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Lunch 
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Notes Notes Notes 
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+ PRELIMINARIES+ 

• Definition 
• History . 
• Applications 
• Artificial & Wet Neurons 
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Definition 

Q: What is an artificial neural network? 

+ Architecture Answer: 
A highly connected am~y of elementary processors. 

• Algorithmic Answer: 
A computer that performs operations similar to its biological 
counterpart ANN's can perform the following functions: 

• Associative Operations 
• Search Operations (e.g. Combinatorial) 
• Classification & Regression 
• Pre-processing 
• Adaptive Control 
• Clustering 

ANN's .as classifiers and regression machines are trained from 
e:camples. They gain 'wisdom' from 'experience'. 

~ 01992·-·R.J.-·2 

Figure 2 

Artificial neural networks are typically defined either from their archi­
tecture or from the operations they perform. Architecturally, the ANN 
loosely resembles the biological neural network. Algorithmically, neu­
ral networks perform operations similar to certain biological neural 
network functions. 
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A rose by any other name ... 

• ARTIFICIALNEURALNEIWORKS • 

• NEUROCOMPUTERS • 

• PARALLELDISTRIBUTEDPROCESSING • 

• CONNECTIONIST SYSTEMS • 

As opposed to ... 

•P ARAILEL PROCESSORS• 

•ARTIFICIAL[NTEILIGENCE (ExPERT SYSTEMS) • 

019111!-l'llliali>orios·R.J.IIIIb·3 

Flgure3 

Artificial neural networks go by many names. Other fields, which have 
names that apply to artificial neural networks in the generic sense, are 
fields that are, in fact and practice, quite different than artificial neural 
networks 
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Q: When was the fuse lit? 
A: Most recently in 1982. Before this, neural net research 

was at a crawl. 

Q: Ignition? 
A: The 1987 IEEE CoTJjerence on Neural Networks in San 

Diego. 

Q: What technical organizations have formed since 1987? 
• IEEE Neural Networks Council 

+ OrcaDs md Sys=m • )DfoallolioD Theory 

• ccmnrmiaricGs • Lasc:rs aud EJ,ecao.Oplics 

• Ccalrol sys=m • Robocics m~~ 
+ EDgillec:riDS ia Mali<:ille aucl Bicloey • OceaDic EllgiD=iag 

• IDdaslry Applicalioas • SigDal ~g 

• IlldamialElecllullics • s~eybenlelia 
•International Neural Networks Society 
• Japanese Neural Network Society 
• Joint European Neural Network Institute 

Q: What has been the effect on the literatUre since 1987? 
A: IEEE Transactions on Neural Networks (over 8000 

subscribers) •. 
+journals from publishing houses P- 5), and 

a plethora of books! 
+Texts 
• MIT Press, Prentice Hall, Addison Wesley, •.. 

~ 019112·1'1-liii ·R.J:--4 

Figure 4 

( 

( 

(_ 



( 

( 

Q:VVhataboutconferences? 
A: International Joint Coriference on Neural Networks 

• > 2000 registrants in each conference. 
• twice yearly 

Europe: 
•International Conf on Artificial Neural Networks 

Q: Who is cmrently supporting neural network research? 
A: • Japan (MITE) 

Figures 

• West Germany (5 new Chairs). 
+ United States (DOD, NSF). 
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Q: ~tare neural networks? 
A: Highly connected arrays of elementary processors. 

Q: Wlutt do_neural networks do? 
A: Lots of things! 

•.. but mostl.y,leaming from examples 
(instead of rules) 

Q: What are some applications of neural networks? 

A: • Control 

• Fmance 
• Power 
• Communications 
• Security 
• Speech 
• Signal/Jmage Processing, Understanding 

and Recognition 

• Biological Engineering 

·• Remote sensing 
• Gaming 
• ??? 

01212·-•ioc·RJ.-·& 

Figure& ~ 
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( Q: Where are neural networks currently used? 
• Security 
• Communications 
• Control 
• Grading Meat 
+Finance 
• Power Engineering 
• ??? 

Q: What will determine the future of neural networks? 
• Relative perfonnance 
• Implementation ease 

0111112·-·R.J.--7 

Rgure7 

As with many newly emerging technologies, neural netWorks have 
been applied to numerous problems, from predicting stock markets to 
grading meat in slaughter houses. The most promising applications 
include forecasting, control, and fuzzy systems. 
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Market Impact 

YEAR World Revenues Revenue Growth Rate 
($ Mmjons) (percent) 

1991 301.3 69.6 
1992 580.4 92.6 
1993 1208.7 108.2 
1994 2539.5 110.1 
1995 4643.2 82.8 
1996 6461.6 39.2 
1997 7996.0 23.7 
1998 9915.0 24.0 

Source: Electronic Design. June 25,1992 
Market Intelligence Research Corporation 

~ 0191!-l'llliniailo·R.J.-·1 

Figures 

Neural networks' applications to power engineering are considered so 
diverse as to warrant individual forums on the topic. The next is sched­
uled for Japan in 1993. 
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( Scientists create thinking computers to 
forecast loads 

Working with a team of faculty engineers and graduate students at the 
University of Washington, Casey Brace, senior engineer, Engineering 
Applications and Analysis, is developing a neural network computer 
model that has potential for substantial savings to Puget Power. 

This neural network predicts short-term loads to help Puget Power's 
power scheduler, Lloyd Reed, estimate needs as accurately as possible. 
After only two months of work, the group is ready to try a neural net­
work forecast trial. 

Neural networks are a class of mathematical models that mimic the 
brain. Uses as diverse as loan application analysis and power load secu­
rity assessment are in the research stages at over 100 companies. Puget 
Power is one of the first to use neural networks in utility applications. 

Puget Power and the UW team have been working together closely on 
this project, says Brace. "They look to us to know how a utility func­
tions. We've got the knowledge of this business as well as the computer 
data. The students need to know our requirements so they can translate 
them into a useful model," says Brace. 

"The difference between neural networks and common linear comput­
ing is like the difference between learning and memorizing," says 
Robert J. Marks ll, professor of electrical engineering at the University 
of Washington. The network will need to learn and judge effects of 
weather, times of year and local events like school vacations and wood 
burning bans before forecasting the load. 

"I need something that can work fast, and get information to me before 
10 in the morning," says Reed. "We have an obligation to our custom­
ers to meet the load. We must have early indication of what we'll need, 
especially if the demand will be high. If we need energy beyond what 
we can supply ourselves, we may need to purchase outside energy 
before it is bought up by other utilities." 

The research team is investigating a neural network application for use 
at Colstrip as well. The generation site has a transmission disturbance 
detection, evaluation, and decision-making scheme in place now. When 
there is a fault followed by an outage, the scheme decides whether or 
not to trip the generators to protect them against damage. Early detec-l_ · tion is the key to maintaining the stability of a power system and better 

---- -------
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protecting generators. Theoretically, a neural network could provide a 
better detection scheme of transmission system disturbances. 

But even the most promising models being developed today don't have 
the brain-power of a common housefly. 

"When researchers reach the level of a fly," says Brace, "science will 
be making amazing strides. Sure, flies are not intelligent, but they can 
recognize food and danger. And they can fly. We could do so much with 
just that level of recognition." 

Reprinted with permission of Puget Sound Power & Light Co. 
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( Neural net regulates electric power grid 

Vancouver, B.C. - Neural Systems Inc.'s software has been managing 
the local power grid here since July. The system has reduced voltage 
fluctuations by one hundredfold, thanks to its neural simulation soft­
ware, called Genesis. 

Proprietary method 

Unlike other neural simulators that require the user to specify the 
desired result, Genesis uses a proprietary method called "response 
learning," which can a find a solution from training data even when the 
desired result is unknown at the outset. 

Genesis balances the load on British Columbia Hydro Authority (BC 
Hydro) by adaptively controlling four synchronous Voltage-Amperes­
Reactance (VAR) machines of unequal capacity. The VAR machines 
are supposed to make the line voltage into one of those ideal voltage 
generators that is studied in electronics courses - generators hose volt­
age remains the same no matter how much current is drawn. But real­
line voltage must be maintained by reacting to the fluctuating power on 
the line to smooth out any variations. 

VAR machines are giant synchronous electric motors that run con­
stantly but drive nothing. They provide real-time voltage regulation 
whenever a customer switches a heavy load on or off. The machines 
also come into play when a utility brings a generator on-line. Any such 
change sends ripples through the power grid, causing the load to 
become unbalanced among the various VAR machines feeding the grid. 
Without redistributing the load, unnecessary losses are incurred. 

Real-time operation 

Traditionally, these loses are continually corrected by humans who 
manually balance the load among the generators. Now Genesis handles 
that task at BC Hydro's Vancouver Island Terminal. The neural network 
operates in real time, whereas the human operators balanced the load 
whenever they noticed it was out of balance. The load is measured in 
mega-VARs- with human operators it is out of balance about 20 
MVARs a day, but with the neural network it is only off .2 MVARS, 
according to Gary Josin, president of Neural Systems. 

To deploy the application, Genesis was installed on a shop floor PC that 
acquires data directly from the power grid and outputs control signals 
to the VAR machines. Eventually it will be deployed in a dedicated 

Notes Notes Notes 
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controller, but for now it is still running on the PC. "After proving that 
it worked, we tried to take the PC-based system away while we put the 
software into a dedicated system, but the operators wouldn't let us. 
They said they needed it now," revealed Geoff Neily, protection and 
control supervisor. 

Now that Neural Systems has acquired expertise in power systems, it 
has identifi~ several problem areas where a neural network might be 
able to do what traditional controllers have been unable to accomplish. 
For example, vibrations are introduced into the power spectrum when­
ever a large load is switched on or off. These vibrations can cause 
oscillations at several resonant frequencies. "Most of these are below 2 
Hz and are damped out by an analog controller, but it is not totally 
effective," Nelly explained. Genesis, though, could set up to adaptively 
change the frequency of the damping circuitry to increase the system's 
effectiveness. 

-R. Colin Johnson 

Copyrighte 1991 by CMP Publications, Inc., 600 Community Drive, Manhasset, NY 11030. 
Reprinted from Electronic Engineering TIMES with permission. 
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Permission valid until 
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PROCEEDINGS OF THE FIRST 

INTERNATIONAL FORUM ON 

APPLICATIONS OF 

NEURAL NETWORKS 

TO POWER SYSTEMS 

Edited By 

MOHAMED A. EL-SHARKA WI 
ROBERT J. MARKS IT 

SEATILE, WASHINGTON 
JULY 23-26,1991 <$> 91'm0374-9 
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HISTORY 

1866 Mach Lateral Inhibition 

1943 McCullogh & Pitts Boolean Net 

1949 Hebb Interconnect Strengths 

1957 Rosenblatt The Perceptron 

1960 Widrow Adaptive Networks 

1968 Grossberg Unified Network Theory 

1969 Minsky & Papert Perceptrons 

1972 Kohonen & Anderson Associative Memory 

1974 Werbos Error Back Propagation 

1975 Lee &Lee Fuzzy Neural Networks 

1982 Hopfield Energy Minimization 

1982 Kohonen Feature Maps 

1984 Rumellum The Layered Perceptron 

1985 Farhat & Psaltis Optical Neurocomputer 

~ 01!1112----R.J.IIab-10 

Figure 10 

Here are some of the key events in the development of neural networks. 
In each case, the neuron, either artificial or biological, was modeled 
mathematically. 

Mach is the same person for whom the speed of sound is named. Mach 
showed how lateral inhibition among neurons could account for the 
optical illusion now known as Mach bands. 

Hebb demonstrated what is now known as Hebbian learning. The more 
an interconnect between neurons is used, the stronger it grows. 

Rosenblatt and Widrow both investigated a version of the perceptron. 
Grossberg proposes his unified network theory of neural networks. 

The book Perceptrons illustrated some severe limitations of the per­
ceptron. Many of the important limitations were overcome in the work 
of Rumelhart. Backpropagation training of neural networks was pro-

Notes Notes Notes 
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posed by Rumelhart. Backpropagation was independently discovered 
by Werbos and a number of other researchers. 

Neural networks today are recognized as natural complements to fuzzy 
systems. Lee and Lee first made the connection in 1975. 
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• Axon: One per neuron. Excites up io 104-other neurons. 
• Dendrites: Up to 10,000 per neuron. 
• Synapses: Interconnects between neurons. 

Figure 11 

The architecture of artificial neural networks is based loosely on that of 
the biological neural network. The axon is the output of the neuron and 
connects to other neurons. The dendrites provide the input to the neu­
ron. The synapse is the interconnect between two neurons and is 
analogous to the weights in the artificial neural network. Biological 
neuron types are many and varied. 

Notes Notes Notes 
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THE NEURON: An Elementary Processor 

• Neuron (nodes or neurodes): An elemcntaJy processor 
which, typcally, sums itS inputS, and performs a 
nonlinear operation on this sum. The result is the the 
neuron's state. The nonlinear function is referred to as a 
sigmoid nonlinearity or a squashing function. 

+ State: Each ncoron has a .sUlle. The state changes with 
time. As illustrated below, the state of the kth neuron is 
uk(t). A state is simply a number associated with the 
neuron. The state is determined by the other neurons to 
which it is connected. 

+ Weight: The sttength by which one neuron is connected 
to another is specified by the COIIIlecting weighl. The 
weight between neurons n to k is denoted by wn.~:. 

ul wlk 

uz ~k 

u3 w3k 

'). uk • • 
• • 

UN ~k 

~ 019112-F\Oiio-·R.J.II8b·12 

Figure 12 
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Here, we define and illustrate the fundamental terminology of neural 
networks. 
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A Discrete Neuron Model 

uk(n+JJ = S[ V + l;i Wik Uj[n]] 

S[ J = squashing functions 

u1[n] Wjk 

uz[n] wzk 

u3[n] w3k 
~[n+l} ~ 

• • • uN[n] WNk 

v 
1 

01992--·R.J.--13 

Figure 13 

For the discrete neuron model shown here, n parameterizes discrete 
time. The state of the neuron at time n + 1 is equal to a non-linear func­
tion of the weighted sum of the other neural states at time n. 

Notes Notes Notes 
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Some Squashing Functions 
+ UnitStep 

.S 
I 

1-;.'-----

sum 

+ Piecewise nonlinearity 

,s 

~ 
+ Sig171bid nonlinearity 

, s = [ 1 + exp(-swn)]-I 

_;y 
sum 

Dijferenliarum property 

S' = -exp(-sum) [ 1 + exp(-swn)J-2 = S(l-S) 

01!112·-·R.J.ll3to·U ~ 
Figure 14 

Shown are two popularly used squashing functions used as. the neural 
non-linearities. The choice of the sigmoid non-linearity is motivated by 
the ease by which its derivative is computed. This derivative is needed 
in certain training algorithms. Similar relations hold for other func­
tions. If, for example, S(x) = [tanh(x) + l]/2, then S' = -2S(S- 1). 
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An Analog Neuron Model 

C Sumk' (t) =-Ln Wnk [ sum.k(t) - un(t) ] - G sumk(t) + i 
Un(t) = S[ sumk(t)] S[·] =squashing function 

ul(t) wlk 
• rvvv---: 

I 
I 

uz(t) Wzk \ ...__..., ""'''"/\.~_, 

- • • 

~(t) 

uJit) • wNk j sumk I - uk(t} 
~-f\1\.,f\ "vi'V---i--...--...!!..--4----\ S 

I I I 
I GT CT i 

• )I 

~ ~ 

Steady state solution: 
uk(t) = S[ CJ + C2 Lz Wnk un(t)) 

Figure 15 

This is a model of a single continuous time (analog) neuron. It has the 
indices of the kth neuron. In steady state, the neural state, uk ( t) , is a 
non-linear function of the sum of the inputs. The numbers c1 and c2 

are constants. 
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NEURON INTERCONNECTIONS 

• Homogeneous Neural Networks 
E•ny 1111m111 is OIJIIIUit:UdiD ""'"dur rwuon. 

N=9 

N=l6 

• Bopjield neural networks 
• AJtenatillg projection nelD'tll nenvorfcs 

Flgura16 ~ 01!1!12-l'lliDiWios-R.J.-·16 

Most neural networks are either homogeneous or layered. In homoge­
neous neural networks, . every neuron is connected to every other 
neuron. For N neurons, there are N2 interconnections. 
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• Layered Neural Networks 

Neurons~ one llzyer (or sllzb) an eo'flllteted to the neurons in Dn 

lldja&~elllilzyer-( or sllzb). 

Example: The layered perceptron. 

hidden 

'-""""'-'-"'-J 
~ 

interconnects 

+ART 
+BAM's 
• Kohonen SelfOrganiztion NN's 

01912·-·R.J.-·17 

Figure 17 

In layered neural neiworks, each layer of neurons typically performs a . 
function which can be different than that of a different _layer. AKr 
means adaptive resonance theory and BAM means bidirectional asso­
ciative memory. 
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NEURAL NETWORK MODELS 

• The Layered Perceptron 
A lAYERED NEURAL NETWORK THAT LEARNS FROM 

EXPERIENCE USING SUPERVISED LEARNING. USED AS A 

CLASSIFIER OR REGRESSION MACHINE. 

• Hopfield Neural Networks 
A HOMOGENEOUS NEURAL NETWORK THAT ITERATIVELY 

REDUCES AN ENERGY METRIC. USES INCLUDE 

ASSOCIATIVE MEMORIES AND COMBINATORIAL SEARCH 

PROBlEMS. THE BlDIRCTIONALASSOClATIVE MEMORY IS 

A TWO lAYER GENERALIZTION. 

• Adaptive Resonanee Theory 
ADAPTIVE RESONANCE THEORY PERFORMS 

CLASSIFICATION USING UNSUPERVISED LEARNING. 

• Kohonen Feature Mqping 
THIS NEURAL NETWORK MAPS UKE FEATURE VECTORS 

INTOCW~ USING UNSUPERVISED LEARNING. 

• Altemaling ProjectiDn Neural Networlcs 
A HOMOGENEOUS CONTENT ADDRESSABLE MEMORY. 

~ 019!12·Pioini>aioo·R.J.-·18 

Figure 18 

These are the four most commonly used artificial neural network mod­
els. 

( 

( 

(_ 





·) 

) 

_) 



Notes Notes Note~ 

( 
+ COMBINATORIAL SEARCH + 

• Lateral Inhibition 
• The Queens Problem 
• The Traveling Salesman Problem 

( 
01992-~Seordi-R.J.IIsb·1 
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Combinatorial Search 

King of the HiU 
(Winner-Take-AU • Maxnet) 

J, 

The Rooks Problem 

J, 

The Queens 
Problem 

J, 

The Traveling 
Salesman Problem 

0151;2-~--R.J.IIIns-2 ~ Figure 2 

The king-of-the-hill problem will be generalized to solve the simple 
combinatorial search required by the Rooks Problem. The rooks prob­
lem will be shown to straightforwardly generalize into solution of the 
Queens and the Traveling Salesman problems. 
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Winner Take All 

Autoconnect weights 
Cross connect weights 
State of ith neuron 
Time 

a 
-w 

u;[n] 

n 

Latera/Inhibition 

Each neuron attempts to rum off all other neurons. 

Result: 
The neuron(s) with strongest initial condition(s) wins. 

01!182·--·R.J.IIIrb·3 

Figure 3 

In the King-of-the-Hill (or Wmner-Take-All or Maxnet) neural net­
work, each neuron attempts to 'turn off' all other neurons while 
reinforcing itself. When the contest is over, the strongest neuron or neu­
rons win with a numerically larger state than the loosing neurons. 

Specifically, consider the linear array of neurons illustrated here. The 
interconnect weights between all of the neurons is-wand the autocon­
nection of a neuron to itself will be denoted as a. We will assume both 
w and a are positive. Typically, a is much larger than w. 

An inspection of the above equations reveals the dynamics of the com­
petitive nature of this simple neural network. As an example, the 
student is invited to try a simple 3 neuron example with w=O.l and 
a=l.l. For initial states, [0.9,0.5,0.1], convergence occurs in less that 

(~ . ten iterations of each neuron. 
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For obvious reasons, such· neural networks are referred to as winner 
take all nets. They have also been referred to as maxnets and king of the 
hill neural networks. Note that we can view the operation of finding a 
maximum a simple search problem. 
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( • Problem ·Statement: On an N X N chess board, place as 
many rooks as possible so that no rook can capture 
another. (An obvious solution is to place them along 
the diagonal). 

+ Neural Network Solution: Use N rows and N columns 
of a king-of-the-hill inhibition neural network. Shown 
below is a 4 x 4 neural network for the rooks problem. 
Autoconnects are not shown. 

01DII2·~s-di-RJ.-·4 

Figure 4 

A simple combinatorial search problem is the rooks problem. On an N 
X N chess board, we wish to place as many rooks as possible so that no 
rook can capture another. The maximum number of rooks that can be 
thus placed is N. One clear solution is to place N rooks on the diago­
nals. Although the rooks problem is simple, its discussion allows easy 
conceptualization to the more complicated Queens and Traveling 
Salesman problems. 

To solve the Rooks problem, we form anN X N array of nemons. Each 
row of N neurons will be connected in a winner-take-all configuration. 
Also, each column is connected in a winner-take-all configuration. Our 
aim is to require the N X N net to settle onto a solution that has, in 
steady state, only one neuron at a high state for each row and each col­
umn. The result is clearly a solution to the Rooks problem. The initial 
states of the Nl neurons can be chosen randomly. 
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The Interconnect Matrix 

+ Number the neurons in the rooks problem from left to 
right from the top down. The weight between neuron j 
and k is· Wjk· The N2 inconnects in a neural network for 
the rooks problem can be characterized in an 
interconnect matrix. Typically, WjFWkj· For the 3 X 3 
rooks problem, we have the following. 

lc2~~ 
I v-----= ~r-:=11 

4 5
1 
J 6 I 

-------I"~ 

01992-~Soordi-R.J.--5 ~~ 
FigureS 

The interconnect matrix is a table of the interconnect weights between 
neuron pairs. 
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( The Queens Problem 

+ Problem! Place as many Queens as possible on an N X 
N chess board so that no queen can capture another. 

• Neural Network Solution: Use the same neural ne~_ork 
that was used in the Rooks Problem. In additton. 
laterallY inlu"bit along all of the diagonals of the chess 
board. . 

• Example: 

Cllllfi·~-·R.J.-·& 

Figure& 

The Queens problem is analogous to the Rooks problem, except that 
. queens, rather thaii rooks, are used. We must now provide, in addition, 
winner-take-all neural networks along each diagonal. H two neurons 
are connected by weights from two different winner-take-all nets, the 
composite weipt is just the sum of the components. 

We illustrate the working of the Queens neural network by borrowing 
results from McDonnell et.al. The neural net was randomly initialized. 

H N > 3, a total of N Queens can be placed on a chess board so that no 
queen can capture another. 
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Neural Network Solutions 
of the Queens Problem 

j19!f• Queens ~ ,..,.. I Queens -
I t I I I I I I 

,~:;~; 

.;~~: 

(&) (b) 

(c) 

Problem: Th= are only 7 QueeDs in the sready Sllle solutioa. 'l'bcre sbould be 8. 
SGiulioa: lDcrase die esciwioo ID provide dJe aerwori: with 1111J1e OIICIJY. 

011192·~5Nrdi·RJ.IIIrks·7 ~ Figure 7 

These are snapshots of a simulation of the analog solution of the queens 
problem on a standard chess board. Initialization was random. Each 
pixel is a neuron. A clear pixel corresponds to a zero. A darkened pixel 
corresponds to a value of one. Shaded pixels correspond to intermedi­
ate values. The excitation was for a current of i = 0.15. The final 
solution, although valid, is one queen shy of the maximum number of 
eight queens. The current needs to be increased a bit. 
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Another Neural Network Solution 

11:•••·····- • lllun••-~ ~IQucen• •1!!!1 
~i ~~ • 

I -t- •.• 1-1- • • 

II • • 
m • • • • • 

~- • • 10 WI Hf: Iii~· iJ' 
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Figure 8 

Here, the neural excitation has been increased to i = 0.25. Interestingly, 
in (g), there are two 'on' neurons in the third column, each trying to 
turn the other off. Which one wins? Because there are also two 'on' 
neurons in the third row, the neuron in the third row and third column is 
simply outnumbered. It looses. 
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The Traveling Salesman Problem 

There are N cities that a traveling salesman must visit. 
Given the distance between each pair of cities, schedule a 
trip that includes a stop at each city such that the total 
round trip distance is minimum. 

Neural Network Solution: 

For N cities, construct an N X N array of neurons. The 
vertical dimension denotes the city and the horizontal 
denotes the order of visitation. Suppose, for example, we 
had 3 cities: A, B and C. Then a neural network solution of 
the form: 

~
A 

B 

c 

1 2 3 

means that city A is visited fli'St, city C second and city B 
third. (X denotes an on neuron and - denotes one that is 
off). 

~ 01992·~Soordl·ll.l.llmts·9 

Figure 9 

The Traveling Salesman problem can also be viewed as an extension of 
the Rooks problem. We have, say, N cities denoted by A, B, C, D, E .... 
The physical separation between cities C and A is dAc=dcA· We wish to 
arrange these cities in such a manner that a global round trip will be of 
minimum distance. 

We will solve the Traveling Salesman problem with the use of an N X N 
neural network. How do we set up such a net? Note, first of all, that the 
solution must satisfy the rooks problem. In other words, only one neu­
ron can be on in each row and in each column. Thus, we start our net by 
using a Rooks problem neural network. In addition, we would like to 
discourage cities that are far apart to be listed together. This is accom­
plished by lateral inhibition of adjacent cities proportional to their 
separation. A large separation thus results in a large inhibition. 

( 

( 

Use of neural networks to solve the traveling salesman problem was ( 
first suggested by Hopfield. 

"---
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Traveling Salesman Neural Network 

Superimpose: 

• Rooks Neural Network 

• Inhibition Connects 
• Let dxr be the distance between cities X and Y. 
• Inhibit the neuron pairs proportional to dxr. 

A 

B 

c 

1 2 3 

• Global Inhibition 

018!12-~s.di-R.J.w.b-10 

Flgure10 

Neuron pairs corresponding to cities that are close together should 
inhibit each other less than those corresponding to cities that are far 
away. Thus, superimposed on the Rooks-type inhibition interconnects 
are interconnects between neuron rows that are proportional to the dis­
tance between the corresponding pair of cities. Additional 
homogeneous global inhibition interconnects also prove useful in the 
network's performance. 

Notes Notes Notes 
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• Solution Simulation • 

(Hopfield & Tank) 

• A Traveling Salesman Problem 

I • 

F• 
•H 

• G D • 

• B J 
• E. • 

•A c 
• Snapshot Simulation 

2 3 4 ~ ~ 7 ~ 9 10 

• • • • • • . A 

• . . . . . . • • • B 

• • . . . . . . • • c 
• • . . . . . • • D 

• • • • • • . . E 

• • • • • . . . F 

• • • • • . . . G 

• • • . . . . • • • H 

• • • • . . . • • • I 

• • . . 1 

01892~Canllih""iols-di-R.J.u.t.s-1f ~ 
FJgure11 

--
.. 

These are snapshots of the evolution of the solution of a traveling sales­
man problem. 
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Figure 12 
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• The Final Solution 

2 .3. 4 s. !i 1.____8. 2 lQ • • • A 

. • • . . • • • • . • • 

• + B 
• . c 

D 
E 
F 
G 
H • • • • . • • 

I 

H 
G D 

E 
B 

'Ibis result is an optimal solution . 

