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Definition

Q: What is an artificial neural network? ,

+ Architecture Answer:
A highly connected array of elementary processors.

+ Algorithmic Answer:
A computer that performs operations similar to its biological
counterpart. ANN’s can perform the following functions:
® Associative Operations
e Search Operations (e.g. Combinatorial)
o Classification & Regression
® Pre-processing
» Adaptive Control
o Clustering

ANN’s as classifiers and regression machines are trained from
examples. They gain ‘wisdom’ from ‘experience’.

e .2
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Figure 2

Artificial neural networks are typically defined either from their archi-
tecture or from the operations they perform. Architecturally, the ANN
loosely resembles the biological neural network. Algorithmically, neu-
ral networks perform operations similar to certain biological neural

network functions.
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A rose by any other name ...

o ARTIFICIAL NEURAL NETWORKS »
¢ NEUROCOMPUTERS ¢
« PARALLEL DISTRIBUTED PROCESSING +

o+ CONNECTIONIST SYSTEMS o

As opposed to ...

¢ PARALLEL PROCESSORS ¢

+ARTIFICIAL INTELLIGENCE (EXPERT SYSTEMS) ¢

S 2
- "

Figure 3

Artificial neural networks go by many names. Other fields, which have
names that apply to artificial neural networks in the generic sense, are
fields that are, in fact and practice, quite different than artificial neural
networks

Notes

Notes Notes
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ﬁz: When was the fuse lit?
A: Most recently in 1982. Before this, neural net research
was at a crawl.

Q: Ignition? '
A: The 1987 IEEE Conference on Neural Networks in San
Diego.
Q: What technical organizations have formed since 19872 -
o IEEE Neural Networks Council

+ Cireairs and Systemms + Inforenation Theory
¢ Commmications ¢ Lasers and Electro-Optics
+ Control Systems + Robotics and Ansomarien
o Engineering in Medicine and Biology + Oceanic Engineeting
+ Indusiry Applications + Signal Processing
« Industrial Elecronics + Systems,Man&Cybernetics

o International Neural Networks Society
o Japanese Neural Network Society
e Joint European Neural Network Institute

Q: What has been the effect on the literature since 19877
A: IEEE Transactions on Neural Networks (over 8000
subscribers).
<+ journals from publishing houses 5), and
a plethora of books!
¢ Texts
+ MIT Press, Prentice Hall, Addison Wesley, ...

©1552 - Prefiminaries - AL J. Maka - 4
Figure 4 )
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F
Q: What about conferences?
A: International Joint Conference on Newral Networks
© > 2000 registrants in each conference.
o twice yearly

Europe:
e International Conf. on Artificial Neural Networks

Q: Who is currently supporting neural network research?
A: ¢ Japan (MITE)

¢ West Germany (5 new Chairs).

¢ United States (DOD, NSF).

We-m-; l- WJJ

Figure §

Notes

Notes Notes
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Q: What are neural networks?

Q: What do neural networks do?
A: Lots of things!
.. but mostly, learning from exampies
(instead of rules)

Q: What are some applications of neural networks?
A: ¢ Control

¢ Finance

o Power

+ Communications

¢ Security

¢ Speech

o Signal/Image Processing, Understanding

and Recognition
+ Biological Engineering
‘s Remote sensing

¢ Gaming
*M7M

A: Highly connected arrays of elementary processors.

ST Prebanaios - FL . Marks - 6 -.@_’
Flgure 6 :
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rr
Q: Where are neural networks currently used?

+ Security

+ Communications

+ Control

¢ Grading Meat

¢ Finance

+ Power Engineering

¢+ 7N

Q: What will determine the furure of neural netrworks?
¢ Relative performance
+ Implementation ease

L

e
N
S —'@—'

Figure 7

As with many newly emerging technologies, neural networks have

been applied to numerous problems, from predicting stock markets to

grading meat in slaughter houses. The most promising applications
include forecasting, control, and fuzzy systems.

Notes

Notes Notes
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Market Impact

YEAR WorldRevenues Revenue Growth Rate

—— (% Millions) (percent)
1991 301.3 69.6
1992 580.4 92.6
1993 1208.7 108.2
1994 2539.5 110.1
1995 4643.2 . 828
1996 6461.6 39.2
1997 7996.0 23.7
1998 9915.0 24.0

Source:  Electronic Design, June 25,1992
Market Intelligence Research Corporation

Figure 8

Neural networks’ applications to power engineering are considered so
diverse as to warrant individual forums on the topic. The next is sched-

uled for Japan in 1993.
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Scientists create thinking computers to
forecast loads

Working with a team of faculty engineers and graduate students at the
University of Washington, Casey Brace, senior engineer, Engineering
Applications and Analysis, is developing a neural network computer
model that has potential for substantial savings to Puget Power.

This neural network predicts short-term loads to help Puget Power’s
power scheduler, Lloyd Reed, estimate needs as accurately as possible.
After only two months of work, the group is ready to try a neural net-
work forecast trial.

Neural networks are a class of mathematical models that mimic the
brain. Uses as diverse as loan application analysis and power load secu-
rity assessment are in the research stages at over 100 companies. Puget
Power is one of the first to use neural networks in utility applications.

Puget Power and the UW team have been working together closely on
this project, says Brace. “They look to us to know how a utility func-
tions. We’ve got the knowledge of this business as well as the computer
data. The students need to know our requirements so they can translate
them into a useful model,” says Brace.

“The difference between neural networks and common linear comput-
ing is like the difference between learning and memorizing,” says
Robert J. Marks II, professor of electrical engineering at the University
of Washington. The network will need to learn and judge effects of
weather, times of year and local events like school vacations and wood

burning bans before forecasting the load.

“I need something that can work fast, and get information to me before
10 in the morning,” says Reed. “We have an obligation to our custom-
ers to meet the load. We must have early indication of what we’ll need,
especially if the demand will be high. If we need energy beyond what
we can supply ourselves, we may need to purchase outside energy
before it is bought up by other utilities.”

The research team is investigating a neural network application for use
at Colstrip as well. The generation site has a transmission disturbance
detection, evaluation, and decision-making scheme in place now. When
there is a fault followed by an outage, the scheme decides whether or
not to trip the generators to protect them against damage. Early detec-
tion is the key to maintaining the stability of a power system and better

Notes

Notes Notes
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protecting generators. Theoretically, a neural network could provide a
better detection scheme of transmission system disturbances.

But even the most promising models being developed today don’t have
the brain-power of a common housefly.

“When researchers reach the level of a fly,” says Brace, “science will
be making amazing strides. Sure, flies are not intelligent, but they can
recognize food and danger. And they can fly. We could do so much with
just that level of recognition.”

Reprinted with permission of Puget Sound Power & Light Co.
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Neural net regulates electric power grid

Vancouver, B.C. — Neural Systems Inc.’s software has been managing
the local power grid here since July. The system has reduced voltage
fluctuations by one hundredfold, thanks to its neural simulation soft-

ware, called Genesis.
Proprietary method

Unlike other neural simulators that require the user to specify the
desired result, Genesis uses a proprietary method called “response
learning,” which can a find a solution from training data even when the
desired result is unknown at the outset.

Genesis balances the load on British Columbia Hydro Authority (BC
Hydro) by adaptively controlling four synchronous Voltage-Amperes-
Reactance (VAR) machines of unequal capacity. The VAR machines
are supposed to make the line voltage into one of those ideal voltage
generators that is studied in electronics courses — generators hose volt-
age remains the same no matter how much current is drawn. But real-
line voltage must be maintained by reacting to the fluctuating power on
the line to smooth out any variations.

VAR machines are giant synchronous electric motors that run con-
stantly but drive nothing. They provide real-time voltage regulation
whenever a customer switches a heavy load on or off. The machines
also come into play when a utility brings a generator on-line. Any such
change sends ripples through the power grid, causing the load to
become unbalanced among the various VAR machines feeding the grid.
Without redistributing the load, unnecessary losses are incurred.

Real-time operation

Traditionally, these loses are continually corrected by humans who
manually balance the load among the generators. Now Genesis handles
that task at BC Hydro’s Vancouver Island Terminal. The neural network
operates in real time, whereas the human operators balanced the load
whenever they noticed it was out of balance. The load is measured in
mega-VARs — with human operators it is out of balance about 20
MVARs a day, but with the neural network it is only off .2 MVARS,
according to Gary Josin, president of Neural Systems.

To deploy the application, Genesis was installed on a shop floor PC that
acquires data directly from the power grid and outputs control signals
to the VAR machines. Eventually it will be deployed in a dedicated

Notes

Notes Notes
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controller, but for now it is still running on the PC. “After proving that
it worked, we tried to take the PC-based system away while we put the
software into a dedicated system, but the operators wouldn’t let us.
They said they needed it now,” revealed Geoff Neily, protection and

control supervisor.

Now that Neural Systems has acquired expertise in power systems, it
has identified several problem areas where a neural network might be -
able to do what traditional controllers have been unable to accomplish.
For example, vibrations are introduced into the power spectrum when-
ever a large load is switched on or off. These vibrations can cause
oscillations at several resonant frequencies. “Most of these are below 2 -
Hz and are damped out by an analog controller, but it is not totally
effective,” Neily explained. Genesis, though, could set up to adaptively
change the frequency of the damping circuitry to increase the system’s
effectiveness.

—R. Colin Johnson

Copyright® 1991 by CMP Publications, Inc., 600 Community Drive, Manhasset, NY 11030.
Reprinted from Electronic Engineering TIMES with permission.
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HISTORY

1866 Mach Laterai Inhibition
1943 McCullogh & Pitts Boolean Net
1949 Hebb Interconnect Strengths
1957 Rosenblatt The Perceptron
1960 = Widrow Adaptive Networks
1968 Grossberg Unified Network Theory
1969 Minsky & Papert Perceptroﬁs
1972 Kohonen & Anderson  Associative Memory
1974 Wérbos Error Back Propagation
1975 Lee & Lee Fuzzy Neural Networks
1982 Hopfield Energy Minimization
1982 Kohonen Feature Maps
1984 Rumelhart The Layered Perceptron
1985 Farhat & Psaltis Optical Neurocomputer

) S—
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Figure 10
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Here are some of the key events in the development of neural networks.
In each case, the neuron, either artificial or biological, was modeled

mathematically.

Mach is the same person for whom the speed of sound is named. Mach
showed how lateral inhibition among neurons could account for the
optical illusion now known as Mach bands.

Hebb demonstrated what is now known as Hebbian learning. The more
an interconnect between neurons is used, the stronger it grows.

Rosenblatt and Widrow both investigated a version of the perceptron;
Grossberg proposes his unified network theory of neural networks.

The book Perceptrons illustrated some severe limitations of the per-
ceptron. Many of the important limitations were overcome in the work
of Rumelhart. Backpropagation training of neural networks was pro-

Notes

Notes Notes
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- Noftes Notes Notes posed by Rumelhart. Backpropagation was independently discovered
' by Werbos and a number of other researchers.

Neural networks today are recognized as natural complements to fuzzy
systems. Lee and Lee first made the connection in 1975.
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A Coracal (Braln) Neuron

Synapse
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¢ Axon: One per neuron. Excites up fo 104 other neurons.
o Dendrites: Up to 10,000 per neuron.
+ Synapses: Interconnects between neurons.

— .
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Figure 11

The architecture of artificial neural networks is based loosely on that of
the biological neural network. The axon is the output of the neuron and
connects to other neurons. The dendrites provide the input to the neu-
ron. The synapse is the interconnect between two neurons and is
analogous to the weights in the artificial neural network. Biological

neuron types are many and varied.

Notes

Notes Notes
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THE NEURON: An Elementary Processor

¢ Neuron (nodes or neurodes): An elementary processor
which, typcally, sums its inputs, and performs a
nonlinear operation on this sum. The result is the the
neuron’s state. The nonlinear function is referred to as a
sigmoid nonlinearity or a squashing function.

¢ State: Each neoron has a szate. The state changes with
time. As illustrated below, the state of the 4th neuron is
uKt). A state is simply a number associated with the
neuron. The state is determined by the other neurons to
which it is connected.

¢ Weight: The strength by which one neuron is connected
to another is specified by the commecting weighr. The
weight between neurons 7 to & is denoted by wp.
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Figure 12 '

Here, we define and illustrate the fundamental terminology of neural
networks.
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A Discrete Neuron Model
udn+11=S[ v + 3wy uiin]]

S[ ]=squashing functions
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Figure 13

For the discrete neuron model shown here, n parameterizes discrete
time. The state of the neuron at time » + 1 is equal to a non-linear func-
tion of the weighted sum of the other neural states at time z.

Notes

Notes Notes
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' Some Squashing Functions

¢ Unit Step

# Piecewise nonlinearity
. S
1L

¢ Sigmoid nonlineariry
. § =1 + exp(-sum)}-

1
sum
Differentiation property
S’ = -exp(-sum)[ 1 + exp(-sum)}2 = S(I-S)

T e IR —O@ > JJ

Figure 14

Shown are two popularly used squashing functions used as the neural
non-linearities. The choice of the sigmoid non-linearity is motivated by
the ease by which its derivative is computed. This derivative is needed
in certain training algorithms. Similar relations hold for other func-
tions. If, for example, S(x) = [tank(x) + 1]/2, then §’ = -25(S — 1).
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An Analog Neuron Model

C sumy'(¢) = -X,, Wi [ Sum(?) - us(t) ] - G sumg(t) +1
un(?) = S[ sumyt) 1 S[-] = squashing function

ug(t) i
——M—

*——/VWW—

U3(t) W3l uk(t)
o—"\\VN— S
®
up(t) Nk | sum 4 >2(t)

[
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Steady state solution:
uft) = S 1 + €2 3, Wk un(t) ]

©1932 Preiiinaries « R.J. Madks <15

This is a model of a single continuous time (analog) neuron. It has the
indices of the kth neuron. In steady state, the neural state, ©; ( t),isa
non-linear function of the sum of the inputs. The numbers ¢, and ¢,

are constants.

Notes

Notes Notes
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I
NEURON INTERCONNECTIONS
& Homogeneous Neural Networks
Every is d to every other
N=9
N=16 /-.-\
".
SN
\\\é?/ NSN3 7. ! "‘ Il////
5 SOV
\Z 7 i
/
o Hopfield neural networks
o Altenating projection neural nerworks

J
C1952 - Prekminvies - R. J, Marts -16 -.@
Figure 16

Most neural networks are either homogeneous or layered. In homoge-
neous neural networks,. every nezm'on is connected to every other
neuron. For N neurons, there are N° interconnections.
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[ .
¢ Layered Neural Networks

Neurons in one layer (or slab) are connected to the neurons in an

adjactent layer{or siab).

Example: The layered perceptron.

¢ ART
¢ BAM’s
¢ Kohonen Self Organizgtion NN’s

L —'@" =)
©1932 - Prefminaaries - R. J. Marks -17

Figure 17

In layered neural networks, each layer of neurons typically performs a .
function which can be different than that of a different layer. ART
means adaptive resonance theory and BAM means bidirectional asso-

ciative memory.
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( NEURAL NETWORK MODELS

¢ The Layered Perceptron
A ILAYERED NEURAL NETWORK THAT LEARNS FROM
EXPERIENCE USING SUPERVISED LEARNING. USED AS A
" CLASSIFIER OR REGRESSION MACHINE.

¢ Hopfield Neural Networks
A HOMOGENEOUS NEURAL NETWORK THAT ITERATIVELY
REDUCES AN ENERGY METRIC. USES INCLUDE
ASSOCIATIVE MEMORIES AND COMBINATORIAL SEARCH
PROBLEMS. THE BIDIRCTIONAL ASSOCIATIVE MEMORY IS
A TWO LAYER GENERALIZTION.

¢ Adaptive Resonance Theory
ADAPTIVE RESONANCE THEORY PERFORMS
CLASSIFICATION USING UNSUPERVISED LEARNING.

¢ Kohonen F eature Mapping
THIS NEURAL NETWORK MAPS LIKE FEATURE VECTORS
INTO CLUSTERS USING UNSUPERVISED LEARNING.

¢ Alternating Projection Neural Networks
A HOMOGENEOUS CONTENT ADDRESSABLE MEMORY .

©19%2 - Prefiminaries - fL. & Marks -18
Figure 18 ‘

These are the four most commonly used artificial neural network mod-
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¢ COMBINATORIAL SEARCH o

« Lateral Inhibition
 The Queens Problem
« The Traveling Salesman Problem

, Sy

Figure 1

T TR _J

Notes

Notes Notes

Lecture 2 - Page 1




Notes Notes

Notes

Combinatorial Search

King of the Hill
(Winner-Take-All ¢ Maxnet)

d
The Rooks Problem

\ A

The Queens , The Traveling
Problem Salesman Problem

T N e L -‘@ > JJ

‘ Figure 2

The king-of-the-hill problem will be generalized to solve the simple
combinatorial search required by the Rooks Problem. The rooks prob-
lem will be shown to straightforwardly generalize into solution of the
Queens and the Traveling Salesman problems.
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W Winner Take All _
Autoconnect weights a
Cross connect weights -w
State of ith neuron uiln)
Time n
Lateral Inhibition
Each neuron attempts to turn off all other neurons.
Result:

The neuron(s) with strongest initial condition(s) wins.

T ot e RV _’%J > J
SI
Figure 3

In the King-of-the-Hill (or Winner-Take-All or Maxnet) neural net-
work, each neuron attempts to ‘turn off’ all other neurons while
reinforcing itself. When the contest is over, the strongest neuron or neu-
rons win with a numerically larger state than the loosing neurons.

Specifically, consider the linear array of neurons illustrated here. The
interconnect weights between all of the neurons is -w and the autocon-
nection of a neuron to itself will be denoted as a. We will assume both
w and a are positive. Typically, a is much larger than w.

An inspection of the above equations reveals the dynamics of the com-
petitive nature of this simple neural network. As an example, the
student is invited to try a simple 3 neuron example with w=0.1 and
a=1.1. For initial states, [0.9,0.5,0.1], convergence occurs in less that
ten iterations of each neuron.

Notes

Notes Notzss
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Notes Notes Notes For obvious reasons, such- neural networks are referred to as winner -
take all nets. They have also been referred to as maxnets and king of the ( /
hill neural networks. Note that we can view the operation of finding a

maximum a simple search problem.

—
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r ¢ Problem Statement: On an N X N chess board, place as
many rooks as possible so that no rook can capture
another. (An obvious solution is to place them along

the diagonal).

¢ Neural Network Solution: Use N rows and N columns
of a king-of-the-hill inhibition neural network. Shown
below is a 4 X 4 neural network for the rooks problem.
Autoconnects are not shown.

e > J
SI

Figure 4

A simple combinatorial search problem is the rooks problem. On an N
X N chess board, we wish to place as many rooks as possible so that no
rook can capture another. The maximum number of rooks that can be
thus placed is N. One clear solution is to place N rooks on the diago-
nals. Although the rooks problem is simple, its discussion allows easy
conceptualization to the more complicated Queens and Traveling
Salesman problems.

To solve the Rooks problem, we form an N X N array of neurons. Each
row of N neurons will be connected in a winner-take-all configuration.
Also, each column is connected in a winner-take-all configuration. Our
aim is to require the N X N net to settle onto a solution that has, in
steady state, only one neuron at a high state for each row and each col-
umn. The result is clearly a solution to the Rooks problem. The initial
states of the N? neurons can be chosen randomly.

Notes

Notes Notes
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” The Interconnect Matrix

¢ Number the neurons in the rooks problem from left to
right from the top down. The weight between neuron j
and k is wjx. The N2 inconnects in a neural network for
the rooks problem can be characterized in an
interconnect matrix. Typically, wy=wy;. Forthe 3 X3
rooks problem, we have the following.

-w 0

)
oo oaon

0 0w 0 0w w w a
T e —— T -’%) ) J._J

SI
Figure 5

The interconnect matrix is a table of the interconnect weights between
neuron pairs.
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The Queens Problem

+ Problem: Place as many Queens as possible on an N X
N chess board so that n0 queen can capture another.

o Neural Network Solution: Use the same neural netyv.ork
that was used in the Rooks Problem. In addition,
laterally inhibit along all of the diagonals of the chess

board.
¢ Example:

-
—
e— -'@-'

Figure 6 -

The Queens problem is analogous to the Rooks problem, except that
.queens, rather than rooks, are used. We must now provide, in addition,

winner-take-all neural networks along each diagonal. If two neurons
are connected by weights from two different winner-take-all nets, the

composite weight is just the sum of the components.

We illustrate the working of the Queens neural network by borrowing
results from McDonnell ez.al. The neural net was randomly initialized.

If N > 3, a total of N Queens can be placed on a chess board so that no
queen can capture another.

Notes

Notes Notes
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Neural Network Solutions
of the Queens Problem

(a) (®)

ReRg

(¢) (d)

the excitation to provide the nerwork with more energy.

- AT
©1992 - Combinatorial Search - R J. Marks -7

Figure 7

Problem: There are only 7 Queeas in the steady state solution. There should be 8.
Solution: Increase the

These are snapshots of a simulation of the analog solution of the queens
problem on a standard chess board. Initialization was random. Each
pixel is a neuron. A clear pixel corresponds to a zero. A darkened pixel
corresponds to a value of one. Shaded pixels correspond to intermedi-
ate values. The excitation was for a current of i = 0.15. The final
solution, although valid, is one queen shy of the maximum number of
eight queens. The current needs to be increased a bit.
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( o Another Neural Network Solution

. Wﬁﬂ D .....,...-.i-:

o

8 Quoony

8 Queens

(a) {b)

0 Quorny ® Queens

(¢)

i | | ]

(a)

8 Queens
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(e) (f)

{9)

\
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Figure 8

(h)

=)

Here, the neural excitation has been increased to i = 0.25. Interestingly,
( ) in (g), there are two ‘on’ neurons in the third column, each trying to
‘ turn the other off. Which one wins? Because there are also two ‘on’
neurons in the third row, the neuron in the third row and third column is

simply outnumbered. It looses.

Notes

Notes

Notes

Lecture 2 - Page 9




Notes Notes

Notes

(

The Traveling Salesman Problem

There are N cities that a traveling salesman must visit.
Given the distance between each pair of cities, schedule a
trip that includes a stop at each city such that the total
round trip distance is minimum. .

Neural Network Solution:

For N cities, construct an N X N array of neurons. The
vertical dimension denotes the city and the horizontal
denotes the order of visitatdon. Suppose, for example, we
had 3 cities: A, B and C. Then a neural network solution of

the form:

means that city A is visited first, city C second and city B
third. (X denotes an on neuron and - denotes one that is

off).

=)
©1932 - Combinatorial Search - AL J. Marks -9 W

Figure 9

The Traveling Salesman problem can also be viewed as an extension of
the Rooks problem. We have, say, N cities denoted by A, B, C, D, E... .
The physical separation between cities C and A is dyc=dc4. We wish to
arrange these cities in such a manner that a global round trip will be of
minimum distance.

We will solve the Traveling Salesman problem with the use of an N X N
neural network. How do we set up such a net? Note, first of all, that the
solution must satisfy the rooks problem. In other words, only one neu-
ron can be on in each row and in each column. Thus, we start our net by
using a Rooks problem neural network. In addition, we would like to
discourage cities that are far apart to be listed together. This is accom-
plished by lateral inhibition of adjacent cities proportional to their
separation. A large separation thus results in a large inhibition.

Use of neural networks to solve the traveling salesman problem was
first suggested by Hopfield.

Lecture 2 - Page 10




—
( Traveling Salesman Neural Network
Superimpose:
+ Rooks Neural Network
¢ Inhibition Connects
* Let dyy be the distance between cities X and Y.
* Inhibit the neuron pairs proportional to dxy.
A
~dyp
—-d ® [ ] B
AC
—-d
BC
C
1 2 3
4 Global Inhibition
©1932 - Cambinstorial Search - R. J. Marks -10
Figure 10

Neuron pairs corresponding to cities that are close together should
inhibit each other less than those corresponding to cities that are far
away. Thus, superimposed on the Rooks-type inhibition interconnects
are interconnects between neuron rows that are proportional to the dis-
tance between the corresponding pair of cities. Additional
homogeneous global inhibition interconnects also prove useful in the
" network’s performance.

Notes

Notes Notes
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Notes

[ .« Solution Simulation + (
(Hopfield & Tank) \
# A Traveling Salesman Problem
I
Fle
*H
e (7 D e
°
E J 5
[ ] ® °
C
[
A
¢ Snapshot Simulation

1 2 3 4 5 6 1 8 9 10
. . * * . ¢ ¢ . . . A
. . . . . . . * * . B
* . . . . . . . . ] C
. . . . . . . . . . D
o . . . . . . . . . E
. . ) * ® o . . . . F
. . ¢ ¢ ® o ¢ 4+ .+ . C
. * . . . . . 3 . . H
. . . . . . . . . . 1
. . L] . L] . * * . . J (

 —
©1952 - Combinatoria Search - R J. Marks -1

}
S

Figure 11

These are snapshots of the evolution of the solution of a traveling sales-
man problem.
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Notes

Continued:
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©€1932 - Combinalorial Seerch - R. . Marks -12

B

Figure 12
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¢ e i olution

] 2 3 4 5 & 7 8 9 10
L] . . . . ’ 1] * * A
3 * * * . * . . L] . B
. . . e . ¢ . cC
’ . . * * * * L] * D
- * . . * ’ v * E
. ¢ . . . F
. . . * . . . G
* . L] * . . H
. e ¢ . . . |
. * . L] . L] L] ’ * J

This result is an optimal solution . J

s
€152 - Canbirasorial Search - L. Marks 13 _.%sy

Figure 13

The solution is optimal. In practice, we generally do not have the lux-
ury to know whether the result is optimal.
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Notes Notes Notes

=

» Notes

¢ Most combinatorial optimization problems have muitiple
solutions. ‘

¢ ‘Tweaking’ is still required.
¢ False minima.
& Other competing techniques.

