 Cave
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DATA ANALYSTS OF
F RO &

QU/\D{*}ATTCQ»:&OQ Y = AC1)

ERROR
=0 24601980
=0el6561540
(e 1H3T79606
=0a 06056179
001408742
002010156
0107653064
0all765246 B
0e 17683359
020855748
Nal2169633
031625008
Oe34221878
NDe39960241
D6t BE4LON99
w1 a1 B856 7
“Ne2B97TRT12
=0 06713785
mOae 30225547
=y 29638724
w(}p 7690973973
=(e 16039085
=Ne 12027293
=0 aQGRTAVT]
0.,00420802
0a 08857089
0610434865
0e?0154142
Da?B014898

QUADRATICasaens e

A2V RX AR )H

PERCENT ERROR

1541458372
He23169699
307358780
0aB5171608
0el4850889
Dul&613202
0715516608
0968866616
NeB816591031
08721236919
Qa1B462604
094027607
089685120
0,93038117
1601725625
06921208687
Oab6128051
Qab?2 757970
OebB24427373
038318825
Ga32027711
08176330473
Oel22%1461
NeNLBE1RAG2
0003710972
NeD7295107%3
()30805%(:‘)656
0elds78204
O 19048707

0e 1342925225

X %

A

v

N
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FALLTNG BODY EXPERIMENT
TABLE 2

)

T

=Y

A1)
0u?29950092772

Ab2)
1l 1667180005

S

100000000
2.00000000
3.00000000
400000000
5.,00000000
500000000
7600000000
800000000
9,00000000
1000000000
1100000000
17200000000
1300000000
14400000000
16500000000
16400000001
1700000001
1800000001
1900000001
2000000001
2100000001
2200000001
7400000001
2400000001
265.,00000001
2600000001
2700000001
278.00000001
2900000001

STDs

0s261

DEV
G4851326

135000000
3,00000000
LeB5000000
7005000000
9, 50000000
12165000000
1515000000
18640000000
21485000001
25,60000001
20660000001
234950000073
18650000002
47535000007
48500000072
52685000007
58655000001
64040000006
70660000007
7705000004
a3, 75000005
9080000004
9805000004
10560000002
113640000006
12150000005
12980000013
12845000004
14735000008

DATA ANALYSTS OF FALLING BODY EXPERTM !{;ﬂ?f\! T
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BLECTRLCAL GONDUGLLON LN

SEMICONDUGCI'ORS

by Robert Jackson Marks T1
Physics 111
Group A
Friday; Pericds 1-3
Performed: 13/29/69

Due: 12/5/69




PURPOSE:
To investigate the temperature dependence of a resistance
of a semiconductor by using a D.G. bridge circuit as a

null-reading technique.

PROGEDURR

SEMICONDUCTOR
> THERMOM E TER
TEMP. VAR)ABLE
CONTAINOR

WATER

(PRY CELL) Rgg = R,
L

The resistance is measured by the use of a "Wheatstone
Bridge". The sample is placed in a calorimetercontaining
water, which may be heated or cooled, 'Ilemperature is
measured off of the thermometer, which is placed near

the semiconductor. Reslstance is measured by varying

it so the galvonometer reads zero, keeping i=0 and making

calibration of the galvanometer unnesésisary.



B

Since
In(r) = By/2kT - Ln(eeuerup)T>/2)
where:
= resistivity
T = temperature
Bg= energy gap

It™= Beoltzmants constant
¢ = constant (characteristic of semiconcuctor)

up= mobilite of holes

ue= mobility of electrons
and (mln(ce(u@+uh)T3/2)) changes minimally in comparison
with Eg/sz, a graph of In(r) vs. 1/T would yield a good

approximation of the energy gap (Eg), since its slope

would be a good approximation of %g/zk.