~ C1992-Cclnl>i..w s-di-R..L--13 

Flgure13 

The solution is optimal. In practice, we generally do not have the lux­
ury to know whether the result is optimal. 

,-

( 

( 

( 



( 

( 

• Notes 

• Most combinatorial optimization problems have multiple 
solutions. 

• 'Tweaking' is still required. 

• False minima. 

• Other competing techniques. 

• Network programability overhead. 

01!192·~-·R.J.IIalb·ll 

Flgure14 

1. With the exception of the King of the Hill Problem, all of the prob­
lems thus far considered have more than one solution. As a result, 
we can clamp some neurons of the neurons to on and, if consistent 
with the problem solution, the network will produce a consistent 
steady state result. H, for example, we clamped the upper right neu­
ron in the Queens Problem to one, then the neural network will con­
verge to a solution that specifies that a Queen be in the upper right 
hand comer of the chess board. 

2. Neural networks require tweaking in order to generate optimal re­
sults in combinatorial search problems. In certain cases, such as 
the Queens Problem, inspection of the solution lets us know if the 
result is optimum. In other cases, such as the. Traveling Salesman 
Problem, we are not allowed this luxmy. The parameters are a, w, 
the city distance proportionality constant and the global inhibition 
constant. At this time, choosing the free parameters of such neural 
networks is more of an art than a science. Nevertheless, the neural 

Notes Notes Notes 
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network will generally ·give a good rather than an optimal answer. 
Such performance is also seen in certain neural network associa­
tive memories. 

3. The iteration can become stuck in false minima. 

4. The jury is still out on whether neural networks will be competitive 
with other techniques in the perfonnance of search algorithms. The 
Queens Problem, for example, can be solved with a few lines of 
code in LISP. 

5. Network programmability must be taken into account in the com­
parative evaluation of neural networks. 

( 

( 
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Notes Notes Notes 

( + COMBINATOIUAL SEARCH + 

Summary 

• Lateral Inhibition 
• The Queens Problem 
• The Traveling Salesman Problem 

( 
Olm:!·~-·llJ.-·15 

Rgure 15 

( 
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+ ASSOCIATIVE MEMORIES + 

• What are Associative Memories? 
• Neural Network Associative Memories 

0 Hopfield's Neural Network 
o Relation to Matched Filters 
0 Geometrical Interpretation 
o Convergence Proof 

• Bidirectional Associative Memories 
•Problems 

Clw:!·--·R.J.-·1 

Figure 1 

Notes Notes Notes 
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What are Associative Memories? 
Comid<:rme foUowmg !lfteobj=: 

~ 
(a) s.-CJames (b)AbdoaDm!S"'""""' 

(c)W.pl 

~ 01992·--·R.J.--2 

Figure 2 

Properties of the neural network associative memory will now be illus­
trated with your own associative memory. By looking at these images, 
you are programming your own associative memory. 
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( Properties of 
Associative Memories 

1. Objects can be recalled from partial information (conrem addressable 
memory): · 

2. The more information, tbe beaer the recall ability: 

... ? 

r. 
C1992·ADoc:ialivel.llftlcrils-R.J ...... 3 

Figure 3 

1. Recall from the library can be performed by knowledge of only a 
part of the information~ In essence, we are perfonning a content 
addressable memory operation. 

2. If the known portion of the information is too small, we cannot re­
call the library element. 

Notes Notes Notes 
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3. Perturbed inputs can be recognized: 

... ? 

~ 

~ 01992-(rl:-d r>r-·R.J.Miib--;-• 

Flgure4 

This picture ·deviates significantly from that memorized. It can still, 
however, be recognized. 
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( 4. Fault Tolcran< 

S. Fini<c Memory Capacir:y and 

6. Uncom:lan:d objcas m mon: easily n:cognizcd: 

1192·---R.~--5 

FigureS 

3. Portions of biological brains can be removed and the neural net­
work still works. The same is true of certain artificial neural net­
works. 

4. There is a maximum memory capacity. (Hopfield is #49. Marks is 
#33, E. Leith #20.) 

5. Uncorrelated objects (both in the mathematical and the dictionary 
sense of the word) are less recognizable. 

Notes Notes Notes 
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Neural Network Associative 
Memories 

Consider three objcca encoded in 70 neurons: 

OC>HMeeOO 
OC>HMeeOO 
OC>HMeeOO 
OC>HMeeOO 
OC>HMeeOO 
0000000000 
0000000000 

ooeeeeMOO 
ooeeeeMOO 
ooeeooeeoo 
ooeooooeoo 
()()OOMOO()() 
oooeeHOOO 
ooeeeeMOO 

ooeeMMOO 
ooeeMMOO 
ooeeMMOO 
0000000000 
0000000000 
OOMHHOO 
OOHe...ao 

We wish have !be nemal nCIWOdc mmrorize these three objCCIS. TheiiiCIIIDI')' is s!Dred in 
the (70)2 = 4900 inii:ICODIIeas. Then. given a pcnlll'ix:d version of one of the objcas 
such as: 

OONeOMOe 
OHeHeOOO 
ooeeeeeeoo 
ooeeeeeooo 
c::JOMeeMOO 
0000000000 
eooooooooe 

the network will ilctale 10 dw SIDII:d library enay closest in some sense. In this case, !be 
desir=l result is clearly !be U in the upper left earner. Also, we would like !be aeiW<>dl: 10 
exaapolalc. Thns. we woukl cxpccc 

10 ronV"'l!" 10 !be H. 

~ 01!1112·--·R.J.IIms-6 

Figure 6 

In the case of the original Hopfield neural network, neurons in steady 
state are either on or off. Pattern information is actually stored in the 
interconnects. When the neural network is initialized 'close' to a stored 
pattern, the network ideally converges to that pattern. 

( 

( 

(_ 



( Hop.field's Neural Network 

One way to program the interconnects so that the network 
will perform as an associative memory is to use the 
Hopfield model. Here, if the sum of the inputs into a 
neuron is positive, the neuron tum on (i.e. has a state of 
one). Otherwise, the neuron is off (state= 0). 

Consider N binary library vectors of length L: 

{ fn: I <n <N} 

We form the library matrix: 

F = [ fl : f2 : ... : fN ] 

In corresponding bipolar form of the library matrix is: 

B=2F-1 

where 1 is a matrix of ones. Hopfield's recipe for the 
interconnect values is: 

T=BBT -NI 

(The superscript T denotes matrix transposition and I is an 
LX L identity matrix.) 

CI992·--·RJ.YIIb·7 

Figure 7 

These equations describe the manner in which the interconnect weights 
for the Hop:field neural network are chosen. 
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rr Example ll 
fi f2 f3 F= B =2F-1 = 

0 I 0 0 I 0 -1 I -I 
I 0 1 1 0 I 1 -I I 
0 0 1 0 0 I -1 -I I 
I 0 0 I 0 0 I -I -I 
0 I 0 0 I 0 -1 I · -I 
0 0 1 0 0 I -I -I I 
1 0 1 1 0 I 1 -1 1 
I 0 1 1 0 1 1 -1 1 
I 0 0 1 0 0 1 -1 -1 
0 I 0 0 1 0 -1 I -I 
0 I 1 0 I I -I I I 
0 I 0 0 I 0 -1 I -1 
0 I 0 0 1 0 -1 I -1 
0 0 1 0 0 I -1 -I I 
0 0 1 0 0 I -1 -1 I 
I 0 1 I 0 I 1 -I I 
0 0 1 0 0 I -1 -1 I 
0 0 1 0 0 I -1 -1 I 
0 I 0 0 I 0 -1 I -1 
1 0 0 1 0 0 1 -I -1 

Three library vectors and the corresponding library 
matrices. 

II 
II 

01992~~-~.J.-·8 ~ Rgure8 

Shown are three example library vectors and the corresponding library 
(F) and B matrices. 
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Resulting Interconnect Matrix 

T:::BBT-M::: 

0 -3 -l -l 3 -l -3 -3 -l 3 l 3 3 -1 -1 -3 -2 -2 3 -1 
-3 0 l l -3 1 3 3 l -3 -l -3 -3 1 1 3 1 1 -3 2 
-1 1 0 -1 -1 3 1 1 -1 -1 1 -1 -1 3 3 l 3 3 -1 -1 
-1 l -l 0 -1 -l 1 1 3 -1 -3 -1 -l -1 -1 1 -1 -l -1 3 

3 -3 -1 -1 0 -1 -3 -3 -1 3 1 3 3 -1 -1 -3 -1 -l 3 -1 
-1 l 3 -1 -1 0 1 1 -1 -1 1 -1 -l 3 3 l 3 3 -1 -1 
-3 3 l l -3 1 0 3 1 -3 -1 -3 -3 1 1 3 l 1 -3 1 
-3 3 l l -1 1 3 0 1 -3 -l -3 -3 1 1 3 l 1 -3 1 
-1 1 -1 3 -l -1 l 1 0 -1 -3 -l -1 -1 -1 1 -l -l -1 3 

3 -3 -l -l 3 -1 -3 -3 -1 0 1 3 3 -1 -1 -3 -1 -1 3 -1 
l -1 1 -3 1 1 -1 -1 -3 1 0 1 1 l 1 -1 1 1 1 -3 
3 -3 -1 -1 3 -1 -3 -3 -1 3 1 0 3 -1 -1 -3 -1 -1 3 -l 
3 -3 -1 -l 3 -l -3 -3 -1 3 1 3 0 -1 -1 -3 -1 -1 3 -1 

-1 1 3 -1 -1 3 1 1 -1 -1 1 -1 -1 0 3 1 3 3 -1 -1 
-1 1 3 -1 -1 3 1 1 -1 -l 1 -l -l 3 0 l 3 3 -l -1 
-3 3 1 1 -3 l 3 3 1 -3 -1 -3 -3 1 1 0 1 1 -3 1 
-l 1 3 -1 -1 3 1 1 -1 -1 1 -l -1 3 3 l 0 3 -l -l 
-l 1 3 -1 -1 3 1 1 -1 -1 1 -1 -1 3 3 1 3 0 -1 -1 

3 -3 -1 -1 3 -1 -3 -3 -1 3 1 3 3 -1 -1 -3 -1 -1 0 -1 
-1 1 -1 3 -1 -1 1 1 3 -1 -3 -1 -1 -1 -1 1 -1 -1 -1 0 

• For example, the interconnect between neuron 1 and 3 is 
equal to -1. 

• Note that TT = T. Thus, Wij"" Wji· 

1112·--·RJ.-·i 

Figure 9 

Shown is the interconnect matrix for the library vectors show on the 
previous page. The interconnect between neuron i and j is wij· By 
design, the matrix is symmetrical. This, the connection between neuron 
i andj is the same as that between neuronj and i. 

Notes Notes Notes 
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For a Hopfield neural net asoociative memory, the 
autoconnects are zero. Here is a 7 neuron net The 
autoconnects are shown with dashed lines. 

tss - ----I 
\ .......... 

1 
_/ 

C19!12-- ~ FJgure10 

The original Hopfield neural network had no autoconnects. 
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Let g0 denote the vector of initial binary neural states. In 
synchronous form, Hopfield's network performs the 
iteration: 

where the unit step vector operator, U, sets all positive 
values of a vector to one and all negative values to zero. 
In many cases · of interest, the iteration converges to that 
library vector closest to g0 in the Hamming sense. 

Flgure11 

In discrete form, restoration is iterative. The neural states are updated 
until convergence. Ideally, convergence is to the library vector closest 
to the initialization. 
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':1 

Hopfield NN Example: 

[

01010011100000010001]T 
F = 10001000011110000010 

01100111001001111100 

flllz.} 0 =] 

·ll!l• ·~m·~•D•~• •fill• •m~• mr • • • •S• • •CJ.. • 
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CJ 
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M=O 

C1992--.. -·R.J.-~!2 ~ Figure 12 

The initialization of the net is shown as M = 0. Convergence to the third 
library vector occurs two iterations. 
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Optimal Detection Theory 

Detection Problem: Given a library, I fn : 0 < n < N) and an observation, g. 
find that library vector closest to g m some sense. 

Solution: If (a) gis one of the library vectors COI!}!Pted with white gaussian 
noise or (b) the l.ibrary is bipolar ( + I) and g is a lilirary vector corrupted by 
flip noise (also called Bernoulli noise), tlien the maiched filter provides 
optimal detection: 

. •. . . 

I ~a~ 
~ 

One chooses the h"l?rary vector with the largest conclaiion coefficient. The 
results are optimal. ~vely, in the sense tha1 (a) the probability of 
making a concct decision is lllliXliilized and (b) the lilmuy vector closest to 
g in thC Hamming sense is chosen. 

992·--·R.J.IIns·13 

Flgure13 

We will digress for a short time into the field of optimal detection the­
ory. The Hopfield associative memory will evolve from the discussion. 
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.. 
• Example Matched Filter• 

Library: Object: 

!J h !3 g 

0 1 0 0 gTfJ = 3 

1 0 1 1 
0 0 1 1 gT/2= 1 
1 0 0 0 
0 1 0 0 gT/J = 8 

0 0 1 1 
1 0 1 1 :. choose/J 

1 0 1 1 
1 0 0 0 
0 1 0 0 
0 1 1 1 
0 1 0 0 
0 1 0 0 
0 0 1 1 
0 0 1 1 
1 0 1 0 
0 0 1 0 
0 0 1 0 
0 1 0 0 
1 0 0 1 

II 
II 

~ 1192----RJ.IIIrts-M 

Figure 14 

The library function 'closest' to the object, g, yields the largest inner 
product. 
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• Optimality • 

If the library vectors are -I instead of 0, the matched filter 
is optimal 

• in the mean square sense. 
• in the presence of Gaussian noise. 
+ in maximizing SNR. 
+ in the minimum Hamming distance sense. 

Library: Object: 

!J f2 13 g 

-I I -I -I gTfl = 2 
I -1 I I 

-I -I I I gTf2 = -6 
I -1 -I -I 

-I I -1 -I gTf:J: I4 
-I -I I I 
I -I 1 I :. choose/3 
1 -1 I I 
1 -1 -I -1 

-1 1 -I -I 
-1 1 1 1 
-I 1 -1 -I 
-I 1 -1 -1 
-1 -1 I I 
-1 -I I 1 
1 -I I -I 

-I -I 1 -1 
-I -1 1 -I 
-1 I -1 -1 
I -I -1 1 

~ 01992·--·R.J.IIarlcs·15 

Flgure15 

Optimality occurs in matched filtering when the sum of the squares of 
each of the elements in each library vector is the same. This occurs 
when all elements are + 1 and -1. 
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An Optimal Associative Memory: 

(eh>borat<) 

g ~I E --~ 
Cl) 

E ~an 

~ C1992·~1iimoilio· R.J.-·16 

Rgure16 

Shown here is an optimal associative memory. A matched filter com­
putes the co"elation coefficients, au. The largest correlation coefficient 
is used to access the corresponding library vector which is the memo­
ry's output This approach is optimum when the matched filter is 
optimum. It is optimum in the same sense. 
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A Suboptimal Associative Memory 

Assume each libr.uy vector is bipolar (:I). 

If the maximum corrclati011 coefficient is much larger than the others. then 
the corresponding weighted library vector will dominate the sum. The 
vectar operator sgn sets negative elements of the vector to minus one and 
positive elementS to one. 

01992·-llomories·R.J.--17 

Flgure17 

For the bipolar (±1) case, a suboptimal associative memory is that 
shown. If a.n>> than the other coefficients, then a.nfm will dominate in 
the sum r = l:n «n/0 • If, indeed, CXm is sufficiently large, then/• = fm = 
sgn[~n «nfnl· 
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An Iterative Matched Filter 

The output c.an be fed into the input to, possibly, produce 
an even better estimate of the closest library vector. 

-fl 

-gM 
2:~ 

Flgure18 ~ 0199Z·Aio---·R.J.IIorl<s·18 

The estimate of the last filter could be closer to the desired result than 
the initial guess. By passing this result through the filter again, an even 
better result might occur. This is the motivation for the architecture 
shown 
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The perfonnance of the iterative matched filter is described 
by the equation: · 

gm+l = sgn F FT gm 

This relationship is algorithmically similar to Hopfield's 
associative memory neural network when operated 
synchronously. 

~992·--·R.J.IIIfl<s·19 

Flgure19 

The equation shown describes the math behind the iterative matched 
filter. 
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gM 

Deleting the autoconnects 
(tlDborOit} 

f 1 

2:~ 

C1!19Z·-0Di-·il.L-·20 ~ Figure 20 

This iterative matched filter, modified to 'delete the autoconnects,' per­
forms algorithmically (although not architecturally) identical to the 
Hopfield associative memory. 
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A Geometrical Interpretation 
1. For orthogonallilnry ~ lhc effe~ of the intercoMeeu is to project onto the 
sulnpa.cc spanacd by the libmy vectors. 

2. The sgn an be viewed as projecting onto lhc DURSt vcnex of a unit hypercube. 

/subspace 

·----------­/· ··-;1 • ...~. 

// : ...... ,~ .. 
/ I •-.· 

/ : '""······ ... 

01!1!12·- . ·RJ.-·21 

Figure 21 . 

An interesting geometrical illustration of the iterative matched filter is 
shown here. The plane is the subspace formed by all of the linear com­
binations of the library vectors. Evaluation of the correlation 
coefficients is similar to projecting onto this plane from the initial 
guess, g. Performing the sgn operation projects onto the nearest vertice 
of the hypercube. The next iteration projects back upon the subspace, 
etc. Iteration is performed until convergence. (Note, by symmetry, the 
'twin image' point.) 
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+ Convergence Proof + 
In discrete time, the iteration in a Hopfield net with no 
autoconnects cas be written as 

u,{n+ I] = J.1. ( I.,~j Wij Uj[n] ) 

where • u1{n] is the state of neuron j at time n 
• Wij is the weight between neurons j and i. 
• J.l.( ·) is the unit step function. 

Defme the energy of the net at time n as 

E[n] = -112 'I-; J;i w;j u;[n] u1{n] 

Let the kth neuron be the only neuron that changes state 
between times n and n+ 1. The change in energy after one 
iteration is 

M:[n] = E[n+ J] - E(n] 
= -112 .1llk[n] L,~k w;x. u;[n] 

where 
&lt.~:[n] = u.~:[n+l]- u.t[n] 

Two possible cases: 
•Ailt[n]=-1 ~ J;,~,~:w;x.u;[n]<O ~ M:[n]<O 
• Au.t[n] = I ~ 'L;o'k wa: u;[n] > 0 ~ M:[n] < 0 

In either case, E(n] decreases. Since 

E[n] > -LN 

(corresponding to all weights = -N and all neural states = 
1), the net must stop decreasing energy at some point 
Ideally, this point is the desired solution. 

~ ~992·--·fLJ.IIarb·22 

Figure 22 

Shown here is a proof that the asynchronous Hopfield neural network 
will converge. Ideally, it will converge to the proper solution. 
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• Local Minima • 

Problem: The iteration can be stuck in local minima. 

E 

~ 
rlocal 
minimum 

global 
minimum'-.....:; 

Solution: Use simulated annealing. Application to the 
Hopfield network results in the Boltzmann Machine. 

Figure 23 

The proof of convergence of the Hopfield. neural network does not 
require that the iteration reach the absolute minimum. It simply allows 
that any energy must decrease. As in many search problems, the itera­
tion can be stuck in local minima. A technique to avoid this is 
simulated annealing. In metallurgy, the annealing schedule dictates 
how an alloy in molten form is to be cooled in order to assure certain 
attributes. Heat is associated with vibration. VISualize the surface above 
being shaken, first vigorously and then more and more gradually. The 
energy of the net, visualized as a marble on a rough surface, would then 
have the opportunity to jump out of the local minima. In the Hopfield 
neural network, this is achieved by allowing each neural state to take on 
the value other than that computed for it. The chance is dictated under 
some probability schedule that reduces over time. If the Boltzmann 
probability distribution is used, the resulting neural network has been 
referred to as a Boltzmann machine. 
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BI-DIRECTIONAL ASSOCIATIVE 
MEMORIES (BAM's) 

Stimulus matrix: 

S = [ S1 : s, : ... : Ss ] 

Response matrix: 

R = [ r, : r, : ... : rs ] 

A stimulus vector, s., should, in some sense, 
give a response of r •. 

018112·AiiOOIIW---·R.J.-·24 ~ Figure 24 

In a BAM, we wish to associate vector pairs. The BAM is a generaliza­
tion of the Hopfield associative memory. 
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Sum of Outer Products BAM: 

Construct the (non-square) interconnect matrix 

T = R ST = L r. s,T 

Example: 

S=[.i -P R=G _:J T=[~ 
-1 -d 

The corresponding neural net is: 

stimulus~ 

response~ 

0 

2 

For an input Sm, the sgn of the output for this example is rm. 

Why? Because the stimulus vectors are orthogonal: 

I:s .. Ts,=O;n:;.!:m 

Thus 

Ts = :Er s.Ts..=cr. .. . 
where c = Sm T Sm is a positive constant. 

992-AslociiiMt-·RJ.-·25 

Figure 25 

The BAM is a two layer network. The stimulus is propagated to the 
response level where each neuron is thresholded. The thresholded val­
ues are fed back to the stimulus level, thresholded, etc. Iteration occurs 
until convergence. Iteration in the example shown converges in one 
iteration because of orthogonality. 
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Lecture 3 -Page 25 



Notes Notes Notes 

Lecture 3 - Page 26 

For non-orthogonal interconnects, iterate: 

stimulus~ 

response~ 

THES1EPS: 

1. lntialize the stimulus states. 

2. Compute the sgn of the response states, 

3. Recompute the stimulus states using the response as 
the input. 

4. Use the sgn of these states to recompute the response 
states. 

5. Go to step 2 and repeat. 

Figura 26 

01192·--·R.J.--·26 ~ 

Here are the algorithmic steps for the BAM. 
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BAM Example: 

[ 

-1 1 -1 1 -1 -1 -1 ]T 
-1 1 -1 1 1 -1 -1 
-1 -1 -1 -1 l -l 1 

Key: llll=-1 , 0=1 

~-. 0 • •181 ~ • •llll• 
- a o ol!f 

~ .. ·~· : ~= :s .. ;o·. 
a a a~~· • .. ..... ~~ •181•8 • • 
~·IBI••ai!:!• 

'--

Initialization 

~"' .•• •181 llll 
• •1:1• 

! ... •• ·181 
~·1!1· 

: :n~ 
0 •• ~~~. 

a a a o a~~ •llll•llll• • 
181•1&1• •1!1• -

Initializ.ation 

T [ 

1 -1 -1 1 ]T 
-1 l -1 1 
-l -l l l 

• 0 -~ -:· 
a aj&1a 

I .•• •1m 
: :~:~: 
. ::ri~ . .. :~~ . . . . 

o a a a • ;~ •l8l•llll•. llll 
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Result 

... 0. •1!1 

r 
• •CBI• 
•••l:i!'J 
• •lm• 
~· .. 
:;_a~ 

II D 0 ~~0 0 
.. . .... ~~ •181•181 • • 

181•181• •181• 

Result 

Note: Twin Image 

019112·---R.J.-·27 

Rgure 27 

As with the Hopfield model, the BAM can have twin images. An exam­
ple is shown here. 
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ASYNCHRONOUS BAM EXAMPLE [Kosko] 