¢ Network programability overhead.

— J
— —'@-'

Figure 14

1. With the exception of the King of the Hill Problem, all of the prob-
lems thus far considered have more than one solution. As a result,
we can clamp some neurons of the neurons to on and, if consistent
with the problem solution, the network will produce a consistent
steady state result. If, for example, we clamped the upper right neu-
ron in the Queens Problem to one, then the neural network will con-
verge to a solution that specifies that a Queen be in the upper right
hand corner of the chess board.

2. Neural networks require tweaking in order to generate optimal re-
sults in combinatorial search problems. In certain cases, such as
the Queens Problem, inspection of the solution lets us know if the
result is optimum. In other cases, such as the Traveling Salesman
Problem, we are not allowed this luxury. The parameters are a, w,
the city distance proportionality constant and the global inhibition
constant. At this time, choosing the free parameters of such neural
networks is more of an art than a science. Nevertheless, the neural

Lecture 2 - Page 15




Notes Notes Notes network will generally - give a good rather than an optimal answer.
Such performance is also seen in certain neural network associa-

tive memories.
3. The iteration can become stuck in false minima.
4. The jury is still out on whether neural networks will be competitive

with other techniques in the performance of search algorithms. The
Queens Problem, for example, can be solved with a few lines of

code in LISP.

5. Network programmability must be taken into account in the com-
parative evaluation of neural networks.
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o COMBINATORIAL SEARCH ¢

Summary

« Lateral Inhibition
« The Queens Problem
« The Traveling Salesman Problem

\——r ——
1932 - Corbinadorial Search - R J. Marks -15

Figure 15

BT

Notes

Notes Notes
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(— Notes Notes Notes
¢ ASSOCIATIVE MEMORIES ¢

» What are Associative Memories?
« Neural Network Associative Memories
° Hopfield’s Nenral Network
° Relation to Matched Filters
° Geometrical Interpretation
° Convergence Proof
« Bidirectional Associative Memories
« Problems

©1952 - Associativ Memones - R. . -1

i
!

Figure 1
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Notes Notes

'Notes

. 9
, m\m’l&g are éﬁsomanve Memories?

TN T e “@ - =
Figure 2

Properties of the neural network associative memory will now be illus-
trated with your own associative memory. By looking at these images,
you are programming your own associative memory.

Lecture 3 - Page 2
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— . . Notes Notes Notes

Properties of
Associative Memories

1. Objects can be recalled from partial information (content addressable
memory): .

O Aasocats Mamores L4, Varka - 3

q

Figure 3

1. Recall from the library can be performed by knowledge of only a
part of the information. In essence, we are performing a content

addressable memory operation.

2. If the known portion of the information is too small, we cannot re-
call the library element.
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Notes Notes

Notes

/)

=

3. Perturbed inputs can be recognized:

N
»

——

\mmamnem
©1992 - Associatwe amones - R J. Marks - 4

Figure 4

J

This picture deviates significantly from that memorized. It can still,

howeyver, be recognized.
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3

4. Fault Tolerant

5. Finite Memory Capacity and
6. Uncorrelared objects are more easily recognized:

m.wm-nlm- 5 —J

Figure 5

. Portions of biological brains can be removed and the neural net-
work still works. The same is true of certain artificial neural net-

works.

. There is a maximum memory capacity. (Hopfield is #49. Marks is
#33, E. Leith #20.)

. Uncorrelated objects (both in the mathematical and the dictionary
sense of the word) are less recognizable.

Nbfes

Notes Notes
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Notes

{ Neural Nerwork Associative
Memories
Consider thres obj in70
0000000600 0000080800 0098088800
0000099800 0088800800 0008090800
0000000000 0088008800 0080008800
0008888000 0080000800 0000000000
0000008800 0000880000 0000000000
0000000000 0008088000 0008899800
0000000000 0000008800 o, | | o]

‘We wish have the nearal nerwork memorize these three objects. The memory is stored in
the (70)2 = 4900 interconnects. Then, given 2 permirbed version of one of the objects
such as:

.

the network will iterate to that stored library entry closest in some sense. In this case, the
desired result is clearly the U in the apper left camer. Also, we would like the serwork wo

extrapolate. Thus, we would expect

il

to converge to the H.

£1992 - Associaiive Memones - R. J. Masks - §
Figure 6

In the case of the original Hopfield neural network, neurons in steady
state are either on or off. Pattern information is actually stored in the
interconnects. When the neural network is initialized ‘close’ to a stored
pattern, the network ideally converges to that pattern.

Lecture 3 - Page 6
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Hopfield’s Neural Network

One way to program the interconnects so that the network
will perform as an associative memory is to use the
Hopfield model. Here, if the sum of the inputs into a
neuron is positive, the neuron um on (i.e. has a state of
one). Otherwise, the neuron is off (state = 0).

Consider N binary library vectors of length L:
{fn:1<n<N}

We form the library matrix:
F=[f1:f2:..:IN]

In corresponding bipolar form of the library matrix is:

B=2F-1

where 1 is a matrix of ones. Hopfield’s recipe for the
interconnect values is:

T=BBT-NI

(The superscript T denotes matrix transposition and I is an
L X L identity matrix.)

-
o Ty ey =)
Figure 7

These equations describe the manner in which the interconnect weights
for the Hopfield neural network are chosen.

Notes

Notes Notes
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B =2F-1

Example

f2 f3

fi

I
01100111001001111100.
~OOO OO0~ ~OOOO0O0O—~O

MIOIOOIIIOOOOOOIOOOI
J

O 0O~ OO0~ OO A MmO O,

- - e e e Y- - - - )

O~ 00O~ ~OO00000O~000 ~,

Notes

Notes

Notes

Three library vectors and the corresponding library

matrices.

Figure 8

©1552- Assocetive Memares - K.J. Maris - 8

Shown are three example library vectors and the corresponding library

(F) and B matrices.
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Notes

Resulting Interconnect Matrix

T=BBT-NI=

3
0.

ANAN A AAMN AN A A A A A
] ] [ 1100 LI
OO AAMANTMN AN AN AN O o
L) LI I I ] 1100 1
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] (3] (] 1 I ]
NAHAIAAMAAAAAA AN AOM et
] (] "t 11 (3]
J-3ll:.‘-13311.u.ﬂ.«.:“—1101131
]
AN AAMAAAAAAAMNO AT i
] L] L | [ ] [ ]
AN A M A A A A AOM A
] 11 [} LI ) (]
N HANAMNMM AN AN AN et
11 LR I B ) [N I I ) 1
MO AAN AN AMAOND A AN M
[ | LI | [ I N I} ]
14.11...11.%&3101111.....1114.
)
O AAM A O O Mt e O D
LR I ] LI R | L I | 1
HAAN A AAAO AN A At e
] ] [} e LI |
ﬂ311313011_...ﬂﬂ_.uu11311,_31
1
' [ ] '
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] i [} [ ()
MNMOAAOOHAMN A MM AN AT A AM A
[ | LI I I ] Lty i
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) ¥ Pt L T I I I} Pt
.ﬂlO........3111...ﬂl.ﬂ.ﬂ331331..1..
4_01131331.."—.“._“«“.1131131
' '
0441_.31_:.”_1.. MM L

-1
-1
-1
-3
-1
-1
-1

« For example, the interconnect betwéen neuron land3is
equal to -1.

T. Thus, wij= wji.

¢ Note that TT

™
C1052 - Assocative Momanes - R.J. Marks - 9

=)

Figure 8

. By

J is wy;

etrical. This, the connection between neuron

d j is the same as that between neuron j

and

i

The interconnect between neuron

atrix is symm

interconnect matrix for the library vectors show on the

previous page.
design, the m

Shown is the

i

and

1 an
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For a Hopfield neural net asoociative memory, the
autoconnects are zero. Here is a 7 neuron net. The
autoconnects are shown with dashed lines. :

g,
e T "@ - J
Figure 10

The original Hopfield neural network had no autoconnects.
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Let go denote the vector of initial binary neural states. In
synchronous form, Hopfield’s network performs the

iteration:

gn+1=UTgn

where the unit step vector operator, U, sets all positive
values of a vector to one and all negative values to zero.
In many cases of interest, the iteration converges to that
library vector closest to go in the Hamming sense.

(elaborate)

CT502 - Askocbre Whacvoras - . . arks - 11 ‘

Figure 11

In discrete form, restoration is iterative. The neural states are updated
until convergence. Ideally, convergence is to the library vector closest
to the initialization.

Notes

Notes Notes

Lecture 3 - Page 11




Notes Notes

Notes

Hopfield NN Example:

010100111000000100017T

F = |10001000011110000010
01100111001001111100
B=-I O=1

+8e - 1]
B.m.u. g.-E E.
..B. E

00 000000 §

o

e sjsssels e essesse-

me-ﬁ.\!.%dz -.w
Figure 12

The initialization of the net is shown as M = 0. Convergence to the third
library vector occurs two iterations.

\

Lecture 3 - Page 12
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[ ‘Optimal Detection Theory

Derection Problem: Given a library, { fj; : 0 <n < N) and an observation, g,
that library vector closest to g in some sense.

Solution: If (a) g is one of the library vectors_corrupted with white gaussian
noise or (b) the library is bipolar (+°1) and g is a library vector corrupted by
flip noise (also called Bernoulli noise), then the matched filter provides
optimal detection:

- a,

a
’Ifz\ 2

¥

=~ | 9m>Ty
O

an

o

One chooses the library vector with the largest correlation coefficient. The
results are optimal. respectively, in the sense that (a) the probability of
making a correct decision is maximized and (b) the library ve<tor closest to
g in the Hamming sense is chosen.

R T T —.%sy -y =)

Figure 13

We will digress for a short time into the field of optimal detection the-
ory. The Hopfield associative memory will evolve from the discussion.

Notes

Notes Notes
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r Y
+ Example Matched Filtere

Library Object:
i 2 B g

0 1 O 0 grfi=3
1 0 1 1

0 0 1 1 ghHh=1
1 0 O 0

0 1 O 0 gTf3=8
0 0 1 1

1 0 1 1 ». choose f3
1 0 1 1

1 0 O 0

0 1 0 0

0o 1 1 1

o 1 0 0

0 1 O 0

0o 0 1 1

0 0 1 1

1 0 1 0

o 0 1 0

0 0 1 0

0 1 O 0

1 0 O 1

©1992 - Axcoxzative Memanes - R J. Marks - 14 i’
Figure 14 DSI

The library function ‘closest’ to the object, g, yields the largest inner
product. '
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fi

-1
1
-1
1
-1
-1
1
1
1
-1
-1
-1
-1
o -1
-1
1
-1
-1
-1
1

.

Library:

f2

1
-1
-1
-1

1
-1
-1
-1
-1

1

1

1

1
-1
-1
-1
-1
-1

1
-1

f3

-1
1
1

-1

-1
1
1
1

-1

-1
1

-1

-1

— et et et ek s

¢ Optimality e

If the library vectors are -1 instead of 0, the matched filter
is optimal

+ in the mean square sense.

+ in the presence of Gaussian noise.
¢ in maximizing SNR.

¢ in the minimum Hamming distance sense.

Object:

g

-1
1
1

-1

-1
1
1
1

-1

-1
1

-1

-1
1
1

-1

-1

-1

-1
1

gTf1=2
gTh=-6
gaf3=14

.~ choose ff3

Figure 15

e
©1992 - Associaive Memaries - R J. Marks - 15

-o@:ij

Optimality occurs in matched filtering when the sum of the squares of
each of the elements in each library vector is the same. This occurs

when all elements are +1 and —1.

Notes

Notes Notes
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An Optimal Associative Memory:

(elaborate)
— ay

(Ify)

- H > —
2 | 5l fm |
&

"- Q

( I m) QI'l‘? n [
— ] ay

|fn)

g,
T e _‘@ > —
Figure 16

Shown here is an optimal associative memory. A matched filter com-
putes the correlation coefficients, oy, The largest correlation coefficient

is used to access the corresponding library vector which is the memo-
ry’s output. This approach is optimum when the matched filter is

optimum. It is optimum in the same sense.
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A Suboptimal Associative Memory

Assume each library vector is bipolar (+1).

If the ima.xi.mmn correlation coefficient is much larger than the others, then
the corresponding weighted library vector will dominate the sum. The
vector op sgn sets negative el s of the vector to minus one and

positive elements to one.

[
X
M

J

O e W T VT
Figure 17 @

For the bipolar (+1) case, a suboptimal associative memory is that
shown. If o, >> than the other coefficients, then oy, /i, will dominate in
the sum r =X, o, f;,. If, indeed, oy, is sufficiently large, then f« =ff;, =
sgn[Zy o fl- ,

Notes

Notes Notes

Lecture 3 - Page 17
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Notes

~ An Iterative Matched Filter

The output can be fed into the input to, possibly, produce
an even better estimate of the closest library vector.

fl
(-] ) -
fa
Cl =2
Ty : re ™
: fn z M
(e y @n
\', fﬂ ﬁéﬁ
: SRS
l_,(.,?n) ay

M= | 9m+1

O N LT R T ”%J » —J
SI
Figure 18 _ .

The estimate of the last filter could be closer to the desired result than
the initial guess. By passing this result through the filter again, an even
better result might occur. This is the motivation for the architecture

shown
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The performance of the iterative matched filter is described
by the equation: '

gm+] = sgn F FT gm

This relationship is algorithmically similar to Hopfield’s
associative memory neural network when operated
synchronously.

L

1952 - Awmociative Memanes - RLJ. Marks - 13 @
Figure 19

gl'he equation shown describes the math behind the iterative matched
ter.

Notes

Notes Notes
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Deleting the autoconnects

{elaboraie)}

(-|E)‘————<§>——-
f
Ik 4

y
T e e N o -‘@-’ _J
Figure 20

This iterative matched filter, modified to ‘delete the autoconnects,’ per-
forms algorithmically (although not architecturally) identical to the
Hopfield associative memory.
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A Geometrical Interpretation

1. For orthogonal library vectors. the effect of the interconnects is to project onto the
subspace spanned by the library vectoss.

2. The sgn can be viewed as projecting onto the BeArTSt VeTeXx of a unit hypercube.

L Su bspace
9%
+ ................. .j.
i hypercube

r

! TR
b

\.
S — —
G902 - Associve Namories - R J. Aarks -21

Figure 21

An interesting geometrical illustration of the iterative matched filter is
shown here. The plane is the subspace formed by all of the linear com-
binations of the library vectors. Evaluation of the correlation
coefficients is similar to projecting onto this plane from the initial
guess, g. Performing the sgn operation projects onto the nearest vertice
of the hypercube. The next iteration projects back upon the subspace,
etc. Iteration is performed until convergence. (Note, by symmetry, the

‘twin image’ point.)

Notes

Notes Notes

Lecture 3 - Page 21
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¢ Convergence Proof ¢ (

In discrete time, the igeration in a Hopfield net with no
autoconnects cas be written as

uln+ll=p ( Zpywininl )

where ¢ u;{n] isthe state of neuron j at time »
¢ wjjis the weight between neurons j and i.
¢ u(-) is the unit step function.

Define the energy of the net at time n as
Eln)=-1n X, 2, wij uiln] uln]

Let the kth neuron be the only neuron that changes state
between times 7 and n+1. The change in energy after one

iteration is
AE[n) =E[n+l]-Eln]
= -1 Augln] Tzp Wir uiln]
where
Awfn) = wln+1] - upin]
Two possible cases:

¢ Audnl=-1 > ZTgwpun]<0 — AER]< 0

e Aylnl= 1 » S wuufn]>0 — AE[n}<0
In either case, E[»] decreases. Since
E[n]>-LN

(corresponding to all weights = -N and all neural states =
1), the net must stop decreasing energy at some point.
Ideally, this point is the desired solution.

— ma— gumn)
O1932 - Asocaine Mamones - L. J. Marks -22 -’%sy v

Figure 22

T~
'

J

Shown here is a proof that the asynchronous Hopfield neural network
will converge. Ideally, it will converge to the proper solution.
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{r ¢ Local Minima ¢

Problem: The iteration can be stuck in local minima.

E

minimum

global
minimum-

Solution: Use simulated annealing. Application to the
Hopfield network results in the Boltzmann Machine.

L&Mmm-m.m-za @ =)
T

Figure 23

The proof of convergence of the Hopfield neural network does not
require that the iteration reach the absolute minimum. It simply allows
that any energy must decrease. As in many search problems, the itera-
tion can be stuck in local minima. A technique to avoid this is
simulated annealing. In metallurgy, the annealing schedule dictates
how an alloy in molten form is to be cooled in order to assure certain
attributes. Heat is associated with vibration. Visualize the surface above
being shaken, first vigorously and then more and more gradually. The
energy of the net, visualized as a marble on a rough surface, would then
have the opportunity to jump out of the local minima. In the Hopfield
neural network, this is achieved by allowing each neural state to take on
the value other than that computed for it. The chance is dictated under
some probability schedule that reduces over time. If the Boltzmann
probability distribution is used, the resulting neural network has been
referred to as a Boltzmann machine.

Notes

Notes Notes
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BI-DIRECTIONAL ASSOCIATIVE
MEMORIES (BAM’s)

Stimulus matrix:

S=[s:8:..15]
Response matrix:

R={[1:5i.il]

A stimulus vector, s, should, in some sense,
give a response of I,

J

01952 - Associtive Memanes - R. J. Marks - 24 W

Figure 24

In a BAM, we wish to associate vector pairs. The BAM is a generaliza-
tion of the Hopfield associative memory.
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Sum of Outer Products BAM:

Construct the (non-square) interconnect matrix
T=RS1= Zrﬂ S.T

Example:
1 1 1 1 2 0 0 -2
S={1 -1| R= T=
1001 1 -1 0o 2 -2 0
1
The corresponding neural net is:

stimulus—
T S 2
response—

For an input §,, the sgrn of the output for this example is Ir.
Why? Because the stimulus vectors are orthogonal:
Zs715=0;n#m
Thus
Ts_:Ern ST Sa=CTn

where ¢ = saT 5y is a positive constant.

- TTOE - Aasocain Namores - R0 Marka <25 -.C?QJ => _J
SI

Figure 25

The BAM is a two layer network. The stimulus is propagated to the
response level where each neuron is thresholded. The thresholded val-
ues are fed back to the stimulus level, thresholded, etc. Iteration occurs
until convergence. Iteration in the example shown converges in one

iteration because of orthogonality.

Notes

Notes Notes
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For non-orthogonal interconnects, iterate: (

stimulus—

response—>

THE STEPS:
1. Intialize the stimulus states.
2. Compute the sgn of the response states,

3. Recompute the stimulus states using the response as
the input.

4. Use the sgn of these states to recompute the response
states.

5. Go to step 2 and repeat.

o

o e T T T > JJ
SI
Figure 26

Here are the algorithmic steps for the BAM.
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-1 21-1 1

= | -1 1 2
S [-1-1-1-1

BAM Example:

-1 -1 2277
1-1-1

1-1 1

=1

-1

-1
1
-1

-1 1
-1 1

e —
©1992 - Associative Memoras - FLJ. Marks -27

Figure 27

As with the Hopfield model, the BAM can have twin images. An exam-

ple is shown here.

Notes

Notes Notes
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ASYNCHRONOUS BAM EXAMPLE [Kosko] (

Stored Pairs: (S,E), M,V) & (G,N). Approximately six
neurons per picture. Initalization is random.

W-MM-MM-T -.@-‘ -J
Figure 28

These are snapshots in the evolution of a BAM example.
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=) Notes Notes Notes

(NOTES':

1. The response neurons can act as the stimulus. Since
our response vectors are orthogonal in the above
example, an input of rym gives an output the sign of
which is sm. Hence the expression bi-directional.

2. Hopfield’s neural network is a special case of the
BAM. Simply setR=S=B=2F -1 where

F=[f12f2:...:fnl

is the library matrix. The hetero-associative BAM
becomes an auto-associative memory.

3. As we have shown, the BAM converges in one
iteration in the unlikely event that the stimulus vectors
are orthogonal.

4. Other recipes can be used to form the interconnect
matrix for the BAM. Softer sigmoids can be used for
the nonlinearities .

T e e ’ -’@—‘ '_JJ
Figure 29
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Notes — -
Problems

TN

1. The networks perform differently for synchronous and
asynchronous operation. For asynchronous operation, the
network may converge to different steady state solutions
for the same initialization. In concert with previous
observations, however, the result is generally good. For
synchronous operation, the network can break into
oscillation between two states [Cheung, Marks and Atlas].

2. The network’s storage capacity yields diminishing
returns as the number of the neurons i increased [Abu-
Mostafa and St. Jagues]. As the number of neurons, L,
becomes large, the capacity increases proportional to
L/ log L which is less than linear.

3. The networks have twin images. je-if a vector fis a
fixed point of the network, then so is -f.

-
TT992 - Avsociatve Marmaries - FLJ. Warks - 30 —’@-’ =

Figure 30

I{l addition, the percentage of false states increases significantly as the
size of the net grows.
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¢ ASSOCIATIVE MEMORIES —
Summary ¢

- What are Associative Memories?
« Neural Network Associative Memories
° Hopfield’s Neural Network
° Relation to Matched Filters
° Geometrical Interpretation
° Convergence Proof
« Bidirectional Associative Memories
« Problems

152 - Associatve Memones - R. J. Marks - 31 @
Figure 31

L

Notes

Notes Notes
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¢ CONTENT ADDRESSABLE
MEMORIES ¢

» Convex Sets & Alternating Projections
+» The Alternating Projection Neural Network
+ Examples

 S—
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Figure 1

~e "

Notes
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Convex Sets

A set C is said 1o be convex if, for the range 0 < g < 1, the
vector ax + (1-a)y is in C for all vectors x and y that are in
C. Geometrically, a set is convex if each line segment in
with end points in the set are totally contained in the set.
Lines, balls and boxes are examples of convex sets.

2y

convex not convex
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A line segment between any two points within a convex set is totally
subsumed within that set.
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From a given point, a projection onto a convex set is to that-
point in the convex set that is closest:

— —»@—' =
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Figure 3 :
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Alternating projections between two or more intersecting
convex sets converges to a point in common with both:

2

Figure 4

This is an illustration of the fundamental theorem of POCS (projection
onto convex sets). Alternatingly projecting converges to a point com-
mon to the intersection. The final fixed point is a function of the
initialization unless, of course, there is only one point of intersection.
The other theorems of POCS are:

1. Altemating projection between two non-intersecting points con-
verges to a limit cycle between the sets where each is closest to the

other in the mean square sense.

2. If three or more convex sets do not intersect, there is little positive
that results from POCS. The limit cycle can be dependant on set or-

dering and initialization.
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The Alternating Projection Neural Network

Problem: Given a portion of a library vector, f, and a
neural network with a projection interconnect matrix, T,
find the remaining elements of f.

Solution: Clamp those neurons with known values to those
values. The remaining floating neurons are assigned states
equal to the sum of their inputs. Then, under certain
conditions, the floating neurons will converge to values
equal to the unknown values of f.

Synchronous mathematical interpretation: WLOG, let the
first P values of f be known. Set the unknown states (o

zero. Then:

1. Multiply the current neural state vector by the
projection interconnect matrix, T.

2. Replace the states of the clamped neurons with the
known values of f.

3. Go to step #1 and repeat.

The procedure will converge to the commect answer if the
first P rows of the library marrix, F, form a matrix of full
column rank. Subsumed in this criterion is the requirement
that the number of known states, P, must equal or exceed
the total number of stored vectors, N.

The restoration will also work for sequential or
asynchronous impiementation.

\meeovm——
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Figure 5

&

The }ib.rary matrix Tis F = [fi /2 -.fn]and the APNN neural network
-matrix is T=F (F" F)" F'. The vector T g projects the vector g onto

the subspace spanned by the library vectors.
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Partition Notation:
f=lp:RQI1T
Operational Flowgraph:
go=[fp:01T
m=0
sm=Tgm
m=m+1
gm+1 = (/P :smQIT
=
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Figure 6
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Geometrical Interpretation

The T matrix projects onto the subspace spanned by the
library vectors. Clamping the kmown neurons projects onto
the linear variety of all vectors with these known values.
These two sets intersect at the point of the desired library

vector, f.
For our previous example of F = f] = [1 1],'11_', starting with
the initialization go = [ fp : 0 1T =[ 1: 0 ]T, convergence
would be as follows:
f
y Iy
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linear variety
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1
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Figure 7
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Homogeneous APNN Example:

L =# of neurons = 25
N = # (stochastically chosen) library
vectors = 4
P = # clamped neurons = (last) 15
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+ Example Extrapolation ¢

e 40 images
©0,1,2,3,6,13 & 43 iterations
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Figure 9

Result is indistinguishable from the original.
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Notes Notes
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¢ Generalization ¢ \

This image was not used as the training data.

O Cortort Reseats Tamoras LN 1O -.@_’ :JJ -

Figure 10

Remarkably, the eyes were generated, even though the neural network
was not trained on this image.
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+ THE LAYERED PERCEPTRON ¢
« Introduction to Learning
° Classifier Problem
° Properties of a Good Classifier
° Regression Machines
° Rtive Attributes
» Rosenbatt’s Perceptron
° The Widrow-HofT Algorithm
° Perceptron Problems
» The Layered Perceptron
° Error Back Propagation
- Attributes
« Optimality
°© Other Training Techniques
« Conjugate Gradient Descent
« Random Search
« Genetic Algorithms
° Adaptive Training
° Simulated Annealing
« Accelerated Convergence Using Queries
° Oracles :
© Neural Network Inversion
« Learning vs. Memorization
° Generalization
° Training with Jitter
° Sigmoid Scaling
° Regularization
° Node Pruning
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'CLASSIFIER PROBLEM
(Supervised Case)

¢ Train an automatic classifier on examples of input/output
relations:

Training Set = {X,C)}
where X is the input and C is the classification index.
¢ Use the trained classifier to generate an "accurate” classification
for an input X that is now in the Training Set.