Registance, however, is much easier to directly measure
than is vesistivity. One may derive one from the other
£rom the formula:

=R
where :

R=resistance

Le=number with dimention of Length charicteristic

of the semiconductorfs geometry

The shape of the semiconductor changes minimally with
the temperature, but this change is so small it can be

disregarded, Therefore, L can be treated as a constant.



Therefore, if:

r = RL
then:

In(r) = 1n(RL)
since:

In(r) = Bg/211

1n(RL) = ndR) + 1n(L) = Eg/ZRT

Ln(R) = Eg/Zk’E - 1n(L)

Ln(L), being a constant, would imply that
1/ graph would have the sme slope as the

graph, being Bg/2k.

the In(r) vs.

1n(
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75,0
85,9

T K R=chmg 1A (I
£, 50 Y *, 807
276 595 6689
277 586 6684
281 539 6654
298 221 5.45
315 104 Ly 64
320 94,0 b, 54
222 B6G.2 holth
523 65,9 O
538 5L.3 3,94
340 49,2 3,90
346 40,2 3,70
348 37.5 5652
357 29,4 5638

003562
»00361L
00356
00336
«Q03L7
«00315
00311
00310
« 00296
00294
00289
«00287

» 002850



SEMICONDUCTORS

LINEFARosoosessvee Y = A{1) + Alz

ERROR PEF
«0e(00003100
«0e00002936
«0s00000953

0600005583

000008464

000002602

0600001697
«0600000430
“0e 00001499
=0e00001844

0600000345
=06 (0003395
«0) e 000045373

LINEARecoscecse






CALCULATTONS @

From the preceeding data, fig may be computed.

Also, the
intercept

in 1./3;1«

m (In(R) ve. 1/T graph) = Ey/2k

By = (2,33 x 10743k 3.8 x 1075)2(1.38 x 10-23)
Bg = 6.43 x L0=27 joules

constant L may be computed, in that £he "¥"

of the 1n(R) vs. L/T graph is equal to the

in (1fL) = 00205
1, = e-.00205

L.00 meters

i

L
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CONCLUSIONS ¢
The energy gap of an unknown semiconductor can be deter-
mined by finding the relationship of its resistance and
change in temperature, keeping all other facets constent.
A graph of Ln(R) vs. L/T yields a straight line, the
slope of which is Eg/Zk, and whose intercept is equal to
the Log of the linear constant by which the resistance

is multiplied to yield the resistivity.

In this experiment, the energy gap was found to be equal
to be 6.43 x 10727t 8,35 x 10-28 joules., and the linear

constant equal to 1,00 meter,

The greatest amount of ervor in this experiment undoub-
tedly avose from the corrilation of a temperature and
a resistance, The temperature read off of the thermo-
meter was not that of the semiconductor, for though the
temperature fell or rose slowly, the semiconductor's
registance could be visibly seen changing on the gal-
vanometer. This temperature error could have varied

as much as 59,

The deleting of the last part of the equation, the small
change in the semiconductor's geometry, and the possible
error in the calibration of the variable resistor are

minimal compared to the temp-res reading error, and may

be disregarded.




Physics Laboxatory - General Insirnctionsg

I. Purpose of Laboratory

Laboratory work in physics has two important objectives -
first, to give the student direct experience with some of the
natural phenomena upon which physical principles are based, and
second, to develop in the student some understanding of the
experimental procedures, It is felt that some experience in
the laboratory is necessary to give the student an insight into
the methods of physics (or for that matter any experimental
science), Without it he would be merely accepting principles
as they were handed to him without an understanding of the
experimental procedures on which they are based,

In the laboratory the student will work with real, rather
than ideal, apparatus, This equipment (and the experimenter as
well) will be subject to limitations which cause errors that must
be taken into account before any conclusions can be drawn from
the experimental results. Therefore error analysis is an essent-
ial part of all good laboratory work,