Stored Pairs: (S,E), (M,V) & (G,N). Approximately six 
neurons per picture. Initialization is random. 

~~~ 

01~·--·R.J.MIIU·28 

Figure 28 ~ 

These are snapshots in the evolution of a BAM example. 
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NOTES: 

1. The response neurons can act as the stimulus. Since 
our response vectors are orthogonal in the above 
example, an input of rm gives an output the sign of 
which is sm. Hence the expression bi-directional. 

2. Hopfield's neural network is a special case of the 
BAM. Simply set R = S = B = 2 F - 1 where 

F=[ft:f2: ... :fN) 

is the library matrix. The hetero-associative BAM 
becomes an auto-associative memory. 

3. As we have shown, the BAM converges in one 
iteration in the unlikely event that the stimulus vectors 
are orthogonal. 

4. Other recipes can be used to form the interconnect 
matrix for the BAM. Softer sigmoids can be used for 
the nonlinearities . 

01!192·--· .1.-·29 

Figure 29 
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Problems 

1. The networks perform differently for synchronous and 
asynchronous operation. For asynchronous operation, the 
network may converge to different steady state solutions 
for the same initialization. In concert with previous 
observations, however, the result is generally good. For 
synchronous operation, the network can break into 
oscillation between two states [Cheung, Marks and Atlas]. 

2. The network's storage capacity yields diminishing 
returnS as the number of the neurons is increased [Abu­
Mostafa and St. Jaques]. As the number of neurons, L, 
becomes large, the capacity increases proportional to 
L /log L which is less than linear. 

3. The networks have twin images. i.e.· if a vector f is a 
fixed point of the network, then so is -f. 

Ollm'Aa ...... lllnlriS-R..I.--30 

Figure 30 
~ 

In addition, the percentage of false states increases significantly as the 
size of the net grows. 
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+ ASSOCIATIVE MEMORIES -
Summary • 

• Wbat are Associative Memories? 
• Neural Network Associative Memories 

o Hopfield's Neural Network 
o Relation to Matched Filters 
o Geometrical Interpretation 
o Convergence Proof 

• Bidirectional Associative Memories 
• Problems 

01992·--·R.J.-·31 

Figure 31 
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+ CONTENT ADDRESSABLE 

MEMORIES+ 

• Convex Sets & Alternating Projections 
• The Alternating Projection Neural Network 
•Examples 
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Convex Sets 

A set C is said to be convex if, for the range 0 < a < 1, the 
vector ax + (l-a)y is in C for all vectors x and y that are in 
C. Geometrically, a set is convex if each line segment in 
with end points in the set are totally contained in the set. 
Lines, balls and boxes are examples of convex sets. 

/ 
convex not convex 

Figure 2 
Cf51112-:-CorfiW ............ R.J.-·2 ~ 

A line segment between any two points within a convex set is totally 
subsumed within that set. 
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From a given point, a projection onto a convex set is to that · 
point in the convex set that is closest: 

01!1!12·ca.t--·R.J.-·3 

Flgure3 
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Alternating projections between two or more intersecting 
convex sets converges to a point in common with both: 

~ 0111!12·ea.d--·R..fllii1a:--:-4 

Figure 4 

This is an illustration of the fundamental theorem of POCS (projection 
onto convex sets). Altematingly projecting converges to a point com­
mon to the intersection. The final fixed point is a function of the 
initialization unless, of course, there is only one point of intersection. 
The other theorems of POCS are: 

1. Alternating projection between two non-intersecting points con­
verges to a limit cycle between the sets where each is closest to the 
other in the mean square sense. 

2. If three or more convex sets do not intersect, there is little positive 
that results from POCS. The limit cycle can be dependant on set or­
dering and initialization. 

( 

( 

l' 



( 

( 

( 

The Alternating Projection Neural Network 

Problem: Given a portion of a library vector, J, and a 
neural network with a projection interconnect matrix, T, 
fmd the remaining elements off 

Solution: Clamp those neurons with known values to those 
values. The remainingfloating neurons are assigned states 
equal to the sum of their inputs. Then, under certain 
conditions, the floating neurons will converge to values 
equal to the unknown values off 

Synchronous mathematical interpretation: WLOG, let the 
first P values off be known. Set the unknown states to 
zero. Then: 

1. Multiply the current neural state vector by the 
projection interconnect matrix, T. 

2. Replace the states of the clamped neurons with the 
known values off 

3. Go to step #1 and repeat. 

The procedure will converge to the correct answer if the 
first P rows of the library matrix, F, form a matrix of full 
column rank. Subsumed in this criterion is the requirement 
that the number of known states, P, must equal or exceed 
the total number of stored vectors, N. 

The restoration will also work for sequential or 
asynchronous implementation. 

01!192·ConloniMdf--·R.J.Yo111s• ~ 

Figure 5 

The library matrix is F = [{t h ... IN ] and the APNN neural network 
·matrix is T = F (F T Fr1 F . The vector T g projects the vector g onto 
the subspace spanned by the library vectors. 
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Partition Notation: 

f=[..fP:fQJT 

Operational Flow graph: 

go= LIP: o JT 

1 m=O 

sm=Tgm 

m=m+ I 

gm+ 1 = LIP : sm,Q ]T 

( 

~ 0111!12-ca..---~,·· 

Figure& 
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( Geometrical Interpretation 

The T matrix projects onto the subspace spanned by the 
library vectors. Clamping the known neurons projects onto 
the linear variety of all vectors with these known values. 
These two sets intersect at the point of the desired library 
vector ,f. 
For our previous example ofF"" fl = [1 11T, starting with 
the initialization g0 = liP : 0 ]T = [ 1 : 0 jT, convergence 
would be as follows: 

y 

1 -------------------

01992·~--·R.J.IIoto· 7 
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Homogeneous APNN Example: 

L = # of neurons = 25 
N =#(stochastically chosen) library 

vectors =4 
P =#clamped neurons= (last) 15 

lr 
o.Br 

0.6t 

~t! T l . [ 

n 

1 j 
' I I llill ' ill i I j 

w u w ~ 

(Z) 

~~[]Jill [lliill 
0 ' • 10 0 ' 100 ' 10 

(b) M•2 (e) M•S (d) M•20 

~ 01992·Cof0oni--·R.J.Ibrfos· 8 

Figure 8 
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+ Example Extrapolation + 

• 40images 
• 0,1,2,3,6,13 & 43 iterations 

992-ec.-.---R.~--· 

Figure 9 

Result is indistinguishable from the original. 
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• Generalization • 

'This image was not used as the training data. 

~ C1992 • Ccdilnl ~ UlmDnos • RJ.IIIirb: --10-

Figure 10 

Remarkably, the eyes were generated, even though the neural network 
was not trained on this image. 
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+ CONTENT ADDRESSABLE 
MEMORIES ·Summary + 

• Convex Sets & Alternating Projections 
• The Alternating Projection Neural Network 

•Examples 
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+ THE LAYERED PERCEPTRON + 
• IntrOduction to Learning 

• Classifier Problem 
o Properties of a Good Classifier 
o Regression Machines 
0 Rtive Attributes 

• Rosenbatt's Perceptron 
o The Widrow-HoiT Algorithm 
• Perceptron Problems 

• The Layered Perceptron 
0 Error Back Propagation 

• Attributes 
• Optimality 

0 Other Training Techniques 
• Conjugate Gradient Descent 
• Random Search 
• Genetic Algorithms 

0 Adaptive Training 
o Simulated Annealing 

• Accelerated Convergence Using Queries 
•oracles 
0 Nenral Network Inversion 

• Learning vs. Memorization 
0 Generalization 
o Training with Jitter 
• Sigmoid ScaliDg 
o RegularizatiOn 
• Node Pruning 

•Summary 
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CLASSIFIER PROBLEM 
(Supervised Case) 

• Train an automatic classifier on examples of input/output 
relations: 

Training Set = { (X,C)} 

where X is the input and Cis the classification index. 

• Use the trained classifier to generate an "accurate" classification 
for an input X that is now in the Training Set. 

• Related problem: regression 

~ QIIIO:l • ...._...._.ft.~-·2 

Figure 2 

A set of training data pairs is given. The input vectors, X, are associated 
with corresponding output vectors, C. The problem of the classifier or 
regression .machine is to learn from this data so that, when subjected to 
test input data which it has not yet seen, it can give a good estimate of 
the corresponding output (e.g. class). 

The layered perceptron is trained with training data. For the load fore­
casting problem, for example, input training data might consist of a 
number of temperatures and the output is the forecasted load. Data 
from the previous year, for example, can be used. Once trained, the lay­
ered perceptron, presented with the temperatures of the current day will 
provide, as output, a forecast of the load for the next day. 
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Classifiers Trained by Example 
(Supervised Learning) 

o~-Ji;J~~~ 1t ---~ 1t M Jones ' ~ Smith 

m~c~amr.., 

* 
=> classifier 

1t 1t 
Smith Jones 

• ~ classffier • 1t => classifier 
Jones 1t 

I I 
.fJmum\\ ~ Jones 

.~T ® => classifier 
1t 

Jones Smith 
~ 

• 
=> classifier ~ => classifier 

1t 1t 
Smith Smith 

~ 019112·~"""""'""·R.J.w.b·3 

Figure 3 

The layered perceptron is an example of a classifier or, when the output 
is continuous, a regression machine, which is trained by data. It is also 
supervised. In the example shown, for example, the classifier is told 
whether the input is a Smith or a Jones. 
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Recall 

e => d...nier =>Smith 

~ Clll!I2·LI)olld Pooaipllon· R.J.IIIIb•4 

Flgure4 

Once trained, a good classifier or regression machine will properly 
respond to test data. For proper performance, the test data and the train­
ing data should be different, albeit from the same statistical source. 
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IN FEATURE SPACE, AFrER TRAINING: 

misclassification in shaded region: 

Training Set= {(X;,CJ} 
C;= t,.()(IJ 

After Training, we have: 
C=f(X) 

where f( ·) denotes the classification operation. 

Oli1112·Lajllld..._,...•R.J.IIIIICS·5 

Figures 

Consider the two dimensional closed curve shown here. The solid line 
represents the unknown concept. Within the curve we wish to classify 
the ordered pair as one. Outside, the classification is zero. Based on 
available training data, the classifier tries to learn the classification 
boundary. The estimate of the classification boundary is the representa­
tion shown by the dashed curve. If the training data noise is 
uncorrupted by uncertainty, we would expect the representation bound­
ary to approach the concept boundary as the cardinality of the training 
data set increases. For a finite size training set, the resulting probability 
of error is equal to the probability of false classification. This is equal to 
the shaded area. 

The concept, shown by the solid line, is to be learned. The broken line 
denotes the learned representation. The probability of error is equal to 
the probability a point is chosen is the shaded area. If the training data 
is chosen randomly, then a decrease in the probability of error also 
requires a decrease in the probability of learning something new. 
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Properties of a 
· Good Automatic Classifier 

• Good accuracy outside of the training set. 

+ The trained classifier gives new insight into the underlying 
structure of the problem. 

• Fast testing. 

• Fast training. 

Classifiers & Regression Machines 

•CART 

• Nearest Neighbor Look-Up 

+ The Layered Perceptron 

01992·L.:IInl"""""""'·llJ. Uib·6 ~ Figure& 

Do layered perceptiOns perform better than other classifiers and regres­
sion machines? By comparison with some other high performance 
classifiers and regression machines, the current answer is yes. Possibly 
there is an underlying limit of performance placed on all classifiers and 
regression. machines that cutting edge algorithms are approaching. If 
so, then secondary performance attributes such as training speed and 
implementation ease must be addressed as primary. 

(~ 

Other artificial neural networks have fallen from favor in an application 
sense because, quite simply, they are not competitive with other more 
conventional approaches. The same question must be posed in regard to 
the layered perceptron. Does the layered perceptron preform better than 
other classifiers or regression machines programmed from examples 
using supervised learirlng? Although abstract analysis of this question 
may be possible in some cases, it must ultimately be answered in regard 
to actual· data. Comparisons of the layered perceptron have been per-
formed with classification and regression trees (CART) and nearest l ' 



( 

( 

neighbor loolcup for such problems as speech, power security assess­
ment and load forecastiiig and, in each case, have shown the layered 
perceptron to perform better in terms of classification or regression 
accuracy. Both of these competing algorithms can be implemented 
using parallel processing. 
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CART 

Example Decision Tree: 

Systolic blood ~ 

pressure > ill91 ?(~ \ 
l20 

or 1 

Is age > 62.5 ? ~gh i 
ISk 1 

Is sinus tachy­
cardia present? 

Y"s/ ~o ---

' H" hI k 

019!li! • La)lrld l'lll:lpllon. R. J. ...,.-;7 ~ Flgure7 

CART (Classification and regression ttees) are decision trees that are 
trained by example. In its fundamental form, the feature. space is ini­
tially divided into planes that were perpendicular to the axes. It is this 
form of CART used here. In a higher order form of CART, these planes 
can be oriented at angles. The higher order form of CART has given 
preliminary results that are nearly indistinguishable in performance to 
the layered perception. There also exist other high power paradigms, 
such as projection pursuit to which the layered perceptron performance 
must ultimately be compared. 
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The Layered Perceptron 

Input 

Clill2·Lo)oood~·RJ.-·8 

Figures 

Currently, the artificial neural network most commonly used is the lay­
ered perceptiOn. Although convention varies, the interconnects from 
the input to the hidden neurons along with the bidden neurons consti­
tute a layer. The hidden to output interconnects with the output neurons 
constitute a second layer. Thus, the perceptiOn shown here has three 
layers. In our treatment, we do not consider the input nodes to be neu­
rons. 

Layered perceptrons are trained by numerical data, in contrast, for 
example, to expert systems that are trained by rules. The layered per­
ceptiOn operates in two modes; training and test In the training mode, a 
set of representative training data is used to adjust the weights of the 
neural interconnects. Once these weights have been determined, the 
neural network is said to be trained. In the test mod~, the trained neural 
network is activated by test data. The response of the layered percep­
tron should then be representative of the data by which it was trained. 
Typically, the test and training data are different sets. As we will dis-
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cuss in the section on learning, training a machine to respond properly 
to the same data on which it is trained is . not learning, but is rather 
memorization. 

A layered perceptron can be used as either a classifier or a regression 
machine. As a classifier, the layered perceptron categorizes the input 
into two or more categories. In power system security assessment, for 
example, the trained perceptron will categorize the power either secure 
or insecure in accordance to the current system states. For regression 
applications, the output or outputs of the layered perceptron take on 
continuous values. Power load forecasting is an example of a regres­
sion application. Here, the output of the neural network corresponds to 

the forecasted load. 
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Relative MLP vs. CART Attributes: 

Multi-layer Perceptron (MLP) 
• Capability to fit arbitrary non-linear regions. 
• Motivated by optimization theory. 

CART 
• Capability to fit arbitrary non-linear regions with piecewise 

linear relationships. 
• Motivated by sophisticated statistics. 

OI!ISI2·1.1)101d"""""""'·R.J.-·8 

Figure 9 
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Example: Parity (XOR) Problem 

The XOR is a classification operation that can not be solved with a 
linear classifier: 

C1991·L>)oloci""""""""·R.J.-·l0 

Figure 10 
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~ 
Linear classifiers cannot even handle a simple· toy problem like the 
XOR problem illustrated here. This was pointed out in the book Per­
ceptrons by Minsky & Papert as a quite negative attribute of the linear 
perceptron. 
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Both the layered perceptiOn & can can properly categorize the XOR. 

y 

~ 
Y"': 
08 

Both of these classifiers were trained by example. 

0111112·....,....""""'*""-R.J.u.a-n 

Figure 11 

Both the layered perceptron and the CART classifier were trained by 
example. Both give the correct answers. Note, however, that CART 
gives a quite intuitive decision process. 
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Example Load Forecasting Problem 

3600 

3400 

3200 

3000 

2800 

~ 2600 
of 

2400 

2200 f0i 2000-

1800 

1600 
0 0.5 

- Acllia1 Loa.cl 
·- CARTPredic<ilm 
- MlJ' Predic<ilm 

t:,:,·i 

1.5 

Day 

t Lowest Eiror Rate: 
t CART= 2.86% 
t MLP ::::> 1.39% 

2 2.5 

011112-~~-R.J.--12 ~ Figure 12 

3 

In power load forecasting current and forecasted temperature and cur­
rent load demand is used to forecast the future power load demand. For 
this problem, the worst perception performance was an error of 1.78%. 
CART produced an error of 1.68%. These and other forecasting results 
will be discussed in depth later in the course. 
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( Example Security Assessment Comparison 
w~~~~~~~~~--~~~~-. 

18 

16 

4 

2 

--:acmaiCQ!IIalr ___ CARTcomaur 

--MLP-
~10 -s o s 10 ts 20 2S 30 35 40 

R.ea!Pawcrill Mega. WallS (P) 

Lowest Error Rate: 
+ CART~ 1.46% 
+ MLP :=0.78% 

The layered perceptron has also outperformed CART using real 

training data in speech and forecasting. 

Wl-~p_..,-R.J.u.m-13 

FJgure13 

In the power security assessment problem, the state of a power system 
is determined to be safe or in jeopardy. Applied to this problem, the 
perceptron again had a lower error rate - 0.78% to 1.46%. For speaker 
independent vowel classification, the perceptron again had a higher 
correct classification rate than CART, 47.4% to 38.2%. Specifics will 
be addressed more at length later in the course. 
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The Error Rate: MLP vs. CART 

··········•· ... 
........ 

.......... 
... \ . .. 

·MLP 

-CART 

·····-....··-........... __ ····-··-·--
1000 2000 3000 4000 sooo 6000 7000 8000 9000 10000 

Tzaimzrg Data. Set Size 
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The layered perceptron consistently outperformed CART in test data 
error as a (unction of data cardinality. 
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( Comparison of MLP & 

Nearest Neighbor Classifier 

Nearest Neighbor Classifier: 
+Training Set= {(X;C)} 

+ Test Data: Y 
+ Fmd x. e Training Set such that 

norm [Y- X.] ~norm [Y- X] 'V X e Training Set 

+ If (X.:CJ, then classify Y as c. 

AdvantageS of Nearest Neighbor Classifiers: 
+ Easy to "train". 
+ Optimal classifier for training data set. 

AdvantageS of :MLP: 
+ Fast recalL 
+ Performs better outside of training data 

01!11G!-...,....,_·R.J.-·15 

Figure 15 
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Nearest 
Neighbor 
Lookup 

Layered 
Perceptton 

Performance Comparison 
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Figure 16 
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In comparison with nearest neighbor lookup, the layered perceptron 
was shown to interpOlate much more smoothly and with greater accu­
racy for the problem of power security assessmen~ 
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Rosenblatt's Perceptron 
(1957) 

W = [ Wt Wz W3 ••• WN )T 

r(u) = sgn[ wTu]=sgn[ w1 Ut +wz Uz+ ... + WtfUN] 

Rosenblatt's perceptron is a linear classifier. lbe sum of products of the 
inputs times the neural weights is thresholded to decide between one of 
two classes the neural network was trained to recognize. 
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Training the Rosenblatt Perceptron 

1. Apply next input input 

2. If output is correct, go to step #1. 

3. If output is incorrect, update weights according to 

wi[n+ 1] = wi[n] - p r(u) U; 

4. Go to step #l 

Rosenblatt proved convergence. 

~ ,9!12-L.IIJnd """"""'" R..l. --18 
Figure 18 

"If it's not broke, don't fix it''. If the training data gives you the correct 
result, don't change the weights. If the perceptron does give you the 
wrong result, the weights are moved towards the direction that will give 
the desired result. 
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Steepest Descent 
(The Widrow-Hoff Algorithm) 

Train without the sgn. For an input vector u with target output t. 

ul wl 

uz wz 

us w3 r 
• • • UN WN 

Defme the ezror 

E = l!z ( .t; Wt Ut - t )2 

The mor is to be made small. Using the method of steepest descenz, 
we take a step downhill The step size is '11· 

011112·...,....f'woopllal· R.J.-·111 

Figure 19 

The training procedure for both the linear and layered perceptions is 
based on the Widrow-Hoff algorithm, or steepest descent. The error of 
the neural net is a metric of the distance between what you have and 
what you want. For a given data set, the error forms a surface in weight 
space. At the current point in the weight space, we compute the steepest 
slope and take a step in that direction thereby changing our location in 
weight space. The process is repeated until an acceptably low error is 
obtained. 

The perceptron trained withe steepest descent is referred to as ADA­
LINE for adaptive linear neuron. 

Notes Notes Notes 
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Descending ... 

'Downhill' is in the direction of -aEJOwi. 

VE = aEtaw1 a1 + aE/aWz a2 + aE/aW3 a3 + ... + aEfaWN aN 

where a; is the unit vector in the i direction. The ith weight should 

thus be updated via 

Wi ~ Wi - T] aEtaw. 

where TJ is the step size. 

Note, as in the Hopfield network, we can get stuck in local minima. 

~ 01!1112·LI!n" Jiiiaplal· R.J. -'2· 
Figure 20 

These are the equations describing steepest descent. The step size, T), is 
a parameter of the search for the minimum. In more sophisticated appli­
cations, the step size adapts. 
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Perceptron's Problem 

The output is 

r(u)=sgn(wTu] =sgn[w1 u1 +w2u2 + ... + WMUN] 

The boumiary of the partition is 

This is a plane. Thus, the perceptron can only classify data that is 
linearly separable. 

Figure 21 

As these equations show, the perceptron is a linear classifier. It can only 
classify data that is separated by a plane. 
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Perceptron Example 

BoundaryforN=3 ~ Wt Ut +w2u2 + w3= 0 

ul wl 

:;-; _, -=: ~7 1 r I z; 

The partition is a line. This classifier cannot handle the simple 
exclusive or (XOR) or parity problem. 

Uzi I • 1. \~ 
\ <::::::::,·ear I \ 1112 

titian \ par 

! \ U! 
I I • . \ 
I I 

~ 0111112-~l'llcoplroo-R.J.--42 

Figure 22 

A Rosenblatt perceptron cannot perform a simple XOR. 
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A linear classifier cannot categorize the points within a circle from 
those without. 

Other linear classifiers: 
• Linear synthetic discriminant functions 
• Linear correlation classifiers 
• Linear minimum mean square classifiers 
• Homogeneous alternating projection neural networks 
• Perceptrons 

Rgure 23 

There are a number of linear classifiers. All of them are constrained to 
classifying linearly separable data and, therefore, cannot perform quite 
simple problems. 
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A solution: introduce nonlinearilies into the perceptron. 

Example: 
• Before 

X wl 

y w2 ~ rf=l r 
• j_j ~ 

.._____j 

1 w3 

• After, z2 = x2 + y2 

x w1 

1 W3 

011192·LI)ooldP-·R.J.-·24 

Figure 24 ~ 

To make a linear classifier nonlinear, we simply reduce nonlinearities. 
The functional link, an example of which is shown here, allows for 
nonlinear classification. The degrees of freedom in the available sur­
faces become more diverse. 
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Using this augmented version of the perceptron, we can now 
distinguish the points inside a circle from those without. 

y 

Nonlinear generalizations of the perceptron: 
• Functional Link 
• The Layered Perceptton 

• Recurrent 
• Adaptive 

019!12·12)nd""""'""'·R.J. ...... ~ 

Figure 25 
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The Layered Perceptron 

The interconnect weights are adapted to the training data. 

• L layers 
• The states of the /th layer 

are in the vector s( L). 
• The weights between the 

jth neuron in the ( 1-1 )st 
layer and the jth neuron in 
the jth is w;j(l). 

• Question: for a given 
training data set, how do 
we choose the weights? 

• Answer: Use error back 
propagation or some other 
search algorithm to 
minimize the resulting 

error. 

C11111!·la'jlnd""""'*"'·11.J.-·26 

Figure 26 

... ... "' L). -s(L) 

~-s(L) 
t) m -w;;IL) 

2~~ 
1 ~ 

~ 

The layered perceptron is another architecture wherein nonlinearities 
can be introduced. The result is a classifier or regression machine that 
can be trained by example internal to the architecture. 
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Characterizing The Layered Perceptron 

0 

i = input vector 

o = correspondillg output vectOr 

t = desired target output 

Sm = sigmoid operator i 

-.. 
~,_input 

Subjccls lhe sam of the illpUis foreadl-= aldie hh level to a sigmoid 

IIOIIIincarity. s M(sum) = [1-tap(-sam)]-1. Recall 

dS/d(sum) = s (I - s) 

W(l) = the matrix of weights between the l-Ist and ith levels. 

o= Sm W(L) SNIL-IJ W(L-1) ... SNI W(l) ··: SNIIJ W(I) i 

01992·~""""'"""-R..J.-.:!7 

Figure 27 

In the forward mode, the output, o, of a layered perception is a nonlin­
ear function of the input, i. The nonlinearity is in the nonlinear sigmoid 
operation. The choice of the sigmoid nonlinearity allows easy differen­
tiation. This property is important in the error back propagation 
algorithm. The vector operator S simply performs the sigmoid opera­
tion on the sum of the inputs at a layer. 
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Training Using Steepest Descent 

Error=E= ltz II o-t 112 
= lt2 1:; (o; • t; )2 

Using steepeSt descent, we wish to update the weights between the jth 
neuron on the 1-1 st level to ith neuron in the Ith level according to 

w./1) <:::: w,;(l) - 1'1 aEtaw.;(IJ 

Use the chain rule of panial differentiation 

ilE/aWij(l) = aEfaS;.(I) as;cl)fas=i{l) asums(l)faW;j(l) 

Define 8i(() = ilEiaSi(l! 

Recall asi(IJtasumillJ = sj(() [ 1 - .Si(()] 

Also 

Thus 

~l!tawlj(IJ = ataw;j(IJ 11.: Wil:: SJt(1-1) 
= sj(l·l) 

ilE!aWij(IJ = 8-,(() s;(() [ 1 • Si(l)] sj(l-1) 

11112·LaJndf'ooooi*UI·R.J.~'28 ~ Figure 28 

The math behind the error backpropagation algorithm is quite eloquent. 
Error back:propagation, based on the chain rule of partial derivatives, 
allows training of the layered perception totally within the neural net­
work architecture. 

(~~ 

( 

( I 



( 

( 

( 

The Updating Procedure 

OEfilw;j(IJ = 0;(l) s;(l) [ 1 - s;(l)] Sj(l-l) 

w;j(l) <= w;;(l)- 11 fl;(l) s;(l) [ 1 - s;(l)] sj(l-1) 

Question: How do we obtain fl;(l)? 

Answer: Error Back Propagation 

·L.I)OIIodPftii!IIIIO•RJ.--29 

Figure 29 

Sj(l-1) 

Two neurons are shown. The weight update between them is a function 
of the two neuron's states and &_(l). 
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Finding oi(l) by Back Propagating Error 

For the l=L (output) level, &.<L) is simply the difference between 
what you have imd what you want. 

Otherwise, 

&.(L}= aEfaSi(LI 
=aEfaOj(L) 

= o;- t; 

&,(l) = aEfaSj(l) 
= ~ aEfaSj(l+lJ ClsJ(t+ll~l+ll asumJ(l+l)faS;!lJ 

The sum is over the stateS of the (l+l)st level. Look at each term 

separately. 

aEfaSj(l+l) = 8p+1) 

asxt+ll~l+lJ = sjl+l) [ 1- sjl+l)] 

as.ztDi!l+I)faS".tlJ = afaSiflJ It: IV;t/l+ IJ s.Jl) 

= WiJ{l+l) 

e.sm'La,oood Paolplall· R.J. -'30 
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Thus 

0;(1) = { 
o;-t; ;I= L 
~ op+1) sjl+1)[ 1- sj(l+1)] w;j(l+1) ;1 :S l <L 

The nlllllf:rical value of the 0;(1)'s can thus be computed directly from 
the 0;(l+l)'s in the adjacent layers. The weights can therefore be 
updated by back propagating the output error, o; - t;, from the outpUt 

to the input = 

Figure 31 

The values of ai at each layer can be computed from the ~ 's at the pre­
vious layer. The ai at the output layer is simply the difference between 
what you have and what you want Hence the name error back propaga­
tion. The training procedure is also referred to as the generalized delta 
rule. 
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Backpropagation Summary 

The Update formula allows US to update the weights using Steepest 
descent using the formulas 

-w;j(l) <= -w;j(l)- TJ 8;(1) s;(l) [ 1 - s;(l)] sj(l-1) 

d S(l)- { o;-t; ;I=L 
an i - l:j 8jCI+1) sj(/+1) [ 1-sj/+1)] w,j(/+1) ;15;/<L 

1. input i~i 

OIIIIR·I.a)ondPiiiiiiiii·R.J.--32 

Flgure32 

8.(L) = o. - t. 
l l l 

update first 
layer's weights 

Evaluate the 

D/L-1) 's 

update 2nd 
layer's weights 

. Evaluate the 
81 (L-2)'s 

... etc 

~ 

We consider one training data pair, (i,t). For the mput i, compute all the 
neural states, including the output, o. The value of~ is computed at the 
output and, with the calculated states in the last two layers, the first 
layer of weights is updated. The value of the ai's are also computed at 
this layer. The process is repeated, and the effect of the error is used to 
update all the weights as it is backpropagated towards the input The 
next training data pair is then used and the updating process is repeated. 
Iteration continues until convergence. 
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Momentum 

The convergence of error back propagation is improved through the 
introduction of a momenrum term. Instead of 

w;j(l) <= w~(l) • 11 0;(1) s;(/) [ 1 - s;(/)] Sj(l-1), 

we have 

W;j{/)[n+l] = "W;j(/) +a wij(l)[n+l] 

where 

a W;j(l)[n+1] = ·Tl ()..(/) s.(/) [ 1 - s;(l)] Sj(l-1) +a aw;j{l)[n] 

Parameters: 
• a= momenrum parameter 