& Related problem: regression -

—— 2
—"

A set of training data pairs is given. The input vectors, X, are associated
with corresponding output vectors, C. The problem of the classifier or
regression machine is to learn from this data so that, when subjected to
test input data which it has not yet seen, it can give a good estimate of
the corresponding output (e.g. class).

The layered perceptron is trained with training data. For the load fore-
casting problem, for example, input training data might consist of a
number of temperatures and the output is the forecasted load. Data
from the previous year, for example, can be used. Once trained, the lay-
ered perceptron, presented with the temperatures of the current day will
provide, as output, a forecast of the load for the next day.

Lecture 5 - Page 2
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r Classifiers Trained by Example

(Supervised Learning)

b = classifier = classifier
f S , i
Smith } Jones

= classifier

Jones

= classifier

Jones ™

= classifier

Smith
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Figure 3

The layered perceptron is an example of a classifier or, when the output
is continuous, a regression machine, which is trained by data. It is also
supervised. In the example shown, for example, the classifier is told
whether the input is a Smith or a Jones.

Notes

Notes Notes
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Recall

=> classifier = Smith

J
o T e R "@ =

Figure 4

Once trained, a good classifier or regression machine will properly
respond to zest data. For proper performance, the test data and the train-
ing data should be different, albeit from the same statistical source.

Lecture 5 - Page 4
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IN FEATURE SPACE, AFTER TRAINING:

concept

representation

misclassification in shaded region:

|

Training Set = {(X;,C)}
Ci=1X)
After Training, we have:
C=£X)
where f{-) denotes the classification operation.

N ——————————— 3 . > -—JJ
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Figure 5

Consider the two dimensional closed curve shown here. The solid line
represents the unknown concept. Within the curve we wish to classify
the ordered pair as one. Outside, the classification is zero. Based on
available training data, the classifier tries to learn the classification
boundary. The estimate of the classification boundary is the representa-
tion shown by the dashed curve. If the training data noise is
uncorrupted by uncertainty, we would expect the representation bound-
ary to approach the concept boundary as the cardinality of the training
data set increases. For a finite size training set, the resulting probability
of error is equal to the probability of false classification. This is equal to
the shaded area. '

The concept, shown by the solid line, is to be learned. The broken line
denotes the learned representation. The probability of error is equal to
the probability a point is chosen is the shaded area. If the training data
is chosen randomly, then a decrease in the probability of error also
requires a decrease in the probability of learning something new.

Notes

Notes Notes
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f
( Properties of a
.Good Automatic Classifier

+ Good accuracy outside of the training set.

+ The trained classifier gives new insight into the underlying
structure of the problem.

¢ Fast testing.

+ Fast training.

Classifiers & Regression Machines
o CART
& Nearest Neighbor Look-Up

+ The Layered Perceptron

g
Flgure 6

Do layered perceptrons perform better than other classifiers and regres-
sion machines? By comparison with some other high performance
classifiers and regression machines, the current answer is yes. Possibly
there is an underlying limit of performance placed on all classifiers and
regression machines that cutting edge algorithms are approaching. If
so, then secondary performance attributes such as training speed and
implementation ease must be addressed as primary.

Other artificial neural networks have fallen from favor in an application
sense because, quite simply, they are not competitive with other more
conventional approaches. The same question must be posed in regard to
the layered perceptron. Does the layered perceptron preform better than
other classifiers or regression machines programmed from examples
using supervised learning? Although abstract analysis of this question
may be possible in some cases, it must ultimately be answered in regard
to actual data. Comparisons of the layered perceptron have been per-
formed with classification and regression trees (CART) and nearest

Lecture 5 - Page 6




neighbor lookup for such problems as speech, power security assess-
ment and load forecasting and, in each casé, have shown the layered
perceptron to perform better in terms of classification or regression
accuracy. Both of these competing algorithms can be nnplemented

using parallel processing.

Notes

Notes Notes
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Example Decision Tree:

Systolic blood
pressure > 91 ?

Is age > 625 ?

yes \W
; - 1
cardta presamts |72
b R Risk
yes, no

( CART

yes

High
Risk

not
High
Risk

—_—
1952 - Layersd Perception - FLJ. s - 1

Figure 7

"

ao

not !
High i
Risk !

CART (Classification and regression trees) are decision trees that are
trained by example. In its fundamental form, the feature.space is ini-
tially divided into planes that were perpendicular to the axes. It is this
form of CART used here. In a higher order form of CART, these planes
can be oriented at angles. The higher order form of CART has given
preliminary results that are nearly indistinguishable in performance to
the layered perceptron. There also exist other high power paradigms,
such as projection pursuit to which the layered perceptron performance

must ultimately be compared.
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The Layered Perceptron

\
TR Cayered Farpirn - FL L WaAs -3 _‘@ > =
Figure 8 ,

Currently, the artificial neural network most commonly used is the lay-
ered perceptron. Although convention varies, the interconnects from
the input to the hidden neurons along with the hidden neurons consti-
tute a layer. The hidden to output interconnects with the output neurons
constitute a second layer. Thus, the perceptron shown here has three
layers. In our treatment, we do not consider the input nodes to be neu-

rons.

Layered perceptrons are trained by numerical data, in contrast, for
example, to expert systems that are trained by rules. The layered per-
ceptron operates in two modes; training and test. In the training mode, a
set of representative training data is used to adjust the weights of the
neural interconnects. Once these weights have been determined, the
neural network is said to be trained. In the test mode, the trained neural
network is activated by test data. The response of the layered percep-
tron should then be representative of the data by which it was trained.
Typically, the test and training data are different sets. As we will dis-

 Notes

Notes Notes
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cuss in the section on learning, training a machine to respond properly
to the same data on which it is trained is not learning, but is rather
memorization.

A layered perceptron can be used as either a classifier or a regression
machine. As a classifier, the layered perceptron categorizes the input
into two or more categories. In power system security assessment, for
example, the trained perceptron will categorize the power either secure
or insecure in accordance to the current system states. For regression
applications, the output or outputs of the layered perceptron take on
continuous values. Power load forecasting is an example of a regres-
sion application. Here, the output of the neural network corresponds to

the forecasted load.
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Relative MLP vs. CART Attributes:

Multi-layer Perceptron (MLP)
o Capability to fit arbitrary non-linear regions.
¢ Motivated by optimization theory.

CART
¢ Capability to fit arbitrary non-linear regions with piecewise
linear relationships.
¢ Motivated by sophisticated statistics.

R e[S _’C?tsy
Figure 9

L 2
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Notes

Notes Notes
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Example: Parity (XOR) Problem

The XOR is a classification operation that can not be solved with a
linear classifier:

\
\
\ linear
\ partition

e - — > -_JJ
©19%2 - Layerod Peroepiron - R J. Manks 10
] §
Figure 10 .

Linear classifiers cannot even handle a simple ' toy problem like the
XOR problem illustrated here. This was pointed out in the book Per-
ceptrons by Minsky & Papert as a quite negative attribute of the linear

perceptron.

Lecture 5 - Page 12
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oth the layered perceptron & cart can properly categorize the XOR.

1 Perceptron CART

Both of these classifiers were trained by exampie.

Wz-uﬂwm-um-n -’(\Q)ﬁ
SI
Figure 11

Both the layered Jperceptron and the CART classifier were trained by
example. Both give the correct answers. Note, however, that CART
gives a quite intuitive decision process.

Notes

Notes Notes
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Example Load Forecasting Problem

- Acmal Load
. CART Prediction
— MLP Prediction

Power

1600, 03 1 15 2 25 3
Day

¢ Lowest Emror Rate:
¢ CART = 2.86%
+ MLP = 1.39%

' _
T R = > =/
SI
Figure 12

In power load forecasting current and forecasted temperature and cur-
rent load demand is used to forecast the future power load demand. For
this problem, the worst perceptron performance was an error of 1.78%.
CART produced an error of 1.68%. These and other forecasting results
will be discussed in depth later in the course.
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Example Security Assessment Comparison

20

184

Reactlve Power in Megavars (Q)
o

8
6 -
4
2+
910-50510157,023303540
Real Power in MegaWans (P)
Lowest Error Rate:
+ CART = 1.46%
¢ MLP = 0.78%

The layered perceptron has also outperformed CART using real
training data in speech and forecasting.

— =/
mﬁum-m.m-u

Figure 13

In the power security assessment problem, the state of a power system
is determined to be safe or in jeopardy. Applied to this problem, the
perceptron again had a lower emror rate - 0.78% to 1.46%. For speaker
independent vowel classification, the perceptron again had a higher
correct classification rate than CART, 47.4% to 38.2%. Specifics will
be addressed more at length later in the course.
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The Error Rate: MLP vs. CART

-m ﬁ
~CART |

Eqror Rate

00000 2000 3000 4000 000 6000 7000 8000 9000 10000
Training Dasz St Size ‘

-
N t— S ——————— —
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Figure 14 E::

The layered perceptron consistently outperformed CART in test data
error as a function of data cardinality.
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Comparison of MLP &
Nearest Neighbor Classifier

Nearest Neighbor Classifier:
¢ Training Set = {(X;0)}
¢ TestData: Y
¢ Find X, € Training Set such that
porm [Y-X.]<nom [Y-X]VXe Training Set
¢ If (X,;C.), then classify ¥ as C.

Advantages of Nearest Neighbor Classifiers:
+ Easy to "train”,
+ Optimal classifier for maining data set-

Advantages of MLP:
¢ Fast recall
+ Performs better outside of training data

oo —
ST552 - Liywred Parcaptoon - R . Marks -15

Figure 15

L

Notes

Notes Notes
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Performance Comparison

Neighbor "2

Layered =
Perceptron

2

Figure 16

In comparison with nearest neighbor lookup, the layered perceptron
was shown to interpolate much more smoothly and with greater accu-

racy for the problem of power security assessment.
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Rosenblatt’s Perceptron
(1957

w=[wy wows .. wn]T
u=[u1 Uz U3 .. MN]T. u|=1

r(u) = sgn[ wT u]=sgn[ w; Uy +Wally+ oo + WNUN]

uj Wi

upz Wo

R Tz

L4 | —

. =
®
[ ]

Uy Wy

J

T -'@-'
Figure 17
Rosenblatt’s perceptron is a linear classifier. The sum of products of the

inputs times the neural weights is thresholded to decide between one of
two classes the neural network was trained to recognize.

Notes

Notes

Notes
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i Training the Rosenblatt Perceptron

1. Apply next input input.

2. If output is correct, go to step #1.

3. If output is incorrect, update weights according to
wiln+1]= wiln] - p r(w) %

4, Go to step #1

Rosenblatt proved convergence.

®,
T e T -‘@—' =)
Figure 18 .

“If it’s not broke, don’t fix it”. If the training data gives you the correct
result, don’t change the weights. If the perceptron does give you the
wrong result, the weights are moved towards the direction that will give
the desired resuit.
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Steepest Descent
(The Widrow-Hoff Algorithm)

Train without the sgn. For an input vector u with target output 2.

uy Wy

ug Wo

ug 3 r
[ ]
[ ]
[ ]

uy Wy

Define the error

E=1(Zwu -1

The error is to be made small. Using the method of steepest descent,
we take a step downhill. The step size is 7.

%Eumuhm-m.m} _’@-' ij

Figure 19

The training procedure for both the linear and layered perceptrons is
based on the Widrow-Hoff algorithm, or steepest descent. The error of
the neural net is a metric of the distance between what you have and
what you want. For a given data set, the error forms a surface in weight
space. At the current point in the weight space, we compute the steepest
slope and take a step in that direction thereby changing our location in
weight space. The process is repeated until an acceptably low error is
obtained.

The perceptron trained withe steepest descent is referred to as ADA-
LINE for adaptive linear neuron.

Notes

Notes Notes
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Descending...

“Downhill’ is in the direction of -8R
VE = 3Efzw, a + 3E/gws az + Ews a3 + .. + Erwy ay

where g; is the unit vector in the direction. The ith weight shoutd
thus be updated via

wy &= w; - 1) 3w;
where 7 is the step size.

Note, as in the Hopﬁeld network, we can get smck in local minima.

L

Figure 20

These are the equations describing steepest descent. The step size, M, is
a parameter of the search for the minimum. In more sophisticated appli-
cations, the step size adapts.
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) Perceptron’s Problem

The output is
r(u) =sgn{ wT u] =sgnf w; &y + w2 lig + ... + wyun]
The boundary of the partition is
Wity +wylta+ ...+ wyun=0

This is a plane. Thus, the perceptron can only classify data that is
linearly separable.

Figure 21

As these equations show, the perceptron is a linear classifier. It can only
classify data that is separated by a plane.

Notes

Notes Notes
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f1 n)
Perceptron Example
BoundaryforN=3 = wiu; +wat +w3=0
Uy Wi
ug e \ r
2 =S
The partition is a line. This classifier cannot handle the simple
exclusive or (XOR) or parity problem.
LI
13 | \\ ®
\ 2
\ linear
A\ partition
| \
| \ u
——— g
I \\ 1
.

Figure 22 . St

A Rosenblatt perceptron cannot perform a simple XOR.
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A linear classifier cannot categorize the points within a circle from
those without.

Other linear classifiers: ‘
¢ Linear synthetic discriminant functions
¢ Linear correlation classifiers
¢ Linear minimum mean square classifiers
+ Homogeneous alternating projection neural networks
¢ Perceptrons

—— —— > _J
©1992 - Laysred Parceptron - AL J. Marks <23
ﬂ%sy

Figure 23

There are a number of linear classifiers. All of them are constrained to
classifying linearly separable data and, therefore, cannot perform quite

simple problems.

Notes

Notes No; 22
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A solution: introduce nonlinearities into the perceptron. < !
Example:
+ Before
x "1
w. T
2 r
):’ f __’f_ —e
| |
1 73

¢ After, 22=22 + y2

=
R P Ty -.@_’

Figure 24

To make a linear classifier nonlinear, we simply reduce nonlinearities.
The functional link, an example of which is shown here, allows for
nonlinear classification. The degrees of freedom in the available sur-
faces become more diverse.
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Using this augmented version of the perceptron, we can now
distinguish the points inside a circle from those without.

Noniinear generalizations of the perceptron:
+ Functional Link
¢ The Layered Perceptron
# Recurrent
o Adaptive

L

\——
©1952 - Layared Porcoptn - B, J. Marts .25 _’@
Si

Figure 25
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The Layered Perceptron
The interconnect weights are adapted to the training data.

¢ Llayers,

+ The states of the /th layer
are in the vector s(L).

¢ The weights between the
jth neuron in the (l-1)st
layer and the jth neuron in
the jth is wifl).

¢ Question: for a given
training data set, how do
we choose the weights?

+ Answer: Use error back
propagation or some other
search algorithm to
minimize the resulting
error.

Figure 26

¢l
4
\\

The la)tered perceptron is another architecture wherein nonlinearities
can be introduced. The result is a classifier or regression machine that
can be trained by example internal to the architecture.
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Characterizing The Layered Perceptron

o

T A ?-—Laucput

i = input vector

0 = corresponding output vector

t = desired target output
Sy = sigmoid operator _ i
Subjects the sum of the inputs for each nearon at the fth level to a2 sigmoid
nonlinearity, s y(sum) = [ 1-+exp(-sum)) -1, Recall
ds/d(sum)=s(1-3)

W(l) = the matrix of weights between the [-ISt and [th levels.

0= Sy W) Sty WD) -.. S WD ... Speny WD) §

- -
s ——
N ETSE- Cayered Peroapion - L, s 27 -.@_’
Figure 27

In the forward modé, the output, 0, of a layered perceptron is a nonlin-
ear function of the input, i. The nonlinearity is in the nonlinear sigmoid
operation. The choice of the sigmoid nonlinearity allows easy differen-
tiation. This property is important in the error back propagation
algorithm. The vector operator S simply performs the sigmoid opera-
tion on the sum of the inputs at a layer.

Notes

Notes Notes
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8 Training Using Steepest Descent

Emor=E=1 || o-tl|2
=lp X, (0t R

Using stecpest descent, we wish to update the weights between the jth
neuron on the I-15t level to ith neuron in the {th level according to

will) = wy(l) -1 Epzwyl)
Use the chain rule of partial differentiation

AE 3wy = AEfasift) dillfgswmyl) ITULWY)

Define §;(h = s
Recall dulpmmy) = 5D L1 - 5Dl
Also milyaw) = awih) Iy wik skll-1)
=si(-1)
Thus Epgwgty= (D) (D [ 1 - 5D 55(-1)

Lﬁ T =
m-uy-‘dwm-n.im-za
Figure 28

The math behind the error backpropagation algorithm is quite eloquent.
Error backpropagation, based on the chain rule of partial derivatives,
allows training of the layered perceptron totally within the neural net-
work architecture.
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The Updating Procedure

- wyll) = wil) - Awyll); Awy(l) = Efgwfl)

Epwyn =M sih [ 1 - D) si¢-1)

wyfl) = wyl) - 1 (D) sD 1 - siDY s-1)
S0-1)

Question: How do we obtain d()?
Answer: Error Back Propagation

T
Figure 29

"

=

Two neurons are shown. The weight update between them is a function

of the two neuron’s states and &(/).

Notes

Notes Notes
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F

Finding 5,(/) by Back Propagating Error

For the /=L (output) level, 8;(L) is simply the difference between
what you have and what you want.

S(L)=3EpsyL)
= poyL)
=0i-t

Otherwise,
8, = 3Erasyl)

=% BERs+l) s+ )psumifi+1) dsumjfl+1)/as;(l)

The sum is over the states of the (I+1)5t level. Look at each term
separately.

Epser) = G+
s+ Lgsmoyi+l) = S{I+1) [1-s1l+1)]
asajileLasyty = asil) Xy wall+l) sdl)

= Wij(l-i' l)

\ e e —————

152 - Layered Parcetron - R, J, blarks 30

Figure 30 @
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Thus

Si(l)- {o,--t,- d=L
T UZ 8D s+ ) [1-s01+1) ] wy(l+1) ;1<i<L

The numerical value of the §;())’s can thus be computed directly from
the §(/+1)’s in the adjacent layers. The weights can therefore be
updated by back propagating the output error, ¢; - ¢;, from the output
to the input =

O Tayeet P LT s -‘%J > J
Figure 31 ' S

The values of §; at each layer can be computed from the ;s at the pre-
vious layer. The §; at the output layer is simply the difference between
what you have and what you want. Hence the name error back propaga-
tion. The training procedure is also referred to as the generalized delta
rule.

Notes

Notes Notes
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Backpropagation Summary

The update formula allows us to update the weights using steepest
descent using the formulas

wiill) &= wyl) -1 (D sH [ 1 - si(D] si¢-1)

oi-1; =L

d §;() = ==
and §(h {z‘iﬁj(lﬂ) Si+1) [ 1-5fi+1)] wyfl+1) ;1SI<L

3. 8(L) = g - t;

4. update first
layer’'s weights

2. compute o

& all s;(l)'s /(5. Evaluate the

P 51-(L—1) s
me;/// update 2nd

'“ layer’s weights

9’3‘3\ Evaluate the

d; (L-2)s
...ete

1. input iv i

J

R TR R T _‘@ >
Figure 32

We consider one training data pair, (i,7). For the input i, compute all the
neural states, including the output, 0. The value of §; is computed at the
output and, with the calculated states in the last two layers, the first
layer of weights is updated. The value of the §;’s are also computed at
this layer. The process is repeated, and the effect of the error is used to
update all the weights as it is backpropagated towards the input. The
next training data pair is then used and the updating process is repeated.
Iteration continues until convergence.

—~
S
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Momentum

The convergence of error back propagation is improved through the
introduction of a momentum term. Instead of

wi(l) = wyh) -1 D) siD [ 1 - siD) 5(-1),
we have
wi(D[n+1] = wy(l) + A wy(l)[n+1]
where |
Awillin+1) =1 () si(D [ 1 - ;D) 55(-1) + & Awyi(U)[n]

Parameters:
¢ 0L=momentum parameter

¢ 1 =step size

Use of momenturm assures the new step is somewhat like the last. It
imposes inertia on the search path.

S e TR T % > J
Figure 33

The performance of iterative algorithms is typically improved by the
introduction of relaxation parameters. In error back propagation, this is
referred to as the momentum parameter.

Notes

Notes Notes
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¢ Variations ¢

There are commonly used variations on the layered perceptron
architecture.

1. Interconnection between nonadjacent layers.

2. Feedback interconnects between layers
(recurrent neural networks).

C

L
e
C1932 - Layarsd Pocomptron - A, J. Marks 34

Figure 34 ,
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Error Backpropagation Attributes

ADVANTAGES

& Architecture .
Training is performed within the neural network strucmure.

There are other training algorithms, but they are not performed
internally to the neural network architecture.
¢ Recall .
Once trained, the layered perceptron can perform classification
and regression quite quickly.

PROBLEMS
¢ Training Time
Thousands of iterations can be required to train a layered
perceptron on a simple problem.
+ Weight Accuracy
Floating point precision is required for training.
¢ Layering
The above two disadvantages increase as the number of layers
increase.
¢ Parameters
There is. lile guidance’in the choosing of the momentum
parameter, step size and number of hidden neurons.

—— — > =)
1952 - Layored Pareaption - R J. barks 35 _’%sy i

Figure 35

Although back error propagation is the most widely used method to
train multi-layer perceptrons, it in not the only nor necessarily the best
approach. Indeed, most any algorithm that searches for a minimum can

be used to train a layered perceptron. Back propagation is attractive
because it can be performed within the neural network structure. The

following problems are specifically associated with the back propaga-
tion algorithm. They may, however, be associated with other search

paradigms also.

Training time. Thousands of iterations can be required to train a lay-
ered perceptron on even a simple problem.

Weight accuracy. Back error propagation requires high computational
precision. Each iteration can result in a change in bits of only low sig-
nificance. As such, training cannot be done on high speed, but low
accuracy, analog electronic or optical devices. Once trained, however, a
layered perceptron can be tested using low analog precision.

Notes

Notes Notes
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Layering. The required computational precision increases with the
number of layers.

Scaling. The scaling problem can be illustrated through the curse of
dimensionality. Specifically, for a problems of similar partition com-
plexity, the required cardinality of the training data set grows

exponentially with respect to the number of input nodes. Visualize, for .

example, a binary classifier with two inputs and a single output. In
order to classify points within a unit square to a certain accuracy,
assume that we require, say, 100 input-output data pairs.

Increase the number of inputs to three now requires classification
within a unit cube. For the same precision, we now have to train on 10
planes with 100 points for each plane. The required number of data
pairs increases to about 1000. Roughly, if P pairs are required in one
dimension, then P¥ pairs are required in N dimensions. We note, how-
ever, that correlation relationships among the input data can effect this
argument. Note that this problem is not specific to the layered percep-
tron, but is.applicable to any classifier or regression machine trained by

example.
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5 ¢ Opimality ¢

¢ The layered perceptron is commonly used as a detector.
¢ There exists a wealth of optimal detection tﬁeory.

¢ How does the layered perceptron compare to optimality?

¢ Caution:  Optimal detectors are typically parametric.
Neural nets are not.

R e LS "@ »
Figure 36

One important attribute of artificial neural networks is their ability to
perform detection. There exists a vast literature in optimal detection
theory. How does the neural network performance compare to that of
the optimal detector? Quite well! This, despite the fact that the neural
network does not know beforehand the parameters of the noise or sig-

nal.

J

Notes Notes
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Detection Problem

¢ M samples of random variables, {x, | 1 < n < M}

+ Q: Are the samples
 noise (X=0), or
* signal + noise (X=1)?

/%

7

Hypothesis test:

Hp : xq = np, 1€nsM
Hi:xy=s+n, 1sSnsM

np = noise, s = signal

— —.%J > '—JJ
W2 - Laywred Parcaptron - L4, Maks =37 SI
Figure37

Elementary detection simply asks whether the received signal indicates
a target is present or not. Detection theorists pose such a problem as a
hypothesis test. High impedance fault detection and security assess-
ment are example of detection problems.
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[ The o8 tradeoff is typically conveyed in a receiver
. operating characteristc (ROC) curve:

The B, curve is better than the §; curve.

The detector that maximizes B for a given a is

Neyman-Pearson Optimal

Figure 38

There is a trade-off in detection theory between the detection probabil-
ity, B, and the false alarm probability o If your detector says the target
is always present, then B = 1. The false alarm rate, though, can be poor.
Conversely, if the target is always announced as absent, the false alarm
probability is one, but the detection probability will be poor. The plot of
B vs. a is a receiver operating curve, or ROC. For a given problem. the
ROC curve which lies above all other ROC curve is referred to as Ney-
man-Pearson optimal. For certain detection problems, the Neyman-
Pearson optimal detector is known.

Notes

Notes Notes
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Neyman-Pearson Optimal Detector for Laplace Noise

Optimal detector structure:

— %

M
Telr [Ouu Threszold
i=1

{5} —m g (x) [

4,

8=

s

-vs

"~ The Neyman-Pearson g (x;) .

Note: Parametric knowledge of s and v is assumed.

J

N ————————
T —‘@-’
Figure 39

Noise with density ¥/2 exp(-y{n|) is Laplace noise with parameter . The
Neyman-Pearson optimal detector for Laplace noise for detection of a
signal s is shown. For the detection of detecting a signal in Laplace
noise, there exists no better detector.