Although you will be assigned a ceriain group of experi-
ments to do this quarter, and in many cases the procedure to be
followed in performing the experiment is described in an instruct-
ion sheet, it is hoped that the student will uge some of his own
ingenuity in performing the experiments; it is intended that the
instructions be used as an aid to understanding rather than some-
thing to be followed mechanically without thought, We also want
to encourage students to think about possible experiments that
they might do in place of one of the prescribed set. Within
the limitations of equipment and time, substitution of an experi-
ment which is more interesting to the individual student is per-
mitted, provided it is a physics experiment and it is cleared
with the ingtructor,

IT. Preparation for an Experiment

In order to perform an experiment thoroughly and accurately
in the time allotted, it is necessary to put in some time hefore-
hand thinking about the experiment, If an instruction sheet has
been provided it is to be studied carefully before the laboratory
period, You should come to the laboratory with as thorough an
understanding as possible of what you are going to do during the
period and why, This may require that you spend some time in
the library, looking up references eftcetera,

ITI. Performance of the Experiment

An essential part of the method of solving an experimental
problem is the preparation of a clear, concise record of the data
taken during the performance of the experiment, This record
should contain, in a clear and legible form, all the "raw" data
and information with which to make corrections (don’t try to make
corrections "in your head" while taking data) and also enough
explanation of what you are doing and why so that your pages of
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data can be analyzed later without confusion or ambiguity, Your
instructor may require that this record be kept in a permanent
notebook or he may ask you to keep this record on data sheets
which are later included in a report on the experiment, In either
case, all observations should be recorded directly into the note-
book or on the data sheets (nothing on scratch paper and later
copied) and an estimate of the accuracy of each set of measure-
ments should be made and recorded also, Corrections can be made
by crossing out errors with a single line (no.erasures), Before
leaving the laboratory, the student should do enough calculation
and graphical work to ensure that the data collected "makes sense"
and there are no gaps in it which need to be filled in before he
can continue the analysis without having to make any "wild guesses’
or assumptions, Your data record must be approved by the instruct
or before you leave the laboratory,

Iv, Laboratory Notebook (Data Record)

The following are specific suggestions concerning the
form of the laboratory record of the experimentsg,

3

A, If the instructor has you keep a permanent laboratory
notebook it should be one having cross-ruled pages
(useful for graphs) and it mugt be labeled with the
following information,

1. On the front cover in ink: -
Physics Laboratory
Your Name

2, Inside the front cover at the top:
Fall (or whatever) Quarter
Lab. day and hours
Group Number

B, For each experiment the student should record the
title of the experiment and the date performed at
the top of the data record, A very brief (not
detailed) description of the procedure followed shoulc
precede the data record, which is preferably in
tabular form. Label the data carefully with the
proper column headings and units, Whenever possible,
the type and identifying number of instruments being
calibrated or uged in measurement should be recorded
for later reference,
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C. As suggested above the next step is to do the calcula-
tions required by the analysis of the experiment and
draw the graphs, Repeat any measurements which appear
doubtful and make new measurements where needed to
fill in gaps in the data.

D. If you are using a laboratory notebook rather than
data sheets and if the ingtructor informs you that
no report is required on a particular experiment,
then the experiment should be completed in the
notebook by writing a summary and conclusions,
Final calculations should be summarized in tabular
form and whatever additional graphs are required
should be completed, State a conclusion in your
own words and discuss the experiment briefly (for
example a discussion of accuracy is always desirable),
On graphs and in your final summary give the page
number of the data or discussion referred to, The
summary and conclusions may be left for the report
when one is being written,

V. Report

When a report is required on an experiment it is due
at the beginning of the period one week after the experiment was
performed, The report is to be written independently by each
student in ink (or typewritten) on white, unlined 8% x 11 paper
(graph paper for graphs). FEach report must have:

A, A cover sheet containing the followiny information ~-
course, experiment title, your name, laboratory period
day and hours, group number, date experiment was per-
formed, and date of repor:,