+ 11 = step size 

Use of momentum assures the new step is somewhat like the lasL It 
imposes inertia on the search path. 

CIW2·....,........_·R.J.--33 

Figure 33 

The peJ.formance of iterative algorithms is typically improved by the 
introduction of relaxation parameters. In error back propagation, this is 
referred to as the momentum parameter. 
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• Variations+ 

There are commonly used variations on the layered perceptton 

architecture. 

1. Interconnection between nonadjacent layers. 

2 Feedback interconnects between layers 
(recurrent neural networks). 

~ C19!12·L.l~Jnitl'tooiiii'>I·R.J.--3< 

Figure 34 
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Error Backpropagation Attributes 

ADVANTAGES 

• ArchiUcazre 
Training is performed within the neural network: structure. 
There are other aammg algorithms, but they are not performed 
iniemally to the neural network architecture. 

• Recall 
Once trained, the layered pcrceptron can perform classification 
and regression quite quickly. 

PROBLEMS 

• Trtdning Tune 
Thousands of iterations can be rcquiicd to train a layered 
perceptron on a simple problem. 

• WeightAt:t:IUTI&J 
Floating point precision is required for training . 

• Layering 
The above two disadvantages increase as the number of layers 

increase. 

•Partlllll!ten 
There is. little guidance· in the choosing of the momentum 
parameter, step size and number of hidden neurons. 

01 ·L.I)OOid "-""" R.J. -.as 
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Although back error propagation is the most widely used method to 
train multi-layer perceptrons, it in not the only nor necessarily the best 
approach. Indeed, most any algorithm that searches for a minimum can 
be used to train a layered perceptron. Back propagation is attractive 
because it can be performed within the neural network structure. The 
following problems are specifically associated with the back propaga­
tion algorithm. They may, however, be associated with other search 
paradigms also. 

Training time. Thousands of iterations can be required to train a lay­
ered perceptron on even a simple problem. 

Weight accuracy. Back error propagation requires high computational 
precision. Each iteration can result in a change in bits of only low sig­
nificance. As such, training cannot be done on high speed, but low 
accuracy, analog electronic or optical devices. Once trained, however, a 
layered perceptron can be tested using low analog precision. 
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Layering. The required computational precision increases with the 
number of layers. 

Scaling. The scaling problem can be illustrated through the curse of 
dimensionality. Specifically, for a problems of similar partition com­
plexity, the required cardinality of the training data set grows 
exponentially with respect to the number of input nodes. VISualize, for 
example, a binary classifier with two inputs and a single output. In 
order to classify points within a unit square to a certain accuracy, 
assume that we require, say, 100 input-output data pairs. 

Increase the number of inputs to three now requires classification 
within a unit cube. For the same precision, we now have to train on 10 
planes with 100 points for each plane. The required number of data 
pairs increa:&es to about 1000. Roughly, if P pairs are required in one 
dimension, then pN pairs are required in N dimensions. We note, how­
ever, that correlation relationships among the input data can effect this 
argument. Note that this problem is not specific to the layered percep­
tron, but is. applicable to any classifier or regression machine trained by 
example. 
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• Opimality + 

+ The layered perceptron is commonly used as a detector. 

+ There exists a wealth of optimal detection theory. 

• How does the layered perceptron compare to optimality? 

II 

I s I 

IN,-1 

IN, 

1 

+ Caution: Optimal detectors are typically parametric. 
Neural nets are not. 

OI!IIIZ·I.Io!olod ........ ·R.J.-46 

Figure 36 

One important attribute of artificial neural networks is their ability to 
perform detection. There exists a vast literature in optimal detection 
theory. How does the neural network performance compare to that of 
the optimal detector? Quite well! This, despite the fact that the neural 
network does not know beforehand the parameters of the noise or sig­
nal. 
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Detection Problem 

• M samples of random variables, { x0 I 1 s; n s; M} 

• Q: Are the samples 
• noise (X=O), or 
• signal+ noise (X== I)? 

/ ~ 
L:.__~ ............ , .. 

Hypothesis test: 

Ho : Xn == nn, 1 s; n s; M 
Ht :xn=s+no, 1 s;ns;M 

n0 = noise, s = signal 

~ 018112·LI)nii,..,.....·RJ.-.:J7 

Flgure37 

Elementary detection simply asks whether the received signal indicates 
a target is present or not. Detection theorists pose such a problem as a 
hypothesis· test High impedance fault detection and security assess­
ment are example of detection problems. 
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Flgure38 

The .cx.l3 tradeoff is typically conveyed in a receiver 
. operating characteristic (ROC) curve: 

0 ~=a:z 1 

The 132 curve is better than the 131 curve. 

The detector that maXimizes 13 for a given a is 

Neyman-Pearson Optimal 

There is a trade-off in detection theory between the detection probabil­
ity, p, and the false alarm probability a. If your detector says the target 
is always present, then p = 1. The false alarm rate, though, can be poor. 
Conversely, if the target is always announced as absent, the false alarm 
probability is one, but the detection probability will be poor. The plot of 
p vs. a is a receiver operating curve, or ROC. For a given problem. the 
ROC curve which lies above all other ROC curve is referred to as Ney­
m.an-Pearson optimal. For certain detection problems, the Neyman­
Pearson optimal detector is known. 
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Neyman-Pearson Optimal Detector for Laplace Noise 

Optimal detector structure: 

M 

r-Ho 
{.t;) ! I._s(:c;) ~ld 

i=l 

HI 

The Neyrnaa·Pea:soD optimal dettetOr. 

g(:c;) 

-~~ys/j l S Z; 
__ _..J<::__l 

-ys 

· · The Neyman-PcolsOn g (.<;). 

Note: Parametric knowledge of sand yis assumed. 

~ OliiSa· La!nd ........... R.J.- -39 

Figure39 

Noise with density y/2 exp(-lfnl) is Laplace noise with parameter y. The 
Neyman-Pearson optimal detector for Laplace noise for detection of a 
signal s is shown. For. the detection of detecting a signal in Laplace 
noise, there exists no better detector. 

A neural network is trained for the Laplace noise problem. How does it 
compare to the optimal detector? 

~ 

( 

( 

l 



( 

l' 

Result: The layered perceptron performed nearly as well as 
the optimal detector: 

Flgure40 

r = o.s mel H; ~ 3. 

"' 

y= O.lmd.Ni =- S 

r= 0.5:uld N; = 10. 
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Shown are ROC curves for various Laplace parameters for various 
sample sizes. The ROC curves for the neural network detector are 
nearly as good as the optimal detector in each case. 

This result demonstrates that the neural network has a remarkable abil­
ity to perform in the absence of parameterized data. Note that the 
optimal detector requires knowledge of the Laplace parameter and the 
signal strength. The neural network does not. 
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Other Layered Perceptron TrainiDg Teclmiques 

Most other training algorithms for the layered perceptroD. are 
perfomed external to the neural network architecture. For N training 
data pairs, we are attempting to minimize 

E = 117. 1:,. ( On - i, )2 
where 

On= SNL W(L) SNa.·IJ W(L-1) ... SNr W(l) ... SNm W(l) i, ; 1 ::; n ::; N 

For the given set of training data pairs, we are searching through 
weight space to find the the minimum error. 

There exist numerous search algoritbms. 

~ 019112-...,_. ""'-•R..I.IIib~ 

Flgure41 

The training data and the neural network architecture dictate an error 
surface in weight space. Training corresponds to finding that point in 
weight space where the error is minimized. There exist numerous tech­
niques to search for such a minimum. 
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Search Techniques for Traiuing Layered Perceptrous 

+ Error Back PropagaliDn 

+ Conjugale Gradient Descent 
Both the gradient and the curvature are generated. The next 
weight location is at the bottom of the resulting parabaloid. 
Swfaces with quadratic curvature allow seeking of the minimum 

in one step. 

+ Random Search 

+ Genetic Algorithms 

+Other 

Flgure42 
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Search Techniques for Training Layered Perc:eptrons 

+ Error Back Propagation 

· + Conjugate Gradient Descent 
Both the gradient and the curvature are generated. The next 
weight location is at the bonom of the :resulting parabaloid. 
Surfaces with quadratic curvature allow seeking of the minimum 

in one step. 

• Random Search 

+ Genetic Algorithms 

+ Adaptive Training 

+Other 

~ 01992·L.,.n<I~·R..J.-'43 

Flgure43 

There are a plethora· of techniques available for optimization. Error 
back propagation is the most commonly used. It has the advantage of 
being able to implemented totally within the neural network structure. 

Given a neural network architecture and a training data set, however, 
training a neural network simply cOITesponds to finding weights that 
will give a mjnimum to the error function. The techniques listed here 
have each been investigated as a technique to train a layered percep­
tron. 

We will eiaborate briefly on random search, genetic algorithms and 
adaptive training. 
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Random Search Methods 

• Global Minimum Assured 
•·Converges in probability to global minimum! 
• To good to be rrue? 

• Easy to implement 

• Requires very low degree of 
computatiiJnal accuracy 

Flgure44 
-~ 

Good news: Random search has a fantastic property! It is guaranteed to 
converge to the global minimum! Error back propagation can get stuck 
in local minima. 

Bad news: Convergence is guaranteed in probability, a very weak type . 
of convergence. For example, the limit of the probability that you will 
win the Washington state lottery as your number of attempts goes to 
infinity is equal to one. 

The other good news is that, in comparison with error back propaga­
tion, random search can be implemented with low accuracy 
computation. 
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Generic Random Optimization (Matays, 1965) 

+ Problem: For a given f(x), find xo such that 

f(xo) Sf(x) "i/ x 

+ Procedure: 

1. Initialize 
k = 0, x(k) = 0, b(k) = 0 

2. Select random number, ~(k) such that E[~(k)]=b(k) 

3. f(x(k)+;(k)) <f(x(k)) =* :x:(k+l) = x(k)+;(k) 

f(x(k)+;(k)) '?:.f(x(k)) =* :x:(k+ 1) = x(k) 

4. b(k+l) =co b(k) + c1 ~(k) where 0 S co< 1 
+ For a successful step, c1 > 0, co+q> 1 
• otherwise, ct s; o, lco+cii<l 

5. Set k= k+l and go to step 2 

~ 01992-u,ooocl ""'->-R.J. --'5 

Figure 45 

Here is the mathematics describing basic random optimization. 

For steepest descent (e.g. error back propagation), the idea is this. We 
are standing on the error surface with the goal of locating the minimum. 
We sense the direction of going downhill and take a step. The proce­
dure is repeated until the global minimum is, hopefully, found. 

In random search, a step is taken randomly. If the new location is better 
than the old location, you stay there. If not, you go back to the original 
spot and take another step. There is a sense of momentum used, in that 
the statistics of your step are a function of the result of your previous 
successful step. Again, this approach guarantees convergence to the 
global minimum with probability one. 
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Convergence 

'i ~>0, 

lim Prob[llx(k)-xoll > 0] = o 
k-iO 
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Use of random search techniques 
to feed-forware neural networks 

• Utilize feed-forward network structure with a non-linear 
processing function (sigmoidal function for example). 

• Objective function to be minimized = Error function. 

• Network's weight values will be updated Oearned) based 
on a random search techniques. 

~ 0191l2·La)olld""'"""Oi'-R.J.---7 
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· • Computational Accuracy • 

In general, the accuracy required for random search is much less than 
that required by error back propagation. 

Example: Six Bit Parily 

Olw:!·la)ft<t~·R.J.--48 

Flgure48 

Error back propagation requires high computational accuracy. In most 
cases, for example, training can not be performed with analog accuracy. 
This is not the case for random search. 

The six bit parity problem looks at whether the number of bits equal to 
one is even or not. If even, a one is indicated. Otherwise, a zero results. 
Shown here is the error resulting in training a layered perceptron when 
the weight accuracy is limited to a small number of digits. For four dig­
its, the network does not converge. 
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Using random search training, convergence can occur at a relatively 
low computational accuracy. 

Random OplimizaliaD and Fmile Wanllellgth effect 
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Flgure49 

Training a layered perceptron to recognize a six bit parity can be 
achieved using a much lower computational accuracy. Convergence, 
illustrated here, occurS with two digit accuracy. 

(The random optimization used here is a more sophisticated version 
than that described previously.) 
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• Genetic Algorithms + 

Problem: Maximize a merit function, /{x). The vector x contains the 
variables that give rise to the meriL 

Genetic Algorithm Solution: 

1. Generate a number of chromosomes for x in binary form. 

2. Allow survival of the fittest by letting chromosomes of small merit 
to die. Chromosomes with high merit may be replicated. 

3. Perform chromosome mating. 

4. Mutate the new chromosomes. 

5. Go to step 2 and repeat until convergence. 

0191i12· L.a)wOd ""'-• A. J. ..... .so 

Figure 50 

The field of Artificial Life is giving rise to numerous biologically 
motived computational paradigms, including genetic algorithms and 
evolutionary programing. 

Genetic algorithms are an optimization technique used to minimize a 
merit function, J(x). For neural networks, this could be liE where E is 
the error function. Listed here is the iterative procedure for optimiza­
tion. 

Genetic algorithms can be used to simultaneously determine the opti­
mal architecture for a layered perceptron (i.e. the number of hidden 
layers and number of neurons in each layer) as well as the numerical 
values of the weights. 

Genetic algorithms have been applied to optimal capacitor placement 
in power systems. 
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Example 

J=64-(x-1)2;0<x< 16 

1. Generate a number of chromosomes for x in binaiy form. 

X J 

A (1) 0 0 0 1 28 
B (9) 1 0 0 1 60 

c (15) 1 1 1 1 0 

D (6) 0 1 1 0 .63. 

total 151 

2. Allow survival of the fittest by letting chromosomes of small merit 
to die. Chromosomes with high merit may be replicated. 

Figure 51 ~ 
Chromosomes are strings of ones and zeros. When they are used as 
neural networks, the chromosomes are binary strings corresponding to 
the weights. The weights are placed end to end to form a very long 
chromosome. Here, the initial chromosomes are selected at random. 

In the first step, the merit of each chromosome is evaluated. Secondly, 
we allow survival of the fittest. This process can be visualized using the 
wheel-of-fortune shown on the bottom. The chromosome A has a 28% 
chance of being chosen. Similarly, B has a 6o% chance, C has a zero 
chance andD has a 63% chance. The wheel is spun equal to the number 
of chromosomes. In this case, it is spun four times. 
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New Population: 

X 

A (1) 0 0 0 1 

B (9) 0 0 1 

D (6) 0 1 0 

D (6) 0 0 

3. Perform chromosome mating. 
A mates to D and B mates to D. 
(Chromosome split determined by random) 

X 

A (1) 0 0 0 11 
B (9) 1 0 0 II 
D (6) 0 10 
D (6) 0 10 

Mating results: 

a 0 0 0 10 
b 1 0 0 10 
c 0 1 1 II 
d 0 1 11 
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Figure 52 

A new population results from the spin of the wheel of fonune. Next 
comes mating. We will mate A with D and B with D. To mate, a random 
point is chosen within the chromosome. The sections are then swapped 
to fonn the next generation. We even give them new names. In this 
case, they are (a, b, c and d). 
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4. Mutate the new chromosomes. 
(Probability of a flip= p) 
a (2) 0 0 0 1 
b (8) 1 0 0 0 
c (7) 0 
d (7) 0 1 1 1 

5. Go to step 2 and repeat until convergence. 

2. Allow survival of the fittest by letting chromosomes of 
small merit to die. Chromosomes with high merit may be 
replicated. 

before = after 
X J 

a (2) 0 0 0 1 36 
b (8) 1 0 0 0 63 
c (7) 0 1 1 1 64 
d (7) 0 1 1 1 64 
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Figure 53 

II 

Mutation: -With a certain small probability, each bit has a chance of 
being changed (a one to a zero or a zero to a one). In this example, the 
zero in the upper right hand comer is changed to a one. 

The process is repeated, beginning with step two (survival of the fit­
test). At the bottom of the page is shown the merit figure calculated 
after mutation. 
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3. Perform chromosome mating. 
a mates to c and b mates to d. 
(Chromosome split determined by random) 

before 
X 

a (2) 01 0 0 1 

b (8) 11 0 0 0 
c (7) 01 1 1 
d (7) 01 1 1 

after 

a (1) 01 0 0 1 

~ (2) 01 0 0 0 

X (7) 01 1 
0 (15) 11 1 1 

4. Mutate the new chromosomes. 
(Probability of a flip = p) 

a (1) 01 0 0 1 

~ (2) 01 0 1 0 

X (7) 01 1 
0 (15) II 1 1 

~ C151112·LIJad ....... ·R.J.-~ 

Figure 54 

Shown are the results of the next iteration. The solution is clearly 
approaching the solution of x = 7. Recall that the merit function is: 

J(x) = 64- (x-7) 2 

Thus, x = 7 is the desired result. In the last set of chromosomes, x = 7 is 
dominating the solution. 

Evolutionary programming and genetic algorithms are highly promis­
ing paradigms in the field of computational intelligence in general and 
neural networks in particular. 
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• Adaptive Training + 

• Applicable in the case where the training data source is a slowly 
varying nonstationarity (e.g. a yearly increasing load in the load 
forecasting problem). The weights of the layered perceptron adapt 
to the nonstationarity. 

• Desired attributes are 
• still respond appropriately to previous training data if those 

data are not in conflict with the new training data and 
• adapt to the new training data even when it is conflict with 

portions of the old data. 

• These are attributes of the adaptively trained neural network of 
training algorithm of Park et.al. 

~ Ol911Z·I.a)nil ~-R.J.--5S 

Figure 55 

In the ~g of a layered perceptron, an assumption of stationarity of 
the training data is typically made. In a number of cases of interest, 
however, the training data is a slowly varying nonstationary process. 
Consider, as an example, training data for the load forecasting problem 
generated in a developing urban area. Training data from five years 
prior will be different in character to data more recently generated. In 
order for the layered perceptron 's weights to adapt to a slowly varying 
nonstationarity, such a procedure should comply with the two attributes 
listed. 

The adaptively trained neural network (ATNN) assures proper response 
to previous training data by seeking to minimize a weight sensitivity 
cost function while, at the same time, minimizing the mean square error 
normally ascribed to the layered perceptron. 
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Example 

• 100 training data pairs (solid curve). 
• When a layered perceptron is trained with ~~ ~~ts ~ing error 

back propagation, the response to test data ts mdistmgwshable 
from the solid curve. 

• The 101stdatapointis introducedot0.5. It is 10% larger than the 
other datum there. 

• The retrained layered ~n is shown by the dots. 
• When trained using the ATNN, the dashed lme results as the 

generalization. 
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solid= old OUipUt; dot= back propagation; dash: A 1NN 
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Figure 56 

We illustrate the performance of the ATNN through an exemplar prob­
lem. Later, the procedure will be applied to the load forecasting 
problem. 

A total of 100 training data pairs were generated using the solid curve. 
When a layered perceptron is trained with these points using error back 
propagation, the response to test data is indistinguishable from the solid 
curve. The 101st data point is introduced to 0.5. It is 10% larger than 
the other datum there. When the layered perceptron is retrained using 
error back propagation, the generalization is shown by the dots. When 
trained using the ATNN, the dashed line results as the generalization. 
Clearly, the dashed line has adapted to the new data point without a 
resulting drift of the other data. Such was not the case for error back 
propagation. 
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+ Simulated Annealing + 

Problem: The enor, as a function of the weights, may have numerous 
minima. Error back propagation, and other search techniques, can 
get stuck in local minima How do we avoid this? 

Example (Jeffrey & Rosener, 1986) 
E(wi.M/2)=(4- 2.1 w12+~/3) w1Z+w1 w:z.+(4~-4) w:z.2 

-o 

'Ibezcare sil<io<:llmiuimain(·3<w 1 <3, ·2<w2<2.) 
w1 W? ECwt.W?l 

0.089842 4).712675 -1.03163 
4).089842 0.712656 -1.113163 
-1.70361 0.796084 4).215464 
1.70361 4).796084 4).215464 
1.6071 0..568651 2.10425 
-1.6071 -O.S686S1 2.10425 
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Figure 57 ~ 

For a given training data set and layered percepti'On architecture, there 
typically exists numerous local minima in weight space. Many optimi­
zation techniques, including steepest descent, can get stuck in these 
local minima Simulated annealing can be used to avoid shallow local 
minima and, ultimately, to find the global minimum. The contour plot 
·shown is that of a simple deterministic function with multiple minima. 

Annealing is a process used in cooling metals to assure maximum 
strength. 
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Solution: Use simulated annealing to shake the surface. The amount 
of shaking is akin to the temperature. Lowering the temperature 
according to an annealing schedule used in cooling metals. 

01!ill2·...,.,.."'""""""·R.J.--68 

Figure sa 

Annealing is used is cooling metal to assure maximum strength. Simu­
lated annealing is similar. By adding noise to the weights dming the 
training process, and decreasing that noise during the training process, 
we are, in effect, lowering temperature. If the temperature is lowered at 
a sufficiently slow rate, the global minimum is reached. 
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+Noise in Neural Networks+ 

Noise is used extenSively in neural networks to improve perl'ormance. 

+ Use of noise in Hopfield neural networks results in the 
Boltzmann machine. Convergence to deeper minima is 

improved. 

+ Training with jittered data can improve the generalization of the 

layered perceptron. 

• Mutation in genetic algorithms acts as annealing. The solution 

are kicked out oflocal minima. 

+ Random search optimization assures convergence to the global 

minimum in probability. 
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Figure 59 

Interestingly, noise plays an important role in many approaches to 
improving the performance of neural networks. Paradoxically, accuracy 
is improved through the use of randomness. 
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Accelerated Learning Using Queries 

The Basic Concept: 

Flgure&O ~-

When a classifier or regression machine is trained by random example, 
the more that is learned, the harder it is to learn (i.e. you can't teach an 
old dog new tricks). This is true of the multilayered perception. Indeed, 
in the absence of data noise, additional learning takes place in a multi 
layered perceptron only if new data is introduced that the neural net­
work improperly classifies. The closer the representation comes to the 
concept, the smaller the chance that this happens. 

To illustrate, consider the classification problem of learning the loca­
tion of a point a on the interval 0 <a < 1. We choose a point at random 
on the unit interval. If it to the right of a, we assign it a value of one. If 
is to the left of a, the result is 0. It is clear that, after a number of data 
points have been generated at random on the unit interval, that a lies 
somewhere between the rightmost 0 and the left most 1. Call this subin­
terval C. If we generate a new data point that does not lie in the 
subinterval C, we have learned nothing new. If the new point lies in the 
subinterval C, then we revise the subinterval and make it's duration 
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shorter. Doing so, however, decreases the chance that the next data 
point contains new information. That is, the probability decreases that 
the new data point lies in the shorter interval. Thus, in this example, the 
more we learn about the location of the point a, the harder it is to learn. 
One approach to counteract this phenomenon is with the use of oracles 
in query based learning .. 

Oracles: In supervised learning, each feature vector is assigned a clas­
sification (or regression) value or values. There is usually a cost 
associated with this assignment, such as the cost of performing an 
experiment, computational overhead or simply time. We can envision 
this process as a presentation to an oracle the feature vector. For a cost, 
the oracle will reveal to us the proper classification or regression value 
associated with that vector. Note that, if we have deep pockets to pay 
the oracle, there is no need to for a classifier or regression machine such 
as the layered perceptron. Any feature vector we desire can be taken to 
the oracle for proper categorization. 

In many cases of interest, we have the freedom to choose the feature 
vectors that we present to the oracle. Ideally, we would like to present 
those vectors to the oracle that, in some sense, will result in training 
data of high information content The motive is to effectively train the 
classifier or regression machine with a low training data cost Query 
based training is concerned with the manner in which the training vec­
tors that will result in high information data are chosen. 
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Queries Using the Layered Perceptron 
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Oracles can be a cori:lputer simulation or an experiment. Independent of 
its form, the oracle must be paid to answer ·a query. A neural network 
can be used in a query based system if the net can be inverted. 
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Observation: Points close to the boundary have the highest degree of 
confusion. Use conjugate pairs. 

~ 01iii2·Lo)nd"""""""'·ROJ.--62 
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The binary classification problem is totally determined by the classifi­
cation boundary. Indeed, here is an obvious case where the importance 
of data to the classification can be noted. Roughly, the closer a feature 
vector is tO the concept classification boundary, the more information it 
contains. 

One way to exploit this observation is through interval halving. 
Between each feature vector classified 0 and each classified 1, there 
exists a classification boundary. In many cases, taking the geometric 
midpoint of these two feature vectors to the oracle will result in a clas­
sification point closer to the boundary. This is assured, for example, if 
the underlying concept is convex. 

( 

( 

To illustrate interval halving, let's return to the problem of finding the 
point a on the interval (0,1). After N randomly generated points on this 
interval, we would expect (in the sense of statistics), that the distance 
between the right most zero and the left most one is about 1/N. Using 
interval halving, on the other hand, this is reduced to about 'lf'l. The 
acceleration in learning is indeed remarkable. l ~ 
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Q: How do we find 'points of confusion'? 
A: Through inversion of the neural network. 

• Training 
Hold the data constant. Adjust the weights to give the minimum 
output error. 

• Inversion 
Hold the weightS and the output constant (e.g. at ltz). Adjust the 
input to give the minimum error. Inversion can also be 

performed to the gradient at a point of inversion. 

Points of confusion can be generated from a partially trained layered 
percepttOn. · These points are taken to the oracle for clarification and 
are introduced into the traiDing data. 

Flgure63 

Another approach to query based learning is, in effect, to ask a partially 
trained classifier or regression machine "What is it you don't under­
stand?". The response of the classifier or regression machine is taken to 
the oracle for proper categorization and the result is added to the train­
ing data set. The classifier is then further trained and the process 
repeated. 

. How might we apply this query approach to, say, a trained layered per­
ceptron classifier with a single output? Asswiling that the output neuron 
is thresholded at one half to make the classification decision, the. repre­
sentation boundary in feature vector space is the locus of all inputs that 
produce an output of one half. This locus of points corresponds to fea­
ture vectors of maximum confusion. In other words, when presented 
with such a vector, the neural network is uncertain to the corresponding 
classification. If there were a technique to find a number of these 
points, they could be taken to the oracle to clear the confusion. The data 
from the oracle could then be used for training data. The perceptron can 

Notes Notes Notes 

Lecture S - Page 67 



Notes Notes 

Lecture 5 - Page 68 

Notes then be retrained to yield a higher accuracy. The question is, how can 
the locus of confusion be generated? The answer is through inversion 
of the neural network. 

One technique for inversion of the layered perceptron has been pro­
posed by Hwang et.al. The approach is basically the dual of back 
propagation. Instead of holding the training data constant and adjusting 
the weights by using steepest descent, the weights are held constant and 
the input is adjusted using steepest descent to give an output of one 
half. Clearly, a number of inputs will give the response of. one half. 