A neural network is trained for the Laplace noise problem. How does it
compare to the optimal detector?
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Result: The layered perceptron performed nearly as well as
the optimal detector:
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Figure 40

Shown are ROC curves for various Laplace parameters for various
sample sizes. The ROC curves for the neural network detector are

nearly as good as the optimal detector in each case.

This result demonstrates that the neural network has a remarkable abil-
ity to perform in the absence of parameterized data. Note that the
optimal detector requires knowledge of the Laplace parameter and the

signal strength. The neural network does not.

Notes

Notes Noftes
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Other Layered Perceptron Training Techniques

Most other waining algorithms for the la}"m'ed perceptron  are
perforned external to the neurat network architecture. For M training

data pairs, we are attempting to minimize

E=1n T (0n-in)?
where
07 = Syt W(L) SNy W(L-1) . St WD) .. Syety W(I)in ;1 SnEN

For the given set of wraining dara pairs, we are searching through
weight space to find the the minimum error.

There exist numerous search algorithms.

T Cayeed P FL L W _.%) > —J
SI

Figure 41

The training data and the neural network architecture dictate an error
surface in weight space. Training corresponds to finding that point in
weight space where the error is minimized. There exist numerous tech-
niques to search for such a minimum. :
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Search Techniques for Training Layered Perceptrons
+ Error Back Propagation
¢ Conjugare Gradient Descent
Both the gradient and the curvamre are generated. The next

weight location is at the bottom of the resulting parabaloid.
Surfaces with quadratic curvature allow sesking of the minimum .

in one step.
o Random Search
# Genetic Algorithms

¢ Other

Figure 42

Notes

Notes Notes
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Search Techniques for Training Layered Perceptrons

¢ Error Back Propagation

‘¢ Conjugate Gradient Descent
Both the gradient and the curvature are generated. The next
weight location is at the bottom of the resulting parabaloid.
Surfaces with quadratic curvature allow seeking of the minimum

in one step.
¢ Random Search
¢ Genetic Algorithms
+ Adaptive Training

¢ Other

———— —O@—' =
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Figure 43

There are a plethora of techniques available for optimization. Error
back propagation is the most commonly used. It has the advantage of
being able to implemented totally within the neural network structure.

Given a neural network architecture and a training data set, however,
training a neural network simply corresponds to finding weights that
will give a minimum to the error function. The techniques listed here

have each been investigated as a technique to train a layered percep-
tron.

We will elaborate briefly on random search, genetic algorithms and
adaptive training. '
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( Random Search Methods

& Global Minimum Assured
oConverges in probability 1o global minimum!
e To good to be true?

¢ Easy to implement

¢ Requires very low degree of
compuzational accuracy

J

TR LR _’%_sj -
Figure 44

Good news: Random search has a fantastic property! It is guaranteed to
converge to the global minimum! Error back propagation can get stuck

in local minima.

Bad news: Convergence is guaranteed in probability, a very weak type .

of convergence. For example, the limit of the probability that you will
win the Washington state lottery as your number of attempts goes to

infinity is equal to one.

The other good news is that, in comparison with error back propaga-
tion, random search can be implemented with low accuracy

computation.

Notes

Notes Nd'res
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Generic Random Optimization (IMatays, 1965)

+ Problem: For a given f(x), find x¢ such that

fxg)<fix) V x

+ Procedure:

1. Initialize
k=0, x(})=0,bk)=0

2. Select random number, E(k) such that E{E(k)]=b(k)
3. fxEO+ER) <fxB) = X(k+1) =x(R)+ER)
FEEER) 2f(2(0) = x(F+1)=x(k)
4, b(k+1) = co b(k) + c) E(%) whefe 0<¢<1
+ For a successful step, c1 > 0, co+c1>1
& Otherwise, c1 <0, |cgtei<

_ 5. Setk= k+1 and goto step 2
Figure 45

Here is the mathematics describing basic random optimization.

For steepest descent (e.g. error back propagation), the idea is this. We
are standing on the error surface with the goal of locating the minimum.
We sense the direction of going downhill and take a step. The proce-
dure is repeated until the global minimum is, hopefully, found.

In random search, a step is taken randomly. If the new location is better
than the old location, you stay there. If not, you go back to the original
spot and take another step. There is a sense of momentum used, in that
the statistics of your step are a function of the result of your previous
successful step. Again, this approach guarantees convergence to the
global minimum with probability one.
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' Convergence :

voé>0,

lim Prob{jj(k)-xoll > 8] =0
k=0

@
A
x(k) \\\\

N

TN

T —’Cisy:'-ﬂ

Figure 46
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Use of random search technigues
to feed-forware neural networks

. Utilize feed-forward network structure with a non-linear
processing function (sigmoidal function for example).

« Objective function to be minimized = Error function.

« Network's weight vaiues will be updated (learned) based
on a random search techniques.

—

e
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Figure 47
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- ¢ Computational Accuracy ¢
In general, the accuracy required for random search is much less than
that required by error back propagation.
Example: Six Bit Parity

Backpropagation and Fimite Word Length Effect

Sum Squared Brror

Number of Iterations

.
ST e AIER T : _’%y > =
Figure 48

Error back propagation requires high computational accuracy. In most
cases, for example, training can not be performed with analog accuracy.

This is not the case for random search.

The six bit parity problem looks at whether the number of bits equal to
one is even or not. If even, a one is indicated. Otherwise, a zero results.
Shown here is the error resulting in training a layered perceptron when
the weight accuracy is limited to a small number of digits. For four dig-

its, the network does not converge.

Lecture 5 - Page 51




Notes Notes

Notes

Using random search training, convergence can occur ata relatively
low computational accuracy.

4_‘;Ra'ndm:uOptin:l‘m::il:ma.nt:il’jm're ‘Word length effect

4
4

Sum Squared Brror

992 - Layered «R J. Marks -49

Figure 49

4

Training a layered perceptron to recognize a six bit parity can be
achieved using a much lower computational accuracy. Convergence,

illustrated here, occurs with two digit accuracy.

(The random optimization used here is a more sophisticated version
than that described previously.)
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( ¢ Genetic Algorithms ¢

Problem: Maximize a merit function, J(X). The vector X contains the
variables that give rise to the mexit.

Genetic Algorithm Solution:
1. Generate 2 number of chromosomes for x in binary form.

2. Allow survival of the fittest by letting chromosomes of small merit
to die. Chromosomes with high merit may be replicated.

3. Perform chromosome mating.
4. Mutate the new chromosomes.

5. Go to step 2 and repeat until convergence.

J

TG Feae R LR S0 - "@ »
Figure 50

The field of Artificial Life is giving rise to numerous biologically
motived computational paradigms, including genetic algorithms and
evolutionary programing.

Genetic algorithms are an optimization technique used to minimize a
merit function, J(x). For neural networks, this could be 1/E where E is
the error function. Listed here is the iterative procedure for optimiza-

tion.

Genetic algorithms can be used to simultaneously determine the opti-
mal architecture for a layered perceptron (i.e. the number of hidden
layers and number of neurons in each layer) as well as the numerical

values of the weights.

Genetic algorithms have been applied to optimal capacitor placement
in power systems.

Notes

Notes Notes
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hrExample

J=64-(x-7)2;0<x<16

1. Generate a numnber of chromosomes for X in binary form.

x J
A (D 0 0 0 1 28
B 1 0 0 1 60
c (15 1 1 1 1 0
D (6 0 1 1 0 63
total 151

2. Allow survival of the fintest by letting chromosomes of small merit
to die. Chromosomes with high merit may be replicated.

RO
932 - Layered =~ R Mark <51
Figure 51

Chromosomes are strings of ones and zeros. When they are used as
neural networks, the chromosomes are binary strings corresponding to
the weights. The weights are placed end to end to form a very long
chromosome. Here, the initial chromosomes are selected at random.

In the first step, the merit of each chromosome is evaluated. Secondly,
we allow survival of the fittest. This process can be visualized using the
wheel-of-fortune shown on the bottom. The chromosome A has a 28%
chance of being chosen. Similarly, B has a 60% chance, C has a zero
chance and D has a 63% chance. The wheel is spun equal to the number
of chromosomes. In this case, it is spun four times. ’
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New Population:

X
0y
&)
(6)
(6)

O 0Ow»

X

ey
€))
(6)
(6)

o w>»

Mating results:

oo o

™

O O - O

o o - O
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3. Perform chromosome mating.
A mates to D and B mates to D.
(Chromosome split determined by random)

- OO

—_— OO

- — O O

OO et

It
)1
{0
|0

|0
]
11
[}

.
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Figure 52
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A new population results from the spin of the wheel of fortune. Next
comes mating. We will mate A with D and B with D. To mate, a random
point is chosen within the chromosome. The sections are then swapped
to form the next generation. We even give them new names. In this

case, they are (a, b, ¢ and d).

Notes Notes
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( 4. Mutate the new chromosomes.
(Probability of a flip = p)

a @ 0 0 0 1
b (®) 1 0 0 0
c 0 1 1 1
d (D 0 1 1 1

5. Go to step 2 and repeat until convergence.

2. Allow survival of the fittest by letting chromosomes of
small merit to die. Chromosomes with high merit may be

replicated.
before = after
x J
a (2 0 0 0 1 36
b (8 1 0 0 © 63
c 0 1 1 1 64
d O 0 1 1 1 64

L
T e AT “%sy >=)
Figure 53

Mutation: ‘With a certain small probability, each bit has a chance of
being changed (a one to a zero or a zero to a one). In this example, the
zero in the upper right hand corner is changed to a one.

The process is repeated, beginning with step two (survival of the fit-
test). At the bottom of the page is shown the merit figure calculated
after mutation.
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3. Perform chromosome mating.
a mates to ¢ and b matesto d.
(Chromosome split determined by random)

before

x

a (2 0 0 o0 1
b & 11 0 0 O
c (D o0 1 1 1
d o 1 1 1

after

a (1) o0 0 0 1
B @ o040 0 0 O
x D o 1 1 1
& (15) 11 1 1 1

4. Mutate the new chromosomes.
(Probability of a flip = p)

o (1) o0 0 0 1
B @ 0o 0 1 0
xr D o 1 1 1
§ a5 11 1 1 1

T TR TR S -‘@-‘ -
Figure 54

Shown are the results of the next iteration. The solution is clearly
approaching the solution of x = 7. Recall that the merit function is:

J(x) = 64— (x=7)2

'I_'hﬁs, x =7 is the desired result. In the last set of chromosomes, x =7 is
dominating the solution.

Evolutionary programming and genetic algorithms are highly promis-
ing paradigms in the field of computational intelligence in general and
neural networks in particular. _
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¢ Adaptive Training ¢

+ Applicable in the case where the training data source is a slowly
varying nonstationarity (e.g. 2 yearly increasing load in the load
forecasting problem). The weights of the layered perceptron adapt
to the nonstationarity.

# Desired arributes are
® still respond appropriately to previous training dara if those
data are not in conflict with the new training data and
® adapt 1o the new training data even when it is conflict with

' portions of the old data.

+ These are atributes of the adaptively trained neural network of
training algorithm of Park er.al.

— )
"
Flgure 55

In the training of a layered perceptron, an assumption of stationarity of
the training data is typically made. In a number of cases of interest,
however, the training data is a slowly varying nonstationary process.
Consider, as an example, training data for the load forecasting problem
generated in a developing urban area. Training data from five years
prior will be different in character to data more recently generated. In
order for the layered perceptron’s weights to adapt to a slowly varying
nonstationarity, such a procedure should comply with the two attributes
listed.

The adaptively trained neural network (ATNN) assures proper response
to previous training data by seeking to minimize a weight sensitivity

cost function while, at the same time, minimizing the mean square error

normally ascribed to the layered perceptron.
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“ Example

« 100 training data pairs (soli{i curve). o .
+ When a layered perceptron is trained with these points using error
back propagation, the response to test data is indistinguishable

from the solid curve. .

+ The 101st data point is introduced ot 0.5. It is 10% larger than the
i mmedmme;ed is shown by the dots.
The retrained Ia perceptron is shown by X

: ‘When trained us);ng the ATNN, the dashed line results as the

generalization.
038
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solid = old outpur;  dot = back propagation; dash: ATNN
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—g
Flgure 56 :

We illustrate the performance of the ATNN through an exemplar prob-
lem. Later, the procedure will be applied to the load forecasting

problem.

A total of 100 training data pairs were generated using the solid curve.
When a layered perceptron is trained with these points using error back
propagation, the response to test data is indistinguishable from the solid
curve. The 101st data point is introduced to 0.5. It is 10% larger than
the other datum there. When the layered perceptron is retrained using
error back propagation, the generalization is shown by the dots. When
trained using the ATNN, the dashed line results as the generalization.
Clearly, the dashed line has adapted to the new data point without a
resulting drift of the other data. Such was not the case for error back

propagation.
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¢ Simulated Annealing ¢

Problem: The error, as a function of the weights, may bave numerous
minima. Error bick propagation, and other search techniques, can
get stuck in local minima. How do we avoid this?

Example (Jeffrey & Rosener, 1986)
E(wiw)=(4-21wi2+wi3) wi2+wiwy+ (4 wi2-4) w2

There are six local minima in (-3<w 1 <3,-2< w2 <2)
= w2 _E(wiw)

0.089842 -0.712675 -1.03163
0089842 0.712656 -1.03163
-1.70361 0.796084 -0.215464
170361  -0.796084 -0215464
1.6071 0568651 210425
-1.6071 0568651 2.10425

T e ALV 5T "‘@ » —J
Figure 57

~ For a given training data set and layered perception architecture, there

typically exists numerous local minima in weight space. Many optimi-
zation techniques, including steepest descent, can get stuck in these
local minima. Simulated annealing can be used to avoid shallow local
minima and, ultimately, to find the global minimum. The contour plot

‘shown is that of a simple deterministic function with multiple minima.

Annéaling is a process used in cooling metals to assure maximum

strength.
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Solution: Use simulated annealing to shake the surface. The amount
of shaking is akin to the temperature. Lowering the temperature
according 1o an annealing schedule used in cooling metals.

.
O GriPe R L -’@—' =
Figure 58 .

Annealing is used is cooling metal to assure maximum strength. Simu-
lated annealing is similar. By adding noise to the weights during the
training process, and decreasing that noise during the training process,
we are, in effect, lowering temperature. If the temperature is lowered at
a sufficiently slow rate, the global minimum is reached. :
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+ Noise in Neural Networks ¢

Noise is used extensively in nenral networks to improve performance.

+ Use of noise in Hopfield neural petworks results in the
Bolzmann machine. Convergence to desper minima is
improved.

o Training with jittered data can improve the generalization of the
Jayered perceptron. .

+ Mutation in genetic algorithms acts as annealing. The solution
are kicked out of local minima.

+ Random search optimization assures convergence to the global
minimum in probability.

-’
Nt ——————————
e —'@—' =

Figure 59

_Intcrcst.ingly, noise plays an important role in many approaches to
improving the performance of neural networks. Paradoxically, accuracy
is improved through the use of randomness.
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Accelerated Learning Using Queries

The Basic Concept:

TR G R 0 -’%-sy > J

Figure 60

When a classifier or regression machine is trained by random example,
the more that is learned, the harder it is to learn (i.e. you can’t teach an
old dog new tricks). This is true of the multilayered perceptron. Indeed,
in the absence of data noise, additional learning takes place in a multi
layered perceptron only if new data is introduced that the neural net-
work improperly classifies. The closer the representation comes to the
concept, the smaller the chance that this happens.

To illustrate, consider the classification problem of learning the loca-
tion of a point a on the interval 0 < g < 1. We choose a point at random
on the unit interval. If it to the right of @, we assign it a value of one. If
is to the left of a, the result is 0. It is clear that, after a number of data
points have been generated at random on the unit interval, that a lies
somewhere between the rightmost 0 and the left most 1. Call this subin-
terval C. If we generate a new data point that does not lie in the
subinterval C, we have learned nothing new. If the new point lies in the
subinterval C, then we revise the subinterval and make it’s duration

Nofes'

Notes Notes
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shorter. Doing so, however, decreases the chance that the next data
point contains new information. That is, the probability decreases that
the new data point lies in the shorter interval. Thus, in this example, the
more we learn about the location of the point a, the harder it is to learn.
One approach to counteract this phenomenon is with the use of oracles

in query based learning.

Oracles: In supervised learning, each feature vector is assigned a clas-
sification (or regression) value or values. There is usually a cost
associated with this assignment, such as the cost of performing an
experiment, computational overhead or simply time. We can envision
this process as a presentation to an oracle the feature vector. For a cost,
the oracle will reveal to us the proper classification or regression value
associated with that vector. Note that, if we have deep pockets to pay
the oracle, there is no need to for a classifier or regression machine such
as the layered perceptron. Any feature vector we desire can be taken to
the oracle for proper categorization.

In many cases of interest, we have the freedom to choose the feature

- vectors that we present to the oracle. Ideally, we would like to present

those vectors to the oracle that, in some sense, will result in training
data of high information content. The motive is to effectively train the
classifier or regression machine with a low training data cost. Query
based training is concerned with the manner in which the training vec-
tors that will result in high information data are chosen.
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Queries Using the Layered Perceptron
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Flgure 61

Oracles can be a computer simulation or an experiment. Independent of
its form, the oracle must be paid to answer a query. A neural network
can be used in a query based system if the net can be inverted.

Notes

Notes Notes
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( Observation: Points close to the boundary have the highest degree of
confusion. Use conjugate pairs.

~ concept

©19%2 - Layersd Parcoptron - R, J. Marks 62
Figure 62

The binary classification problem is totally determined by the classifi-
cation boundary. Indeed, here is an obvious case where the importance
of data to the classification can be noted. Roughly, the closer a feature
vector is to the concept classification boundary, the more information it
contains.

One way to exploit this observation is through interval halving.
Between each feature vector classified 0 and each classified 1, there
exists a classification boundary. In many cases, taking the geometric
midpoint of these two feature vectors to the oracle will result in a clas-
sification point closer to the boundary. This is assured, for example, if
the underlying concept is convex.

To illustrate interval halving, let’s return to the problem of finding the
point a on the interval (0,1). After N randomly generated points on this
interval, we would expect (in the sense of statistics), that the distance
between the right most zero and the left most one is about 1/N. Using
interval halving, on the other hand, this is reduced to about 2V, The
acceleration in learning is indeed remarkable.

Lecture 5 - Page 66




(
Q: How do we find ‘points of confusion’?
A: Through inversion of the neural network.

¢ Training
Hold the data constant. Adjust the weights to give the minimum

output egror.

+ Inversion )
Hold the weights and the output constant (e.g. at 1/2). Adjust the
input to give the minimum error. Inversion can aiso be

performed to the gradient at a point of inversion.

Points of confusion can be generated from a partially trained layered
perceptron.” These points are taken to the oracle for clarification and
are introduced into the training data.

e )
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Figure 63

Another approach to query based learning is, in effect, to ask a partially
trained classifier or regression machine “What is it you don’t under-
stand?”. The response of the classifier or regression machine is taken to
the oracle for proper categorization and the result is added to the train-
ing data set. The classifier is then further trained and the process

repeated.

How might we apply this query approach to, say, a trained layered per-

ceptron classifier with a single output? Assuming that the output neuron
is thresholded at one half to make the classification decision, the repre-
sentation boundary in feature vector space is the locus of all inputs that
produce an output of one half. This locus of points corresponds to fea-
ture vectors of maximum confusion. In other words, when presented
with such a vector, the neural network is uncertain to the corresponding
classification. If there were a technique to find a number of these
points, they could be taken to the oracle to clear the confusion. The data
from the oracle could then be used for training data. The perceptron can

. Notes

Notes Notes
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then be retrained to yield a higher accuracy. The question is, how can
the locus of confusion be generated? The answer is through inversion

of the neural network. '

One technique for inversion of the layered perceptron has been pro-
posed by Hwang et.al. The approach is basically the dual of back
propagation. Instead of holding the training data constant and adjusting
the weights by using steepest descent, the weights are held constant and
the input is adjusted using steepest descent to give an output of one
half. Clearly, a number of inputs will give the response of one half.
Variations are imposed by changing the initial starting point of the
input in the iteration procedure. Use of inversion in query based learn-
ing has resulted in a significant improvement in accuracy of a trained
layered perceptron in comparison with a second neural network trained
with a randomly selected data set of the same cardinality. In practice,
data near (rather than on) the representation boundary was used to
accelerate training.
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Query based ANN Training

o Start with small random date-

o Obtain inversion data from partially trained net.

o Gradient computation.

o Obtain closed opposed pair clong the inversion boundary.
o Assess true concept of thc.;c query points.

o Retrain with original random data + query date.

=

e e————-
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Figure 64
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Advantages of Query Based Systems

« For randomly generated dara in a static classifier, the more that is
learned, the harder it is to learn (i.e. you can’t teach an old dog
new tricks). '

« In query based systems, you are asking the neural network ‘What
is it that you dom’t yet understand?". The neural network’s
response specificaily allows you you clear up the resulting points
of confusion.

\

Figure 66

Notes

Notes Notes
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Example

A two dimensional slice in a four dimensional classification space.
¢ Left: Training using 5000 randomly selected data points.
¢ Right: Training using 5000 query selected training data points.

2

T -’@-'
Figure 67

We have applied these techniques to power security assessment. Here,
an oracle for a single training vector query, can correspond to several
minutes on a super computer. Details will be presented later.
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Learning vs. Memorization
Nearest neighbor look-up is memorization. Consider two Gaussian

point sources.

optimal | - overdetermined
partition partition

=

Best result: Test data gives the same error as the training data. (Cross
validation).

©1952 - Layered Parcptron ~ R, J. Marks -68
Figure 68

There is a difference between training and memorization. A trained
classifier or regression machine can respond with confidence to a pat-
tern which it has not seen before. The ability to properly classify data
which has not been seen before is referred to as generalization. Memo-
rization, on the other hand, guarantees that, when presented with a
specific element in the training data set, the classifier will respond in
exactly the same manner that it was trained. In the case of memoriza-
tion, the response to data other than training data is not considered in

the paradigm.

The ability to interpolate among the training data does not necessarily
imply good generalization. We illustrate with an example from detec-
tion theory. Consider the two solid points shown here. The one on the
left is a square and the one on the right is a circle. We assume the these
are the centroids of 2 two-dimensional Gaussian random variables with
the same variance. Given some observation point, the minimum proba-
bility of error solution results simply from determination of whether the

Notes

Notes Notes

Lecture 5 - Page 73




Notes Notes

Notes

point lies to the right or the left of the perpendicular bisector between
the two centroids. Consider, then, memorization from the training data
shown by the hollow squares and circles. Since we require the classifier
to properly categorize all points, the resulting partition boundary would
follow the winding dashed line shown. Clearly, this line would become
more winding with the increase of the data cardinality. This observation
leads us to the conclusion that some trained classifiers should not gen-
erate a zero probability of error corresponding to the training data. This,
rather, is memorization.

Are there cases where the error corresponding to training data should
be zero? Yes. This is generally true when their is no noise or ambiguity
in the data. How then, might we determine whether the classifier or
regression machine has learned or memorized? The answer is that a
properly trained classifier or regression machine should respond with
the same error to training data as to test data. Note that this is a neces-
sary though not sufficient condition. If the error from the test data is
much higher than that from the training data, then, chances are, the neu-
ral system is over determined. In other words, the degrees of freedom
in the classifier or regression machine is to high. For the layered per-
ceptron, this is the number of interconnects which, of course, is related
to the number of neurons in the hidden layer. If the error from the test
and training data are similar, we are not guaranteed of proper training.
Note, for example, that any partition line passing through the midpoint

| between the two centroids would result in a classifier with the same

error for training and testing. Only the perpendicular bisector gives the
unique minimum error solution.
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Methods to Assure Good Generalization

1. Training with input jitter
2. Error regularization
3. Sigmoid scaling
4. Node pruning
5. Weight decay

6. Other

o e R TR "@ =
Figure 69

A well trained neural network must display good generalization. There
exist numerous methods to assure good generalization. Each attempts,
in essence, to match the classification capability of the neural network
to that of the data. In most cases, the degrees of freedom of the neural
network (e.g. its ability to generalize) are to great. The response of the
layered perceptron must therefore be smoothed in some fashion. The
techniques listed here are those most popularly used to do so.

Notes

Notes Notes
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TRAINING WITH JITTER
Instead of training with inputs (x,y), train with inputs (x+ny,y+n3)
where (n;,n3) is noise.

Generalizarion without jitter:

o y .
- p.q
o % .i' ”l bc @
N e . X tz
d neural network
L[] I .
& jiner PDF
<= Generalization with jitter

: _
TR G e Ve 70 _’%sy > =
Figure 70

Training a neural network with to many degrees of freedom can result
in poor generalization. The dashed line in the nonjittered generaliza-
tion clearly results from to much freedom in generalization. Adding
noise to the training data spreads the influence of each of the training
datum to a larger volume. The result, as illustrated in the bottom figure,
is a much smoother generalization.

The expected value of the effective target, in the case of jitter, is the
(multidimensional) convolution of the original target function with the
probability density function (PDF) of the jitter.
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( Sigmoid Scaling

After maining, replace the sigmoid function, s(x), with s(x/G).
& is 2 function of the weights of the network

[} 0.2 04 .06 0.8 1

N ——— >
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Figure 71

Better generalization can also be achieved using sigmoid scaling. The

neural network is trained as usual. After training, the slopes of the sig-

moids can then be scaled to acheive better generalization. Typically,
the slope of the sigmoid is decreased. The amount of scaling per-
formed is a function of the weights used.