B, A statement of the purpose of the experiment and a
brief summary of how you went about performing it
(not detailed), data and observations (if you usged
data sheets rather than a notebook these may be
submitted asg they are), sample calculations,
tabulated results, graphs, conclusions, and a dig-
cussion of the experiment, The discussion section
of a renort should be more thorough and complete than
the corresponding section in the notebook, It may
include a discussion of what was learned in doing the
experiment, as well as the results and the accuracy
of the results. It should also contain a discussion
of any points which the instructor may have brought
to your attention through questions written on the
instruction shecets, and of any other points of
interest that may occur to you,
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It is customary to use the passive voice in scientific
writing (e.g. "The time reguired for the pendulum to swing
through twenty complete cycles was measured,,.etc.") thus not
calling attention to the observer, The following styles are not
to be used in a report: I" (we) swung the pendulum and..." or
"Swing the pendulum and measure the time for twenty complete
cycles.,.", If you quote or paraphrase any outside sources in
writing your report (including your ownh text book) give credit
to the original authox in a footnote,

References:

1. Baird, "Experimentation", chapter 7

2, Olson, "Experiments in Modern Physics", section 1.4



Measurement, Probability, and Experimenta! Errors

Types of Error

Whenever a measurement is made of any physical quantity
there is a certain amount of uncertainty in the result,
Determination of the amount of uncertainty in a measurement
is not usually easy but an attempt should always be made to do
so, even if it is no more than an educated guess, Without
some estimate of the uncertainties associated with experimental
measurements one has no indication of the accuracy of the
results and it is difficult to come to any conclusion about what
the experiment has shown (or not shown), In all of the experi-
ments which follow in the physics laboratory sequence the
student will be expected to make some estimate of the accuracy
of his quantitative experimental results,

There are two types of errors which may occur in the
measurement process, systematic errors and random errors.
Systematic errors tend to make all the observations of one item

too small or too large, For example if voltage measurements

were taken in an electric circuit using a voltmeter which
consistantly read 0,1 volt too high, a systematic error would

be present. Other common examples of causes of systematic error
are worn weights, clocks which gain or lose time, friction, and
personal bias of the observer which causes him to make readings
which are consistently high or low, When systematic errors are
recognized in an experiment it is often possible to find out

how large their effect is and to correct for it, The error

in the voltmeter which reads 0,1 volt too high, for example, can
be discovered by calibrating the instrument against some sort

of standard (accurately known voltage), and a correction of
-0.1 volt made to all the readings, Error due to an observer's
bias may be minimized by having another observer make the same
measurement independently (bias is best eliminated if each
observer knows nothing of the other's result until after both
measurements are completed),

Random errors result from chance variations in the quantity
being measured, in the measuring devices, or in the observer,
and are just as likely to produce too large a value as too small,

For example, if one measures the diameter of a metal rod several
times with a micrometer the readings will probably fluctuate
slightly in a non-systematic fashion due to actual differences
in the rod's diameter at different positions, variations in
pressure when the micrometers jaws are closed, and changes jn
the observer's estimate of the scale reading., Random errors

are present in all measurements, although they may be too small
to be noticeable, and they cannot be corrected for because of
their random nature,




II.
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Determination of Precision

Suppose that several measurements of the same quantity x
were made and all systematic error in the measurements
eliminated or corrected (assuming this were possible), As
discussed above there would still be a certain amount of
rnadom fluctuation apparent in the measurements if they are
"fine" enough to make it noticeable, If a histogram was
plotted showing the number of measurements N falling within
different intervals of size Ax it might look like that shown
in Fig. 1.