Variations are imposed by changing the initial starting point of the 
input in the iteration procedure. Use of inversion in query based learn­
ing has resulted in a significant improvement in accuracy of a trained 
layered perceptron in comparison with a second neural network trained 
with a randomly selected data set of the same cardinality. In practice, 
data near (rather than on) the representation boundary was used to 
accelerate training. 
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Query based ANN Training 

o Start with small randcnn data.. 

• Obtain inversion data from partially trained net. 

• Gradient computation. 

o Obtain closed opposed p~:ir along the inversion boundary. 

• Assess true concept of these query points. 

o &train urith. original random data + query data. 
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Figure 64 

Notes Notes Notes 

Lecture s -Page 69 



Notes Notes Notes 

Flgure65 

Lecture 5 -Page 70 

Query Flow 
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Advantages of Query Based Systems 

• For randomly generated data in a static classifier, the more that is 
learned, the harder it is to learn (i.e. you can't teach an old dog 

new tricks). 

• In query based systems, you are asking the neural network 'What 
is it that you don't yet understand?'. The neural network's 
response specifically allows you you clear up the resulting points 

of confusion. 

019!12·LI)Wid ~-R.J.--66 

Figure 66 
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Example 

A two dimensional slice in a four dimensional classification space. 
• Left: Training using 5000 randomly selected data points. 
• Right: Training using 5000 query selected training data points. 

y 
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Flgure67 

We have apPlied these techniques to power security assessment. Here, 
an oracle for a single training vector query, can correspond to several 
minutes on a super computer. Details will be presented later. 
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Learning vs. Memorization 
Nearest neighbor look-up is memorization. Consider two Gaussian 

point sources. 

optimal overdetermined 
partition partition 

I I 
\~("') 

n 0 .-., 0""' 0 
._. . L-.; 10 0 

0 -: .... ,., \ 0 0 
o ~_..~(9-"Q o[;Jfo 

o oo~o (_cf;g) o o o o 
0 0 -f') 0 0 0 

/0 0 0 
Ol 

C! - J\ 0 
.....! ol\ 0 

Best result: Test data gives the same error as the training data. (Cross 

validation). 
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There is a difference between training and memorization. A trained 
classifier or regression machine can respond with confidence to a pat­
tern which it has not seen before. The ability to properly classify data 
which has not been seen before is referred to as generalization. Memo­
rization, on the other hand, guarantees that, when presented with a 
specific element in the training data set, the classifier will respond in 
exactly the same manner that it was trained In the case of memoriza­
tion, the response to data other than training data is not considered in 
the paradigm. 

The ability to interpolate among the training data does not necessarily 
imply good generalization. We illustrate with an example from detec­
tion theory. Consider the two solid points shown here. The one on the 
left is a square and the one on the right is a circle. We assume the these 
are the centroids of 2 two-dimensional Gaussian random variables with 
the same variance. Given some observation point, the minimum proba­
bility of error solution results simply from determination of whether the 
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point lies to the right or the left of the perpendicular bisector between 
the two centroids. Consider, then, memorization from the training data 
shown by the hollow squares and circles. Since we require the classifier 
to properly categorize all points, the resulting partition boundary would 
:follow the winding dashed line shown. Clearly, this line would become 
more winding with the increase of the data cardinality. This observation 
leads us to the conclusion that some trained classifiers should not gen­
erate a zero probability of error corresponding to the training data. This, 
rather, is memorization. 

Are there cases where the error corresponding to training data should 
be zero? Yes. This is generally true when their is no noise or ambiguity 
in the data. How then, might we determine whether the classifier or 
regression machine has learned or memorized? The answer is that a 
properly trained classifier or regression machine should respond with 
the same error to training data as to test data. Note that this is a neces­
sary though not sufficient condition. If the error from the test data is 
much higher than that from the training data, then, chances are, the neu­
ral system is over determined. In other words, the degrees of freedom 
in the classifier or regression machine is to high. For the layered per­
ceptiOn, this is the num~ of interconnects which, of course, is related 
to the number of neurons in the hidden layer. If the error from the test 

(~ 

and training data are similar, we are not guaranteed of proper training. , 
Note, for example, that any partition line passing through the midpoint ( 
between the two centroids would result in a classifier with the same 
error for training and testing. Only the perpendicular bisector gives the 
unique minimum error solution. 
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Methods to Assure Good Generalization 

1. Training with input jitter 

2. Error regularization 

3. Sigmoid scaling 

4. Node pruning 

5. Weight decay 

6. Other 

Figure 69 

A well trained neural network must display good generalization. There 
exist numerous methods to assure good generalization. Each attempts, 
in essence, to match the classification capability of the neural network 
to that of the data. In most cases, the degrees of ~om of the neural 
network (e.g. its ability to generalize) are to great. The response of the 
layered perceptron must therefore be smoothed in some fashion. The 
techniques listed here are those most popularly used to do so. 
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TRAINING WITH JITTER 
Instead of training with inputs (x,y }, train with inputs (x+nJ ,y+n2) 

where (n1,n2) is noise. 

Geuenliza.lion withoutji!ler. 
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Flgure70 

Training a neural network with to many degrees of freedom can result 
in poor generalization. The dashed line in the nonjittered generaliza­
tion clearly results from to much freedom in generalization. Adding 
noise to the training data spreads the influence of each of the training 
datum to a larger volume. The result, as illustrated in the bottom figure, 
is a much smoother generalization. 

The expected value of the effective target, in the case of jitter, is the 
(multidimensional) convolution of the original target function with the 
probability density function (PDF) of the jitter. 
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Sigmoid Scaling 

After training, replace the sigmoid function, s(x), with s(xla). 

a is a function of the weights of the network 

O.G 

CorlespoDdiDg Contour Plot = o.e 

0.? 

0.8 

0.1 
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Figure 71 
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GCIICializalion 

Better generalization can also be achieved using sigmoid scaling. The 
neural network is trained as usual. After training, the slopes of the sig­
moids can then be scaled to acheive better generalization. Typically, 
the slope of the sigmoid is decreased. The amount of scaling per­
formed is a function of the weights used. 
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GeDeraliz:alioD => 
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Figure 72 

0.9 

o.a 

0.7 

0.6 

<= G=czalizatiOII 
Using Sigmoid 

Scaling 

~ 
Shown are examples of generalization using sigmoid scaling and jitter. 
The effects of sigmoid scaling was chosen to give results similar to that 
of jitter. In terms of training time, jitter typically takes much more 
time. The network, in essence, must adapt to a much greater degree of 
data canlinality. 

Question: What is the best choice of cr? This can be determined by 
cross validation (borate). 
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+ Better Generalization by Regularization + 

Replace the error function, E, by 

where 1.. is a Lagrange multiplier and fp is some constraint. If 
z(.r) is the ouput of the neural network for an input of .r, then, for 

example, 

1.. controls the degree of smoothing. 

Flgure73 

The Lagrange multiplier, A, corresponds to the a encountered in train­
ing with jittered data. Using the method of regularization generally 
takes training outside of the structure of neural networks. Backpropa­
gation can be performed within the neural network structure. 
Imposition of regularation perturbs the math of error back propagation 
to where it can no longer be performed by updating weights as a func­
tion to the states and parameters of the two neurons which they 
connect. For small CJ, training with jitter gives results similar to that of 
regularization with the differential constraint. 
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+ Better Generalization by Node Pruning + 

Steps: 

X y 

~=Tmm 
I 

{.z 

X y 

i 
¥z 

X y 

~ 
·,-

OISS!·L:I!WIIfl'w ..... ui•RJ.IIillo·U 

Flgure74 

<= Evaluate Sensitivity 

<=Prune Neurons With 
Low Sensitivity 

~ 

Node pruning attempts to match the degrees of freedom of the neural 
network with that of the data. The neural network is first trained. The 
sensitivity of the hidden nodes is then computed. The sensitivity is the 
rate of change (partial derivative) of the output with respect to the hid­
den neuron state. If this sensitivity (slope) is small, then large swings 
of the neuron state has little effect on the output. Thus, the node is not 
necessary and can be deleted, or pruned. 
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+THE LAYERED PERCEPTRON ·Summary+ 
• Introduction to Learning 

° Classifier Problem 
0 Properties of a Good Classifier 
o Regression Machines 
o Rtive Attributes 

• Rosenbatt's Perceptron 
o Tbe Widrow-Hoff Algorithm 
o Perceptron Problems 

• The Layered Perceptron 
o Error Back Propagation 

• Attributes 
• Optimality 

0 Other Training Techniques 
• Conjugate Gradient Descent 
• Random Search 
• Genetic Algorithms 

o Adaptive Training 
o Simulated Annealing 

• Accelerated Convergence Using Queries 
0 Oracles 
0 Neural Network Inversion 

• Learning vs. Memorization 
0 Generalization 
o Training with Jitter 
o Sigmoid Scaling 
o Regularization 
o Node Pruning 

•Summary 

0191l2·~.._.R.J.Morlos·7S 

Figure 75 
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( + UNSUPERVISED LEARNING & 

SELF ORGANIZATION + 

• Unsupervised vs. Supervised Learning 
• K-Means Clustering 
• Kohonen Feature Map 
• Adaptive Resonance Theory 

019!12·--~·R.J.-· I 

Flgura1 

The layered perceptron learns through supervised training. One is given 
an input and a corresponding target. The neural network adjusts to 
match the inputs with their targets. For unsupervised training, there are 
no targets provided. The neural network must decide, without supervi­
sion, how the inputs are to be grouped. Such a procedure is referred to 
as clustering. 
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+ Unsupervised vs. Supervised Learning + 

CLASSIFIER PROBLEM 

• Supervised: Train an automatic classifier on examples of 
input/output relations: 

Training Set = { (X,C)} 

• Unsupervised: Train an automatic classifier on examples of X 
only. 

• Note : When given the choice between supervised and 
unsupervised training, the wise choice is usually supervised 
learning. 

~ IS!·~Loning·R.TIIilil- 2 

Figure 2 

The categorization is not available to us in unsupervised learning. The 
classifier must decide, when presented the data, to which class each 
belongs. Since more information is available in supervised learning, it 
should be chosen when an option exists. 
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• K Means Clustering • 

PROCEDURE 

• N data vectors, { XI, X2, XJ,... XN} 
• Choose K vectors at random. These are the first cluster 

ceutroids. 
• Classify remaiDing data with ceutroid to which it is closeSt. 
• Compute resulting cluster centroids. 
• Relassify data with centroid to which it is closest. 

Go to previous step and ~:epeat until convergence. 

PROBLEMS 

• Assumes knowledge of K. 
• Clustering dependant on initial choices. 

Rgure3 

K-means clustering is a very simple unsupervised learning procedure. 
An assumption of K centroids is made. The data is categorized in accor­
dance to these centroids. The cluster centroids are recomputed and the 
procedure is repeated until convergence. 
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Example: II 

UUH tUUt 

t U# # Ul 

u ##I 

uu #2##f 

it ##UUU # U#U#Uil 

UtU #t t#H3 u 
#U tU 

Data K=3 points 

illllll 
l lll 

222 
22222 

~2222222, 
22 

3 

resulting clusterS 

019512·111-ilood....,.;g·R.ol.-·4 ~ 
Figure 4 

A set of two dimensional data is shown. Three data points are chosen as 
the centroid and the resulting clusters evolve. 
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+ Example: Alternate Initialization + 

UUH 

* U# 

# 
UHf 
U# 

Data 

b.11111 
!l 111 

~ 
j33333 

~33 

I 
#ti 

#UU 
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u 

222 
2222 

222222222 
33 

resulting clusterS 

Figures 

lUUU 
t #U 

2 

~uu 
U# 

K=3poinrs 

111111 
1 111 

3 
33333 
333 

Ut 
UHf 

U##UUf 
u 

22~ 

2222~ 

22222222:.: 
33 

recompute centroids 

This alternate initialization, as shown on the next page, converges to 
the same result as before. 
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• Two Results • 

~lllll 
12222 

lll l 222 

222 
333' 

22222 
33333 

3 222222222 3 333333333 

3333 22 33333 33 

33 
33 

result: same as before 
Different initialization 

0111!12-~LMnilg-~-6 ~ 
Figure& 

The initialization on the right converges to the clustering shown and is 
significantly different from the previous results. 
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• Minimum Distance and Correlation • 

The distance between two vectors, :r: andy is 

Flgure7 

II :r- y 11 2= (xx- y,)2+ (X2- )12)2 + 000 + (XN- ,YN)2 

=(x-y)T(x-y)= II :r: 112+ II y ll2.2zTy 

........_ 
II x-.YII-........_ 

· In many classification problems, an observed vector is compared to a 
library of vectors. In order to determine which of the library vectors the 
observation is, the mean square distance between the vectors is com­
puted. 
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+ Matched Filtering + 

Assume all of library vectors have the same energy. 
llYn II 2 =E ;l'S.n'S.N 

For a vector ;r, finding the minimum distance 
minn II X·Yn ll2=minn[ II% 11 2 + II Yn ll 2 -2zTyn] 

Yj 

is me same as maximizing the conelation 
maxnxTyn 

019112·~LMDilg·RJ.-·B 

Figures ~ 

If all library vectors have the same norm, they all lie on the surface of a 
hypersph~. Since 11Ynll 2 is always constant, minimizing the norm is 
the same as maximizing the correlation (inner product). This operation 
is referred to as matched filtering. 
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• Correlation • 

The inner product operation is that performed by the simple neural 
operation shown below. 

r=uTw 

w1 

uz wz 

w3 r 

• 
• 
• 

WN 

11112-~..-.g- __ g 

Figure 9 

The architecture shown is that of a simple perceptron. The use of the 
inner product in a matched filter role is used in the Hopfield associative 
memory, the perceptron, Kohonen's feature map and ART. 
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+ Kohonen Feature Map + 

• Finds the organizational relationship among patterns. 
• A two layer neural network. 

competitive layer ------

Figure 10 ~ 011192-~~-ROJ.-IIids~10 

Each node in the competitive layer corresponds to the centroid of a 
cluster. The interconnects to a neuron in the hidden layer contain the 
information about the location of this centroid. 
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• Feature Map Procedure • 

input vector 
E = ( e, ez CJ ••• eN ]T 

weights for ith node in competitive layer 

Uj = [ Uj! Uj2 Uj3 ••• UiN ]T 

Find nearest match from 

min 1; (Uij - ej )2 

Note: If we normalize min ~i (uij )2 =constant, then 

is the same as 

Thus ~ millimum mean square error 
= maximum correlation (inner product) 

CI!I!I:I·~~·R..l.-·11 

Figure 11 

The first step is to find that neuron in the competitive layer that is clos­
est to the input vector in the mean square sense. If the weights to each 
of the neurons in the competitive layer are normalized, this is the same 
as maximizing the correlation. In other words, the best match is deter­
mined by a matched filter. 
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• Feature Map Procedure • Cont. • 

After finding the competitive neuron with the best match to the input, 
identify the neigbborl:lood about the neuron. This neighborhood 

becomes smaller as training proceeds • 

••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• ••••••••••• 
If the dimension of the square is (2d+l) x (2d+l), one schedule is 

d= do(l-t;r) 

Figure 12 ~ 

We have identified the neuron in the competitive layer that has the best 
match. A neighborhood around this neuron is specified. Here, we show 
three boxes around the neuron that has been identified. As time 
increases, the size of these boxes decreases. If T is the total training 
time, a linear schedule is 

d= d0 (1- tiT) 

where do is the initial size of the box. 
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+ Cont.+ 

If a neuron in the competitive layer is in the neighborhood of the 
winning neuron, then it's weights are updated according to 

where the leaming rate, a. deceases with time. For example, 

where <Xo is the initial learning parameter. 

019!12·~~-R..I.-·13 

Figure 13 

Once the neighborhood has been identified, the weights to those neu­
rons are updated. The weights are updated to make them look more like 
the input. As time progresses, however, the weights should be more and 
more difficult to change. Thus, the learning rate parameter is decreased 
with respect to time. 
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+EXAMPLE+ 

The two dimensional inputs, X and Y, are independent uniform 

random variables on (0,1). 

------------

X y 

Olill2·u.....-liinilo·R.J.-·W ~ 
Figure 14 

Each of the neurons in the competitive layer has "two inputs - one from 
X and one from Y. These two weights form an ordered pair. We expect 
these weights to distribute themselves in accordance of the input proba­
bility distribution. 
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Here are the weights initially chosen at ( 1f2,1J-z) plus a small random 

variable. 11tis is a unit square. 

Flgure15 

The initial values of the net are chosen using a random number genera­
tor. The square is over the intervals (0,1) in both X and Y. 
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After 2500 iterations: 

~ 0111!12-~I.Mnng·R.J.IIab-16 

Figure 16 

This is a result we would expect after 2500 iterations. The weights of 
the neurons in the competitive layer are beginning to adapt to the den­
sity of the inputs. The points are connected for display pwposes only. 
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After over 10,000 iterations. The partition has spread almost 
unifonnly over the squiue in accordance to the input distribution. 

I 
I 

11512·~L.-.i>g·R.J.-· 

Figure 17 

I 

I 
I 
i 

I 

I 
I 

This is a result we would expect after 10,500 iterations. The net has 
nearly converged. Note the edge effects. There are no input vectors out­
side of the square. Thus, there are no vectors there to 'pull' the graph to 
the edge. 
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Kohonen maps can also converge inproperly, dependent on data 
ordering and the initial states. For e"ample: 

Figure 18 ~ 

This Kohonen map has clearly converged to an improper result In 
some applications, the incorrect result might not be as apparent. 
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• Nonuuifonn Probability • 

In tbis example, the probability of choosing a test data point in the 
upper right hand comer is higher . ... . . . 

019i2·~l.ani'lg·R..L-·19 

Figure 19 

Here the net's weights have converged to other than a somewhat uni­
form spacing. The reason is that the joint probability density function is 
other than uniform. The density in the upper right hand square is larger 
than that elsewhere. For a large number of neurons in the competitive 
layer, corresponding to a large number of points on this graph, we 
would expect that the density of dots to be proportional to the probabil­
ity density function there. 
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+ Feature Map Notes + 

• Local lateral inhibition. 

•Uses 
- Unsupervised cla.sSification 
-V~rquantization 

~ 0111112·1Ji0iiii\iiid._mg·A.J.-·20 

Flgure20 

A variation of the decreasing area of learning is the a windowing of the 
region. One use of the Kohonen feature map is vector quantization. 
Suppose we haveN vectors of length L, and that many of these vectors 
were similar. The feature map is used to sort these vectors into classes. 
Then, when we wish to communicate a vector in class C, we broadcast 
a C instead of the whole vector. At the receiver, a C is reconstructed as 
a class C vector through use of a code book. · 
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•ADAPTIVE RESONANCE THEORY (ART)• 

A paradigm for unsupervised learning. 

The neural network: has learned N classifications, corresponding to 
{ Yl, yz, ... YN1· A new vector xis presented. We need to decide 

• In which of the N categories does this new vector fit? Once 
decided, the weights are updated to reflect this new information. 

• If xfits in no category, another category is formed, YN+I· 

0111112·~~-R.J.-·21 

Figure 21 

This neural network has been called 'one of the most complex neural 
networks ever invented' by Maureen Caudill. She continues, 'When 
these [ART units] are implemented in a software simulation (such as 
that provided by at least one of the available commercial simulators), 
computational overhead is so great that the neural network is unaccept­
ably slow on anything short of a Cray.' This has been the perception of 
ART. The basic idea behind ART, however, is quite straightforward. We 
here describe its essence. 
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+Initialization • 

I. Assume that there are N categories, { Yl , Y2 , .•. YN}. The 
weights, {wij}. arc templates. The vector x, is input. The y,;s 
are correlation coefficients. 

F y 

F 
X 

xl 

C111112·~~·R.J.-·22 

Figure 22 

Yz yn YN 

xm 

~ 

Assume that the neural network has already learned some pattern 
classes. A new vector, x, is introduced. The neural net weights are used 
to compute the correlation coefficients of the templites. 
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• Finding the Best Match+ 

2. Lateral inhibition is applied at the Fy layer in order to find the 
largest correlation coefficient, and therefore the best match. 

F 
y 

F 
X 

--~lanilg-R..L-·23 

Figure 23 

The coefficients in the Fy layer are subjected to lateral· inhibition in 
order to find the maximum coefficient. 
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+ How Good is Best? + 

3. The winning neuron in lateral inhibition is the best match for to 
the input To fmd out how close it is to the template, the 
intercannects from the winning neuron are activated. If the nth 

template is the largest, the closeness of the template and input is 

measured as the mean square distance 

F 
y 

F 
X 

xl 

01!192·~~-R.J.IIdi·:U 

Figure 24 

d = .I:.n (wam- Xm)2 · 

x2 X m 'M 

-~ 

The winning category excites the interconnects back to the input layer. 
The template is compares to the input and the corresponding mean 
square distance is computed and compared with a threshold parameter, 
t. 
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+ Do We Update Or Start a New Category? + 

4. The distance dis compared to a threshold parameter, t. 

F 
y 

F 
X 

• If d <: t, the vector x is used to update the interconnects 

tOJn· 
• If d > t, the classification YN+I is initiated. 

OIIISIZ·~a.niag-R.J.-·25 

Figure 25 

If this distance is small enough, the weights for the template are 
updated. If the threshold parameter is exceeded, a new category is cre­
ated. If the threshold parameter is small, there will be a greater number 
of categories. 
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+ ARTl + 

+ Input binary pattern vector x. 

+ Compute the percentage of one's in common to the nth 
template, w,., for all values on 1i. 

xTw,.l( II w,. II +13) 

+ Use later111 inhibition to find the closest template indice. say. i. 
xTwd( II w; II +13)<!:xTw,.l<ll w,. 11+13) 

If this number is to small, start a new cluste:r. 

+ Compute the percentage of one's in common to the template, w;. 
xTw;/ II x II 

+ If xT w; I II x II < p = the vigilance parameter. then disable 
the ith cluster and look for the second best match. 

+ If xT w; I II x II < p, then update weights. The new weights 
are obtained through a logical and with the input. 

~ OIII!I2·UI-fiiiii~·ILJ.IIiis;26 

Figura 26 

ART 1 is much more complicated than the model we presented. 
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+ UNSUPERVISED LEARNING & 
SELF ORGANIZATION + 

• Unsupervised vs. Supervised Learoiug 
• K-Meaas Clustering 
• Kobonen Feature Map 
• Adaptive Resonance Theory 

Figure 27 
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•Emulators 

+NEURAL NETWORK 

IMPLEMENTATION+ 

• Analog Electronic 
•Digital 
• Optical 

!IIZ-NII~·R.J.-· 1 

Figure 1 

A set of relatively recent tutorials on artificial neural network: imple­
mentation, edited by Robert J. Marks II, were published in IEEE 
Circuits & Devices Magazine. 

• H.P. Graf & L.D. Jackal, "Analog electronic neural network cir­
cuits," IEEE Circuits & Devices Magazine, vol.S, pp.44-49 (July, 
1989). 

• N.H. Farhat, "Optoelectronic neural networks & learning 
machines," IEEE Circuits & Devices Magazine, vol.S, pp.32-41 
(September, 1989). 

• L.E. Atlas andY. Suzuki, ''Digital systems for artificial neural net­
works," IEEE Circuits & Devices Magazine, vol. 5, pp.20-24 
(1989). 
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---------------

• Emulators • 

The massively parallel neural network arc:bitectUres are 
simulated using conventional serial computation:: Three options: 

• Write-your-own 

• Commercially Available 

'IT IS A MY1H lHAT 11iE ONLY WAY TO ACHIEVE RESULTS 

wrm: NEURAL NETW~RKS IS WIIH A MIU.ION DOLLARS, A 

SUPERCOM!U'fER, AND AN INTERDISCIPLINARY 1EAM OF 

NOBEL LAUREATES. THERE ARE SOME COMMERCIAL. 

VENDORS our. niERE WHO WOULD LIKE YOU TO BELIEVE 

lHAT, THOUGH.' 

EBERHART & DOBBINS, NEURAL NETWORK PC TOOLS: 

A PRACI1CAL GUIDE, ACADEMIC PREss,1990. 

• Accelerator Boards 

~ C11l92·~~·R.J.-·2 

Figure 2 

Most neural network algorithms can be described with a few lines of 
code. Commercial software is more user friendly and can display quite 
impressive graphics. Some books, such as that by Eberhart & Robbins, 
have accompanying share ware. 
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• An Analog Neuron • 

connections from 
other neurons connections to 

other neurons 

rn I i 

Flgure3 

The weights between neurons are the conductances shown. Snmmjng 
the inputs is performed using KCL. The neuron performs a nonlinear 
operation. Both a soft sigmoid and a hard nonlinearity are shown. The 
current output of the neuron is then connected to other nemons through 
the conductances shown. 
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• Circuitry for Homogeneous Neural Network • 

A five neuron Hopfield-type artificial neural network. The weights 
in the neural network: arc specified by the conductances. 

~ 
Flgure4 

Of&·NN-.......... --R.J.-IIdl·4 

For a five neuron Hopfield neural network, there are 25 interconnects 
shown here as conductances. Circuitty of this type has been used to 
solve traveling salesman and associative memory problems. The com­
putational of analog neural networks lies typically between lo9 and 
1011 interconnections. Board emulators have been built with intercon­
nect rates of up to 10 7 per second. A density of 4 resistors per square 
JUD has been achieved. This is 4 X loS resistors per square em. 
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• Digital Electronic Neural Networks • 

Higher precision at a cost of speed. 

ANN Architectnre 

Waip Machine 
TR.WMarlcm 
TR.WMarkN 
SAICDelta 
HNC ANZ.A Plus 

NETSIM 

FigureS 

Learned Connections/Second 

1.7 X 107 
4.5 X 105 
s.ox 106 
2.0X 106 
1.8 X 106 
9.0x 101 

These figures, from Atlas & Suzuki, illustrate the relative speeds of 
some digital systems. Their precision is required for some applications. 
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OPTICAL IM:PLEMENTATION 

Why Optics? 

Optical Multipication & Addition 

Optical Matrix- VectOr Multiplier 

Hopfield's Model & the BAM 

Optical Matrix - Tensor Multiplier 

The Boltzman Machine 

Alternating Projection Neural Networks 

01!1!12•NN.......-·R.J.-·6 ~ 
Figure& 
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Why Optics? 

1. Massively Parallel 

2. Speed: iterations can be perlormed at the speed of light. 

3. Intensive interConnect requirements: electrOns can't pass 
through electrons but photons can pass through photons. 

4. The distributed fault tolerent narure of neural networks 
makes optics a good implementation fit. 

01!1512·1111~· J.-· 

Flgure7 
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Optical Multipication 

Example: Moire Pattems 

Consider aRon&hi Ruling: 

slzwecl 
slice 

-slice 

Approximate the horizonral slice by cos ( tal 1 x ) and the 
skewed slice by cos ( w 2 x). 

--~.-a.·R:J.-·8 ~ FigureS 

Analog multiplication can be performed in parallel in the time it takes 
light to travel through a transparency. This will be illustrated with a 
Moire pattern. In the Ronchi ruling shown, the fundamental frequency 
of the two slices is different. 
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+ Optical Multipication + 

When two Ronchi rulings are placed back 10 back. the IIliDSDii1lance 

multiply to give 

'Ibe second term comains a low frequency beat term seen below. 

01!11R·NN........-·R.J.-·!I 

Flgura9 

The beat frequencies observed in the Moire patterns illustrate that opti­
cal multiplication has been performed. The massively parallel 
operation is performed in the time that it takes light to travel through 
the transparencies. 
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+ optical Mattix-Vector Multipication + 

An input array of soUTCes is spread across a transparancy (e.g. 
