Multidimensional Signal Processing

R.J. Marks Il Lecture Notes
Dudgeon & Mersereau
University of Washington (1984)





























































































































































































































































































































































































































































































































































































































































































































































































































































































Problem 6,8:
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Problem 5.3:

Yz(z) 1

- _ ~1
@) xz(z) ) l—az“l YZ(Z)--~Xz(z)+alz Yz(z)

c(n) = ad(n-1)

4

b) yi(n)=X(n)+ayi_l(n-l)

¢)  yu(n)=6(n)
y, (0)=8 (n)+ad (n-1)

¥, (0)=8 (n)+a8 (n-1)+a6 (n-2)

.

as (n-1)

yIOO = .

i

1 Mt ee

y.(n) = a"u(n)

o 2(I+1)
2
ez (n) = X a n = a 7
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26 Two-din.usional impulse. Stale the nature of the following impulse sym-
bols in two dimensions by giving (a) the locus where the impulse is located and
(h) the lincar density at cach point of the locus: 8(xr + y), d(xy). 8(sin 6),
Bt 4yt — 1), 6(2? + y?).

27 Derivatire theorems for Hanlkel transform. Show that

(rf)' D —(4F)’
and that f*2 — [¢3|r 'f1].

28 Derivative theorem for Hanlkel transform. Show that
. 4
of'(r) 2 —¢ '~ g*F(9)].
dq
29  Hankel transform theorem. Show that

d d

J(r) =3 {gt —3 yrt —f(r) }
dy dr

30 Hankel transform erample. Establish that the Hankel transform of

rtexp (—wr?) is (! — ¢?) exp (—mq?).

31 Hanlkel transform.  Show that
ﬁ)"’ Ji(e)olar) de = H(1 — a?).

32 Hankel transform crvample. Verify that (brr?) ' Ju(rr) has Hankel trans-
form (1 - ¢3)11(g).

33 Cauchy principal value. We often use the phrase “area under the curve
f(r)” to mean the integral from — © to . Intuitively, from cxperience with
arcas, one might expect that the area under f(x) is the same as the area under
f(r +1). Can you prove that

—

/m sgnoxdr = /” sgn (o A+ 1) dr?

31 Radial sampling under circular symmetry. The light from a star is received
at two points spaced a certain distance ¢ apart and the complex correlation
between the two optical waveforms is determined. It can be shown that this
complex number is a value of the Hankel transform B(g) of the brightness dis-
tribution b(r) over the stellar disk (assuming that the brightness distribution has
circular symmetry). (M r is measured in radians, ¢ will be measured in wave-
lengths))  Since the star is of finite extent, it suffices to sample the transform at

regularly spaced distances.  Show how to determine b(r) from values of B(q)
determined at ¢ = 0, a. 2a

35 Abel transform. Let f(°) be subjected to two Abel transformations in suc-
cession. Show that the resulting function fa4(r) is equal to the volume under

Supplementary problems 11

J() outside radius a. that is, faa(r) = 2mr /w rf(r) dr. (This problem was sup
plied by 8. J. Wernecke.)

I
we take the two-dimensional autocorrelation of f(r), we get another circularl

symmetrical function. Show that the Abel transform of the two-dimension:
autocorrelation is the one-dimensional autocorrelation of the Ahel transfors

Ja(e):s that is, f(r) ** f(r) has Abel transform () * £, (0).

36 Two-dimensional autocorrelation. Let f(r) have Abel Lransform fa(x). ]

37 bel-Fourier-HHankel cycle of transforms. Funcltions can he spatially a
ranged in groups of four to exhibit the Abel-Fourier-Hankel eycle of transforn
(R. N. Bracewell, Austral. J. Phys., vol. 9, p. 198, 1956, and Problem 12.16
Thus the relationships

jiner has Abel transform sine »

sine o has Fourier transform 1 (g)

1(q) has Hankel transform jine r

() has Abel transform (1 — 4?1 (x)
(1 - Qu’)’ll(u) has Fourier transform jine r,

where jinc r = (2r)"WJ (7r). are all compactly summarized by grouping the fov

functions as in the box. @

jine r (1 — +)HI(n)

Fourier ‘PAG\)

Abel Hankel Abel

sine @r 11(y) .
Fourier —¥% _ﬁ(r)

The diagram on the right is the key to the lrunsfy«'ms implicd by the spati:
relationship.  Verify the following important groups.

. o(r — 2 cos 2mwau
sine r I () (r=a . ©
Jo(rr) T (E — ¢~ HI(g) 2a(a? — r?) I (} 2rado(2wag)
Za
M(r) (1 — )} — w2 cosh™ u ! e ™ PR
s A .2 ?
sine? r Alg) e e m1

38 Verify the composite similarity theorem for the Fourier-Abel-Hankel eycl

of transforms, fora > 0:
flar) F <')
I af(ar -
If S F(u) then “

9(x)  Glg) q)

glar) a’ G| -
a
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DEPARTMENT OF ELECTRICAL ENGINEERING
University of Washington

Solvtions

1. Usﬁng the McClellan transform, design a 2-D hexag:sal FIR low pass filter
with near circular symmetry that passes frequengzics {osui/4. Plot the
frequency response slices H(w],O) and H(O,mz).