Fig. 1
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The meaning of the histogram is that one measurement of x fell
between 4.6 and 4,7 units, two between 4,7 and 4.8 units, four
between 4.8 and 4.9 units, and so forth, The completely
symetrical distribution shown usually results only if a large
number of measurements are made and if the fluctuations are
entirely random, In such cases the envelope of the distribution
often has a particular form called a "normal" or "Gaussian"
distribution which is represented by the mathematical equation

- o 2
y =__1 o -(x-%)2 /2(5

-

(1)
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where 0is a constant which determines the "sharpness" of the
peak (high, narrow peaks are characterized by small values

of ¢)., The quantity X is the average of the individual
measurements

X1+X2 “ooevecoceose — in

x = n n

where n is the total number of measurements, and because of the
symmetry of the Gaussian function X corresponds to the most
probable value of x obtained from a measurement of x (peak
of curve), |{Thus %X is the best estimate that one may make Of
|the true value of x from these measurements,

The individual measurements of x differ from the average
or most probable value X by an amount d called the deviation
of that measurement

dl = Xl - 52 T d2 = Xz ;{ ] P20 06000066 6
The standard deviation |
‘\'/3’ "/2
~ i .
a =!‘d12 + dp2 + .......dn2J=!Z(d1)2
! n -1
L n - 1 L |

is an indication of the precision of a set of measurements
since narrow Gaussian distributions indicate precise measure-
ments with small deviations from the average and a small
_standard deviation &, |[If @ large number of measurements is
made, 68% of them will be in the range X + ¢, 95% in the range
X+ 26, and 99% in the range x &£ 30, a fact which can be
verified by determining the area under a Gaussian curve between|
the various limits,| If after having determined x and o from a
large number of measurements one makes a single measurement x,
he then will have about a two thirds chance of getting a value
between % +T and X - 0O , etcetera,

Although increasing the number of measurements of quantity
X would have little effect on the standard deviation ¢ (the
scatter of the data) except to give a more accurate picture of
what it really is, increasing the number of measurements should
improve the reliability of the average value x, It can be
shown from statistics that the standard deviation in_the mean X
is given by the equation

o . = g
m R0 e T T




|which means that there is a 68% chance that the true value of x

——f -

will be in range X + Om assuming the distribution is normal and
there are no systematic errors present, | Thus the precision o

I1TL.

the mean X can be increased (Gﬁ reduced) by taking more observa-
tions, but the improvement is slow because of the vn factor

(90 readings only 3 times as good as 10 readings). The final
result of a set of measurements may be stated

—

x = X +0m

It is quite often useful to represent the standard deviation Om
as a percentage of the value X, The calculation required is:

per cent std., dev. = @m/x). (100%)

Although the normal or Gaussian distribution (equation 1)
is very often a good representation of the kind of distribution
found in repeated measurements of physical quantities, it should
not be assumed that this distribution always gives an accurate
description of the results of such measurements, even when a
large number of measurements are made, There are a number of
cases where the distribution is non-Gaussiap and perhaps even
non-symmetrical, For example, if one makes several determinations
of the number of nuclei which decay by particle emission in a
certain time, he obtains the Poisson distribution
z X -
o =2 -X
Y x1! €
(2)

where x is the average number of counts and y is the probability
of obtaining x counts in a given trial, This distribution is
very unsymmetrical about the mean X when the number of counts X
is small but closely resembles a Gaussian distribution with
standard deviation yX when X is large,

Propagation of Errors If one uses experimental observations, with

their associated random errors, to calculate a result, the
precision of the result will be determined by the precision of
the quantities involved in the calculation, The standard
deviation of the result may be determined from those of the
separate quantities oy , C'mg. elC. by keeping in mind the
following rules,

The standard deviation of the result of addition and/df
substraction is the square root of the sum of the squares of
the standard deviations of the separate terms,

Example: Xy = 3.30 £ 0,20 units
xo = 1.70 &+ 0.10 units
X3 = 7.20 ¢+ 0.01 units
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v,