Notes

Notes Notes
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Figure 72

Shown are examples of generalization using sigmoid scaling and jitter.
The effects of sigmoid scaling was chosen to give results similar to that
of jitter. In terms of training time, jitter typically takes much more
time. The network, in essence, must adapt to a much greater degree of

data cardinality.

Question: What is the best choice of 6? This can be determined by
cross validation (borate).
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¢ Better Generalization by Regularization ¢
Replace the error function, E, by

E+All gl

where A is a Lagrange multiplier and £ is some constraint. If
2(x) is the ouput of the neural network for an input of x, then, for

example,
= &/Sx

A controls the degree of smoothing.

TR G P AR T -.%sy > _J
Figure 73

The Lagrange multiplier, A, corresponds to the 6 encountered in train-
ing with jittered data. Using the method of regularization generally
takes training outside of the structure of neural networks. Backpropa-
gation can be performed within the neural network structure.
Imposition of regularation perturbs the math of error back propagation
to where it can no longer be performed by updating weights as a func-
tion to the states and parameters of the two neurons which they
connect. For small G, training with jitter gives results similar to that of
regularization with the differential constraint.

Notes

Notes Notes
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-
r + Better Generalization by Node Pruning ¢

Steps:
X Yy
\("}) < Train
iz

> = Evaluate Sensitivity

«= Prune Neurons With
Low Sensitvity

vz

e )
CTE - L2yarod Parcepiron - FL.L bans -74 -‘%Sj -
- Flgure 74 )

Node pruning attempts to match the degrees of freedom of the neural
network with that of the data. The neural network is first trained. The
sensitivity of the hidden nodes is then computed. The sensitivity is the
rate of change (partial derivative) of the output with respect to the hid-
den neuron state. If this sensitivity (slope) is small, then large swings
of the neuron state has little effect on the output. Thus, the node is not
necessary and can be deleted, or pruned.

Lecture S - Page 80




o

—
=

« Introduction to Learning
° Classifier Problem
° Properties of a Good Classifier
° Regression Machines
° Rtive Attributes
« Rosenbatt’s Perceptron
° The Widrow-Hoff Algorithm
° Perceptron Problems
« The Layered Perceptron
° Error Back Propagation
« Attributes
« Optimality
° Other Training Techniques
« Conjugate Gradient Descent
« Random Search
« Genetic Algorithms
° Adaptive Training
° Simulated Annealing
« Accelerated Convergence Using Queries
° Oracles
° Neural Network Inversion
« Learning vs. Memorization
° Generalization

+ THE LAYERED PERCEPTRON - Summary ¢

° Training with Jitter

° Sigmoid Scaling

° Regularization

° Node Pruning

« Summary
\ =
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Figure 75

Notes

Notes Notes
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( ¢ UNSUPERVISED LEARNING &
SELF ORGANIZATION +

« Unsupervised vs. Supervised Learning
+ K-Means Clustering

* Kohonen Feature Map

* Adaptive Resonance Theory

J

TR Uperind ey LT >
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Figure 1

The layered perceptron learns through supervised training. One is given
an input and a corresponding target. The neural network adjusts to
match the inputs with their targets. For unsupervised training, there are
no targets provided. The neural network must decide, without supervi-
sion, how the inputs are to be grouped. Such a procedure is referred to
as clustering.

Notes

Notes Notes
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¢ Unsupervised vs. Supervised Learning ¢

CLASSIFIER PROBLEM

+ Supervised: Train an automatic classifier on examples of
input/output relations:

Training Set = {X,0)}

«+ Unsupervised: Train an automatic classifier on examples of X
only.

« Note : When given the choice between supervised and
unsupervised training, the wise choice is usually supervised
learning.

BT G e LT W 2 _’@ > -—JJ

Figure 2

The categorization is not available to us in unsupervised learning. The
classifier must decide, when presented the data, to which class each
belongs. Since more information is available in supervised learning, it
should be chosen when an option exists.
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¢ K Means Clustering ¢

PROCEDURE

o N data vectors, { X1, X2, X3,.. XN}

o Choose K vectors at random. These are the first cluster
centroids. .

o Classify remaining data with centroid to which it is closest.

o Compute resulting cluster centroids.

o Relassify data with centroid to which it is closest.
Go to previous step and repeat until convergence.

PROBLEMS
e Assumes knowledge of K.
o Clustering dependant on initial choices.

%mmﬁg-ﬁu—n.a _’@—' J
Figure 3

K-means clustering is a very simple unsupervised leamning procedure.
An assumption of K centroids is made. The data is categorized in accor-
dance to these centroids. The cluster centroids are recomputed and the
procedure is repeated until convergence.
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Example:
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t2 2 t2 34
Data K=3 points
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1 111
- 222
22222
13 222222222
133333 22
P33
resulting clusters
=)
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Figure 4

' A set of two dimensional data is shown. Three data points are chosen as
the centroid and the resulting clusters evolve.
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+ Example: Alternate Initialization ¢
LgddiH#
# #E4
## ##
#3844 #44¥
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## - . 3§44 #4
tdd4
K=3 points
P11111 111111
1111 1 111
222 222
22222 22222
222222222 3 222222222
3333 33 33333 33
33 333
resulting clusters recompute centroids
-
w—

e -‘@—'

Figure 5

This alternate initialization, as shown on the next page, converges to
the same result as before. :

Notes

Notes Notes
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¢ Two Resuits ¢

111111 h12222
b 111 1 222
222 333

22222 33333
3 © 222222222 3 333333333
33333 22 33333 33
333 1333
result: same as before Different initialization

©1952 - Unscperviesd Learning - R & -6 —

Figure 6

The initialization on the right converges to the clusteri i
he | ' tering shown and i
significantly different from the previous results. i
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¢ Minimum Distance and Correlation ¢
The distance between two vectors, x and y is
Hx-y 112= (- 02+ (2= y2)2 + ... + (- N2

=(x-y)(x-y)=Hx 112+ | y ll2- 22Ty

where the correlation between x and y is

Ty=x1y1+Xy2+..+X3¥3

J
R T e KT -’@-—j

Figure 7

"In many classification problems, an observed vector is compared to a

library of vectors. In order to determine which of the library vectors the
observation is, the mean square distance between the vectors is com-

puted.

Notes

Notes Notes
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p—
r ¢ Matched Filtering ¢

Assume all of library vectors have the same energy.
[{ya 12=E :15ns<N
For a vector x, finding the minimum distance
ming || 2-yo [12=mina 1] 2 112+ [} 3o [12-25T 3a]

is the same as maximizing the correlation
maxy xT yo

-t
—
T -'@-'
Figure 8 ‘

If all library vectors have the same norm, they all lie on the surface of a
hypersphere. Since ||yn||2 is always constant, minimizing the norm is
the same as maximizing the correlation (inner product). This operation
is referred to as matched filtering.
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¢ Correlation ¢

The inner product operation is that performed by the simple neural

cL"s

operation shown below.
u; LS
ug wo
ug W3
- [ ]
®
. .
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P
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Figure 9
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The architecture shown is that of a simple perceptron. The use of the
inner product in a matched filter role is used in the Hopfield associative
memory, the perceptron, Kohonen’s feature map and ART.

Notes

Notes

Notes
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¢ Finds the organizational relationship among patterns.
® A two layer neural network.

¢ Kohonén Feature Map ¢

competitive layer

T e T TR —b%.sy >
Figure 10

Each node in the competitive layer corresponds to the centroid of a
cluster. The interconnects to a neuron in the hidden layer contain the
information about the location of this centroid.
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¢ Feature Map Procedure ¢

input vector
E=[ejezes..en]T

weights for ith node in competitive layer
Ui={upup vz ... uN T

Find nearest match from

min F; (uj; - €5)2
Note: If we normalize min Zj (uj; )2 = constant, then

min ¥; (ujj - €5 )2 =min [ X; (&j)2 + Z; (u5)2- 2 Z; (¢5;)]

is the same as

max{ Z; (e u;)]

Thus = minimum mean square efror
= maximum correlation (inner product)

e .
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Figure 11

The first step is to find that neuron in the competitive layer that is clos-
est to the input vector in the mean square sense. If the weights to each
of the neurons in the competitive layer are normalized, this is the same
as maximizing the correlation. In other words, the best match is deter-

mined by a matched filter.

Notes

Notes Notes
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( ¢ Feature Map Procedure - Cont. ¢

After finding the competitive neuron with the best match to the inbuL
identify the neighborhood about the neurom. This neighborhood

becomes smaller as training proceeds.
(N NN N NN NN NN
000000 OGOODO
000000 OO O®OO
00000 OGO OGOO®ES
o 0o0/0/00 000 OO
o0 0000 OGO OGOGS
o 0o0000 0O OGS OGS
oo 00000 OGO
20/000000 000
o0 00000COGOSOS
o0000OOGCOOOOES

If the dimension of the square is (2d+1) X (2d+1), one schedule is

d= do(1-%D

TR Urepenvaed Lo - L 0. Warfe & =» .J
Figure 12 , _’%.sy

We have identified the neuron in the competitive layer that has the best
match. A neighborhood around this neuron is specified. Here, we show
three boxes around the neuron that has been identified. As time
increases, the size of these boxes decreases. If T is the total training
time, a linear schedule is

d=dy(1-Yy)

where d, is the initial size of the box.
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{ ( ¢+ Cont. ¢
If a neuron in the competitive layer is in the neighborhood of the
winning neuron, then it’s weights are updated according to
A = 0 (e - i)
where the leaning rate, c, deceases with time. For example,
a=.04(1-4%7)

where « is the initial learning parameter.

g,
"
Figure 13

Once the neighborhood has been identified, the weights to those neu-
rons are updated. The weights are updated to make them look more like
the input. As time progresses, however, the weights should be more and
more difficult to change. Thus, the learning rate parameter is decreased
with respect to time.

Notes

Notes Notes
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F
¢+ EXAMPLE «

The two dimensional inputs, X and Y, are independent uniform
random variables on (0,1).

O1552 - Unsupavieed Laaming - R, . Marks - U

Figure 14

Each of the neurons in the competitive layer hastwo inputs - one from
X and one from Y. These two weights form an ordered pair. We expect
these weights to distribute themselves in accordance of the input proba-
bility distribution. :
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\ Here are the weights initially chosen at (12,1/2) plus a small random
variable. This is a unit square.

T T -'@_' =
Figure 15

The initial values of the net are chosen using a random number genera-
tor. The square is over the intervals (0,1)inbothX and Y.

Notes

Notes Notes
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.
After 2500 iterations:

e "%fy > =
Figure 16

This is a result we would expect after 2500 iterations. The weights of
the neurons in the competitive layer are beginning to adapt to the den-
sity of the inputs. The points are connected for display purposes only.
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[ After over 10,000 item!:ions. The partition has spread almost
uniformly over the square in accordance to the input distribution.

J

T T g AT T -’%y »
Figure 17

This is a result we would expect after 10,500 iterations. The net has
nearly converged. Note the edge effects. There are no input vectors out-
side of the square. Thus, there are no vectors there to ‘pull’ the graph to
the edge.

Notes

Notes Notes
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Kohonen maps can also converge inproperly, dependent on data
ordering and the initial states. For example:

, .
SI
Figure 18

This Kohonen map has clearly converged to an improper result. In
some applications, the incorrect result might not be as apparent.
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[ ¢ Nonuniform Probability e

In this example, the probability of choosing a test data point in the
upper right hand corner is higher.

—_— 2
192 - Uneupavieed Laaming - AL 4. M - 19 _.@_'
Figure 19 '

Here the net’s weights have converged to other than a somewhat uni-
form spacing. The reason is that the joint probability density function is
other than uniform. The density in the upper right hand square is larger
than that elsewhere. For a large number of neurons in the competitive
layer, corresponding to a large number of points on this graph, we
would expect that the density of dots to be proportional to the probabil-
ity density function there.
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¢ Feature Map Notes ¢

¢ Local lateral inhibidon.

o Uses
- Unsupervised classification
- Vector quantization

2

ST Trepariasd Coaring - L. a0 -‘%Sj "
Figure 20

A variation of the decreasing area of learning is the a windowing of the
region. One use of the Kohonen feature map is vector quantization.
Suppose we have N vectors of length L, and that many of these vectors
were similar. The feature map is used to sort these vectors into classes.
Then, when we wish to communicate a vector in class C, we broadcast
a C instead of the whole vector. At the receiver, a C is reconstructed as
a class C vector through use of a code book.
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¢ ADAPTIVE RESONANCE THEORY (ART)+¢

A paradigm for unsupervised learning.
The nevral network has learned N classifications, corresponding to
{ ¥1,¥2,--YN}. A new vector x is presented. We need to decide

 In which of the N categories does this new vector fit? Once
decided, the weights are updated to reflect this new information.

o If x fits in no category, another category is formed, yn+;-

I - Unsupervoed Lowwnng = R J. s -21

Figure 21

This neural network has been called ‘one of the most complex neural
networks ever invented’ by Maureen Caudill. She continues, “When
these [ART units] are implemented in a software simulation (such as
that provided by at least one of the available commercial simulators),
computational overhead is so great that the neural network is unaccept-
ably slow on anything short of a Cray.’ This has been the perception of
ART. The basic idea behind ART, however, is quite straightforward. We
here describe its essence.

Notes

Notes Notes
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+Initialization ¢
1. Assume that there are N categories, { y; , y2 » ... yn}. The

weights, {wy}, arc templates. The vector %, is input. The y,'s
are correlation coefficients.

W-Mm-aim-i ﬂ%-sy » -—U 7
Flgure 22

Assume that the neural network has already learned some pattern
classes. A new vector, X, is introduced. The neural net weights are used
to compute the correlation coefficients of the templates.
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+Finding the Best Match ¢

2. Lateral inhibition is applied at the Fy layer in order to find the
largest correlation coefficient, and therefore the best march.

 S——— —— > iJ
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Figure 23

The coefficients in the Fy layer are subjected to iateral'inhibitiori in
order to find the maximum coefficient.

Notes

Notes Notes
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F ' & How Good is Best? ¢

3. The winning neuron in lateral inhibition is the best match for to
the input To find out how close it is to the template, the
interconnects from the winning neuron are activated. If the nth
template is the largest, the closeness of the template and input is
measured as the mean square distance

d= Zm (Wem - xm)?°

Yy Jo Yn IN

J
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ST Unipervasd Lo - L1, Wis - 24 “@-’

Flgure 24

The winning category excites the interconnects back to the input layer.
The template is compares to the input and the corresponding mean
square distance is computed and compared with a threshold parameter,
L.

Lecture 6 - Page 24




— Notes Notes Notes

PN i
<.; ; [ + Do We Update Or Start a New Category? ¢

4. The distance d is compared to a threshold parameter, 1.
e If d < ¢, the vector X is used 1o update the interconnects
10 Yn. :
o If d > ¢, the classification yn. is initiated.

( /
7 S — > i&
C1952 - Unscpanessd Laaming - R.J. Mats - 25 SI

Figure 25

If this distance is small enough, the weights for the template are
updated. If the threshold parameter is exceeded, a new category is cre-
ated. If the threshold parameter is small, there will be a greater number
of categories.
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( . ¢+ ART1 ¢
¢ Input binary pattern vector X.

. 4 Compute the percentage of ome’s in common to the nth
template, w,, for all values on 7.
XTW,./( ” Wn ” +B)

¢ Use lateral inhibition to find the closest template indice, say, i.
Tw /(| w 4By 2xTw, /(ll w, |1+8)
If this number is to small, start a2 new cluster.

4 Compute the percentage of one’s in common to the template, w;.
xTw;/ Il x ||

¢ uxTw; /|l x|l <p=the vigilanceparame-ter, then disable
the ith cluster and look for the second best match.

¢ 1t xTw; / [l x || <p, then update weights. The new weights
are obtained through a logical and with the input.

= = )
1952 - Unmupervisad Laarning - R.J. Waris « 26 _’%Sj v
Figure 26

ART 1 is much more complicated than the model we presented.
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+ UNSUPERVISED LEARNING &
SELF ORGANIZATION ¢

« Unsupervised vs. Supervised Learning
« K-Means Clustering

« Kohonen Feature Map

« Adaptive Resonance Theory

mer— v
CIG - Urtsuporvised Loarrang - R J. Marks -27 .‘@-‘

Figure 27

(X

Notes

Notes Notes
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+NEURAL NETWORK
IMPLEMENTATION ¢

« Emulators

« Analog Electronic
« Digital

+» Optical

N : ﬂ
T T T -‘@-‘

FIghro 1

A set of relatively recent tutorials on artificial neural network imple-
mentation, edited by Robert J. Marks II, were published in IEEE
Circuits & Devices Magazine.

H.P. Graf & L.D. Jackal, “Analog electronic neural network cir-
cuits,” IEEE Circuits & Devices Magazine, vol.5, pp.44-49 (July,

~ 1989).

N.H. Farhat, “Optoelectronic neural networks & learning
machines,” IEEE Circuits & Devices Magazine, vol.5, pp.32-41
(September, 1989). '

L.E. Atlas and Y. Suzuki, “Digital systems for artificial neural net-
works,” IEEE Circuits & Devices Magazine, vol. 5, pp.20-24
(1989).

Notes

Notes Notes
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F ¢ Emulators ¢

The massively parallel neural network architectures are
simulated using conventional serial computation, Three options:

¢+ Write-your-own

+ Commercially Available

“IT IS A MYTH THAT THE ONLY WAY TO ACHIEVE RESULTS
WITH NEURAL NETWORKS IS WITH A MILLION DOLLARS, A
SUPERCOMPUTER, AND AN INTERDISCIFLINARY TEAM OF
NOBEL LAUREATES. THERE ARE SOME COMMERCIAL
VENDORS OUT,THERE WHO WOULD LIKE YOU TO BELIEVE

THAT, THOUGH.’

EBERHART & DoBBINS, NEURAL NETWORK PC ToOOLS:
A PRACTICAL GUIDE, ACADEMIC PRESS,1990.

¢ Accelerator Boards

- J
T W plecectaton - FLJ, ks - 2 _.@_'

Most neural network algorithms can be described with a few lines of
code. Commercial software is more user friendly and can display quite
impressive graphics. Some books, such as that by Eberhart & Robbins,
have accompanying share ware.
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» An Analog Neuron *

connections from '
other neurons connections to
other neurons

z z kz%\ neuron
input output

_/

1L

TR RN piermectaton - FL. Mk - 3 -‘@_'

Figure 3

The weights between neurons are the conductances shown. Summing
the inputs is performed using KCL. The neuron performs a nonlinear
operation. Both a soft sigmoid and a hard nonlinearity are shown. The
current output of the neuron is then connected to other neurons through

the conductances shown. :
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Notes

» Circuitry for Homogeneous Neural Network ¢

A five neuron Hopfield-type artificial neural network. The weights
in the neural network are specified by the conductances.

YYY

-
-
"
N

s R
R e

e
s

2

Sh—— =)
C1552 - NN irplersertation - Fi. . Warts - 4
”@

Figure 4

For a five neuron Hopfield neural network, there are 25 interconnects
shown here as conductances. Circuitry of this type has been used to
solve traveling salesman and associative memory problems. The com-
putational of analog neural networks lies typically between 10° and
101! interconnections. Board emulators have been built with intercon-
nect rates of up to 107 per second. A density of 4 resistors per square
jum has been achieved. This is4 X 108 resistors per square cm.,
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« Digital Electronic Neural Networks ¢

Higher precision at a cost of speed.

L=

ANN Architecture Learned Connections/Second
Warp Machine 1.7 x 107
TRW Mark I 45x105
TRW Mark IV 5.0 x 108
SAIC Delta 2.0x 106
HNC ANZA Plus 1.8 x 106
NETSIM 9.0% 107

Figure 5

T AT -'@-'

-
—

These figures, from Atlas & Suzuki, illustrate the relative speeds of
some digital systems. Their precision is required for some applications.

Notes

Notes Notes
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OPTICAL IMPLEMENTATION

‘Why Optics?

Optical Multipication & Addition
Optical Matrix - Vector Multiplier
Hopfield’s Model & the BAM
Optical Matrix - Tensor Multiplier
The Boltzman Machine
Alternating Projection Neural Networks

192 - NN Inplementaon - . J. Narts - 6

Figure 6

(\S
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F
Why Optics?

1. Massively Parallel
2. Speed: iterations can be performed at the speed of light.

3. [ntensive interconnect requirements: electrons can’t pass
through photons.

through electrons but photons can pass

4. The distributed fault tolerent nature of xieur'al networks

makes optics a good implementation fit.

T e ALV T :
Figure 7 . '

\\

Notes

Notes Notes
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Optical Multipication

Example: Moire Patterns
Consider a Roncki Ruling:

Approximate the horizontal slice bycos (W 1 x ) and the
skewed slice by cos ( W2 x).

)
o e »
Implementatin @
Figure 8 ‘

Analog multiplication can be performed in parallel in the time it takes
light to travel through a transparency. This will be illustrated with a
Moire pattern. In the Ronchi ruling shown, the fundamental frequency
of the two slices is different.
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(- —
) ¢ Optical Multipication +

When two Ronchi rulings are placed back to back, the ransmirances

multiply to give

2cos£ ©, x) cos( 0 x)=c0s[( @y + ) x]cos(( 0 -0)x]

The second term conrains a low frequency beat term seen below.

- =
S —— —
G132 - FN Wmplemertaion - R, 1. Mars - § SI

Figure 9

The beat frequencies observed in the Moire patterns illustrate that opti-
cal multiplication has been performed. The massively parallel
operation is performed in the time that it takes light to travel through
the transparencies.

Notes

Notes Notes
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Notes

f ("

+ Optical Matrix-Vector Multipication ¢

An inpwt array of sources is spread across a Iransparancy (e.g.
spatial light modulator or SLM). The light is collected along the
detector array. A matrix-vector multiply is performed.

\\
N .
NN N
A \
RN outputy
A
NN 87787 N
WM N
NN
RN

$§

N

e TR > =
C192- NN inplanssntation - R J. Marks - 10 -.%-sy
Figure 10

This simple optical processor can perform an optical matrix-vector
multiply in the time it takes light to travel from the source array to the
detector array. (The astigmatic focusing optics are not shown).
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+ Optical Implementation of the Hopfield Model ¢

o Neural feedback is performed electronically.
o The interconnects can be rounded to 1. The net still works!

thresholding
electronics

 ———— ._J_‘
R AT -'@—'

Figure 11

We are here letting optics do what it does best (parallel operations) and
the electronics doe what it does best (nonlinear thresholding). In order
for optics to perform a nonlinear operation, it must interact with matter.

Notes

Notes Notes
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Notes

¢ Optical Implementation of the BAM

Here, detectors and sources are interlaced at both the front and back
focal planes. :

e,
T —’%-sy v "J
Figure 12

Light is introduced from the source at the left. The detectors on the
light receive the first iteration. Adjacent to the detectors are sources
which illuminate as a nonlinear function of the incident illumination.
The sources produce light from right to left and the process is repeated
at the left hand combination detector-source array. Iteration is per-

formed until convergence.
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Notes

OPTICAL MATRIX - TENSOR
" MULTIPLIER

Operation:
G=HF

where G and F are mamices and H is a tensor.
Equivalently:

N M
8= 2 Lf, humpe; 1SpSP,1Sq<Q

nzl m=]

The tensor can be represented as a matrix of matrices.
Claims have been made of 108 to 1012 weights (matrix
elements) .

.
e T -’@ > —/
Flgure 13

The optical matrix-vector multiplier can be extended to a matrix-tensor
multiplier. This allows operations on matrices.

Notes Notes
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Figure 14

(— 3
Example:
G = 5 Lfpp Humpq; 1SPSP. 1 <¢<Q
=6, M=4, P=3, 0=4:
...... »
..... S o :
ot
S
ot
AR
a?
| o
e
e L
detector
array
=

A tensor can be expressed as a matrix of matrices. Optics can straight-
forwardly be fabricated to perform the shadow replication optical
processor shown here. Other methods have been proposed for the oper-

ation.

Lecture 7 - Page 14
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r Notes Notes Notes

An Output Display:

_
S T e R T -’%sy » —J
Figure 15 ,

A two-dimensional’array of the type shown can be processed by the
matrix-tensor multiplier.
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( ;
( +NEURAL NETWORK
IMPLEMENTATION - Summary ¢

+ Emulators

* Analog Electronic
« Digital

» Optical

mw-m.m-ﬁ -.%-sy - JJ
Flgure 16
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Application to Power Systems
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TN

(Why NN 2

o  No need for structured model.

o  Input variables can be easily added or deleted.

o  Correlated and uncorrelated input data can be utilized.
o  Parallel processing

o Nonlinear mapping

o Robustness

o  Fault tolerance

¢ Nonlinearity is included without a priori assumption of the model

e ete— —
€192 Agplcations 10 Power Sysiema/id. A. B-Shatami« 1

Figure 1

Notes

Notes Notes
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netj =3 Wji 0;)
i

 Neuron Structure

Oj=f(netj) =
1+expl

i
- (net’- + E’:j)
Oy ]

0= fnety) =
1+expl

1
- (net-’ + _o(_j)
O ]

N—————————————
©1932 - Applications to Power SystemaM. A. El-Sharkawd - 3

Figure 3

v

L

Notes

Notes " Notes
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Challenges Related to Applications

0  Relevant training variables.

0. Location(s) of relevant variables in the system.
o Size of training data.

o  Feature Extraction

0  Accuracy of tarining data.

o  Changes in system topologies and conditions.

o NN solution as compared to existing methods.

o  Applicability.