spatial light modlllator or SLM). The light is collected along the 
detector array. A ITilllrix-vecror mzdtiply is performed. 

input 
array 

OIWO!·NN....,..._·R.J.-~.10 

Figure 10 ~ 

This simple optical processor can perfor:p1 an optical matrix-vector 
multiply in the time it takes light to travel from the source array to the 
detector array. (The astigmatic focusing optics are not shown). 
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+ Optical hnplementation of the Hopfield Model + 

• Neural feedback is performed electronically. 
• The interCOD!lects can be rounded to ±1. The net still works! 

Cl!lll2·NN~·R.J.-·tl 

Flgure11 

thresholding 
electronics 

We are here letting optics do what it does best (parallel operations) and 
the electronics doe what it does best (nonlinear thresholding). In order 
for optics to perform a nonlinear operation, it must interact with matter. 
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+ Optical Implementation of the BAM + 

Here, detectOrS and somces are interlaced at both the front and back 
focal planes. 

Figure 12 -~ 

Light is introduced from the source at $e left. The detectors on the 
light receive the first iteration. Adjacent to the detectors are sources 
which illuminate as a nonlinear function of the incident illumination. 
The sources produce light from right to left and the process is repeated 
at the left· hand combination detector-source array. Iteration is per­
formed until convergence. 
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OPTICAL MATRIX· TENSOR 
MULTIPLffiR 

Operation: 
G=.HF 

where G and F are matrices and H is a tensor. 
Equivalently: 

N M 

gpq= Ll:/
11111

hnm,pq; lSpS.P,lSqS.Q 
~~:I ,..1 

The tensor can be represented as a matrix of matrices. 
Claims have been made of lOS to 1012 weights (matrix 

elements), 

Flgure13 

The optical matrix-vector multiplier can be extended to a matrix-tensor 
multiplier. This allows operations on matrices. 
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Example: 
gpq= "i:. "i:.t,.,. hnm.pq; 1 !:.p !:.P.l!:. q !:.Q 

N=6, M=4, P=3, Q=4: 

h 

~~q- ···········~ 
sovrct? ~~ ~ .......... : ; 

array ~~ : : : d- ~~ ltlll ' ~--; ,~::--~~ r······: ! gpq 
I' --- --- --- ~ ~---* ___ ... , 
'"' --...:: \ \ \ 

r,P'<O'- p -~::...l. .. .-' ········• 
.,..,.;;7 - --------- -.-····-~:;:;;;.- ciE'tti'ctor 

array 

~ 111!12·NN~·R.J.--M 

Figure 14 

A tensor can be expressed as a matrix of matrices. Optics can straight­
forwardly be fabricated to perform the shadow replication optical 
processor shown here. Other methods have been proposed for the oper­
ation. 

( 

( 

l' 



( 

( 

An Output Display: 

J!12 ................... ft.J.-·15 

Figura 15 

A two-dimensional' 8ll'3.Y of the type shown can be processed by the 
matrix-tensor multiplier. 
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---------------------------------------------------------------

+NEURAL NETWORK 
Il\1PLEMENTATION- Summary+ 

•Emulators 
• Analog Electronic 
• Digital 
•Optical 

!IIFHR~·R..I.Mirb·16 

Figure 16 ~ 
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Notes Notes Notes 
( WhyNN? 

o No need for structured model. 

o Input variables can be easily added or deleted. 

o Correlated and uncorrelated input data can be utilized. 

o Parallel processing 

o Nonlinear mapping 

o Nonlinearity is included without a priori assumption of the model 

o Robustness 

o Fault tolerance 

C1992•Ajlplc:olicmi0Poow~A.Eh5laloioi· 1 

Figure 1 
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Neuron Structure 

Notes Notes Notes 

Oj 

net;=L(W·· 0·) 
.J jl I 

i 
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Notes Notes Notes 

Challenges Related to Applications 
(~-~ 

o Relevant training variables. 

o Location(s) of relevant variables in the system. 

o Size of training data. 

o Feature Extraction 

o Accuracy oftarining data. 

o Changes in system topologies and conditions. 

o NN solution as compared to existing methods. 

o Applicability. 

~ 019!12·Appicmmi0-Sjll....w.A. ~-. 
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Notes Notes Note: 

Challenges Related to NN technology 

o Size of the NN (# of hidden neurons) 

o Speed of learning 

o Feature Extraction 

o Learning vs Memorizing 

o Network Saturation 

o Convergence; Accuracy of learning (False minima) 

o Range of input data 

o Curse of dimensionality 

o Network Saturation 

o Adaptive learning 

OIW! -~loP- S)llo<nsMA. fi.SIMaw> • 5 

FigureS 
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Notes Notes Notes 

Integrated Neural Network System 

019i2·~10-S)S-A. EJ.Qwllal. 7 

Flgure7 
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TRAINING METHODS 
r 

( 

o Error-back-propagation (Non-adaptive) 

o Adaptive 

o Recurrent 

o Conjugate gradient descend 

o Random search 

Ol992•ApplciOiono .. -S)sl--A. El:sliililiii- 8 

FigureS 
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Error-back-propagation 

E=t L<Tk-Ok)2 
k 

~wkj =- r aE!awkj 

Hidden to Output 

~wkj = 'Y ek oj 

ek = (Ok- Tk) Ok (I- Ok) 

om2·~10-Sys111111/M.A.~·9 

Figure 9 

Input to Hidden 

.1.Wji = 'Y Ej Oi 

e·= 0·(1-0·)Ek(ekWk·)' 1 J J J 

Notes Notes Notes 

Di 

Dj 
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Limitations of Error-back­
Propagation 
o Adaptive training can not be easily implemented 

All data are used to update the network 

Elimination of old data is done outside the NN 

o Slow Training 

o When new data is in conflict with old data (data inconsistency), the effect of old 
data can not be removed unless the NN is RETRAINED without the old data. 

o Importance of data can not be easily weighted 

~~ 01!1!12·~10-S,.0-~·10 

Figure 10 
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Adaptiv~ly Trained NN 

e(i) = f ( t(i) - o(i) )2 

E(N) =~.IN ft(N) - o(N)J2 

E(N+l) = E(N) + e(N+I) 

Objectives 

J) W(N+l) = W(N) +A W(N+l) Input-to-hidden 

V(N+l) = V(N) + .6. V(N+J) Hidden-to-output 

2) Adaptive condition .6. W(N+l) < ~ 

.6.V(N+l)< ~ 

01892·~ .. -~A.~·11 

Figure 11 
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Adaptively Trained NN Continue) 

3) Drifting condition 

lfx(N+l) = x(i); 

then 

a W(N+l)=O 

a V(N+l)=O 

ID111!1Z·~Fbiio,.ID-Syllno?Lit.ss-•12 

Figure 12 

i=I,:Z, ••.••• ,or N 
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Adaptively Trained NN Continue) 

Objective Function 

I 
J=iZTKz 

Subject to c - zT a = 0 ; 

Where: Z= f AW AVJT ; 

JJ={Z: -J.L<Z<J.L} 

ca 
Zmin- aT a 

a= (UB UAJT 

BUB 
AW UB = VT (--ab) AWT x(N+l) 

b= WT(N) x(N+l), 

UA= f[ b ], f[.] is sigmoid 

01992·""*"""'"10-~A.&Siai<MI-13 

Figure 13 
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Advantages of Adaptively Trained NN 

o For dynamically varying systems with/without large data sets (Load 
forecasting, security, etc.) 

o Weights are automatically adjusted based on new data 

o Effect of old and invalid patterns (data) are eventually and automatically 
deleted (forgotten) 

o No matrix inversion or other computationally intensive operations are 
needed. 

o Perturbation in the NN weights are restricted to chosen boundaries 

o Global optimality can be obtained 

o Adaptive training does not drift 

o Data can be weighted based on its importance 

~~ 01992-Appblln 10 PDWSyllorDILIL ~-14 

Figure 14 
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Feature Extraction 

Why Feature Extraction 

o In order to train a NN with reasonable accuracy, a sufficiently large data set 
spanning the operating space of the power system is required. 

o Training the NN with such a large data is very time consuming process that 
may prohibit on-line applications. 

G19112·""""*"""'"-sr--.A.~-·· 

Figure 15 
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Feature Extraction 

Advantages of Feature Extraction 

o Eliminates the curse of dimensionality. 

o Enhances the class separability. 

o Reduces the original pattern · dimension while maintaining the required 
classification accuracy. 

o Speeds up the NN training 

~ 
o.m·;~··-Sjot-A.&Shnal·t6 

Figure 16 

(~, 

( 

(_ 



Notes Notes Notes 

Feature Extraction Techniques 

- Class-Mean Feature Extraction 

- Karhunen-Loe 've Expansion 

01912·~oo-.,..-A.~·I7 

Figure 17 
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Class-Mean Feature extraction 

Of!WZ·~IOfcoor~A.~·18 

Figure 18 

Separation of a Single 
Variable 

F ,_...--~.,) 

-~ecure 
'+· 

Data 
',... .,.,.· 
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Class-Mean Feature extraction· 

o A heuristic measure of inter-class distance 

o Dominant indices are selected 

o Dimension of pattern vectors can be substantially reduced. 

o Assumes interclass distance: 

Given a set of patterns, the pattern vectors for each of the two classes 
(secure/insecure) occupy a distinct region in the observation space. 

Figure 19 

Notes Notes Notes 
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Class-Mean Features extraction 
o Let the j·th pattern with D dimensional normalized measurement vector be 

Yj = fYij• Y2j,.···• YDj1T 

o Let a function F provides a measure of the importance of each variable. 

lm(s~ • m(i)·l 
Fj = IGj(S) + Gj(i)~l 

where, 

1 N(s) 
mi(s) = N(s) L Yjj(s) 

j=l 

1 N(s) 
Oj(s)2 = N(s) L (yij(s) - mj(s))2 

I 

O<iSD 

1 N(i) 
Mj(i) = N(i) L Yij(i) 

j=l 

1 N(i) 
Oj(i)2 = N(i) L (yij(i) • mi(i))2 

j=l 

o The elements of the pattern vector which give the highest mean separation 
between classes are selected as key features. 

~ C1992-~0if'OiiifSyor-.A.~-2D 

Figure 20 

Each pattern vector should contain all possible variables affecting sys-

/,_--,___, 

( 

tem security such as load powers, bus voltages, line flows, etc. With ( 
feature extraction, the dominant variables are selected. By this method, 
the dimension of the pattern vectors can be substantially reduced. For 
example, assume a pattern j with D dimensional normalized measure-
ment vector, 

Yj = [Ytj•Y2j'· .. •Yoj]T 

Assume that the dominant number of variables is d<<D. The security 
classification is then based on these d components. The heuristic notion 
of interclass distance is used to accomplish this task. Given a set of pat­
terns with dimension D, it is reasonable to assume that the pattern 
vectors for each of the two classes (securefmsecure) occupy a distinct 
region in the observation space. The average pairwise distance between 
the patterns is a measure of class separability in the region with respect 
to the particular variable. The following function F provides a measure 
of the importance in each variable. 

jm (s) i -m (i) il 
F. = ...:...,______::...__......::..:.. 

1 IO'i(s)~+O'i(i)2j 

O<i~D (_ 



(~/ 

( 

Where: 

1 
N (s) · 

= N (s) ~ Yij (s) 
J=1 

N (s) 

cri (s)2 = N ~s) L (Yij (s) -mi (s))2 
1 

. 1 N (i) . 

mi (1) = N (i) ~ Yij (1) 
J=1 

N (i) 

cri (i)2 = N~i) ~ (Yij (i) -mi (i))2 
r-1 

Subscript's' stands for 'secure' while 'i' stands for 'insecure'. N(s) and 
N(i) indicate the number of secure and insecure patterns 

m is the secure or insecure training sets 

cr is the standard deviations. 
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Algorithm 

~ 
Cl~·/.pplcllllriiiO-SjU...v.A.~·ZI 

Figure 21 

The variables are ranked according to the following steps. 

1. Calculate Fj 'r/ 0 < j :S D 

2. Rank all Fj in a descending order 

3. Go to the 1st ranked variable. 

4. Calculate correlation coefficients (CC) of all lower ranked variables 
with respect to the 1st ranked variable. The CC is defined as, 

Cc 
- E [ (yi -mi) (y. -m.)] 

ij - J J a. a. 
1 J 

O<jSD 

5. Eliminate all lower ranked variables which have a ICCI > 0.9 

6. Go to the next highest ranked variable and go to step 4. 

The process is repeated until all the variables are ranked or discarded. 
The resulting ordered list of variables are considered to be key features 
in training the NN classifier. 

c--
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Characteristics of Class-Mean 
Feature extraction 

Advantaees: 

o Uses First order statistics (Mean); Fast! 

o Feature variables retain their physical identity 

o Performed well when tested on voltage violations 

Drawbacks: 

o Does not work for concentric or near concentric data 

o Actual class separating may be due to a collective influence of the 
measurements (thermal violation). 

OI!IS2•Appalni0-5yHIIIAI.A.....,._•22 

Figure22 
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Karhunen-Loe've expansion 
o Original pattern: 

T 
[xu Xi2 ·- Xinl ; 

o Reduced pattern: 

(yu Yi2 •••• Yldl T 

i=l,2, .• ,M 

such that d << n 

o Reduction is successful when the new pattern is obtained without a significant 
loss of accuracy during c:lassific:ation 

Ofii92·/I>PICIIIOI'II10"-s,u.s.N.A.~-23 

Figure 23 
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KARHUNEN-LOE'VE EXPANSION 
o For a multi-class problem 

o Original pattern of class (k) 

X; (k) = [xu Xi2 ·-·"'' xin1 T 

o Pattern Mapping 

n 

( i = 1,2, • • ,M.J 

xlk> = LYiJ(k> <l!j(k> (i= 1,2, •••• ,Mk)) 
j=l 

rf>j(k) is orthonormal basis function 

y;r> is a set of feature variables 

o The ·idea is to select matrix <I> that result in reduced dimension Y as compared 
to X, but without significant loss in accuracy during classification. 

Figure 24 
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KARHUNEN-LOE'VE EXPANSION 
(~ 

Error index: 

0 
z . 

Mean square errore for two class problem (k=l or 2) 

z 
e.Z = L Etf<Xlk)- LYir> <P/k)l cx/k)- LYij(k) <P/k))} pk 

k=l j e s1 j e Jz 

where Pk is the a priori probability of class k. 

J 1 and J 2 are the sets of variables to be retained 

~~ 019!12 ·Ail~>" illo&IO-SyolomsfLA. a:s..r--25 

Figure 25 
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KARHUNEN-LOE'VE EXPANSION 

Notes Notes Notes 

Algorithm 
INPUT DATA 

STOP 

019112·_..,.,._ 

Figure 26 
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Notes Notes Notes 
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Characteristics of Karhunen Loe've 
expansion 
o Reduction is based on the second order statistics (variance) 

o Linearly combines the original set to form a set with better separable features 

o Produced best results when the attributes of the original set are correlated (as 
in case of thermal violations) 

o Gives a priori indication of the classifier performance. 

Demerit: 

o New features are not physically meaningful 

~=-CIIII2·Ajlpblloni1D-S)MDM.A.~·27 
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Combination of Class-Mean and 
Karhunen Loe've expansions 

Cl!laZ-~ .. -5)'110111111./I..s--21 

Figure 28 
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Selected Applications 
(preliminary Studies) 

/Regression 
Load forecasting 
Transient Stability 
Synchronous machine modelling 
Contingency screening 
Harmonic evaluation 
Adaptive Control 

lcrassitication I 
Harmonic load identification 
Alarm processing 
Static security assessment 
Dynamic security assessment 

!combinatorial Optimization I 
Topological Observability 
Unit Commitment 
Capacitor Placement 

~9!12-.-loFooorS)oi-.A.B'SI.I<ari·29 

Figure 29 
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Notes Notes Notes 

Electric Load Forecasting 

01992·~10-SyMns.foi.A. ~-30 

Flgure30 
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Electric Load Forecasting 
o For optimal energy interchange between utilities 

o To reduce fuel costs 

o To influence important operation decisions 

Power dispatch 

Unit commitment 

Maintenance scheduling. 

01992·~.,POIIW~A.~·3t 

Figure 31 
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Conventional Load Forecasting 
Methods 
o Time Series Analysis: 

Accuracy is low 

Numerically iustable due to computationally cumbersome matrix 
manipulations. 

Weather information is not incorporated 

o Conventional Regression: 

Linear or piecewise-linear representations for the forecasting function is used 

Accuracy is dependent on the functional relationship between the weather 
variables and electric load 

Functional relationship must be known apriori 

Cannot handle non stationary temporal relationship between weather variables 
and load demand. 

011192·~01-SjUmoii.A.s.slatc.ri·32 

Figure32 

Forecasting electrical load in a power system with lead-times varying 
from hours to days, has obvious economic as well as other advantages. 
The forecasted information can be used to aid optimal energy inter­
change between utilities thereby saving valuable fuel costs. Forecasts 
also significantly influence important operations decisions such as dis­
patch, unit commitment and maintenance scheduling. For these 
reasons, considerable efforts are being invested in the development of 
accurate load forecasting techniques. 

Most of the conventional techniques used for load forecasting can be 
categorized under two approaches. One treats the load demand as a 
time series signal and predicts the load using different time series anal­
ysis techniques. The second method recognizes the fact that the load 
demand is heavily dependent on weather v3;riables. The general prob­
lem with time series approach include the inaccuracy of prediction and 
numerical instability [42]. The main reason for instability is not consid­
ering the weather information which is known to have a profound 
effect of load demand. Numerical instability is caused by computation­
ally cumbersome matrix manipulations. 

The conventional regression type approaches use linear or piecewise­
linear representations for the forecasting function. The accuracy of this 
approach is dependent on the functional relationship between the 

Notes Notes Notes 
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weather variables and electric load which must be known a priori. This 
approach cannot handle the non stationary temporal relationship 
between the weather variables and load demand. 
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Notes Notes Notes 

Load Forecasting Challenges 
o Relevant variables (temperature, clouds, humidity, winds, etc). 

o Features extraction 

o Location(s) of relevant variables. 

o Accuracy of weather forecasting. 

o Size of training data. 

o Changes of season. 

o Changes in weekly load patterns. 

o Accuracy of extrapolations (cold snap, heat wave, pickup loads) 

o Thermal inertia 

o Load growth 

011192·~1D-~A.~·33 

Figure 33 
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Neural Network Approach 
(~, 

Challenges 

o Size of the NN (#of hidden neurons) 

o Features extraction 

o Learning vs Memorizing 

o Speed of teaming 

o Convergence 

o Accuracy of learning (False minima) 

o Range of input data 

o Curse of dimensionality 

o Adaptive learning 

~~ 1CiWI•'I'P""' IIID_5yii_A.EI-Siibot·34 

Flgure34 

NN can combine both time series and regression approaches to predict 
the load demand. A functional relationship between weather variables ( 
and electric load is not needed. This is because NN can technically gen- · 
erate this functional relationship by learning the training data. In other 
words, the nonlinear mapping between the inputs and outputs is implic-
itly imbedded m·the NN. · 
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Objectives: 

To forecast electric load patterns/variables based on forecasted temperature 

o AM and PM peaks of each day 

o Average load of the day 

o Hourly load ( 24 - 48 hours lead forecast ) 

o Weekdays and weekends 

o Holidays 

Clilli!·-lo-S)olnoN.A.&Siolllart•35 

Flgure35 
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Training Data 
o Training Set Number 1: Nov. 1, 1989- Jan. 25 1990 

Temp: Actual and forecasted hourly temperature at Sea-Tac airport 

Load: Actual hourly system load 

o Training Set Number 2: Winters of 1986-91 

Temp: Actual and forecasted hourly temperature at Sea-Tac airport 

Load: Actual hourly system load 

~==-Cl992·.oppkil(insi0-~A.~·36 

Figure 36 
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Test Case 1: Forecast of peak daily 
load {Training set #1) 

o Training Data: 

Day 

Actual peak load of the day 

Actual temperatures of the day (average, maximum and minimum) 

o Testing 

Average error of 6 day testing is about 2% 

Flgure37 
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Test Case 2: Forecast of average 
daily load (Training set #1) 

o Training Data: 

Day 

Actual average load of the day 

Actual temperatures of the day (average, maximum and minimum) 

o Testing 

Average error of 6 day testing is about 1.68% 

OIIISZ·""'*""'"'ID-~A.B&IIIIIi·:ll ~~ 
Figure 38 
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Types of Neural Networks for Hourly 
Forecasting 

Structure 1: 

o NNl: Wednesdays, Thursdays and Fridays 

o NN2: Mondays and Tuesdays 

o NN3: Saturdays and Sundays 

Structure II: 

o One NN per hour of any weekday 

01992·~10-.,..-.A.~·39 
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Test Results of Structure I 
Hourly Forecasting, Training set #1, Error-Back 
Propagation 

INPUT DATA 

hour(k) 

Actual temperature at time k 

Actual temperature and load 48 hours earlier (k-48) 

Actual temperature and load 49 hours earlier (k-49) 

Actual temperature and load 50 hours earlier (k-50) 

Actual temperature and load a week earlier (k-168) 

OUTPUT DATA 

Actual load at time k 

CI992'AiiP""'ionoto-~A.~;40 

Figure40 
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Test Results of Structure I 

•• 

G1!192-~10-SIM"""-A.EIS>nai·41 

Flgure41 

•ot'cll· Acl,.al LOoCI 
dol : ANN {411\d) 

40 60 80 
Hours 

100 120 

The NN approach proposed in [42,54] uses previous load data com­
bined with actual and forecasted weather variables as inputs, and the 
load demand as the output. As an example, to predict the load at the kth 
hour on a 24 hour period, the NN uses the following input/output con­
figuration. 

NN inputs : k, L(24,k), T(24,k), L(m,k), T(m,k) and Tp(k) 

NN output : L(k) 

where, 

k 

m 

L(x,k) 

T(x,k) 

Tp(k) 

- hour of predicted load 

-lead time 

- load at x hours before hour k 

- temperature at x hours before hour k 

- predicted temperature at hour k 

During ·training, the actual temperature T(k) is used instead of Tp(k). 
Different NNs are trained to predict the load demand at varying lead 
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times. The results are reported too be better than those obtained through ~~,,. 

some of the existing extensive regression techniques. ~ 

One of the test results presented in [ 42] is given for brevity. Five sets of 
actual load and temperature data were used in the study. Each set con­
tained data corresponding to 8 consecutive days as shown in table 1. 
Out of each set, data corresponding to the six weekdays were selected. 
No weekends or holidays were included. 

Table 1: Test data sets 

sets Test data from 

Set#1 01/23/89 - 01/30/89 

Set#2 11/09/88 - 11/17/88 

Set#3 11/18/88- 11/29/88 

Set#4 12/08/88 - 12/15/88 

Set#5 12/27/88 - 01/04/89 
----- ---- ·-- -· 

From [42] courtesy of IEEE,© IEEE,1990 

The NN was trained to forecast the hourly load with one hour lead time. 
Table 2 shows the forecasting error(%) of each day in the test sets. Each 
day's result is averaged over a 24 hour period. The average error for the 
5 test sets was found to be 1.40%. 

Table 2: Error(%) of hourly load forecasting wit,h one hour lead time 

days 

day1 

day2 

day3 

day4 

dayS 

day6 

average . 

set#1 set#2 set#3 set#4 

(*) 1.20 1.41 1.17 

1.67 1.48 (*) 1.58 

1.08 (*) 1.04 (*) 

1.40 1.34 1.42 1.20 

1.30 1.41 (*) 1.20 

(*) 1.51 1.29 1.68 

1.35 1.39 1.29 1.36 

(*:predicted temperature, Tp is not available) 

From [42] courtesy of IEEE,© IEEE,1990 

set#S 

(*) 

2.18 

1.68 

1.73 

(*) 

0.98 

1.64 
I 
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Error Table 
(Error-back propagation technique) 

o lOOk iterations 

o 5 days testing 

Number of hidden Neurons 

2HN 4HN 7HN 

Max error (Actual Temp) 6.56 6.588 7.43 

Max error (Forecasted Temp) 6.61 6.545 7.36 

Min error (Actual Temp) 2.23 2.369 2.65 

Min error (Forecasted Temp) 2.28 3.39 2.75 

Ave error (Actual Temp) 4.7 4.72 5.684 

Ave error (Forecasted Temp) 4.75 4.81 5.789 
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Limitations of Error-back­
Propagation 
o Adaptive training can not be easily implemented 

All data are used to update the network 

Elimination of old data is done outside the NN 

o Slow Training 

o When new data is in conflict with old data (data inconsistency), the effect of old 
data can not be removed unless the NN is RETRAINED without the old data. 

o Importance of data can not be easily weighted 
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Test Results of Structure I 
Notes Notes Notes 

(Training set #1) Adaptive NN 
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Effect of hidden Neurons 
Structure I (Training Set #1) 

20 
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Error Analysis (Training Set #1) 
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Error Table 
(Adaptive training NN) 

o 80k iterations 

o 5 days testing 

o Actual temperature 

Number of hidden Neurons 

Max error 

Min error 

Ave error 

1 HN 

4.34 

1.25 

2.34 

Oi9!12·jijipiCiliiiiiD-S)ii81iii\lA.B'$i-·•7 

Flgure47 

2HN 

3.15 

1.36 

2.27 

7HN 

5.5 

1.66 

2.83 

20HN 

6.61 

1.803 

4.87 
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Notes Notes Notes 

Effect of Holiday 
o Adaptive NN is not designed for holiday forecasting 

o Holiday Data should not be used in training 

o Adaptive NN is capable to filter the effect of holiday data if used in training 
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Test Results of Structure II 
Hourly Forecasting, Training set #2, Error-Back 
Propagation 

INPUT DATA 

Year 

T(k): Forecasted temperature at hour k 

[T(k)- 60]2 

T max: Maximum temperature of previous week 
2 

lTmax· 60] 

T max2: Maximum temperature two days earlier 

lTmax2··60J2 . 

Tmio: Minimum temperature of previous week 

lTmio • 601
2 

GI9SZ·~IO-sr--.A.--·50 

Figure 50 
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Test Results of Structure II (coninue) 
INPUT DATA (Continued) 

Tmin2= Minimum temperature two days earlier 

[Tmin2 - 60]2 

Sum of temperature at hour k of the previous 7 days 

Load at hour ~ of the previous 7 days 

Load at hour k of previous day 

Load at hour k two days earlier 

Load at 9 AM of the current day 

OUTPuT DATA 

Load at time k 

01992·""'*'*"'10-~A.&Sa'""'l·51 

Figure 51 
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Test Results of Structure II 
(Training set #2), Forecasting Contest 
(Courtesy of Puget Sound Power and Light Company) 

''',-------~-~---..----, 
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Figure 52 
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Test Results of Structure II (continue) 

Figure 54 
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Test Results of Structure II (continue) 
(', 

·~------------------------~--------------, 

., \ ' \ . . . ~--. ------. 
----- NN) 

··--·--- NN2 

NNI 

~~------~.--------~,0~------~,.~------~N=-----~ 

~~ 01992-Appalioroto-Syums.t~.A. ~ -ss 

Figure 55 

The figure shows the total error calculated over the weekdays hours. . 
The error is an average of the aggregated values. Lloyd is a forecasting ( 
done by a Puget Power expert. Queri-A is the best commercial software · 
for load forecasting among several codes being tested by Puget Power. 

NNl is referred to Structure I while NN2 is for Structure IT. NN2 is 
another structure similar to Structure IT except that one NN is forecast­
ing three hours. Note that Structure IT is designed so that a single NN is 
to forecast only one hour. 
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Cominents. 
o NN is an excellent choice for electric load forecasting 

o One network cannot handle 

all week days 

all weather conditions 

holidays and regular days 

o Features extraction is essential for accurate load forecasting 

CI992-~IO-~A.-·56 

Figure 56 

The results show that NN can be trained to predict the load demand by 
among its training patterns. However, one network cannot handle all 
cases where enough and sparse representation exist in the training test. 
For example, a NN trained to predict electric loads of normal weather 
conditions, may not do accurate prediction during extreme weather 
conditions such as cold snaps and heat waves. To predict electric loads 
under these conditi.<?ns, a separate NN may be needed. Also the holi­
days cannot be accurately predicted. It is also worth mentioning that the 
above restrictions are also applied to all existing techniques. 
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Transient Stability/Dynamic 
Security Assessment 

01!112 •AppliolliniiO-5yii.-.A. ~-57 ~~ 
Figure 57 

p 

Transient stability is determined by observing the variation of ai s' as a 
function of time in the post-fault period. Power system is said to be ( 
transiently stable for a given disturbance if the oscillations of all rotor , 
angles damped out and eventually settled down to values within the 
safe operating constraints of the system. For any disturbance, the tran-
sient stability of a power system depends on three basic components: 
the magnitude of the disturbance, the duration of the disturbance and 
the speed of the protective devices. 
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Security Assessment General 
Challenges 
o SA is a task that has to be performed periodically at control centers 

o Frequency of SA is based on the available computer resources and the level of 
operational sophistication of the particular utility 

o SA is time consuming and computer intensive. 

o Faster and efficient techniques to perform contingency screening and 
contingency evaluation must be developed for on-line applications 

IDIW2•""'**"1D-S~A.~·58 

Figure 58 
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SA Specific Challenges F 
o Selection of relevant security indices (current, energy, voltage, combination, 

etc) 

o Changing topology of power system 

o Dependency of security indices on System Topology 

o Monitored locations for security indices 

o Number of contingencies 

o Diverse system response due to contingencies 

o Wide range of power system operating conditions 

o Size of training data. 

o Accuracy of training data 

o Features Extraction 

o Accuracy of interpolations and extrapolations 

Cl!1112·"1'111'iiD10-s,uno.tl-ll~-59 

Figure 59 

~~ 

( 

(_ 
Lecture 8 -Page 62 



F~ 

( ) 
\ 

( 

Dynamic Security Assessment 
Methods 
A) Frequency Domain 

System stability is determined by examining the eigenvalues of the system 
model 

System is stable if all eigenvalues have negative real component 

B) Critical Clearing Time 

System Stability is determined when the fault clearing time is less than the 
critical clearing time 

c) Time Domain Transients 

System stability is determined by examining the variation of key indices as 
function of time in the post-fault period 

System is stable if system oscillations of all rotor angles damped out and 