-

r 2 2 2 ¢
X] = X9 + x3 = (3.30-1,70+7,20) + L(O.ZO) + (0,10)° +(0.01)%
= 10,80 + 0,22 units
Note that most of the standard deviation in the result comes

from the largest standard deviation present in the separate
terms (0,22 = 0,20),

The percentage standard deviation in the result of mulitplicatioh'
and/or division is the square root of the sum of the squares of
ithe percentage std, deviations of the factors,

example: Xye X2, Xg as above

(% std, dev,), = 0.20 x 100% = 3,8%
5.30
(% std. dev,), =_0.10 x 100% = 5.9%
1.70
(% std, dev.), = 0,01 x 100% = 0,1%
7.20
y = (x1) (x9) = 1,25 + std, dev,
X3 -
- T
(% std. dev.), = [(3.8)2 + (5.9% + (0.D2}% = 7,0%

I

(std, dev.)y (.07) (1.25) = 0,09

y = 1,25 4+ 0,09 units
Note that in this case the largest contribution to the standard

deviation in the result comes from that quantity with the largest
percentage standard deviation,

e e

EIn case a quantity is raised to the nth power its percentage i
jstandard deviation is multiplied by n, i

The process of carrying standard deviations through calculations
is useful not only indetermining the precision of the result but
also in determining which quantity contributes most to random
ervror in the result, It may be possible to reduce the deviations
in this quantity by using more care or different techniques.

Accuracy of Experimental Results

Determingtion of the standard deviation in an experimental
result will tell you how much uncertainty is present due to
random errors, but this is an indication of the accuracy of the
result only in the case where systematic errors are negligible
compared to random errors, For example, if in a particular
experiment you obtained g percentage standard deviation of 1% but
the instruments used to obtain the measurements were accurate only
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to within 5% (all readings may be too high or low by 3%), then
the 5% accuracy is a better indication of the reliability of the
results than the 1%. Some attempt should be made by the student
to determine the reliability of his results in each experiment,
although in some cases this will involve making some educated
guesses as to the accuracy with which a particular measurement
may be made with a particular measuring device, 1In all cases

try to eliminate as much systematic error from the measurement

as possible within the time available, An experimental result
does not agree with a prediction of a theory unless the theoreti-
cally predicted result lies within the range given by the experi-
mental result plus and minus the probable error; an experiment
does not disagree with a theory unless the predicted result lies
outside this range,

Significant Figures

The term "significant figures" refers to the digits of a
measurement made in the laboratory, including all the certain
digits and one additional doubtful one based on the observer's
estimate of a fraction of a scale division, The numbers which
represent data or the results of calculations should always be
given with neither more nor fewer significant figures than are
justified by the precision of the observations and computations,
The number of significant figures in a measurement (or a calcues:
lated quantity) may be determined using the following rules,

(a) The first significant figure is the
first non-zero digit,

(b) Zeros which occur between significant
digits are considered significant,

(c) Zeros which occur to the right of the
last non-zero digit are considered
significant when they are to the right
of the decimal point (the significance
of such zeros to the left of the decimal
point is indeterminate),

(d) If numbers having a different number
of significant figures are added,
substracted, multiplied or divided,
the answer is given so as to have the
same numbexr of significant figures as
the term or factor which has the least,

Examples: .0001906 has 4 significant figures
10,8937 has 5
93,000 has an indeterminate number
9.3x104 has 2
9,30x104 has 3




VI,
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Comparison of Results

Sometimes an experimental result is arrived at by two
different methods which should both theoretically give the
correct result, If there is no reason to believe that one
of the results is much more accurate than the other, it
might be instructive to see how much difference there is
between the two, This difference is usually given in terms
of the "percentage difference" which is defined,

% diff, = diff. between values x 100%
‘ average value

References:

1, Young, "Statistical Treatment of Experimental
Data*
2. Barford, "Experimental Measurements: Precision,

Error and Truth"

3. Baird, "Experimentation: An Introduction to
Measurement Theory and Experiment Design"

4, Braddick, "The Physics of Experimental Method"

S, Pugh and Winslow, "The Analysis of Physical

Measurements”

6, Bevington, "Data Reduction and Error Analysis
for the Physical Sciences"