T T -’@—’ —j

Figure 4
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o0 Size of the NN (# of hidden neurons)

o Speed of learning

o  Feature Extraction

o  Learning vs Memorizing

0  Network Saturation

o Convergence; Accuracy of learning (False minima)
o Range of input data

o Curse of dimensionality

o Network Saturation

o Adaptive learning

 S—— — —
019 - A 10Power SysiemvALA. E-Sharkawi - 5 @

Figure 5

Ehallenges Related to NN technolog;

(-

Notes

Notes Note:
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[ Integrated Neural Network System

Training Data

i

Figure 7

Inverted Supervised
NN Trainin Query
O.0 O
O %JO (@]
O
CE7 A3 10 POWM SYX emaL A, E-Sharav - 7

N T

Notes

Notes Notes
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'TRAINING METHODS

o  Error-back-propagation (Non-adaptive)
o  Adaptive

o  Recurrent

o  Conjugate gradient descend

o Random search

Shm—
(2 owet SysiereshlL A, BSharkan - 8

Figure 8
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1
E=3 >k:(Tk-ok)2

Aij =.v 8E/6ij

Hidden to Output

Awkj =Y g Oj
g = (O -Ty) O (1-0y)

! Error-back-propagation

Input to Hidden

iji =Y Ej Oi
&= Oj - 0_]) Iy (g ij) :

v

S— ——
G192 - AppICATIons 10 Power SySIWEyN. A, BFSharkamd - §

Figure 8

DSI

(L

Notes

Notes Notes
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Noftes

(1]

rI.imitations of Error-back-
Propagation

Adaptive training can not be easily implemented
All data are used to update the network
Elimination of old data is done outside the NN

Siow Training

When new data is in conflict with old data (data inconsistency), the effect of old

data can not be removed unless the NN is RETRAINED without the old data.

Importance of data can not be easily weighted

mw-wwmmMAﬁ-hﬁ-m

Figure 10

R

J
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e) =5 [10) - ofi) |2

EQN) =3 I ) - oN)|2
E(N+1) = E(N) + e(N+1)

Objectives
1) WN+1) = W(N) + A W(N+1)

V(N+1) = V(N) + A V(N+1)

2) Adabtive condition

(Ada"ptive,ly Trained NN

Input-to-hidden

Hidden-to-output
AWN+1) <&
AV(N+1) <

N —————————
©1952 - Appiications to Power SystemsM. A. B-Sharia - 11

Figure 11

RS

IL

Notes

Notes Notes
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Notes Notes

Notes.

[

3) Drifting condition
If x(N+1) = x(i);
then
AW(N+1)=0
AV(N+1)=0

=12,

......

Adaptively Trained NN Continue)

v

L

N oo o ST R B

Figure 12
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Notes Notes Notes

( |
(Adaptively Trained NN Continue)

Objective Function
=17tz
=2
Subject to c-ZT2a=0; B={Z: -u<zZ<p
Where: Z=[AW AV|T ; Zmin—y T
a=[Up UAJT

AW Ug=VT (88%) AWT x(N+1)

b=WT(N) x(N+1),
Ua=f[b], fl.] is sigmoid

O & P S A T -’@"
Figure 13

(-
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o For dynamically varying systems with/without large data sets (Load
forecasting, security, etc. )

o Weights are automatically adjusted based on new data

o Effect of old and invalid patterns (data) are eventually and automatically
deleted (forgotten)

o No matrix inversion or other computationally intensive operations are
needed.

o Perturbation in the NN weights are restricted to chosen boundaries
o Global optimality can be obtained
o Adaptive training does not drift

o Data can be weighted based on its importance

T -’@-'

Figure 14

Advantages of Adaptively Trained NN

1L
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[Feature Extraction

Why Feature Extraction

may prohibit on-line applications.

In order to train a NN with reasonable accuracy, a sufficiently large data set
spanning the operating space of the power system is required.

Training the NN with such a large data is very time consuming process that

— ————
192 - Apphcation 0 Powe SySmad. A, Ehariami - 15

Figure 15

Notes

Notes Notes
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Feature Extraction

Advantages of Feature Extraction

o  Eliminates the curse of dimensionality.

o  Enhances the class separability.

classification accuracy.

o  Speeds up the NN training

0  Reduces the original pattern’ dimension while maintaining the required

v

"G95 - ApPICaions 1o PO SYSNTSAL A EXSharRam =16

Figure 16

%)

L
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Feature Extraction Techniques

- Class-Mean Feature Extraction

- Karhunen-Loe've Expansion

T T e T -%fy
Figure 17

v

" Notes

Notes Notes
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Notes

(CIaSS-Mean Feature extraction

Separation of a Single
Variable

Insecure

N T e T S KBS
Figure 18

L
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Class-Mean Feature extraction

0 A heuristic measure of inter-class distance

o Dominant indic& are selected

o Dimension of pattern vectors can be substantially reduced.
0  Assumes interclass distance:

Given a set of patterns, the pattern vectors for each of the two classes
(secure/insecure) occupy a distinct region in the observation space.

(-

e sttt
G932 - POplcalions 1o Fowes SysiemaML. A. B-Sharkn =13

Figure 19

Notes

Notes Notes
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(Class-Mean Features extraction

0 Let the j-th pattern with D dimensional normalized measurement vector be

Yj=[¥1j Y2 YDJIT
0  Let a function F provides a measure of the importance of each variable.

Im(s); - m@G);! .
Fi:@%:?i%ﬁ 0<igsD

where,
1 N(s) 1 N
m;(s) = Nes Zyij(s) my(i) = No =Yii®
J= J=l
N(s) N()
1 ) 1
GO =N 2 03 - mE)? Gii2=Ng X Oy -m)?
1 , j=1

o The elements of the pattern vector which give the highest mean separation
between classes are selected as key features.

-
1952 - AppIEONS 10 POWAF SYSOraN, A EFSrariam-20 _’@_’ -—J

Figure 20

Each pattern vector should contain all possible variables affecting sys-
tem security such as load powers, bus voltages, line flows, etc. With
feature extraction, the dominant variables are selected. By this method,
the dimension of the pattern vectors can be substantially reduced. For
example, assume a pattern j with D dimensional normalized measure-
ment vector, '

Yj = [ylj,Ystn-,yDj],T

Assume that the dominant number of variables is d<<D. The security
classification is then based on these d components. The heuristic notion
of interclass distance is used to accomplish this task. Given a set of pat-
terns with dimension D, it is reasonable to assume that the pattern
vectors for each of the two classes (secure/insecure) occupy a distinct
region in the observation space. The average pairwise distance between
the patterns is a measure of class separability in the region with respect
to the particular variable. The following function F provides a measure
of the importance in each variable.

_ m(s); —m @)
i |<>‘i (s).2+cri (i)zl

0<i<D
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Where:

1 N(s) -

m; (s) = NGy le" yij ()

N (s)

6, ()% = gy 3 (5 (8) —m; (5))?2
1

. 1 & .
m; (i) = N le y; (1)
N (i) |

012 = gy 2 Oy @ -m; ()2
=1

Subscript 's' stands for 'secure' while 'i' stands for 'insecure’. N(s) and
N() indicate the number of secure and insecure patterns

m is the secure or insecure training sets

o is the standard deviations.

Notes

Notes Notes
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f Algorithm

TRAINING DATA
7
=

e . J
1952 - Applcations o Powsr Sysiems/M. A. B-Sharkawi -21 —
S

Figure 21

The variables are ranked according to the following steps.

1.
2. Rank all F; in a descending order

3. _

4. Calculate correlation coefficients (CC) of all lower ranked variables

5.
6.

Calculate F; V. 0<j <D

Go to the 15t ranked variable.

with respect to the 15t ranked variable. The CC is defined as,

cC.. = E[(y; —m;) (Yj—mj)]

ij c;5;

0<j<D
Eliminate all lower ranked variables which have a ICCl > 0.9
Go to the next highest ranked variable and go to step 4.

The process is repeated until all the variables are ranked or discarded.
The resulting ordered list of variables are considered to be key features
in training the NN classifier.
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Characteristics of Class-Mean
Feature extraction

Advantages:
o0  Uses First order statistics (Mean); Fast!

o Feature variables retain their physical identity

0 Performed well when tested on voltage violations

Drawbacks:

o Does not work for concentric or near concentric data

measurements (thermal violation).

T e T —'@—'

Figure 22

0 Actual class separating may be due to a collective mﬂuence of the

L

Notes

Notes Notes
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,
[Karhunen-Loe‘ve expansion

o Original pattern:

[Xg Xi2 o Xial " 3 i=1,2,..,M
o Reduced pattern:
yit Yiz e yid]T such thatd <<n

loss of accuracy during classification

Ny e e Ty

Figure 23

o Reduction is successful when the new pattern is obtained without a significant

T
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f

KARHUNEN-LOE VE EXPANSION

o  For a muiti-class problem
o Original pattern of class (k)

Xi™ = [Xig Xiz coossveee Xin] " (i=12,.. My
o Pattern Mapping

n
x¥=Ty®eo®  (=12.....M0)
i=1
(Dj(k) is orthonormal basis function
yij(k) is a set of feature variables

The idea is to select matrix ® that result in reduced dimension Y as compared
to X, but without significant loss in accuracy during classification.

\ S »
T2 - FOrRcHon 1o PO STRBEVL A EFShara -2 -’@_’ —_—

Flgure 24
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KARHUNEN-LOE'VE EXPANSION

Error index:

o Mean square error &% for two class problem (k;-l or 2)

2
&= T EXEY- Y Yij(k) ‘Dj(k))T x®. 3 Yij(k) ‘I’j(k))} Py
ket jen jed

where Py is the a priori probability of class k.
J1 and J2 are the sets of variables to be retained

Figure 25

"O1992 - APPECEIoN 10 POWr SystamENA. BShATam 25 -‘@_'
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' KARHUNEN-LOE VE EXPANSION

.
Algorithm
INPUT DATA
| normalize Input ]
eature se ection l
KL ue?ngnsion
increase N 22"’““9
di';n% su’on testing
?el cted
eatures

TR Aerors e Fo S R B2 :J
Figure 26

Notes

Notes Notes
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Characteristics of Karhunen Loe’ve
expansion

o Reduction is based on the second order statistics (variance)
o Linearly combines the original set to form a set with better separable features

o Produced best results when the attributes of the original set are correlated (as
in case of thermal violations)

o  Gives a priori indication of the classifier performance.

Demerit:
0  New features are not physically meaningful

(L

Neetee——————————————————
e ﬂ@—'

Figure 27
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Combination of Class-Mean and
Karhunen Loe ve expansions

Figure 28

Notes

Notes Notes
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(preliminary Studies)

Regression

Selected Applications

[Classification

Load forecasting
Transient Stability
Synchronous machine modelling

Harmonic load identification
Alarm processing

Static security assessment
Dynamic security assessment

Contingency screening
Harmonic evaluation
Adaptive Control

|Combinatorial Optimization

Topological Observability
Unit Commitment
Capacitor Placement

v

Nt ———————————————————
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Figure 29

DSI

\L

Lecture 8 - Page 30




TN

Electric Load Forecasting

o —— - —O@—b ij
1932 - Appications to Powet Systems. A. E-Shaskawi-30
Figure 30 :

Notes

Notes Notes
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 Electric Load Forecasting

o For optimal energy interchange between utilities
o0 To reduce fuel costs

o To influence important operation decisions

Power dispatch
Unit commitment

Maintenance scheduling.

_ Figure 31

S —— —
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Conventional Load Forecasting
Methods

o Time Series Analysis:
Accuracy is low

Numerically instable due to computationally cumbersome matrix
manipulations.

Weather information is not incorporated
o Conventional Regression:
Linear or piecewise-linear representations for the forecasting function is used

Accuracy is dependent on the functional relationship between the weather
variables and electric load

Functional relationship must be known apriori

Cannot handle non stationary temporal relationship between weather variables
and load demand.

—
Figure 32 '

Forecasting electrical load in a power system with lead-times varying
from hours to days, has obvious economic as well as other advantages.
The forecasted information can be used to aid optimal energy inter-
change between utilities thereby saving valuable fuel costs. Forecasts
also significantly influence important operations decisions such as dis-
patch, unit commitment and maintenance scheduling. For these
reasons, considerable efforts are being invested in the development of
accurate load forecasting techniques. '

Most of the conventional techniques used for load forecasting can be
categorized under two approaches. One treats the load demand as a
time series signal and predicts the load using different time series anal-
ysis techniques. The second method recognizes the fact that the load
demand is heavily dependent on weather variables. The general prob-
lem with time series approach include the inaccuracy of prediction and
numerical instability [42]. The main reason for instability is not consid-
ering the weather information which is known to have a profound
effect of load demand. Numerical instability is caused by computation-
ally cumbersome matrix manipulations.

The conventional regression type approaches use linear or piecewise-
linear representations for the forecasting function. The accuracy of this
approach is dependent on the functional relationship between the

Notes

Notes Notes
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Notes Notes Notes weather variables and electric load which must be known a priori. This ( =
approach cannot handle the non stationary temporal relationship
between the weather variables and load demand.
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Load Forecasting Challenges

0 Relevant variables (temperature, clouds, humidity, winds, etc).
o  Features extraction

o Location(s) of relevant variables.

o0 Accuracy of weather forecasting.

o Size of training data.

o Changes of season.

o Changes in weekly load patterns.

o Accuracy of extrapolations (cold snap, heat wave, pickup loads)
o Thermal inertia '

o Load growth

O AR P ST K Bt T) —’@-‘ =

Figure 33

Notes

Notes Notes
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 Neural Network Approach

Challenges
o Size of the NN @# of hidden neurons)

Features extraction

-]

Learning vs Memorizing
Speed of learning

Convergence

S @ o o

Accuracy of learning (False minima)

Range of input data

-]

o Curse of dimensionality

o Adaptive learning

(L

o2 - Applcation 10 Powe STRAAL A, B-Srarian- 34
DS1

Figure 34

NN can combine both time series and regression approaches to predict
the load demand. A functional relationship between weather variables
and electric load is not needed. This is because NN can technically gen-
erate this functional relationship by learning the training data. In other
words, the nonlinear mapping between the inputs and outputs is implic-
itly imbedded in the NN.
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( Objectives:

To forecast electric load patterns/variables based on forecasted temperature

o AM and PM peaks of each day

o Average load of the day
o Hourly load ( 24 - 48 hours lead forecast )

0 Weekdays and weekends

o Holidays

-

T e o SIS A DS 3%

Figure 35

Notes

Notes Notes
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Training Data

o  Training Set Number 1: Nov. 1, 1989 - Jan. 25 1990
Temp: Actual and forecasted hourly temperature at Sea-Tac airport

Load: Actual hourly system load

o  Training Set Number 2: Winters of 1986-91
Temp: Actual and forecasted hourly temperature at Sea-Tac airport

Load: Actual hourly system load

SR A o ST A BT _‘%y »
Figure 36
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Test Case 1: Forecast of peak daily
load (Training set #1)

o Training Data:
Day
Actual peak load of the day
Actual temperatures of the day (average, maximum and minimum)

0 Testing
Average error of 6 day testing is about 2%

———— @
R S e

Figure 37

8

Notes

Notes Notes
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Test Case 2: Forecast of average
daily load (Training set #1)

o Training Data:
Day .
Actual average load of the day

Actual temperatures of the day (average, maximum and minimum)

o Testing
Average error of 6 day testing is about 1.68%

Figure 38
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( .
(Types- of Neural Networks for Hourly

Forecasting

Structure I:
o NN1: Wednesdays, Thursdays and Fridays

o NN2: Mondays and Tuesdays

o NN3: Saturdays and Sundays
Structure II:
[} Ohe NN per hour of any weekday

OTO2 - AppRcaBons o Powet Sy temalL A. E-Shatamt=39

Figure 39
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(Test Results of Structure |

Hourly Forecasting, Training set #1, Error-Back
Propagation

INPUT DATA

hour (k)

Actual temperature at time k

Actual temperature and load 48 hours earlier (k-48)

Actual temperature and load 49 hours earlier (k-49)

Actual temperature and load 50 hours earlier (k-50)

Actual temperature and load a week earlier (k-168)

OUTPUT DATA
Actual load at time k

N o ——————
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Figure 40
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Test Results of Structure |

Load (MwW)

R ——— _J
R T S ST -'@-* —J

Figure 41

The NN approach proposed in [42,54] uses previous load data com-
bined with actual and forecasted weather variables as inputs, and the
load demand as the output. As an example, to predict the load at the Kkt
hour on a 24 hour period, the NN uses the following input/output con-

figuration.
NN inputs : k, L(24,k), T(24,k), L(m,k), T(m,k) and Tp(k)

NN output : L(k)

where,
k - hour of predicted load
m - lead time

L{x.k) - load at x hours before hour k

T(x,k) - temperature at x hours before hour k
Tp(k) - predicted temperature at hour k

During training, the actual temperature T(k) is used instead of Tp(k).
Different NNs are trained to predict the load demand at varying lead

Notes

Notes Notes
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times. The results are reported too be better than those obtained through
some of the existing extensive regression techniques.

One of the test results presented in [42] is given for brevity. Five sets of
actual load and temperature data were used in the study. Each set con-
tained data corresponding to 8 consecutive days as shown in table 1.
Out of each set, data corresponding to the six weekdays were selected.
No weekends or holidays were included.

Table 1: Test data sets

sets Test data from
Set #1 01/23/89 - 01/30/89
Set #2 11/09/88 - 11/17/88
Set #3 11/18/88 - 11/29/88
Set #4 12/08/88 - 12/15/88
Set #5 12/27/88 - 01/04/89

From [42] courtesy of IEEE, © IEEE,1990

The NN was trained to forecast the hourly load with one hour lead time.
Table 2 shows the forecasting error(%) of each day in the test sets. Each
day's result is averaged over a 24 hour period. The average error for the
5 test sets was found to be 1.40%.

Table 2: Error(%) of hourly load forecasting with one hour lead time

days set #1 set #2 set #3 set #4 set #5

day 1 *) 1.20 141 1.17 *)

day 2 1.67 1.48 ™ 1.58 2.18
day 3 1.08 *) 1.04 *)  1.68
day 4 1.40 1.34 1.42 1.20 1.73
day 5 1.30 141 (*) 1.20 ™)

day 6 ) 1.51 1.29 1.68 0.98
average .| 1.35 1.39 1.29 1.36 1.64

(*: predicted temperature, Ty, is not available)

From [42] courtesy of IEEE, © IEEE,1990
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Error Table
(Error-back propagation technique)

o 100k iterations

o 5 days testing
Number of hidden Neurons

2HN 4 HN 7HN
Max error (Actual Temp) 6.56 6.588 7.43
Max error (Forecasted Temp) 6.61 6.545 7.36
Min error (Actual Temp) 223 2.369 2.65
Min error (Forecasted Temp) 2.28 339 2.75
Ave error (Actual Temp) 4.7 4.72 5.684

4.75 4.81 5.789

Ave error (Forecasted Temp)

e —b@—' =
Figure 42 '
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Figure 43

ﬁLimitations of Error-back-
Propagation

o Adaptive training can not be easily implemented
All data are used to update the network
Elimination of old data is done outside the NN

o Slow Training

0 When new data is in conflict with old data (data inconsistency), the effect of old
data can not be removed unless the NN is RETRAINED without the old data.

o Importance of data can not be easily weighted
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-
(Test Results of Structure |

(Training set #1) Adaptive NN

Perictmance of Adaplive NN (2=ny, 3ctval T)
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Figure 44
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Figure 45

Effect of hidden Neurons
StructureI (Training Set #1)

ST oo 1o Fowes STen it A TS AT _’@-’
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Error Analysis (Training Set #1)

4 Hidden Neurons

Identiticotion frrors { [aclual-an)/aciuwal)
=s

Jokg 1ciotive error
dot . aoily overoge
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o
=

-00
0.0 ’-
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Figure 46
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Error Table
(Adaptive training NN)

o 80k iterations

0 S days testing

o Actual temperature

1 HN 2HN
Max error 4.34 3.15
Min error 1.25 . 1.36
Ave error 2.34 2.27

Number of hidden Neurons

7HN
S5
1.66
2.83

20 HN
6.61
1.803
4.87

(L

v

Ty ey e
Figure 47

2

Lecture 8 - Page 50




SN

o

(1]

[}

WEffect of Holiday

Adaptive NN is not designed for holiday forecasting

Holiday Data should not be used in training
Adaptive NN is capable to filter the effect of holiday data if used in training

e
o192

= -‘@*

Figure 48

.

Notes

Notes Notes
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(Test Results of Structure i

Hourly Forecasting, Training set #2, Error-Back
Propagation

INPUT DATA

Year _

T(k): Forecasted temperature at hour k

[T(k) - 60]2

Tmax: Maximum temperature of previous week

[Trnax - 601

Tmax2: Maximl;m temperature two days earlier .
[Trmaxz - 601

Tmin: Minimum temperature of previous week

[Trnin - 601>

Figure 50

N —————————————————————
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Test Results of Structure Il (coninue)

INPUT DATA (Continued

Tmin2: Minimum temperature two days earlier
[Trmin2 - 6012

Sum of temperature at hour k of the previous 7 days
Load at hour k of the previous 7 days

Load at hour k of previous day

Load at hour k two days earlier

Load at 9 AM of the current day

OUTPUT DATA
Load at time k

N e — e ——————————————
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Figure 51

1L

Lecture 8 - Page 54




N

—)

'Test Results of Structure Il

(Training set #2), Forecasting Contest
(Courtesy of Puget Sound Power and Light Company)

or (%)

Figure 52

Notes

Notes Notes
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Notes Notes Notes

Test Results of Structure Il (continue)

Totot Ceror (%)

;

e ———————
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Figure 54
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(Test Results of Structure ll (continue)

Totol Ereor (%)
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Figure 55

The figure shows the total error calculated over the weekdays hours.

- The error is an average of the aggregated values. Lloyd is a forecasting

done by a Puget Power expert. Queri-A is the best commercial software
for load forecasting among several codes being tested by Puget Power.

NN1 is referred to Structure I while NN2 is for Structure II. NN2 is
another structure similar to Structure II except that one NN is forecast-
ing three hours. Note that Structure II is designed so that a single NN is
to forecast only one hour.
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Comments

o NNis an excellent choice for electric load forecasting

o One network cannot handle
all week days
all weather conditions

holidays and regular days

o Features extraction is essential for accurate load forecasting

J

L— S— P— W
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Figure 56

The results show that NN can be trained to predict the load demand by
among its training patterns. However, one network cannot handle all
cases where enough and sparse representation exist in the training test.
For example, a NN trained to predict electric loads of normal weather
conditions, may not do accurate prediction during extreme weather
conditions such as cold snaps and heat waves. To predict electric loads
under these conditions, a separate NN may be needed. Also the holi-
days cannot be accurately predicted. It is also worth mentioning that the
above restrictions are also applied to all existing techniques.

Notes

Notes Notes
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Transient Stability/Dynamic
Security Assessment

-
3573 owet STRSTIALA. B S -57

Figure 57

Transient stability is determined by observing the variation of 8, s' as a
function of time in the post-fault period. Power system is said to be
transiently stable for a given disturbance if the oscillations of all rotor
angles damped out and eventually settled down to values within the
safe operating constraints of the system. For any disturbance, the tran-
sient stability of a power system depends oh three basic components:
the magnitude of the disturbance, the duration of the disturbance and

the speed of the protective devices.
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-~ Notes Notes Notes

= FSecurity Assessment General
Challenges

o SAisa task that has to be performed periodically at control centers

o Frequency of SA is based on the available computer resources and the level of
operational sophistication of the particular utility

o0 SA s time consuming and computer intensive,

o Faster and efficient techniques to perform contingency screening and
contingency evaluation must be developed for on-line applications

-
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Figure 58
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1]

( SA Specific Challenges

Selection of relevant security indices (current, energy, voltage, combination,
etc)

Changing topology of power system

Dependency of security indices on System Topology
Monitored locations for security indices

Number of contingencies

Diverse system response due to contingencies

Wide range of power system operating conditions
Size of training data.

Accuracy of training data

Features Extraction

Accuracy of interpolations and extrapolations

-
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Figure 59
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(Dynamic Security Assessment

Methods

A) Frequency Domain

System stability is determined by examining the eigenvalues of the system
model

System is stable if all eigenvalues have negative real component

B) Critical Clearing Time
System Stability is determined when the fault clearing time is less than the
critical clearing time

¢) Time Domain Transients

System stability is determined by examining the variation of key indices as
function of time in the post-fault period

System is stable if system oscillations of all rotor angles damped out and
eventually settled down to values within the safe operating constraints of
the system

-

Figure 60

Notes

Notes Notes
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Dynamic Security Assessment -
Methods

D) Direct Methods

System stability is determined by examining the variation of the system
kinetic energy after a disturbance

System is stable if Kinetic Energy balanced can be restored

e a—— I —_—
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:

Flgure 61

Lecture 8 - Page 64




A) Frequency Domain Approach
of Dynamic Security

e e —’@—’
Figure 62
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Notes Notes
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 Modular NN Concept

o A single NN approach may be an enormous computational exercise for large
power systems;

Large number of attributes

A wide range of operating conditions.

o  One way of reducing the dimensional complexity is to use a modular approach
Security problem is divide into smaller tasks
Topology is reduced

Features extraction is implemented

" CI9E- Fopications 1o Powe STRETIAL A, DSk -63 _.@_'
Figure 63
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Dynamic Security Scenario

Small signal stability analysis
Power system model is linearized around a selected operating point
stability is predicted by evaluating system's eigenvalues

linearization and eigenvalue analysis must be repeated for all topologies and
operating conditions

o On-line DSA may not be possible

e o e o

J

N e———
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Figure 64

In dynamic security, or small signal stability analysis, the power system
model is linearized around a selected operating point and the corre-
sponding system eigenvalues evaluated to predict system stability. For
a power system to be evaluated at all possible operating conditions, the
linearization and eigenvalue analysis has to be repeated for all the
cases. This is a time consuming process that poses a challenge to per-
forming dynamic security assessment (DSA) on-line. Thus NN may
provide a potential avenue toward achieving this objective.