eventually settled down to values within the safe operating constraints of 
the system 

01992·"A***<D10"-SJU~a'~LA.~·ID 

Figure SO 
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Dynamic Se·curity Assessment 
Methods 
D) Direct Methods 

System stability is detennined by examining the variation of the system 
kinetic energy after a disturbance 

System is stable if Kinetic Energy balanced can be restored 

01902-~1>-~A.ERi-~61 ~=-
Figure 61 
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A) Frequency Domain Approach 
of Dynamic Security 
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Modular NN Concept 

o A single NN approach may be an enormous computational exercise for large 
power systems; 

Large number of attributes 

A wide range of operating conditions. 

o One way of reducing the dimensional complexity is to use a modular approach 

Security problem is divide into smaller tasks 

Topology is reduced 

.Features extraction is implemented 

~ CI!I!R·~Io-S,.O--.A.~·53 

Figure 63 
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Dynamic Security Scenario 
o Small signal stability analysis 

o Power system model is linearized around a selected operating point 

o stability is predicted by evaluating system's eigenvalues 

o linearization and eigenvalue analysis must be repeated for all topologies and 
operating conditions 

o On-line DSA may not be possible 

OIIS!·~IO-~A.~·64 

Figure64 

In dynamic security, or small signal stability analysis, the power system 
model is linearized around a selected operating point and the corre­
sponding system eigenvalues evaluated to predict system stability. For 
a power system to be evaluated at all possible operating conditions, the 
linearization and eigenvalue analysis has to be repeated for all the 
cases. This is a time consuming process that poses a challenge to per­
forming dynamic security assessment (DSA) on-line. Thus NN may 
provide a potential avenue toward achieving this objective. 

Notes Notes Notes 

Lecture 8 - Page 67 



Notes Notes Notes 

Lecture 8 - Page 68 

Problem Description 
o Power system is divided into a study system and external systems. 

o External systems may be replaced by dynamic equivalent models 

o The model of the entire power system is developed using small signal analysis. 

o System eigenvalues are computed and assessed at various operating conditions 

o Linearized state space model of the power system can be considered as an 
oracle for NN training. 

dX dt = A(X0,Uo) X + B(X0,Uo) U 

where X is system state and U is input vector 

o Computation of the eigenvalues of a large system is a time consuming process 
that inhibits the on-line applications 

~~ Ct992·AppOclli:niO.,.,_sr--,.~-as 

Figure 65 

In dynamic security assessment, the power system stability is evaluated 
via frequency domain analysis. The power system is divided into a 
study system and an external system. The external system can be ( 
replaced by a dynamic equivalent models while the study system is 
modelled in detail. The model of the entire power system is developed 
using the small signal analysis. The eigenvalues of the system are then 
computed and assessed at various operating conditions [ 16]. The linear-
ized state space model of the power system can be considered as an 
oracle for NN training. The linearized model is derived by combining 
the set of state and algebraic equations listed in section 6.3 for all gen­
erators in the study area of the power system. The composite linearized 
state spaces equation take the form, 

d1tX 
(it= A (X0,U0)nX +B (X0,U0)1tU 

where X = X 0 + 1t X and U = U 0 + 1t U are the state and input vec­
tors for the system. The stability of the system is determined by 
calculating the eigenvalues of the system matrix A (X0, U0). Any 
eigenvalue with a non-negative real component is unstable mode of 
operation. 

;'-~, 

r-

The stability of the power system as described above is heavily depen­
dent on the operating condition and topology of the power system. The 
computation of the eigenvalues of a large system is a time consuming 
process that inhibits the on-line applications. (_ 
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Test Case Extended IEEE-8 Bus System 

-- obldy.,.- ------
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o 10 buses (b), 16lines, 2000 unbiased patterns (i), 30 attributes 
o 2000 patterns, each with 30 attribute 
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Figure 66 
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Test· Case 

Training Phase 

o For simplicity, 3 independent input variables were selected as inputs to the NN: 
real and reactive outputs of one· generator and complex power output of 
another generator. 

o All other parameters were assumed to be constant. 

Retrieving (testing) phase 

o 2-dimensional dynamic security contours of P,Q are obtained by fixing S at 
arbitrary values 

o The NN generated contour compared well with the actual contour obtained 
using the oracle. 
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Sample of test results 
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Figure 68 

Training data for dynamic security assessment can be generated off­
line by using an oracle. Training data can also include measurements of 
previous assessments. A multi-layer perceptron is trained using back­
propagation to learn the dynamic security status with respect to a 
selected set of variables U within a defined operating space [16]. A test 
example of 9 bus, 3 generators was used to validate the method. For 
simplicity, 3 independent input variables were selected as inputs to the 
NN. They were the real and reJctive outputs (P,Q) of one generator and 
complex power output (S = P2 + Q 2

) of another generator. All other 
parameters were. assumed to be constant In the retrieving (testing) 
phase, 2-d.imensional dynamic security contours of P,Q are obtained by 
fixing S at arbitrary values. The NN generated contour compared well 
with the actual contour obtained using the oracle [16]. 
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Notes 

Comments 

o The dimensionality of the security contours is a function of the size of the 
system under investigation. 

o In a high dimensional operational space where a combination of correlated and 
uncorrelated variables forms the input space, the development of a NN based 
system for assessing dynamic security is a challenging problem. 
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B) Critical Clearing Time Approach 
for Dynamic Security 
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Concept of CCT F 

Ei/£ ~Sa 

EJ§i3 E4i§;4 

(b) 

~ Ct992·~ .. -~A.~-71 
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Figure (a) shows a small test power system. It has 6 buses with 4 gener-
ators and three loads. Since transient stability analysis is focused on the ( 
generator dynamics through a few cycles following the fault, certain 
simplifying assumptions can be made. All generators are replaced by 
the corresponding internal emfs (E) behind a transient reactance (Xd') 
Each load is replaced by a fixed admittance based on the pre-fault 
power flow. These assumptions are combined with generic circuit 
reduction techniques, to reduce the topology of the original power sys-
tem to one that is shown in Figure (b). This reduced power system 
forms the basis for transient stability calculations. 
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Critical Clearing Time (CCT) 
o Fault Scenario 

1. Transmission line fault 

2. Faulted line is isolated 

3. After fault is cleared, line is reclosed 

o If the fault is cleared and line is reclosed before the {CC1), the power system 
remains stable 

01192·~10-~A.~·72 

Figure 72 
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System E.quations 

System admittance matrix, 

Y- a .. 
(

y Y .. ) 

Y,, Ya 

Elimination or Load Buses 

G + j B = [Yr' + (diag i )"']"' 
dl 

where 

Yi = [Y~ • Y11 Y0·'Y,,] 

~~ 01!1S2·~10-~A.~·73 
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Subscripts ·g and I stand for generator and load buses respectively. The 
modified admittance matrix is corresponding to the reduced power sys- ( 
tem where all load buses are eliminated as shown in Figure b. 
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Equations of Rotor Dynamics 

Pej = Ej L Ej [ Gij cos(&.- ~j) + Bij sin (oi- ~j)] 
j 

Flgure74 

Mi,Di - inertia and damping constants of the ith generator 

P ei - electrical power output of ith generator 

Pmi - mechanical power input to the ith generator 

Ei - equivalent field voltage behind the transient reactance Xd' 

Gij•Bij - real & imaginary parts of the reduced admittance matrix 

Oi - rotor angle of the ith generator relative to a synchronous 

reference 

oi -angular velocity of ith generator relative to the same 

synchronous reference 

Na - number of generators in the system 

The first two equations are the differential equations governing the 
rotor dynamics of the ith ~~merator. The third equation gives the electri­
cal power output of the i generator calculated by applying Kirchoffs 
Laws. 
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Notes The case study involves a transmission line fault It is assumed that the 
line section is first isolated and then successfully reclosed. There exists 
a threshold parameter known as the Critical Clearing Time (CCI') 
where if the fault is cleared before this time, the power system remains 
stable. However, if the fault is cleared after the CCf, the power system 
is likely to become unstable. Hence, stability analysis may involve the 
calculation of the CCI' for a given contingency. 
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Challenges in Calculating CCT 
o Several variables affecting the CCT 

Prefault loading condition 

Prefault topology of the system (Lines, Caps, etc.) 

Excitation settings of Generators 

Location and duration of the disturbance 

o Tune domain method is computationaJiy extensive 

o Frequency domain method is computationally extensive and not valid for large 
disturbances 

o Direct method is limited by their restrictive assumptions 

01!192·-10-sro-A.~·75 

Figure 75 

ccr is a complex function of pre-fault system conditions, disturbance 
structure and the post-fault conditions. There are two commonly used 
methods for calculating CCf, namely 1) Numerical integration and 2) 
Liapunov-type stability criteria [53]. The first method involves exten­
sive time domain simulation of the power system while the scope of the 
second method is limited by its restrictive assumptions. Due to the 
many possible pre-fault operating conditions and types of faults, com­
putational effort needed to assess the ccr for each of these scenarios is 
prohibitive. 
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Transient Stability/Dynamic Security -
Neural Network Approach 
o Computation of the CCI' is treated as a regression problem: pre-fault system 

variables are used to predict the CCT for the corresponding fault 

o Inputs to the NN 

eli = ~<to> • Bo<to> 
1 

where So = M LMi Bj ; 
0 . 

I 

Mo = IMi 
i 

Pm· -Po 
G •- I llN +I - Mj a2NG+i = cPmi • Pfi)21Mi • 

' 

o Output of NN is the CCT for the given fault and topology 

01992-~ .. -~A.~-76 
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The estimation of ccr can be looked at as a regression problem where 

L-, c--

pre-fault system parameters are used to predict the ccr for the corre- ( 
spending fault. A multi-layer perceptron was proposed to be trained -
using back-propagation to learn a set of input attributes and the corre­
sponding ccrs for a specified fault under varying operating conditions 
[53]. 

The inputs to the NN (<Xj) for a specified contingency are selected as 
given in the above equations. 

Mo is known as the center of mass while Bo is the center of angle. P11 
corresponds to the reduced electrical power output of the ith generator 
during fault initiation. This change from the steady state electrical 
power P ei is brought about due to the change in network impedance 
caused by the fault and also due to the effect of the transient reactance 
of the generators. 

The NN input quantity given by the second equation gives a measure of 
the rotor angle deviation at the instant of fault clearing. The input quan­
tity described by the third equation is a measure of the individual 
acceleration energy of the generators of the system accumulated during 
the fault [53]. 

The output of the NN is the CCf corresponding to the given contin-
gency under the described inputs. l 
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Training NN 

o Three-pbase fault 

0 ccr is obtained by repetitive numerical integration of the post-disturbance 
system equations for 

Different reclosing times 

Different loading levels 

Same fault location 

Two different topologies 

o 30 training patterns 

o Back-error-propagation method 

C1!192·...,._..1D_~A.ss.boi·77 

Figure 77 

During generation of training data, CCI' for the corresponding input 
quantities is obtained by repetitive numerical integration of the post­
disturbance system equations using different reclosing times. The CCI' 
would correspond to the maximum time for reclosure after the initial 
isolation of the line in order to maintain synchronous operation. 

For a specific test of the algorithm, a 3-phase fault was simulated at 
location shown in figure (a). The CCI' was calculated for the case 
where the fault was initially isolated by tripping the line and the system 
subsequently restored by reclosing the line. 30 training patterns were 
generated for a combination of different loading levels and two differ­
ent base power system topologies. The trained NN was used to estimate 
the CCI' for the same type of fault under varying load levels and vary­
ing topologies. The estimated ccr was compared to the analytical 
value calculated through numerical integration. Close comparison of 
results was reported. 
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Test Results of Transient Stability \ 

Comparison of actual and NN estimated CCTs 

Example Load level (p.u) Actual CCT (sec) Estimated ccr 
(sec) 

I 0.65 0.59 0.59 
2 0.85 0.49 0.49 
3 0.95 0.46 0.45 
4 1.15 0.39 0.39 
5 1.45 0.33 0.33 

~ 01112-~"-SyolnW.A. ·-78 

Figure 78 

The table shows a sample of the actual and NN estimated CCfs for a . 
three-phase fault on one transmission line. The fault clearing strategy is ( 
line reclosing. The NN is trained and tested for different load levels 
which are obtained by perturbing all loads between 0.6 and 2.0 around 
a selected nominal value. 
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Comments 

o The NN was able to generalize between different network topologies. 

o The merit of the NN in calculating the CCT is limited to the fault scenario and 
the model of the generator. 

01992·~10-~4.~·79 
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The ability of a NN to generalize between different network topologies 
was observed. This adaptability was facilitated by providing training 
data corresponding to couple of different base topologies. This is a key 
idea that could be applied to training NNs for problems with time vary­
ing power system topologies. 

So far, the merit of the NN in calculating the CCf is limited to the 
above mentioned fault scenario and the restrictive second order model 
of the generator. Simulations are also restricted to simple 3-phase line 
faults. The ability of the NN to predict CCf under more complicated 
fault scenarios is not . clear. The training data should be produced by 
using a higher order generator model to include other transients caused 
by the presence of damper windings and excitation systems. 
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Concept of Time Domain Transients 

o Off-line transient analysis 

o Selected indices are computed 

Weighted and aggregated currents in transmission lines 

Voltages at specific buses 

o Indices are selected according to operators' recommendations 

o One or two cycles of simulations are used 

o Decision on system stability is made by experts 

Figure 81 
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Test Systems 

o Ontario Hydro study system 

o Two sets of indices: 

28-index 

54-index 

o Indices include postfault data 

o Two basic tests: 

• Contingency and Topology Specific NN 

• Topology Specific NN 

lll192·.lpplaliniOPOW~A.~·82 
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Contingency and Topology Specific 
NN 
o One NN per contingency 

o 63 patterns for each contingency 

o Each pattern is composed of 28 indices 

o All patterns are normalized between 0 and 1 

o Patterns vectors are randomly shuffied 

o Patterns are split into two sets: training and testing 

o Training set bas 50 patterns 

o Testing set has 13 patterns 

01992-IOpplciDIIIO-~A.--·13 
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Evaluation of Trained NN 
o False Alarm: When a true secure operating point as described by the oracle, is 

classified by the NN as insecure. 

o False Dismissal: When a true insecure operating point as described by the 
oracle, is classified by the NN as secure. 

o False misclassiju:ation: A measure for false alarm plus false dismissal 

~~ 01992·Wii10-~A.~·84 
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NN Structure and Training 
Information 

Input neurones =28 Training patterns = 50 

Output neurones =1 Testing Patterns =15 

Hidden Layers =1 Learning Step =0.05 

Hidden neurones =8 Momentum =0.05 

Random seed =4.098 Iteration Sweeps =1000 

0111V2-~.,-~A.a--ss 

Figure as 
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Sample of Testing Results 
(&' 

Secure (0) lnsecure_ll) FalseAiann False Dismissal 

CoftlinlerlCY Tninin2 Test in£ Troinin• Tes1in2 Trainin~ Teslin2 Tninint Tes1in2 

1 33 9 17 4 0 0 0 1 

2 24 8 26 5 0 0 0 0 

3 12 5 38 8 0 0 0 0 

4 50 13 0 0 0 0 0 0 

5 44 12 6 1 0 0 0 0 

I 6 ~L-.11- 5 2 Q 0 0 0 
-- -
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Figure 86 
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Topology Specific NN 

Notes Notes Notes 

o One NN for 6 contingencies 

o 378 patterns 

o Each pattern is composed of 28 indices 

o All patterns are normalized between 0 and I 

o Patterns vectors are randomly shufRed 

o Patterns are split into two sets: Training and testing 

o Training set has 300 patterns 

o Testing set has 78 patterns 

019!12-rw-··-~/1.~-87 
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NN Structure and Training 
Information 

Input neurones =28 Training patterns = SO 

Output neurones = I Testing Patterns =IS 

Hidden Layers =I Learning Step =O.OS 

Hidden neurones = 8 Momentum :O.OS 

Random seed =4.098 Iteration Sweeps = 1000 

Sample of Testing Results 

Secure (0) Insecure (1) False Alarm False Dismissal 

Training 1 Testing 1 Training 1 Testing 1 Training 1 Testing 1 Training 1 Testing 

216 50 84 28 0 0 1 0 
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Example of Computational Time 

Notes Notes Notes 

SYSTEM CQNRGURAT!ON 

SUN SPARK station 330, 25 MHz, 15.6 MIPS, 8 K RAM 

NNDATA 

Input neurones =28 Training patterns = 50 

Output neurones =1 Testing Patterns = 15 

ffidden Layers =1 Learning Step =0.05 

Hidden neurones =8 Momentum =0.05 

random seed =4.098 Iteration Sweeps = 1000 

COMPUTER TIME 

User training time= 467.4 sec System training time = 3.5 sec 

User testing time = 0.2 sec System testing time = 0 (?) 

... !ls:!·~,-~A.~·89 

Figure 89 
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Notes Notes Notes 

Topology Specific NN 
(-;, 

o One NN for 6 contingencies 

o 378 patterns 

o Each pattern is composed of 52 indices 

o All patterns are normalized between 0 and 1 

o Patterns vectors are randomly shuffied 

o Patterns are split into two sets: Training and testing 

o Training set has 300 patterns 

o Testing set has 78 patterns 

O!ll92·llfii*OIIni0-S!S-.A.&S.-·90 

Figure 90 
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( NN Structure and Training 
Notes Notes Notes 

Information 
Input neurones =52 Training patterns = 300 

Output oeurones =1 Testing Patterns =78 

Hidden Layers =1 Learning Step =0.05 

Hidden neurones =3 Momentum =0.05 

Random seed =4.098 Iteration Sweeps =2320 

CPU Time = 57.6 s 

Sample of Testing Results 

Secure (0) Insecure (1) False Alarm False Dismissal 

Training Testing Training Testing Training Testinf Traininf Testinf 

210 56 90 22 2 0 2 0 

:::::.. 
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Topology Specific NN With Feature 
Extraction 
o One NN for 6 contingencies 

o 378 patterns 

o Each pattern is composed of 52 indices 

o All patterns are normalized between 0 and 1 

o Class-Mean Feature extraction is performed on all indices 

o Indices with correlation coefficient greater than 0.9 are eliminated 

o Retained indices are 24 

o Patterns vectors are randomly shuffled 

o Patterns are split into two sets: Training and testing 

o Training set has 300 patterns 

o Testing set has 78 patterns 

~=-0199Z·~.,~~A.S&elcllri·92 

Flgure92 

(~', 

( 

c 



( 
NN Structure and Training 

Notes Notes Notes 

Information 
Input neurones =24 Training patterns = 300 

Output neurones =1 Testing Patterns =78 

Hidden Layers =1 Learning Step =0.05 

Hidden neurones =3 Momentum =0.05 

Random seed =4.098 Iteration Sweeps =5000 

Sample-of Testing Results 

Sectire (0) Insecure (1) False Alarm False Dismissal 

Traini~ Testin2 Trainin2 Testin2 Training Testing Training Testing 

210 56 90 22 1 I 0 0 

019!12·~ .. --A.&s..-·93 
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Figure 93 
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Contingency Screening 

o A contingency is an abnormal event (such as faults) 

o Contingency screening is an approximate method for selecting a critical set of 
potentially damaging events among a large set for more accurate analysis. 

o The evaluation of the operating constraints due to a contingency is called 
security assessment 

Figure 95 

A contingency in a power system, is an abnormal event (such as faults) 
which could be potentially damaging to power system components. 
Contingency screening is a relatively fast and approximate method of 
identifying whether a contingency may result in a violation of any of 
the operating constraints of the power system. The evaluation of the 
operating constraints due to a contingency is called security assess­
ment. Contingency ,screening helps select a critical set of potentially 
damaging events for more accurate analysis.· 

Contingency selection, in its simplest form, is dealing with forming a 
list of contingencies which may result in steady state voltage or thermal 
limits violations in the post contingency power flow condition. 
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Problem Formulation 
v,e I , 

I line 1 
--~------~ v1 91 
Pnet i 

Onet i B,k 

vkek 
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Basic Equations 
Poet i = Vj L vk [Gjk cos aik + Bjk sin aikl 

k 

Qnet i = Vj L vk [Gjk sin aik- Bik cos Bjk] 
k 

Pune j = Gik (Vi2 - vi vk cos aik> - Bik vi vk sin aik 

Qunej =- Bik (Vi2 - vi vk cos aik>- Gik vi vk sin aik 

Sune j = "'./ Pnne 
2
j + Punlj 

01992·Afii>IC*IO"-s,-.A.~·~7 

Figure 97 

(1) 

(2) 

(3) 

(4) 

(5) 

~::::... 
~ 

P net i• Qnet i are the net real and reactive injections at ith bus. The volt­
age magnitudes (Vi) obtained by solving equations (1) and (2) and line 
flows (Sline j) obtained from equation (5) constitute the so called secu­
rity variables, which are the variables that decide the status of the 
system security. Any magnitude violation of these variables will result 
in an insecure system. · 
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Post-contingency security limits 

Vu ~ V(A..)> VL} 
smax ~/S(A.)/ Zu ~Z(A..)> ZL 

o zp .. ) denotes post contingency value of the i"' security variable corresponding to 
"-"'contingency. 

o H all inequalities are satisfied the system is labelled secure under the A}• 

contingency. 
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Contingency Screening 
o Solving system equations for each credible contingency is time consuming and 

computer intensive. 

o Contingency screening must be fast and approximate method (Distributioll 
Factor and Performance l11dex) 

Flgure99 

Zj(A.) denotes the post contingency value of the ith security variable cor­
responding to A. th contingency. If all the above inequalities are satisfied 
the system is labelled as secure under the A.th contingency. 

Solving equations (1) through (5) for each credible contingency is time 
consuming and often computer intensive. To obtain a fast and approxi­
mate method for selecting key contingencies is known as Contingency 
screening. Contingency screening can be performed by several meth­
ods, among them are the Distribution Factor and the Performance 
Index. 
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Distribution Factor method 
o Post-contingency security variables are calculated by 

S(A.) = ~(0) + H(A.) a Y(A.) 

o aY(A) corresponds to the change in a network due to the Ath contingency: 

a change in network admittance due to a transmission line outage; 

change in real power due to a generator outage; etc. 

o H(A) is the sensitivity of the line flows due to system variations 

~~ Clim·.<jjpliillri.,POiiii~A.B$-·100 

Flgure100 

where~ Y(A.) corresponds to the change in a network due to the A_th con-

F~ 

tingency. This could be either a change in network admittance due to a ( 
transmission line outage or the change in real power due to a generator 
outage. H(A.) is known as the transfer matrix whose elements are a set 
of factors which represent the sensitivity of the line flows to the above 
variations. Therefore, these partial derivatives can either be line outage 
distribution factors or generation shift factors corresponding to the type 
of the A_th contingency. · 
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Performance index (PI} method 

Pl(l) = ~ L wi (Vi(').) - vi rer)2 + ~ L wk (Sk (').)/sk MAx)2 

i i 

w1, w. -weighting factors 

v..... -desired value ofV. 

s.MAX -maximum rating of the k,.,line current 

o Based on the value of PI(/..) being less/greater than a certain threshold, the 
contingency A. is classified as secure/insecure. 

GI992·-0>-~A.~·IOI 

Figure 101 
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Neural network approach 
o To identify line overloads. 

o Voltage overloads are not addressed. 

o This is known as active power contingency screening 

o DC load Dow is utilized 

Pnet = B8 

Pune = T8 

0 secure operation, 

IPiine kl S Sk MAX 'f/ k e {lines} 

019SIZ·~"POOII'sr-.A.~·I02 

Figure 102 
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NN approach is proposed for contingency screening [56]. It is based on . 
identifying the contingent branch overloads. The question of contingent ( 
voltages is not addressed in this study. This is known as active power 
contingency screening which is based on the DC load flow concept: All 
voltage magnitudes vi are equal to unity and that all angles ei are small 
(sin ei = ei>· · · 
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Neural Network Structure 
o A collection of NNs are trained 

o Each NN is dedicated to a specific line outage. 

o Inputs to NN: 

BIJ 'V i, j e {buses} (post-contingency system) 

P .,. 1 'V i e {buses}, 

o Outputs of NN: 

P .... k 'V k e {lines} 

binary security flag e {0, 1} 

01892·~10-Sploo'dMA.~·fo:l 

Figure 103 
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Test Case 
o The concept was tested on a small power system: 6 buses and 9 lines. 

o Training data for 9 contingencies and 9 different discrete loading levels 

o A line contingency simulated by halving the admittance between the 
corresponding buses. 

~==-Ol!192;-'¥11ciii'DIDI'M~·100 

Figure 104 
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A collection of NNs are trained where each NN is dedicated to a spe-
cific line outage. The concept was tested on a small power system with ( 
6 buses and 9 lines. Training data was generated for 9 contingencies 
and 9 different discrete loading levels giving 81 different patterns. Only 
line contingencies were considered. A line contingency was simulated 
by halving the admittance between the corresponding buses. Each con­
tingency was handled by a separate NN. 
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Test Results 
Evaluation of the NN performance on a 6 bus, 9 line power system 

Network # of insecure 
operating 

ooinrs 
I 9 
2 8 
3 2 
4 5 
'5 9 
6 9 

01992•iOA**DIO-s,M.-A.~·I05 
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# oftr-aining #of false 
iterations alarms 

3023 0 
82 0 

552 0 
1313 I 
2289 0 
12398 0 

#of false 
dismissals 

0 
0 
I 
0 
0 
0 

~=­
~ 

Each NN investigates the thermal violations under a single line contin­
gency. Performance of 6 of the 9 NNs are given in the table. Nme 
different load levels are used. Five are used for training and all9 pat­
terns are used for testing. the second columil indicates the number of 
insecure operating points out of the selected 9 load levels for any given 
line contingency. 
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Comments 
o NN based contingency screening method is effective for a small power system. 

o The number of input nodes is equal to twice the number of buses plus the 
number of lines. 

o For a larger power system, the input ·variables can be excessively large. 
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Harmonic Evaluation and 
Identification 
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Power System Harmonics 
o Main sources of harmonics in power system: 

Nonlinear loads and components 

Power semiconductor switching circuits 

o Harmonic producing devices are rapidly increasing 

Figure 109 

Development of high power semiconductor switches and converters. 

Increasing demand for high efficiency devices 

Increasing demand for enhanced performance 

Nonlinear loads and other harmonic producing loads have existed in 
power systems for many years. Today, the number of harmonic produc­
ing devices is rapidly rising due to the development of high power 
semiconductor switches and converters. 

The figure indicates a simple phased controlled rectifier connected to a 
resistive load. The figure shows the load voltage and current This non­
sinusoidal load current, unless filtered, will be drawn from the power 
system. If a large number of such solid state devices and circuits are 
used, the nonsinusoidal current will give rise to harmonic voltage drops 
across system components, thereby distorting the voltage wave form of 
the system. This can cause potentially damaging problems to the power 
system such as misopera.tion of protective relays, overheating of capac­
itor banks, increased losses in transmission systems, insulation failure 
in cables, increased losses in transformers and noise in communication 
circuits. 