METHOD OF LEAST SQUAPES

One of the fundamental problems that comes up again and again
in the laboratory is that of finding, from simultaneous measurements
of quantities y and x , the dependence of quantity y on quantity x
(the dependence of the period of a pendulum on its length for
example), Often this dependence is revealed by making a graph of
y versus x from the data. However, a certain amount of judgement
is always involved in making a graph from experimental data since
deviations in the measurements usually make it impossible to draw a
smooth curve through all the data points. One usually tries to
draw a smooth curve among the points in such a way that it appears
that the deviations of the points from the line (positive and negat-
ive) add up to approximately zero, In other words, in the graph
shown below ‘

Layl+ gl + g+ ceenes @ Jdgf +1dab+ conennons
where the deviations here and in the analysis to follow will be
assumed to be deviations in y for precisely known values of x,
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If a high degree of precision is required in the expression
relating y to x , this method of balancing deviations "by eye"
might not be sufficient, 1In this case a more scientific approach,

based on statistics, is followed, It can be shown that{the most
ilprobakle disposition of the line representing the dependence of y
on x is that for which the sum of the squares of the deviations of




T2 =d %+ a2+ d%+ a5+ L....= a mininum

This statement is called the "principle of least squares'" and it
is the basis of a method for finding the relationship between

y and x which best fits the data points (for which the sum of the
squares of the deviations is a minimum),

Actually the problem of determining the line which "best"
fits a set of data points (x; , ;) is several different problems,
depending on the type of curve which is to represent the relation-
ship between x and y. If it has been predetermined from the data
or from theory that y depends on x linearly so that y = Ax + B,
the problem becomes one of picking out, from all possible straight
lines, the one with values of slope A and intercept B such that
the sum of the d;2 will be as small as possible, If (x3, yj) are
the coordinates of the first data point, (x2, yo) the coordinates
of the second and so forth, and if it is assumed that the devia-
tions are only in the y measurement for precisely known x ' s,
then

Z(di)2 :(A'Xl“*'B"'y )2+ (AX2+B_Y2)2+uooooo
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If the "best" straight line is that which makes the sum of the
squared deviations or a minimum,
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are the conditions which should lend to the "best" values of A and
B, These equations may be rewritten;

B Sx, + A Ix;2 -¥xiyy =0 (1)

i
nb + A 5xy - Yyi =0 (2)
where n is the number of points,

The method is illustrated below for a set of n = 5 points,

Point
No, 1 2 3 4 5
X 1,00 1.90 2.60 3.20 4,00

y 0.90 3,00 4,00 5.50 6.90
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A table is made as follows:

X y X2 Xy
1.00 0,90 1.00 0.90
1.90 3,00 3.61 5.70
2,60 4,00 6,76 10,40
3.20 5,50 10 .24 17 .60
4,00 6,90 16,00 27,60

Toxio= 12,70 Ly; = 20,30  Ix;% = 37,61  Tx5y; = 62,20

[

Substituting in (1) and (2),

12,70 B + 37,61 4 = 62,60
9 B+ 12,70 A = 20,30
Solving simultaneously, B =-0,989 A = 1,988

The equation of the straight line which best fits the data points
is
y = 1,988 x -0,909

In other words the sum of the squares of the deviations of the
points fromt he straight line is a minimum for a line of slope
1,988 and y intercept -0.,989,

It is generally shown in books on statistics that the
standard deviations in these values obtained for the slope A and
intercept B may be fcund using the equations (3 and 4):
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In cases where a nonlinear curve is to be fit to a set of
data points in such a way as to make ¥ (di)2 a minimum, equations
(1), (2), (3), and (4) no longer apply. Often one can get around
this difficulty, however, For example, suppose some data points
are to be fit with a parabola of the type vy = Ax® + B, If the
quantity X = x2 is calculated for each of the points, the method
may then be applied to quantities y and X, since y versus X will
be a straight line (y = AX + B) even though y versus x is not,

The least squares method is