Notes

Notes Notes
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Problem Description

————— . 2
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o Power system is divided into a study system and external systems.

0 Exfernal systems may be replaced by dynamic equivalent models

0 The model of the enﬁre power system is developed using small signal analysis.
o System eigenvalues are computed and assessed at various operating conditions

o Linearized state space model of the power system can be considered as an
oracle for NN training.

dX
at = AXgUg) X + B(X(,Ug) U

where X is system state and U is input vector

o Computation of the eigenvalues of a large system is a time consuming process
that inhibits the on-line applications

Figure 65

In dynamic security assessment, the power system stability is evaluated
via frequency domain analysis. The power system is divided into a
study system and an external system. The external system can be
replaced by a dynamic equivalent models while the study system is
modelled in detail. The model of the entire power system is developed
using the small signal analysis. The eigenvalues of the system are then
computed and assessed at various operating conditions [16]. The linear-
ized state space model of the power system can be considered as an
oracle for NN training. The linearized model is derived by combining
the set of state and algebraic equations listed in section 6.3 for all gen-
erators in the study area of the power system. The composite linearized
state spaces equation take the form,

drX
where X = X,+tX and U = U,+1U are the state and input vec-
tors for the system. The stability of the system is determined by
calculating the eigenvalues of the system matrix A (X,,U;). Any
eigenvalue with a non-negative real component is unstable mode of

operation.

The stability of the power system as described above is heavily depen-
dent on the operating condition and topology of the power system. The
computation of the eigenvalues of a large system is a time consuming
process that inhibits the on-line applications.
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Test Case Extended IEEE-8 Bus System

———

o 10 buses (b), 16 lines, 2000 unbiased patterns (1), 30 attributes
o 2000 patterns, each with 30 attribute

S————————————
e —'@—'

Figure 66
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Notes
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hTest'--Case

Training Phase

o  For simplicity, 3 independent input variables were selected as inputs to the NN:
real and reactive outputs of one generator and complex power output of
another generator.

o Al other parameters were assumed to be constant.

Retrieving (testing) phase

0 2-dimensional dynamic security contours of P,Q are obtained by fixing S at
arbitrary values

o The NN generated contour compared well with the actual contour obtained
using the oracle,

GO - Appcaions ¥ PO SYNTINL A DSTaram 67 _’@-. —J

Figure 67
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(Sample of test results
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Figure 68

Training data for dynamic security assessment can be generated off-
line by using an oracle. Training data can also include measurements of
previous assessments. A multi-layer perceptron is trained using back-
propagation to learn the dynamic security status with respect to a
selected set of variables U within a defined operating space [16]. A test
example of 9 bus, 3 generators was used to validate the method. For
simplicity, 3 independent input variables were selected as inputs to the
NN. They were the real and reacti uts (P,Q) of one generator and
complex power output (S = jPZ + Q2) of another generator. All other
parameters were.assumed to be constant. In the retrieving (testing)
phase, 2-dimensional dynamic security contours of P,Q are obtained by
fixing S at arbitrary values. The NN generated contour compared well
with the actual contour obtained using the oracle [16].

Notes

Notes Notes
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rComments

o The dimensionality of the security contours is a function of the size of the
system under investigation.

o In a high dimensional operational space where a combination of correlated and
uncorrelated variables forms the input space, the development of a NN based
system for assessing dynamic security is a challenging problem.

(-

Figure 69
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B) Critical Clearing Time Approach
for Dynamic Security

Figure 70

Notes

Notes Notes
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Figure 71

Figure (a) shows a small test power system. It has 6 buses with 4 gener-
ators and three loads. Since transient stability analysis is focused on the
generator dynamics through a few cycles following the fault, certain
simplifying assumptions can be made. All generators are replaced by
the corresponding internal emfs (E) behind a transient reactance (X
Each load is replaced by a fixed admittance based on the pre-fault
power flow. These assumptions are combined with generic circuit
reduction techniques, to reduce the topology of the original power sys-
tem to one that is shown in Figure (b). This reduced power system

forms the basis for transient stability calculations.
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Critical Clearing Time (CCT)

o Fault Scenario
1. Transmission line fault
2. Faulted line is isolated

3. After fault is cleared, line is reclosed

remains stable

If the fault is cleared and line is reclosed before the (CCT), the power system

L

s I ——
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Figure 72
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System Equations

System admittance matrix,
v - ( Y, Y, J

Yu Y,
Elimination of Load Buses

G+jB =[Yj' + (diag%)"]"

where
Yi = [Y; -Y, Y'Y, ]

T —’W J
Figure 73

Subscripts g and 1 stand for generator and load buses respectively. The
modified admittance matrix is corresponding to the reduced power sys-
tem where all load buses are eliminated as shown in Figure b.
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(Equations of Rotor Dynamics
M; (d25;/d1?) + D; (@5y/dt) + Pe; = Py (i=1,.Ng)

dgy/dt = o

Pg; =E12EJ[GU cos(&i-Sj) + Bijsin (Si-aj)]
i

. =
C1952 - Appilcations 10. Synens/il. A, E-Shurkawi-74 v
R

Figure 74

M;D; - inertia and damping constants of the jth generator

Pe; - electrical power output of jth generator
Py - mechanical power input to the it generator
E; - equivalent field voltage behind the transient reactance X'

GyjByj - real & imaginary parts of the reduced admittance matrix

&; - rotor angle of the jth generator relative to a synchronous
reference

d; - angular velocity of jth generator relative to the same
synchronous reference

Ng - number of generators in the system

The first two equations are the differential equations governing the
rotor dynamics of the ith generator. The third equation gives the electri-
cal power output of the i~ generator calculated by applying Kirchoffs

Laws.
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The case study involves a transmission line fault. It is assumed that the
line section is first isolated and then successfully reclosed. There exists
a threshold parameter known as the Critical Clearing Time (CCT)
where if the fault is cleared before this time, the power system remains
stable. However, if the fault is cleared after the CCT, the power system
is likely to become unstable. Hence, stability analysis may involve the
calculation of the CCT for a given contingency.
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{Challenges in Calculating CCT

Several variables affecting the CCT
Prefault loading condition
Prefault topology of the system (Lines, Caps, etc.)
Excitation settings of Generators
Location and duration of the disturbance

Time domain method is computationally extensive

Frequency domain method is computationally extensive and not valid for large
disturbances

Direct method is limited By their restrictive assumptions

2

e
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Figure 75

CCT is a complex function of pre-fault system conditions, disturbance
structure and the post-fault conditions. There are two commonly used
methods for calculating CCT, namely 1) Numerical integration and 2)
Liapunov-type stability criteria [53]. The first method involves exten-
sive time domain simulation of the power system while the scope of the
second method is limited by its restrictive assumptions. Due to the
many possible pre-fault operating conditions and types of faults, com-
putational effort needed to assess the CCT for each of these scenarios is

prohibitive.

Notes

Notes Notes
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( Transient Stability/Dynamic Security -

Neural Network Approach

o Computation of the CCT is treated as a regression problem: pre-fault system
variables are used to predict the CCT for the corresponding fault

o Inputsto the NN

o5 = 3i(tp) - Soltp)
1
where &g = M—QZMI T My = 3 M;
i i
Pm; - P
ONG +i = 'mn'fﬁ NG+ = (Pmj - PR)2M; i=1,..Ng

o  Output of NN is the CCT for the given fault and topology

J
TR AepReaors  Powr SyemaL A B Shara TS —J
Figure 76

The estimation of CCT can be looked at as a regression problem where
pre-fault system parameters are used to predict the CCT for the corre-
sponding fault. A multi-layer perceptron was proposed to be trained
using back-propagation to learn a set of input attributes and the corre-
sponding CCTs for a specified fault under varying operating conditions
[53]. ' '

The inputs to the NN (o) for a specified contingency are selected as
given in the above equations. :

M is known as the center of mass while & is the center of angle. Py
corresponds to the reduced electrical power output of the jth generator
during fault initiation. This change from the steady state electrical
power Pg; is brought about due to the change in network impedance
caused by the fault and also due to the effect of the transient reactance

of the generators.

The NN input quantity given by the second equation gives a measure of
the rotor angle deviation at the instant of fault clearing. The input quan-
tity described by the third equation is a measure of the individual
acceleration energy of the generators of the system accumulated during

the fault [53].

The output of the NN is the CCT corresponding to the given contin-
gency under the described inputs.
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Training NN

o Three-phase fault
CCT is obtained by repetitive numerical integration of the post-disturbance
system equations for

Different reclosing times
Different loading levels
Same fault location

Two different topologies

o 30 training patterns
o Back-error-propagation method

—
*—W—- w—
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Figure 77

During generation of training data, CCT for the corresponding input
quantities is obtained by repetitive numerical integration of the post-
disturbance system equations using different reclosing times. The CCT
would correspond to the maximum time for reclosure after the initial
isolation of the line in order to maintain synchronous operation.

For a specific test of the algorithm, a 3-phase fault was simulated at
location shown in figure (a). The CCT was calculated for the case
where the fault was initially isolated by tripping the line and the system
subsequently restored by reclosing the line. 30 training patterns were
generated for a combination of different loading levels and two differ-
ent base power system topologies. The trained NN was used to estimate
the CCT for the same type of fault under varying load levels and vary-
ing topologies. The estimated CCT was compared to the analytical
value calculated through numerical integration. Close comparison of

results was reported.

Notes

Notes Notes
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Notes Notes Notes

Test Results of Transient Stability

Comparison of actual and NN estimated CCT's

Example Load level {p.u) | Actual CCT (sec)| Estimated CCT
. (sec)
1 0.65 0.59 0.59
2 0.85 0.49 0.49
3 0.95 0.46 0.45
4 1.15 0.39 0.39
S 1.45 0.33 0.33

J

Figure 78 )

The table shows a sample of the actual and NN estimated CCTs for a
three-phase fault on one transmission line. The fault clearing strategy is
line reclosing. The NN is trained and tested for different load levels
which are obtained by perturbing all loads between 0.6 and 2.0 around
a selected nominal value.
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Comments

o  The NN was able to generalize between different network topologies.

o  The merit of the NN in calculating the CCT is limited to the fault scenario and
the model of the generator.

——— )
e #@—»

Figure 79

The ability of a NN to generalize between different network topologies
was observed. This adaptability was facilitated by providing training
data corresponding to couple of different base topologies. This is a key
idea that could be applied to training NNs for problems with time vary-

ing power system topologies.

So far, the merit of the NN in calculating the CCT is limited to the
above mentioned fault scenario and the restrictive second order model
of the generator. Simulations are also restricted to simple 3-phase line
faults. The ability of the NN to predict CCT under more complicated
fault scenarios is not clear. The training data should be produced by
using a higher order generator model to include other transients caused
by the presence of damper windings and excitation systems.

Notes

Notes Notes
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-
(Concept of Time Domain Transients

o Off-line transient analysis
o Selected indices are computed
Weighted and aggregated currents in transmission lines
Voltages at specific buses
Indices are selected according to operators' recornmendations
o One or two cycles of simulations are used

o Decision on system stability is made by experts

Figure 81

S ———————
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Notes

Notes Notes
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Notes Notes

Notes

Test Systems

o Ontario Hydro study system
o Two sets of indices:
28-index
54-index
o Indices include postfault data
o Two basic tests:
- Contingency and Topelogy Specific NN
- Tapology Specific NN

v

TR N o P o SR A B
Figure 82
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Notes Notes Notes

p
Contingency and Topology Specific
NN
o One NN per contingency
o 63 patterns for each contingency
o Each pattern is composed of 28 indices
o All patterns are normalized between 0 and 1
o Patterns vectors are randomly shuffled
o Patterns are split into two sets: training and testing
o Training set has 50 patterns
o  Testing set has 13 patterns

L
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Figure 83
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Notes Notes

Notes
S

 Evaluation of Trained NN

False Alarm: When a true secure operating point as described by the oracle, is

o
classified by the NN as insecure.

o  False Dismissal: When a true insecure operating point as described by the
oracle, is classified by the NN as secure.

o  False misclassification: A measure for false alarm plus false dismissal

L .
- m— T =

Figure 84

Lecture 8 - Page 83

,/ .,




N

Information

Input neurones =28
Output neurones =1
Hidden Layers =1
Hidden neurones =8
Random seed =4.098

7
NN Structure and Training

Training patterns = 50

Testing Patterns =15
Learning Step  =0.05
Momentum =0.05

Iteration Sweeps = 1000

V2 - Aopications 10 Powir Syniesadd, A, E-Shashawi-85
Figure 85
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Notes

Notes Notes
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Nofeé Notes

Notes

(i

Sample of Testing Results

&lﬁ@i@ 1 (0] False Alarm False D;gu'ial_
1 33 9 17 4 0 0 0 1
2 24 8 26 5 0 0 0 0
3 12 5 38 8 0 0 0 0
4 50 13 0 0 0 0 0 0
§ 4 12 1 0 0 0 0
6 45 11 s 2 0 0 0 0

Figure 86
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Notes Notes Notes

Topology Specific NN

0  One NN for 6 contingencies
o 378 patterns
Each pattern is composed of 28 indices

0
o Al patterns are normalized between 0 and 1

‘o Patterns vectors are randomly shuffled

o  Patterns are split into two sets: Training and testing
o  Training set has 300 patterns

o0  Testing set has 78 patterns

L
1992 - Poplcations 10 POWet SySUmINL A. B-Sharia -87 _.%sy v _J

Figure 87
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Notes Notes

Notes
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Output neurones =1
Hidden Layers =1
Hidden neurones =38

Random seed

=4.098

‘NN Structure and Training
Information

Input neurones =28

Training patterns = S0
Testing Patterns =15
Learning Step = 0.05
Momentum = 0.05

Sample of Testing Results

Iteration Sweeps = 1000

Secure (0) Insecure (1) False Alarm False Dismissal
Training | Testing | Training| Testing | Training| Testing | Training | Testin
216 50 84 28 0 0 1 0
B
1952~ 30 POwsr Systerns/. A, B-Shariawi-88 -.%-Sy > —
Figure 88
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Figure 89

¢ . . )
Example of Computational Time
SYSTEM CONFIGURATION
SUN SPARK station 330, 25 MHz, 15.6 MIPS, 8 K RAM
NN DATA
Input neurones =28 Training patterns = 50
Output neurones =1 Testing Patterns =15
Hidden Layers =1 " Learning Step  =0.05
Hidden neurones =38 Momentum =0.05
random seed =4.098 Iteration Sweeps = 1000
COMPUTER TIME
User training time=467.4sec  System training time =3.5sec
User testing time = 0.2 sec System testing time =0(?)
=

7 N

Notes

Notes Notes
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Notes Notes

Notes

Topology Specific NN

0  One NN for 6 contingencies

o 378 patterns )

o Each pattern is composed of 52 indices

o All patterns are normalized between 0 and 1

o Patterns vectors are randomly shuffled

o  Patterns are split into two sets: Training and testing
o Training set has 300 patterns

o Testing set has 78 patterns

Nt e ———————————
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Figure 90
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R

Input neurones =52
Output neurones =1
Hidden Layers =1

Hidden neurones =3

NN Structure and Training
Information

Training patterns = 300

Testing Patterns =78

Learning Step

Momentum

=0.05
=0.05

Randomseed  =4.098  Iteration Sweeps = 2320
CPU Time = 57.6s
Sample of Testing Results
Secure (0) Insecure (1) False Alarm False Dismissal
Training] Testing | Training| Testing | Training| Testing | Training| Testing |
210 56 90 22 2 0 2 0

Figure 91
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Notes

Notes Notes
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Notes

)

(1]

o

' Topology Specific NN With Feature
Extraction |

One NN for 6 contingencies

378 patterns

Each pattern is composed of 52 indices

All patterns are normalized between 0 and 1

Class-Mean Feature extraction is performed on all indices

Indicés with correlation coefficient greater than 0.9 are eliminated
Retained indices are 24

Patterns vectors are randomly shuffled

Pattéms are split into two sets: Training and testing

Training set has 300 patterns

Testing set has 78 patterns

O o o ST R BT

l

.2

Figure 92
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Information

Input neurones =24
Output neurones =1
Hidden Layers =1

Hidden neurones =3

( |
NN Structure and Training

Training patterns = 300

Testing Patterns =78

Learning Step

Momentum

=0.05

=0.05

Random seed =4.098 Iteration Sweeps = 5000
Sample of Testing Results
Seciire (0) Insecure (1) False Alarm False Dismissal
Traini Testing | Training| Testing | Training| Testing | Training| Testing
210 56 90 22 1 1 0 0
Figure 93

Notes

Notes Notes

Lecture 8 - Page 97




36 o8ed - § AMoYT

/)

$6 ainbi4

25 ¥ TS oo apERSy 2510

SUIUIRIIG AdUdsUnuo)

SOJON

SOJON

SSJON



[ Contingency Screening

0 A contingency is an abnormal event (such as faults)

o  Contingency screening is an approximate method for selecting a critical set of
potentially damaging events among a large set for more accurate analysis.

o The evaluation of the operating constraints due to a contingency is called
security assessment

| N
——— =

Figure 95

A contingency in a power system, is an abnormal event (such as faults)
which could be potentially damaging to power system components.
Contingency screening is a relatively fast and approximate method of
identifying whether a contingency may result in a violation of any of
the operating constraints of the power system. The evaluation of the
operating constraints due to a contingency is called security assess-
ment. Contingency screening helps select a critical set of potentially
damaging events for more accurate analysis.

Contingency selection, in its simplest form, is dealing with forming a
list of contingencies which may result in steady state voltage or thermal
limits violations in the post contingency power flow condition.

Notes

Notes Notes
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Nofeé Notes

Notes

Problem Formulation
V. e,

line 1

line P

Fhet i _ B
Qnet i Gik+ J Bik
V&

(-

1952 - Appications 10 POwar SyNamsid A. D-Shavkem - 76
Figure 96
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Basic Equations

Pnet i= Vi Z Vk [Gik cos eik + Bik sin eik]
k

Qpeti = Vi Z Vi [Gjy sin 6 - By cos 6]
k

(1

@

Piine j= Gik (V2 - Vj Vi cos 8j) - By V; Vi sin Oy 3)
Qiine j =~ Bik (Vi - V; Vi cos 8p0) - Gy V; Vi sin 6 @)
Stinej = VP linezj + l:'linezj @)
6 =6;-6,and Y=G + jB

 S——————
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Figure 97

-5

=

Ppeti» Queti are the net real and reactive injections at i™ bus. The volt-
age magnitudes (V) obtained by solving equations (1) and (2) and line
flows (Sjpe ) obtained from equation (5) constitute the so called secu-
rity variables, which are the variables that decide the status of the
system security. Any magnitude violation of these variables will result

in an insecure system.

Notes

Notes Notes
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Notes

Il Post-contingency security limits

V,2V(A)2V,

5. iS00 } Z, 2Z2(A)2Z,

o  z()) denotes post contingency value of the i* security variable corresponding to
A* contingency.

o If all inequalities are satisfied the system is labelled secure under the A*
contingency.

= =
CT92.- Appications 1o Power SYSWRAM, A. - Shackami - 98 _.@_'

Figure 98
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(
rContingency Screening

o Solving system equations for each credible contingency is time consuming and
computer intensive.

o Contingency screening must be fast and approximate method (Distribution
Factor and Performance Index)

A _

Figure 99

z;(A) denotes the post contingency value of the ith security variable cor-
responding to A contingency. If all the above inequalities are satisfied
the system is labelled as secure under the Al contingency.

Solving equations (1) through (5) for each credible contingency is time
consuming and often computer intensive. To obtain a fast and approxi-
mate method for selecting key contingencies is known as Contingency
screening. Contingency screening can be performed by several meth-
ods, among them are the Distribution Factor and the Performance

Index.

Noftes

Notes Notes
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Notes Notes

Notes

Distribution Factor method
o Post-contingency security variables are calculated i:y
SA) = S(0) + HQ) AY(D)
o  AY(M) corresponds to the change in a network due to the Ath contingency:
a change in network admittance due to a transmission line outage;

change in real power due to a generator outage; etc.

o  H(R) is the sensitivity of the line flows due to system variations

N A SR S R — —’@4J
SI

Figure 100

where AY()) corresponds to the change in a network due to the A% con-
tingency. This could be either a change in network admittance due to a
transmission line outage or the change in real power due to a generator
outage. H(A) is known as the transfer matrix whose elements are a set
of factors which represent the sensitivity of the line flows to the above
variations. Therefore, these partial derivatives can either be line outage
distribution factors or generation shift factors corresponding to the type

of the A contingency.
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| Performance index (Pl) method

PIQ) = % 2 wi (VM- V; 92+ % Z wic ScMrSy Max)?

1 1

w,w, - weighting factors
Vi - desired value of V,
\ MAX - maximum rating of the k* line current

Based on the value of PI(A) being less/greater than a certain threshold, the
contingency A is classified as secure/insecure.

[

=)

Figure 101
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Notes Notes Notes — —
Neural network approach
o To identify line overloads.
o Voltage overloads are not addressed.
o  This is known as active power contingency screening
o DC load flow is utilized
Pnet = B6
Pline = TO
0 secure operation,

Pinekl < SkMax V'  k e (lines}

J

O Reparat s P ST K G T >
DSI
Figure 102

NN approach is proposed for contingency screening [56]. It is based on _
identifying the contingent branch overloads. The question of contingent ( )
voltages is not addressed in this study. This is known as active power
contingency screening which is based on the DC load flow concept: All
voltage magnitudes V; are equal to unity and that all angles 6; are small

(sin Gi = ei).
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( Neural Network Structure

0 A collection of NNs are trained
o Each NN is dedicated to a specific line outage.
o Inputs to NN:
B, V i,j € {buses} (post-contingency system)
P_, V ie {buses},
o  Outputs of NN:
P_.V k € {lines}
binary security flag € {0, 1}

C1532 - Appicacions 10 Powsr SYEeNS, A, ErShariam - 100

Figure 103

L

Notes

Notes Notes
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Notes

(Test Case

o The concept was tested on a small power system: 6 buses and 9 lines.
o  Training data for 9 contingencies and 9 different discrete loading levels

0 A line contingency simulated by halving the admittance between the
corresponding buses.

J

OTIZ - AppRcaions 83 Power SYRemInL. A EFSharmtn 108 —’(\Qy —p
Figure 104

A collection of NNs are trained where each NN is dedicated to a spe-
cific line outage. The concept was tested on a small power system with
6 buses and 9 lines. Training data was generated for 9 contingencies
-and 9 different discrete loading levels giving 81 different patterns. Only
line contingencies were considered. A line contingency was simulated
by halving the admittance between the corresponding buses. Each con-
tingency was handled by a separate NN.
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[ Test Results

Evaluation of the NN performance on a 6 bus, 9 line power system

Network | # of insecure | # of training | # of false # of false
operating iterations alarms dismissals
points

1 9 3023 0 0

2 8 82 0 0

3 2 552 0 1

4 5 1313 1 0

K] 9 2289 0 [1]

[ 9 12398 0 0

e ——
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Figure 105

— =
R

Each NN investigates the thermal violations under a single line contin-
gency. Performance of 6 of the 9 NNs are given in the table. Nine
different load levels are used. Five are used for training and all 9 pat-
terns are used for testing. The second column indicates the number of
insecure operating points out of the selected 9 load levels for any given

line contingency.

Notes

Notes Notes
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Notes' Notes

Notes ( ' ( .
Comments

0 NN based contingency screening method is effective for a small power system.

0 The number of input nodes is equal to twice the number of buses plus the
number of lines.

o  For a larger power system, the input 'variables can be excessively large.

T Ferieatrs 1o Poww SyaAL A B St T8
Figure 106
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Harmonic Evaluation and
Identification

T AeReire © o Sy Rt K. G St 10T
Figure 107
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'Power System Harmonics

0 Main sources of harmonics in power system:
Nonlinear loads and components
Power semiconductor switching circuits
o  Harmonic producing devices are rapidly increasing
Development of high power semiconductor switches and converters.
Increasing demand for high efficiency devices

Increasing demand for enhanced performance

=

O R o Poee S B S T
Figure 109 '

Nonlinear loads and other harmonic producing loads have existed in
power systems for many years. Today, the number of harmonic produc-
ing devices is rapidly rising due to the development of high power
semiconductor switches and converters.

The figure indicates a simple phased controlled rectifier connected to a
resistive load. The figure shows the load voltage and current. This non-
sinusoidal load current, unless filtered, will be drawn from the power
system. If a large number of such solid state devices and circuits are
used, the nonsinusoidal current will give rise to harmonic voltage drops
across system components, thereby distorting the voltage wave form of
the system. This can cause potentially damaging problems to the power
system such as misoperation of protective relays, overheating of capac-
itor banks, increased losses in transmission systems, insulation failure
in cables, increased losses in transformers and noise in communication

circuits.

Notes

Notes Notes
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Notes

”

Problem Definition

o To identify and predict the current and voitage harmonics
o Model based analysis are inaccurate and time consuming
- nonlinearity of the harmonic components

- random behavior of harmonic signals

- wide variety of harmonic profiles of solid state circuits.