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Problem Definition 
o To identify and predict the current and voltage harmonics 

o Model based analysis are inaccurate and lime consuming 

nonlinearity of the harmonic components 

random behavior of harmonic signals 

wide variety of harmonic profiles of solid state circuits. 

~~ Olw:!·~ID-~A.&Siii!iliiii·no 

Figure 110 
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The objective is to analyze and predict the behavior of current and volt- ~ 
age harmonics so that appropriate action could be taken to reduce their ( 
adverse effects. So far, model based analysis has been inaccurate and 
time consuming due to the nonlinearity of the harmonic components, 
the random behavior of harmonic signals and the wide variety of har-
monic profiles of all solid state circuits. ' 
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NN Structure For Harmonic 
Evaluation and Identification 

IIIIZ·~IO 

Figure 111 

harmonic components 

l l 1 1 

l l 1 l l 
FL lV VfR FNS PC 
0 0 1 0 0 

A. 

(a) 

a) hlcnlificotion or harmonic loads 
b) Prc~ic1ion or Harmonics 

From 1571 counesy oriEEE, (0 IEEE.1989 

·Ill 

(b) 

The figure shows the structure of the NN used to learn the harmonic/ 
load relationship in the example given in reference [57]. The NN input 
are chosen among 31 harmonic magnitudes and phases. The output is 

! one of 5 load groups, namely Personal Computer (PC), Television Set 
(TV), Video Tape Recorder (VTR), Fans (FNS) and Fluorescent Lamps 
(FL). Three-different test cases are studied where aNN is trained under 
each case with different combination of inputs. 
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Notes 

Neural Network Approach 
o A multi-layer perceptron can be used to identify the type of harmonic 

producing load from among a set of pre-specified choices 

o Training data for the NNs are the current waveforms of each type of harmonic 
producing load. 

o Fast Fourier transform (FFT) to produce harmonic frequency spectrum. 

o Inputs to NN: different combinations of harmonic magnitudes and phases. 

o Output of NN: load type. 

~~ OliVZ·,oppicolin IOPOiiii'~A.W-·112 

Figure 112 
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As a first step to identifying harmonic loads, a multi-layer perceptron 
was used to identify the type of harmonic load from among a set of pre- ( 

. specified choices [57]. The training data for the NN s are generated by 
monitoring the current wave forms corresponding to each specific type 
of harmonic load. The fast fourier transform (FFf) of the digitized cur­
rent wave form is used to produce the harmonic frequency spectrum. 
Different combinations of harmonic magnitudes and phases are then 
fed to the NN as inputs with the corresponding load type as the output. 
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Test Results of Harmonic Evaluation 
Case 1: 

Case II: 

Case III: 

Magnitude of harmonic currents of order h = 1, 2, ...... 31; 

Magnitude of odd harmonic currents of order h = 1,3,5, ••. ,31; 

Magnitude of harmonic currents of order h = 2, 3, 4, S, 7, 9, 11 and 
phase angles of order k = 3, S, 7, 9, 11; 

Learning Testing Set 
Set 

Case I Case II Case Ill 
A 8 c A 8 c A 8 c 

A 90 9:Z 86 96 73 68 100 100 100 
8 94 99 78 84 98 95 100 100 100 
c 61 99 97 92 99 97 90 96 100 

From [S7) counesy of IEEE, {C) IEEE,l989 

01992·~10-Splomo\LA.~wi·113 
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The ability to correctly classify the load based on the hannonic currents 
is investigated for three cases. NNs are trained and tested using 3 sepa­
rate data sets. Several NN architectures with different numbers of 
hidden layers are used to find the optimal NN design. The NN has six 
hidden neurons. 

It is clearly seen that NN trained under case ill configuration has the 
best classification performance. 
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Harmonic Prediction 
o To predict the magnitude of a selected harmonic producing device in a time 

series form. 

xm(t+l) = r (X<II(t), X0'(t-t), •.•••• ,xu'(t-k)) 

where, 

X<1>(t) • magnitude of the i,. harmonic at time t 

o Objective is to predict the magnitude X<1>(t+l) based on a time series of the past 
magnitudes. 

~ 
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Test Results of Harmonic Prediction 
o The performance of the NN is compared to nonlinear system identification 

algorithms 

o The NN identifier was observed to give an error distribution of lower variance 
compared with the RGMDH algorithm. 

Flgure115 
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Sample of test results 

280 -

240 -
>. 
u 200 -c 
Cl) 180 -
::::1 
cr 120 
E 

u... eo -

40 -

-J -2 -1 0 

Errors 

Reproduced from reference (57) 
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In subsequent development, a multi-layer perceptron was used to pre- ( 
diet the magnitude of a selected harmonic in a time series form [58]. A 
sex:ies of multi-layer perceptrons were trained to predict the magnitude 
x<1>(t+l) based on a time series of the past magnitudes. The structure of 
the NN is given in the figure. The performance of the NN was com-
pared with another nonlinear system identification algorithm known as 
the Revised Group Method of Data Handing- (RGMDH). The NN iden-
tifier was observed to give an error distribution of lower variance 
compared with the RGMDH algorithm. 
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Figure 117 

Alarm Processing and Fault 
Diagnosis 
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Alarm Processing and Fault Diagnosis F 
Challen=:es 

o Alarm pattens are not unique even for the same contingency 

topology of power system 

operating status of power system 

o Alarm pattern are likely to be contaminated with noise 

equipment problems 

incorrect relay settings 

interference 

miscalibration 

~ CI1192·Ajlp_...,_SjilliiMlA.~;118 

Figure 118 

The control centers of a power system are continuously interpreting . 
large number of alarms signals to determine the status of the system ( 
components and to evaluate the power system operation. 1)ris process 
is very complex because of two key reasons: 

1. Alarm patterns are not unique to a given power system problem. 
Same fault may manifest in different alarm patterns based on the 
current topology and operating status of the power system. 

2. Alarm pattern are likely to be contaminated with noise due to 
equipment problems, incorrect relay settings, interference, or mis­
calibrated meters. 

Expert system techniques have been widely tested for analyzing alarm 
signals. The formulation of rules, however, requires precise definitions 
of the power system and its operational strategies which may widely 
vary depending on the utility. Therefore, expert system technique are 
known to suffer from a high customization effort. · 
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Neural network approach 
[Intelligent Alarm Processing (lAP)] 

o diagnosing a power system problem by analyzing a set of multiple alarms is a 
form of pattern recognition. 

o NN is capable of classifying noisy patterns 

o When trained by injonnation rich data for different operating scenarios, the 
NN is capable of associating different alarm patterns to the same system fault 

01992•Afiplcoiallto-S)*noM.A.B-ShnaWI·119 
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The ability of a power system operator to diagnose a system problem 
by analyzing a set of multiple alarms is a form of pattern recognition. 
Accurate classification of noisy alarm patterns is also a key shortcom­
ing in most of the conventional techniques. Therefore, NNs with their 
ability to classify noisy patterns seems a logical choice for alarm pro­
cessing. The NN is also capable of associating different alann patterns 
to the same system fault by training the NN with a set of information 
rich data that represents different operating scenarios [59]. 
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Intelligent Alarm Processing r-

01192·~10 A. 

Figure 120 

Power 
plc:~nt• 

·120 

TRAJNINC 7HE INTELUCENT ALARM 

PROCESSOR 

Arltlclpoted po••ible 
•yatem trouble• 

Cortwa~ndlna alann• 

RETRIEVING 

Concept or using NN for lAP 

From ll91 courtesy of lEI£. !C) IEEC, 1989 

lAP 

NEURAL - NE'TWORI( 

MODEL 

~ 

The figure shows a block diagram showing the concept of intelligent ( 
alarm processing (lAP) using NNs. Learning and retrieving phases of . 
the lAP NN is presented in the figure. The NN training set is generated 
by first creating a credible set of contingencies and then deriving the 
possible alarm patterns under each fault. These patterns are generated 
by the relliy protection schemes and power flow analyses. These pat-
terns are then used to train a multi-layer perceptron using back­
propagation [59]. In the retrieving phase, incoming alarm patterns from 
the energy management system (EMS) are interpreted to predict the 
possible fault scenario. 
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Test Results 
o Test system 1: 115kV/12kV substation; 65 different fault conditions; 99 bit 

alarm patterns [59]. 

o Test System 2: IEEE 30 bus system; 72 different bus and line fault conditions; 
112 bit alarm patterns [59]. 

o The NN was able to correctly classify all noiseless input patterns. 

o The NN was able to correctly classify some of the noisy patterns. 

01192· -10-SyUmololA. EJ.Shwkawl·121 

Figure 121 
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The concept was tested on a 115kV/12kV substation for 65 different 
fault conditions with 99 bit alarm patterns [59]. It was also tested on the 
IEEE 30 bus system for 72 different bus and line fault conditions with 
112 bit alarm patterns [59]. Results showed that the trained NN was 
able to correctly classify all noiseless input patterns. NN was also able 
to correctly classify some of the noisy patterns. Noisy patterns were 
generated by randomly toggling certain bits of the original input pat­
tern. It is also worth mentioning that when noisy patterns were 
incorrectly classified by the NN, the system operator, given the same 
noisy pattern, also reached the same wrong conclusion. 
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Comments 
o This is an area where NN seems to have a great potential 

o Additional consideration for future work: 

Order in which alarms are reported 

Magnitude of the violations 

Behavior of alarms over a certain time period. 
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Static Security Assessment 
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Static Security Assessment 

o Ability of a power system to reach a state within the specified safety and supply 
quality following a contingency. 

o Fast acting automatic control devices have restored system load balance 

o Slow acting controls and human decisions have not fully responded. 

~ C11192-~IOP-Syoo-.A.EI-S'*"""·I24 
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Stages of Static Security Assessment 

o contingency definition (CD): Generation of a contingency list comprising of 
cases with high probabilities 

o contingency selection (CS): Fast and approximate method to eliminate 
contingencies causing no violations. 

o contingency evaluation (CE): Detailed analysis to evaluate the post-contingency 
security status. 

Figure 125 

Static security assessment is defined as the ability of a power system to 
reach a state within the specified safety and supply quality following a 
contingency. The time period of consideration is such that the fast act­
ing automatic control devices have restored the system load balance, 
but the slow acting controls and human decisions have not responded. 

Static security assessment consists of three distinct stages. They are 
contingency definition (CD), contingency selection (CS), and contin­
gency evaluation (CE). CD defines a contingency list to be processed 
comprising of those cases whose probability of occurrence is deemed 
sufficiently high. CS is the process that shortens the original long list of 
contingencies by removing the vast majority of cases having no viola­
tions. Two commonly used algorithms for CS are contingency 
screening contingency ranking. These methods were introduced in a 
previous section. There has also been an increasing effort towards 
applying expert systems to augment the analytical CS methods [51]. 
CE is the process where the selected contingencies are simulated on the 
power system in order to evaluate the post-contingency security vari­
ables. The resulting syste~ attributes are checked for security 
violations. the calculations are performed on each of the list of ranked 
contingencies. The number of cases· evaluated depends on the amount 
of time and computer resources available for the task. 
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Challenges to SSA 

o SSA is a task that has to be performed periodically at control centers 

o · Frequency of SSA is based on the available computer resources and the level of 
operational sophistication of the particular utility 

o SSA is time consuming and computer intensive. 

o Faster and efficient techniques to perform CS and CE must be developed for 
on-line applications 

Assumptions: 

o Fixell base topology 

o Contingencies are limited to Jines 

Cl992·';1' 'o10-Splno1LA.~·Ia5 ~ 
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Neural Network Objectives 

o CE is a classification problem: pre-contingency system attributes are used to 
predict post-contingency system security status. 

o Generalize knowledge for different loading conditions 

o Prove applicability in large scale power system 

C11192·-IO-Sjllooiiiii.A.~·I27 

Figure 127 
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ModularNN 
o A single NN approach may be an enormous computational exercise for large 

power systems; 

large number of attributes 

a wide range of operating conditions. 

o One way of reducing tbe dimensional complexity is to use a modular approach 

Security problem is divide into smaller tasks 

Topology is reduced 

Features extraction is implemented 

~ Cl9912·~10-Splonloii.A.~·J211 

Figure 128 
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From a pattern recognition perspective, CE is a two class classification 
problem where the pre-contingency system attributes are used to pre- ( 
diet post-contingency system security status. A multi-layer perceptron 
can be trained to perform this pattern classification [51]. But for a large 
power system, where a large number of attributes and operating condi-
tions are needed to classify the system security, a single NN approach 
may be an enormous computational exercise. One way of reducing the 
dimensional complexity is to use a modular approach where the secu-
rity problem is divide into smaller tasks or reduced topology. A 
modular NN can then be used to handle each task or topology. 
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Modular NN Approach with Feature 
Extraction 

Figure 129 
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The Figure shows a possible modular approach to large power system 
problem. A specific NN for predicting security status under a specific 
contingency is proposed. This is necessary due to the variations in 
which a contingency manifests itself based on the nature, location and 
clearing strategy. Furthermore, for a given contingency, the mecha­
nisms leading to line and voltage violations are fundamentally 
different Line violations are brought about by real power overflows, 
while voltage violations are brought about by an excess or a deficiency 
of reactive power. Therefore, separate NNs are trained for assessing 
line and voltage violations under the same contingency. 
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Modular NN Approach with Feature 
Extraction 

o To eliminate the curse of dimensionality. 

o Thermal and voltage violations which are the important security measures are 
classified separately under each contingency. 

o Patterns to be classified are passed through a feature selection algorithm. 

- Class-Mean Feature Extraction 

- Karhunen-Loe've Expansion 

~=-019!12·Appcllcn IO-Sploaoii0~6-SIIollai·13f 
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Training Data 
o Each training pattern corresponds to a single contingency and various power 

system loading conditions. 

o Real and reactive loads follow normal load profiles with an added uncorrelated 
uniformly distributed random perturbation within specified ranges. 

o The pre-contingency system states xO, are the solution to the system equations 
(load flow), 

ro~,U,L) = o 
where, 

L • Load demand 

U - Control vector (generator power and voltage) 

(.)0 ~ Pre-contingency value of"." 

OIW!•"PP**Ii<NID-Sploms/II.A.~·131 

Figure 131 
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Security determination 
o Power skstem security under a kth contingency is determined after the system 

states X in the load flow equations is obtained, 

tk (Xk, uk, Lk) = o 

where, 

xk • post-contingency state vector 

uk • post-contingency control vector 

Lk • post contingency demand 

o . Lk is assumed to remain equal to its pre-contingency value. 

o Post-contingency control vector uk is updated based on speed-droop 
characteristics of generators 

o Speed-droop of each individual generator is assumed to be proportional to its i 

maximum ratings 

OI-Sjoltrn>ti.A.~·I3i! ~ 
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Evaluation of Trained NN 

o False Alarm: When a true secure operating point as described by the oracle, is 
classified by the NN as insecure. 

# of false alarms 
false alarms = total true secure states 

o False Dismissal: When a true insecure operating point as described by the 
oracle, is classified by the NN as secure. 

• • • ## of false dismissals 
false d•srrussals · = total true insecure states 

o False misclassif~eation: A measure for false alarm plus false dismissal 

false classifications 
false alanns + false dismissals 

= true secure + true insecure states 

01992·A!I*IIniii-~A.a-•133 

Figure 133 
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Test Case Extended IEEE-8 Bus System 

........ 
\ 

\ 
I 
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/ 

o 10 buses (b), I61ines, 2000 unbiased patterns (i), 30 attributes 
0 2000 patterns, each with 30 attribute 
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Case Study for Class-Mean Features 
extraction 

Voltage Violations 

Neural Network ContI Cont2 
!Architecture & training 

inputs 7 6 
training data 1500 1500 
iterations 2000 2000 

Performance 
testing data 500 500 
false alanns % 1.2 2.8 
false dismissal % 0.0 0.4 
false classification % 0.6 1.6 

Ffgure135 

Cont3 Cont4 

7 5 
1500 1500 
2000 2000 

500 500 
0.8 1.2 
1.6 2.0 
1.2 1.6 

Cont5 Cont6 

7 7 
1500 945 
2000 2000 

500 315 
2.0 1.9 
2.8 3.7 
2.4 2.8 

~=­
~ 
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Case Study for Class-Mean Features 
extraction 

Thermal Violations 

!Architecture & training 
inputs 13 14 12 12 13 12 
training data 1500 1500 1500 700 1500 1500 
iterations 1300 420 880 2000 480 580 

Perfonnance 
resting data 500 500 450 200 500 

5001 false alarms % 1.2 4.8 7.5 2.5 5.6 8.4 
false dismissal % 4.8 9.2 4.0 1.8 11.6 5.6 
false classification % 3.0 7.0 5.1 2.0 8.6 7.6 

·135 ~ OUIS2-

Figure 136 
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In this test, the tripping of tie line #16 is investigated A single pre-con-
tingency pattern contains 54 different attributes including all the real ( 
and reactive generation (P gi•9Bi), real and reactive loads <Pbj•<4,j), all 
the bus voltage magnitudes (Ybj) and all the line cUITents (IuJ m the 
system. The key features (variables) for training the NN are selected as 
described earlier. Six features were used for NN training: (4,g, Vb8• 
Qg2, <4>10• IL7• IL14· The training and testing statistics of the NN are 
given in the Table. . 

In the second case, the contingency is the tripping of the transmission 
line between buses #5 and #6. The training data are generated similar to 
the previous case. The input attributes for the NN are selected by the 
feature selection algorithm described earlier. The features ~. Qgl• 
Qg3, Qg4. IL3• Iu1 and IL12 are selected. The training and testing statis­
tics for the NN in case II are given in table 6. 
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Example 
Contingency I (accepatable) 

o.o,...---~_;__.;__;__.;_~-, 
Contingency 2 (poor) 
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"Lower first order discriminatory infonnation results in poor classifier perfonnance" 
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Figure 137 
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( IEEE-30 Bus System 
Notes Notes Notes 

o 30 buses, 41 lines, 2000 patterns. 76 attributes 
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Test Results with Correlated Load 

/JL; = Neural Conti Cont2 Cont3 
Networl< 

voltage thermal vo1ta2e thennal volta2e thennal 
Architecture & teaming 

inputs 3 6 9 12 
training data 1500 1500 780 1500 
iterations 2000 720 4000 220 

Performance 
testing data 500 500 260 500 
false alann % 1.2 2.4 3.8 3.2 
false dismissal % 2.0 0.0 3.0 1.2 
false classification % 1.6 1.2 3.4 2.2 

-- --
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Figure 140 
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Observations and Comments 
o Dominant eigenvalues correspond to insecure class 

- Low rate of false dissmissals 

o Secure class has dominant eigenvalues 

- Higher rate of false alarms! 

o Effective feature selection criteria must be used for accurate training of the NN 

o Randomly varying loads are not realistic assumptions 

o Load variations should consist of correlated and uncorrelated components 

o Topological variations must be incorporated. 

Figure 141 
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Capacitor Control 
o To compensate reactive power flow in utility systems 

o The problem can be viewed as an optimization problem where several optimum 
sizes of capacitors are placed at given locations to minimize a cost index 

o This is a complex nonlinear optimization problem 

o Many techniques have previously been used: gradient methods; linear, 
nonlinear and dynamic programming; and expert system. 

019112· .. -~A.~·143 

Flgure143 

Compensating the reactive power flow in utility systems is an area of 
continuous development. Reactive power has limiting effect on the 
operation of the power system due to the line losses and unnecessary 
equipment load. The reactive power compensation can be viewed as an 
optimization problem where several optimum sizes of capacitors can be 
placed at optimum locations to minimize a cost index such as line (or 
system) losses. This is a complex nonlinear optimization problem. 
Many techniques have previously been used such as gradient methods, 
linear, nonlinear and dynamic programming and expert system meth­
ods. 
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Conventional Methods 
o Load assumptions: 

Uniformly distributed 

Variations are correlated 

o For periodic or cyclic load, total energy losses are calculated assuming common 
load cycle 

o Locations of capacitor banks are selected 

o The modified energy losses are computed when capacitors are in the system 

o The cost saving due to installing capacitors is computed 

o The optimum sizes of the capacitor banks are explicitly calculated by 
maximizing the savings 

01992·Applclllcn to-SjSno\1. A. ~·1<15 

Figure 145 

The 3-phase (3cp) power loss in an elemental length dx due to the resis-
( tance of the cable is given by 

where 

i - current per unit length 

r - resistance per unit length 

h - length of the cable 

The total 3cp power loss (w) along the feeder is given by 

where 

h 

L 31ll = 3ri2J (h -x) 2dx = ri2h 3 = RTI? 
0 

- the total resistance of the cable 

Notes Notes Notes 

Lecture 8 - Page 149 



Notes Notes Notes 

Lecture 8 -Page ISO 

IT=ih - the total load current drawn in to the cable 

Assuming that the load is cyclic with a period of T hours, the total 
energy loss (wh) can be calculated as, 

T T 

E3~ = JL341dt = RT Jiidt = RTiiMAXLs T 
0 0 

Now consider the mstallation of a capacitor bank at location he as 
shown in the figure. The 3cp power loss (w) can now be modified as, 

h~ h 

L3cfl = 3r J (i (h -x) -ic) 2dx + J i 2 (h -x) 2dx 
0 h~ 

L 341 = 3r [h3i 2/3 + (h c -2hch )i2hc +i~hc] 

where, 

i2 reactive component of current i 

ic capacitive current provided by the bank 

The modified energy loss can be similarly calculated. The cost saving 
due to installing capacitors to decrease energy and power losses is 
given by, 

1tC = K1&:3$ + K2 &3$ 

where K1 and K2 are two cost factors. The optimum size and location 
of the capacitor bank can be explicitly calculated by setting the partial 
derivatives (8AC/Bic) and (BAC/Blc) to zero. 
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c Key issues 

o For a more realistic system where multiple capacitors with discrete tap settings 
exist: 

the load current may not be uniformly distributed 

load variations at different parts of the distribution network may be 
uncorrelated. 

o No common load cycle can be identified. 

o Other economic considerations sucb as depreciation may have to be included in 
the optimization model. 

Figure 146 

In a real power system, the conventional method can not be easily 
applied. The distribution system can have multiple capacitors with dis­
crete tap settings. The load current may not be uniformly distributed 
and the load variations at different parts of the distribution network 
may be uncorrelated. Hence, no common load cycle can be identified. 
Also, other economic considerations such as depreciation, return on 
investment etc. may have to be included in the optimization modeL In 
order to deal with these constraints, linear and nonlinear programming 
techniques can be employed. Expert systems also have been looked at 
as a possible alternative. However, solution accuracy and computa­
tional time are a major concern in most of these techniques. 
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Neural Network Approach 

CD 
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Capodtor c:oatrollhrougb NNs 
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( Assumptions 
o A radial distribution system is assumed 

o The location of the capacitors ar~ assumed pre-detennined. 

o The current tap setting of each capacitor is also known. 

o The entire power system is divided into six subsystems, each with uniformly 
distributed loads marked by dotted lines. 

o There are 6 measurement locations 

o P, Q flow and voltage magnitude lVI are monitored at t~e capacitors locations. 

o The aggregated load in each subsystem is assumed to be 50%, 70%, 85% or 
100% of the peak load, with proportional variations in reactive power. 

01992·~10-~A.~-·148 
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Solution Steps 
o The problem is solved in two stages. Both stages use multi-layer perceptrons 

trained by back-propagation. 

Stage 1: 

o 6 NNs are trained to perfonn power flow calculations. Input data are P, Q and 
lVI for all feasible combinations of load levels and capacitors settings. 

o The output of the NNs are uniform load currents 

Stage II 

o The outputs of the NNs of stage I are used as inputs to train 5 NNs in stage ll 

o The output of the NNs of stage II are the optimum tap setting of all 5 
capa~tors. 

o Training data are generated by the optimizing algorithm. 

o Different combinations of aggregated loads are assumed 

~~ 01192· '!lllcllio otoPoiir~T.~·I49 
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The NN assisted approach to the solution of capacitor control problem 
is expected to drastically reduce the calculation times and enable on­
line adjustments. A specific example in the control of capacitors on a 
radial distribution system is addressed in [62]. The test power system is 
given in figure (a). The location of the capacitors are assumed pre­
determined. The entire power system is divided into six subsystems, 
each with uniformly distributed loads marked by dotted lines. There are 
6 measurement locations marked by M 1 through ~· P, Q flow and the 
voltage magnitude lVI are monitored at the capacitor locations. The 
aggregated load in each subsystem is assumed to take one of 4 feasible 
levels at 50%, 70%, 85% and 100% of the peak load with proportional 
variations in reactive power. The current tap setting of each capacitor is 
also known. The objective is to use 3 measurement quantities (P,Q,IVI) 
at locations M 1 through ~ and the current tap settings of the capaci­
tors Cl through C5 in order to calculate the optimum tap settings for 
the 5 capacitors. 

The problem is solved in two stages. Both stages use multi-layer per­
ceptrons trained by back-propagation. In stage I, 6 NNs, shown in 
figure (b), are trained to perform a power flow calculation. The train­
ing data for the this stage are the P, Q, lVI measurements for all feasible 
combinations of load levels and capacitor settings. The output of the 
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NNs are uniform load cUITents it through~ In the figure, the circles 
placed on the lines indicate multiple measurements. 

In stage IT, the outputs of the NNs of stage I (it through~) are used to 
train 5 NNs as shown in figure (c). In this stage, the NNs are trained to 
select the optimum tap setting of all 5 capacitors. Training data for 
stage IT are generated by the optimizing algorithm. Different combina­
tions of aggregated loads on the 6 subsystems are assumed. In the 
retrieving phase, the NN estimated the optimum tap settings. 
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Test Results 

Optimal capacitor settings and associated savings 

Case# Oorimal caoociror senin.,jkVarj_ Savin"s~ 
IEsrimared (discrerized True (conrinuous) 

cl c2 c3 c4 cl c2 c3 c4 Esrimarec True 
c5 c5 

I 875 815 500 150 815 815 500 150 n.1 38.8 
525 600 

2 350 350 350 150 3n 428 357 750 10.1 10.7 
450 450 

3 815 815 425 150 850 861 423 750 35.5 36.7 
600 600 

4 350 700 500 150 41.0 617 500 150 19.7 20.7 
600 600 

5 350 700 350 150 381 740 3n 750 14.5 15.1 
525 451 

~ ·150 

Figure 150 

The estimated descretized capacitor settings as estimated by the NN are 
compared to the true continuous optimum values. The table also show 
the corresponding energy savings in k$/yr obtained by the NN predic­
tions and by the optimization method using the true continuous 
capacitor values. Relatively small difference between the two columns 
shows the adequacy of this method. 
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( Comments 
o Partitioning of the overall problem into smaller subproblems is a significant 

contribution. 

o This modular approach facilitates faster and simpler training of the NN's. 
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Figure 151 
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