. 2

N

Figure 110
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The objective is to analyze and predict the behavior of current and volt-
age harmonics so that appropriate action could be taken to reduce their
adverse effects. So far, model based analysis has been inaccurate and
time consuming due to the nonlinearity of the harmonic components,
the random behavior of harmonic signals and the wide variety of har-

monic profiles of all solid state circuits.
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| NN Structure For Harmonic
Evaluation and Identification

harmonic components

FL TV VIR FNS PC
6 o 1 0 O

(a) (v}

a) ldentification of harmonic loads
b} Prediction of Harmonics
From {57] countesy of IEEE, (C) IEEE, 1989

L

v

|

Figure 111

DSI

The figure shows the structure of the NN used to learn the harmonic/
load relationship in the example given in reference [57]. The NN input
are chosen among 31 harmonic magnitudes and phases. The output is
one of 5 load groups, namely Personal Computer (PC), Television Set
(TV), Video Tape Recorder (VTR), Fans (FNS) and Fluorescent Lamps
(FL). Three different test cases are studied where a NN is trained under

each case with different combination of inputs.

Notes

Notes Notes
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Notes Notes

Notes

Neural Network Approach

o A multi-layer perceptron can be used to identify the type of harmonic
producing load from among a set of pre-specified choices

o Training data for the NNs are the current waveforms of each type of harmonic
producing load.

o Fast Fourier transform (FFT) to produce harmonic frequency spectrum.

o Inputs to NN: different combinations of harmonic magnitudes and phases.

o Output of NN: load type.

1L

T e
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Figure 112

As a first step to identifying harmonic loads, a multi-layer perceptron
was used to identify the type of harmonic load from among a set of pre-

- specified choices [57]. The training data for the NNs are generated by

monitoring the current wave forms corresponding to each specific type
of harmonic load. The fast fourier transform (FFT) of the digitized cur-
rent wave form is used to produce the harmonic frequency spectrum.
Different combinations of harmonic magnitudes and phases are then
fed to the NN as inputs with the corresponding load type as the output.
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Case I
Case II:
Case III:

ﬁTest Results of Harmonic Evaluation

Magnitude of harmonic currents of order h = 1, 2,......31;
Magnitude of odd harmonic currents of order h = 1,3,5,...,313

Magnitude of harmonic currents of orderh=2,3,4,5,7, 9,11 and
phase angles of order k=3,5,7,9, 11;

Learning Testing Set

Set

Case 1 Case 11 Case 111

A B _C A B C A B C

90 92 86 96 73 68 100 100 100

94 99 78 84 98 95 100 100 100

O]

61 99 97 92 99 97 90 96 100

From (57] countesy of 1EEE, (C) IEEE,198%

Figure 113
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AT

The ability to correctly classify the load based on the harmonic currents
is investigated for three cases. NNs are trained and tested using 3 sepa-
rate data sets. Several NN architectures with different numbers of
hidden layers are used to find the optimal NN design. The NN has six
hidden neurons.

It is clearly seen that NN trained under case III configuration has the
best classification performance.

Notes

Notes

Notes
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Notes Notes Notes
HHarmonic Prediction

o To predict the magnitude of a selected harmonic producing device in a time
series form.

XO(t+1) = f(X"), X(t-1)ene ,X(t-k))

where,
Xo(t) - magnitude of the i* harmonic at time t

Objective is to predict the magnitude X®(t+1) based on a time series of the past
mag_nitudes.

(1]

)
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Figure 114
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(Test Results of Harmonic Prediction

algorithms

compared with the RGMDH algorithm.

e —’@—‘
Figure 115

o The performance of the NN is compared to nonlinear system identification

o The NN identifier was observed to give an error distribution of lower variance

(-

Notes

Notes Notes
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Notes

Sample of test results
280 ]
240 ]
>
O 200 _]
| =
g 180 |
g‘llo p
| -
L g |
40 -
T T 1 I -1 1 T
-3 -2 -1 [+] 1 2 3 4
Errors
Reproduced from reference [57})
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Figure 116

In subsequent development, a multi-layer perceptron was used to pre-
dict the magnitude of a selected harmonic in a time series form [58]. A
series of multi-layer perceptrons were trained to predict the magnitude
X(’)(t+1) based on a time series of the past magnitudes. The sttucture of
the NN is given in the figure. The performance of the NN was com-
pared with another nonlinear system identification algorithm known as
the Revised Group Method of Data Handing (RGMDH). The NN iden-
tifier was observed to give an error distribution of lower variance
compared with the RGMDH algorithm.
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Alarm Processing and Fault
Diagnosis

Figure 117

v
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Notes

Notes Notes
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Noftes F ' '
Alarm Processing and Fault Diagnosis

Challenges

0 Alarm pattens are not unique even for the same contingency
topology of power system
operating status of power system

0 Alarm pattern are likely to be contaminated with noise
equipment problems
incorrect relay settings
interference

miscalibration

—
N ———— —
T T T S R T =

Figure 118

The control centers of a power system are continuously interpreting
large number of alarms signals to determine the status of the system
components and to evaluate the power system operation. This process
is very complex because of two key reasons:

1. Alarm patterns are not unique to a given power system problem.
Same fault may manifest in different alarm patterns based on the
current topology and operating status of the power system.

2. Alarm pattern are likely to be contaminated with noise due to
equipment problems, incorrect relay settings, interference, or mis-
calibrated meters.

Expert system techniques have been widely tested for analyzing alarm
signals. The formulation of rules, however, requires precise definitions
of the power system and its operational strategies which may widely
vary depending on the utility. Therefore, expert system technique are
known to suffer from a high customization effort. '
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 Neural network approach

[Intelligent Alarm Processing (IAP}]

o diagnosing a power system problem by analyzing a set of multiple alarms is a
form of pattern recognition.

o NNis capable of classifying noisy patterns

o When trained by information rich data for different operating scenarios, the
NN is capable of associating different alarm patterns to the same system fault

Figure 119

The ability of a power system operator to diagnose a system problem
by analyzing a set of multiple alarms is a form of pattern recognition.
Accurate classification of noisy alarm patterns is also a key shortcom-
ing in most of the conventional techniques. Therefore, NNs with their
ability to classify noisy patterns seems a logical choice for alarm pro-
cessing. The NN is also capable of associating different alarm patterns
to the same system fault by training the NN with a set of information
rich data that represents different operating scenarios [59].

Notes

Notes Notes
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Notes Notes Notes r - my
Intelligent Alarm Processing

Rumloy protection
schomes
Load — floaw
atudien
Hiatorico! alarm
records
Anilclpoted possible
aystem troublea

SET » e
ke
SYSTEM TROUBLES NEURAL = NETWORK
Correaponding olorms N MODEL

TRAINING THE INTELLIGENT ALARM
PROCESSOR

€O ALARMS

RETRIEVING

1AP
NEURAL — NETWORK
MODEL

EMS Alorme

Power
plonts
Tranamisalon
lines Syatam trouble
Substations Interpretation
Concept of using NN for IAP
From {$9) courtesy of [ELE, (C) IEEE, 1989

L e

W-mmwmamﬁ?m-ﬁ
DSI
Figure 120

The figure shows a block diagram showing the concept of intelligent
alarm processing (IAP) using NNs. Learning and retrieving phases of
the IAP NN is presented in the figure. The NN training set is generated
by first creating a credible set of contingencies and then deriving the
possible alarm patterns under each fault. These patterns are generated
by the relay protection schemes and power flow analyses. These pat-
terns are then used to train a multi-layer perceptron using back-
propagation [59]. In the retrieving phase, incoming alarm patterns from
the energy management system (EMS) are interpreted to predict the
possible fault scenario.
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( [Test Results

o Test system 1: 115kV/12kV substation; 65 different fault conditions; 99 bit
alarm patterns [59].

0  Test System 2: IEEE 30 bus system; 72 different bus and line fault condmons,
112 bit alarm patterns [59].

©  The NN was able to correctly classify all noiseless input patterns.

0  The NN was able to correctly classify some of the noisy patterns.

Figure 121

) The concept was tested on a 115kV/12kV substation for 65 different

( } fault conditions with 99 bit alarm patterns [59]. It was also tested on the

“ IEEE 30 bus system for 72 different bus and line fault conditions with
112 bit alarm patterns [59]. Results showed that the trained NN was
able to correctly classify all noiseless input patterns. NN was also able
to correctly classify some of the noisy patterns. Noisy patterns were
generated by randomly toggling certain bits of the original input pat-
tern. It is also worth mentioning that when noisy patterns were
incorrectly classified by the NN, the system operator, given the same
noisy pattern, also reached the same wrong conclusion.
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(Comments

o  This is an area where NN seems to have a great potential
o  Additional consideration for future work:

Order in which alarms are reported

Magnitude of the violations

Behavior of alarms over a certain time period.

v
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Figure 122
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Static Security Assessment

Figure 123
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Lecture 8 - Page 127




Notes Notes

Notes

( \
Static Security Assessment

quality following a contingency.

\om——— —
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Figure 124

o Ability of a power system to reach a state within the specified safety and supply

o Fast acting automatic control devices have restored system load balance

o Slow acting controls and human decisions have not fully responded.

(-
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Stages of Static Security Assessment

o contingency definition (CD): Generation of a contingency list comprising of
cases with high probabilities

o contingency selection (CS): Fast and approximate method to eliminate
contingencies causing no violations.

o contingency evaluation (CE): Detailed analysis to evaluate the post-contingency
security status,

=
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Figure 125

Static security assessment is defined as the ability of a power system to
reach a state within the specified safety and supply quality following a
contingency. The time period of consideration is such that the fast act-
ing automatic control devices have restored the system load balance,
but the slow acting controls and human decisions have not responded.

Static security assessment consists of three distinct stages. They are
contingency definition (CD), contingency selection (CS), and contin-
gency evaluation (CE). CD defines a contingency list to be processed
comprising of those cases whose probability of occurrence is deemed
sufficiently high. CS is the process that shortens the original long list of
contingencies by removing the vast majority of cases having no viola-
tions. Two commonly used algorithms for CS are contingency
screening contingency ranking. These methods were introduced in a
previous section. There has also been an increasing effort towards
applying expert systems to augment the analytical CS methods [51].
CE is the process where the selected contingencies are simulated on the
power system in order to evaluate the post-contingency security vari-
ables. The resulting system attributes are checked for security
violations. the calculations are performed on each of the list of ranked
contingencies. The number of cases evaluated depends on the amount
of time and computer resources available for the task.

Notes

Notes Notes
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(Challenges to SSA

o SSA is a task that has to be performed periodically at control centers

0  Frequency of SSA is based on the available computer resources and the level of
operational sophistication of the particular utility

0 SSA is time consuming and computer intensive.

o  Faster and efficient techniques to perform CS and CE must be developed for
on-line applications

Assumptions:

o Fixed base topology

o Contingencies are limited to lines

[
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Figure 126
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Neural Network Objectives

predict post-contingency system security status.
o Generalize knowledge for different loading conditions

o  Prove applicability in large scale power system

CE is a classification problem: pre-contingency system attributes are used to

9%~ 10 POwN SYROmIL A. 27

Figure 127

-

Notes

Notes Notes

Lecture 8 - Page 131




Notes Notes

Notes

(Modular NN \

0 A single NN approach may be an enormous computational exercise for large
power systems;

large number of attributes

a wide range of operating conditions.

0 One way of reducing the dimensional complexity is to use a modular approach
Security problem is divide into smaller tasks
Topology is reduced

Features extraction is implemented

Nt ——————— -iJ
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Figure 128

From a pattern recognition perspective, CE is a two class classification
problem where the pre-contingency system attributes are used to pre- ( ‘
dict post-contingency system security status. A multi-layer perceptron

can be trained to perform this pattern classification [51]. But for a large
power system, where a large number of attributes and operating condi-

tions are needed to classify the system security, a single NN approach

may be an enormous computational exercise. One way of reducing the
dimensional complexity is to use a modular approach where the secu-

rity problem is divide into smaller tasks or reduced topology. A
modular NN can then be used to handle each task or topology.
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“Modular NN Approach with Feature
Extraction
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Figure 129

The Figure shows a possible modular approach to large power system
problem. A specific NN for predicting security status under a specific
contingency is proposed. This is necessary due to the variations in
which a contingency manifests itself based on the nature, location and
clearing strategy. Furthermore, for a given contingency, the mecha-
nisms leading to line and voltage violations are fundamentally
different. Line violations are brought about by real power overflows,
while voltage violations are brought about by an excess or a deficiency
of reactive power. Therefore, separate NNs are trained for assessing
line and voltage violations under the same contingency.

Notes

Notes Notes
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Modular NN Approach with Feature
Extraction

o To eliminate the curse of dimensionality.

o Thermal and voltage violations which are the important security measures are
classified separately under each contingency.

o Patterns to be classified are passed through a feature selection algorithm.
- Class-Mean Feature Extraction

- Karhunen-Loe've Expansion

T e iy et —’@_’ =)

Figure 130
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" || Training Data
o Each training pattern corresponds to a single contingency and various power

system loading conditions.

o Real and reactive loads follow normal load profiles with an added uncorrelated
uniformly distributed random perturbation within specified ranges.

o  The pre-contingency system states Xo, are the solution to the system equations
(load flow),

0x0%u,L)=0
where,
L  -Load demand
U - Control vector (generator power and voltage)

()0 - Pre-contingency value of "'."

L_
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Figure 131
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[ Security determination |

o Power system security under a Kkth contingency is determined after the system
states X in the load flow equations is obtained,

&k xk, Uk LK) = ¢
where,
xk . post-contingency state vector
Uk . post-contingency control vector
Lk . post contingency demand
o .LKisassumed to remain equal to its pre-contingency value.

o Post-contingency control vector UK is updated based on speed-droop
characteristics of generators

o  Speed-droop of each individual generator is assumed to be proportional to its
maximum ratings

Figure 132
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Evaluation of Trained NN

False Alarm: When a true secure operating point as described by the oracle, is
classified by the NN as insecure.

false al _ __#of false alarms
alsealarms = 4,21 true secure states

False Dismissal: When a true insecure operating point as described by the
aracle, is classified by the NN as secure.

false di . Is - = i of false dismissals
alse dismussals * = oral true insecure states

False misclassification: A measure for false alarm plus false dismissal

false classificati _ _false alarms + false dismissals
alse classitications ~ true secure + true insecure states

. T —
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Figure 133
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Test Case Extended IEEE-8 Bus System

—_——— — —

— ——
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10

o 10 buses (b), 16 lines, 2000 unbiased patterns (i), 30 attributes
0 2000 patterns, each with 30 attribute

10T - Appicalions 10 Powe SYSemSAL A B Shakasd - 138 _.@‘
Figure 134

L

Lecture 8 - Page 138




P

Cof

. |[Case Study for Class-Mean Features |

extraction
Veltage Violations
Neural Network Cont! | Cont2 [ Cont3 | Cont4 | Cont5 | Cont6
Architecture & training
inputs 7 6 7 5 7 7
training data 1500 1500 1500 1500 | 1500 945
iterations 2000 | 2000 | 2000 | 2000 | 2000 | 2000
Performance
testing data 500 500 500 500 500 315
false alarms % 1.2 2.8 0.8 1.2 20 1.9
false dismissal % 0.0 0.4 1.6 2.0 2.8 37
false classification % 0.6 1.6 1.2 1.6 24 2.8

Y
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Figure 135
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Case Study for Class-Mean Features
extraction

Thermal Violations

itecture & training
inputs 13 14 12 12 13 12
training data 1500 1500 1500 700 1500 1500
iterations 1300 420 880 2000 480 580
Performance
testing data 500 500 450 200 500 500
false alarms % 1.2 4.8 7.5 2.5 56 84
false dismissal % 4.8 9.2 4.0 1.8 11.6 5.6
false classification % 3.0 7.0 5.7 2.0 8.6 7.6

:‘J
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Figure 136

In this test, the tripping of tie line #16 is investigated. A single pre-con-
tingency pattern contains 54 different attributes including all the real
and reactive generation (P ,Qs1), real and reactive loads (Pb_,,Qb ), all
the bus voltage magnitudes (Vgl ;) and all the line currents (Iy) m the
system. The key features. (vanables) for training the NN are selected as
described earlier. Six features were used for NN training: Qpg, Vipg,
Qg leo, I1 7, I 14- The training and testing statistics of the NN are
glven in the Table.

In the second case, the contingency is the tripping of the transmission
line between buses #5 and #6. The training data are generated similar to
the previous case. The input attributes for the NN are selected by the
feature selection algorithm described earlier. The features Qg, le,
Qg3, Qg4, I 3, I 1; and Iy ;5 are selected. The training and testing statis-
tics for the NN in case II are given in table 6.
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'Example |

Contingency 1 (accepatable)

Contingency 2 (poor)
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"Lower first order discriminatory information results in poor classifier performance”
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Figure 137
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o 30 buses, 41 lines, 2000 patterns, 76 attributes
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Figure 139
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Test Results with Correlated Load

AL; = Neural
Network Cont 1 Cont 2 Cont 3
voltage thermal | voltage thermal | voltage thermal
Architecture & learning
inputs 3 6 9 12
training data 1500 1500 780 1500
iterations 2000 720 4000 220
Performance .
testing data 500 500 260 500
false alarm % 12 24 3.8 32
false dismissal % 2.0 0.0 3.0 1.2
false classification % 1.6 1.2 3.4 2.2

-
e = —'@-' =
Figure 140 ’
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| ”Observations and Comments o

o Dominant eigenvalues correspond to insecure class
- Low rate of false dissmissals
0  Secure class has dominant eigenvalues

- Higher rate of false alarms!

o Effective feature selection criteria must be used for accurate training of the NN

o Randomly varying loads are not realistic assumptions

Load variations should consist of correlated and uncorrelated components

o Topological variations must be incorporated.

N ——— :J
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Figure 141

/ )

Notes

Notes Noftes

Lecture 8 - Page 145




\;/

9p1 e - § AMRT

A

Zv1 eanbid

20} POOINS-E) Y TYSWNSAS JMand O suopeoyddy - 25510
AL D

@‘_

[oxyuo)) aojnede)

S3JON

SOJON -

SOJON



,
Capacitor Control

o To compensate reactive power flow in utility systems

o The problem can be viewed as an optimization problem where several optimum
sizes of capacitors are placed at given locations to minimize a cost index

o This is a complex nonlinear optimization problem

o Many techniques have previously been used: gradient methods; linear,
nonlinear and dynamic programming; and expert system.

s
- —
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Figure 143

Compensating the reactive power flow in utility systems is an area of
continuous development. Reactive power has limiting effect on the
operation of the power system due to the line losses and unnecessary
equipment load. The reactive power compensation can be viewed as an
optimization problem where several optimum sizes of capacitors can be
placed at optimum locations to minimize a cost index such as line (or
'system) losses. This is a complex nonlinear optimization problem.
Many techniques have previously been used such as gradient methods,
linear, nonlinear and dynamic programming and expert system meth-
ods.

Notes

Notes Notes
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fa
Conventional Methods

o Load assumptions:
Uniformly distributed
Variations are correlated

o For periodic or cyclic load, total energy losses are calculated assuming common
load cycle

o Locations of capacitor banks are selected
o The modified energy losses are computed when capacitors are in the system
o The cost saving due to installing capacitors is computed

o The optimum sizes of the capacitor banks are explicitly calculated by
maximizing the savings :

T Ao D ow SaarL K BT :J
SI

Figure 145

™

The 3-phase (3¢) power loss in an elemental length dx due to the resis-
tance of the cable is given by

dLy =3r1i2 (h-x)%dx
where
i - current per unit length
r - resistance per unit length

h - length of the cable

The total 3¢ power loss (w) along the feeder is given by
h
Lj, = 3ri%[(h —x)%dx = ri’h® = RyI}
0

where

Rr=rh - the total resistance of the cable

Notes

Notes Notes
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IT=ih - the total load current drawn in to the cable

Assuming that the load is cyclic with a period of T hours, the total
energy loss (wh) can be calculated as,

T T ]
_ _ 2 — 2
Ejp = [L3gdt = Rp[I3dt = Rpl3puxL,T
0 0

Now consider the installation of a capacitor bank at location h, as
shown in the figure. The 3¢ power loss (w) can now be modified as,

h, h
Ly, = 3rj (i(h—-x) -i_)2dx + J’iz(h—x)zdx
0 h,

L, = 3r[h’i%/3+ (h  -2h h )i h, +ith,]
where,
iy reactive component of current i
i, capacitive current provided by the bank

The modified energy loss can be similarly calculated. The cost saﬁng
due to installing capacitors to decrease energy and power losses is
given by, ‘

ftC= KjAE3p + Ko AL3y
where K; and K are twd cost factors. The optimum size and location

of the capacitor bank can be explicitly calculated by setting the partial
derivatives (AC/Siy) and (SAC/8L.) to zero.
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Key issues

o  For a more realistic system where multiple capacitors with discrete tap settings
exist:
the load current may not be uniformly distributed

load variations at different parts of the distribution network may be
uncorrelated.

o No common load cycle can be identified.

o  Other economic considerations such as depreciation may have to be included in
the optimization model.

— —— =)
GT932 - Appicatons 10 Poww. A B Sharkcn 145 W

Figure 146

In a real power system, the conventional method can not be easily
applied. The distribution system can have multiple capacitors with dis-
crete tap settings. The load current may not be uniformly distributed
and the load variations at different parts of the distribution network
may be uncorrelated. Hence, no common load cycle can be identified.
Also, other economic considerations such as depreciation, return on
investment etc. may have to be included in the optimization model. In
order to deal with these constraints, linear and nonlinear programming
techniques can be employed. Expert systems also have been looked at
as a possible alternative. However, solution accuracy and computa-
tional time are a major concern in most of these techniques.

Notes

Notes Notes
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ANN 1 ANN 2 OPTIMIZING

(=
CAP1 CAP2 CAPS TAP

Capacitor control through NNs
From {62] courtesy of IEEE, (C) [EEE, 1989
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Figure 147
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rAssumptions

0 A radial distribution system is assumed
0  The location of the capacitors are assumed pre-determined.
o The current tap setting of each capacitor is also known.

0 The entire power system is divided into six subsystems, each with unifomﬂy
distributed loads marked by detted lines.

o  There are 6 measurement locations
o P, Qflow and voltage magnitude IVl are monitored at the capacitors locations.

o The aggregated load in each subsystem is assumed to be 50%, 70%, 85% or
100% of the peak load, with proportional variations in reactive power.

=
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Figure 148
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WSolution Steps

o  The problem is solved in two stages. Both stages use multi-layer perceptrons
trained by back-propagation.

Stage I:

0 6 NNs are trained to perform power flow calculations. Input data are P, Q and
IV for all feasible combinations of load levels and capacitors settings.

o The output of the NNs are uniform load currents

Stage 11
o The outputs of the NNs of stage I are used as inputs to train 5 NNs in stage II

o The output of the NNs of stage Il are the optimum tap setting of all §
capacitors.

o Training data are generated by the optimizing algorithm.

o Different combinations of aggregated loads are assumed

W.wumWA.ﬁw-m
Figure 149

The NN assisted approach to the solution of capacitor control problem
is expected to drastically reduce the calculation times and enable on-
line adjustments. A specific example in the control of capacitors on a
radial distribution system is addressed in [62]. The test power system is
given in figure (a). The location of the capacitors are assumed pre-
determined. The entire power system is divided into six subsystems,
each with uniformly distributed loads marked by dotted lines. There are
6 measurement locations marked by M; through Mg. P, Q flow and the
voltage magnitude VI are monitored at the capacitor locations. The
aggregated load in each subsystem is assumed to take one of 4 feasible
levels at 50%, 70%, 85% and 100% of the peak load with proportional
variations in reactive power. The current tap setting of each capacitor is
also known. The objective is to use 3 measurement quantities (B,Q,IVI)
at locations M; through Mg and the current tap settings of the capaci-
tors C1 through CS in order to calculate the optimum tap settings for
the 5 capacitors.

=)

The problem is solved in two stages. Both stages use multi-layer per-
ceptrons trained by back-propagation. In stage I, 6 NNs, shown in
figure (b), are trained to perform a power flow calculation. The train-
ing data for the this stage are the P, Q, IVI measurements for all feasible
combinations of load levels and capacitor settings. The output of the
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NNs are uniform load currents iy through ig. In the figure, the circles
placed on the lines indicate multiple measurements.

In stage II, the outputs of the NNs of stage I (i; through ig) are used to
train 5 NNs as shown in figure (c). In this stage, the NNs are trained to
select the optimum tap setting of all 5 capacitors. Training data for
stage II are generated by the optimizing algorithm. Different combina-
tions of aggregated loads on the 6 subsystems are assumed. In the
retrieving phase, the NN estimated the optimum tap settings.

Notes

Notes Notes
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TTest Results

Optimal capacitor settings and associated savings

Case # timal capacitor setting (kVar) Savings (k$/yr)
timated (discretized} True (continuous’

el ¢2 ¢3 ¢4 el ¢2 3 ¢4 Estimated1 True
cS c5

1 875 875 500 750 | 875 875 500 750 | 37.7 388
525 600

2 350 350 350 750 | 377 428 357 750 10.1 10.7
450 450

3 875 875 425 750 | 850 861 423 750 | 35.5 36.7
600 600

4 350 700 500 750 | 410 617 500 750 19.7 20.7
00 600

5 350 700 350 750 | 38t 740 377 750 14.5 15.1
525 457

Figure 150
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The estimated descretized capacitor settings as estimated by the NN are
compared to the true continuous optimum values. The table also show
the corresponding energy savings in k$/yr obtained by the NN predic-
tions and by the optimization method using the true continuous
capacitor values. Relatively small difference between the two columns

shows the adequacy of this method.

‘
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Comments
o Partitioning of the overall problem into smaller subproblems is a significant
contribution.

o  This modular approach facilitates faster and simpler training of the NN's.

=)
Figure 151
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