2. Page 280, #5.3.

3. An M>>I dimensional signal has a spectrum with the support of a hypersphere
with radius ., The signal is sampled at minimum density and a sample is Tost
at the origin. The known data is perturbed by zero mean stationary samplc
wise white noise with variancegfé‘ Plot the restoration noise level,

.ggﬁﬂ/ggfor1<Ms&

4. Page 342, #6.8.
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Problem 6,8:

I

a) W (k)

where d

b) xg’@ =1

Q) W =

1 N-1
i}— .Z' w(i) exp [-jk' (Ei'@.j}
i=0 .
N-1,
exp[~jk'dl L ow(d) Ewi)[“j}i'i’ii]
. i=0 -

W(k) expl-jk'd]

A '
- (dx’dy pdz> '

N-1 ,
= ¥ w(i) exyi-jDk'°xi]
N , - -
1=0.
W(KkD)

N~-1 . h
1 ) .
= L i -] -j ~jk D =z,
M ii'o'W(l) exp kaDxXi JkyDny. 3%, zzl]

- — ’" R ’ '
W(&) whére “&_~ (prx’kyDy’kzDz)
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EE521 name

examination #1

closed book, no scratch paper (there’s some at the end of the booklet).
one sheet of notes, a calculator and a math table are okay.

please do all of your work in the test booklet.

all problems are worth 25 points.

PROBLEM 1:

Consider the following periodicity matrix:

Which of the following matrices produce the same periodic replication? Choose all that
apply.

11 1 -1 2 -1
(a) (b) (©)

1 -1 101 1 -1

87 1 31 2 -1
(d (e) ® :

10 21 2 12

Circle the equivalent matrices clearly. Ambiguous answers will be graded as incorrect.



PROBLEM 2:
Consider the two three dimensional signals shown below. The value of both functions at
all points is either one or zero. The value of the function is shown at its location. If a

value is not shown, it is zero. In both cases, the origin is the lower left front corner of the
cube. Lety =x * h. Compute y(1,1,0).

AN

X(nl,nz,m) : i

——O—=sn

h(nj,n2,n3)

N
4§—0

/o l;na
O

/ 1
e d]




PROBLEM 5:

The half order derivative of a function is obtained by multiplying the spectrum of a signal
by the square root of j omega and inverse transforming. Using this insight , derive the
function that, when convolved with x(t), will result in its half derivative.




Official Scratch Paper:




Official Scratch Paper:



Official Scratch Paper:
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" multiplied by (10/N)}.

ey ——

" can be.performed quickly in this way.

L‘"IL‘— 52y

266 . THE FOURIER TRANSFORM AND IT5 APL.

SHONS

When N points of subdivision nre used, the scale of p is urranged so that
F becomes zerout p = N.  The coelficicuts may then all be multiplied by
(10/N)}, or the coeflicients may be left unchanged and the answers

‘As an example consider F(p) = (10 — p)}, for which the modified

Abel

transform is known Lo be F4(£) = }x(10 — §).  We work al unitintervals
and copy- the coeflicients on a mmovable strip.  The calculation in progress

is shown in Fig. 12.7. The movable strip is in position for ealeul
F4(t) as the sum of products of corresponding values of # and K:

7.78 = 2.12 X 2.000 + 1.87 X 0.828 + . . . 4 0.71 X 0.472,

ating

The inverse problem, that of calculating F from F,, can be handled by
means of the relation ¥ = —x=VK « F/ il F'y is first differentinted.  How-

ever, it will be perceived that the ealeulation just described can bhe

doue

in reverse, using the values of F4, and working the movable strip upward
from the hottom. The sirip is shown in position for culeulnting F(5 —
¥), let us suy by means of a pocket calenlator. Form the produets 0.71 X
0.472, ... . 1.87 x.0.828, allowing them to accumulate in the memory.
Subtract this sum of products from 7.78 and divide by 2.000 to obtain
the next wanted value, F(5 — 1) = 2.12. The verse transforination

» F - K }:‘
15 6is
308
1 14.08
2.91
2 12 52
2.74
3 10.94
255 '
4 9.37
2.35
5 7.78
2.12
8 . 820
1.87
7 4.6¢
1.58
8 a.0a
1.22
'] 1.42
. 0.71
10 . 1]

™

I"iy.‘12.7 Calculating modified Abel transforms.
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Friday, December 9, 1994
10:30 AM _

INSTRUCTIONS:

* Do all of your work in this test booklet.

* This test is closed book and closed note.

* You are allowed two legal sized sheets of notes & a calculator.
* Each problem is worth 25 points.

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ‘

1. A half order derivative, (d/4)1/2 x(t), can be written in integral form as
(@a)112 x(t) = | x(1) k(tz) dr

where integration is over all t. Evaluate the kernel, k(t 1).
s

| (g‘i)f"x(t)em_;»(dw) X(w)
Recall: P e ET

Thus: (dw) X(w)m @%ﬂdw,‘rﬂﬂﬁXCcﬂ)

The inverse tr‘ans«powm P S
4\ y /‘ ) % x(t)

%M*X(t)

= 7




2.

a. Evaluate the circular convolution of the following 2-D signal with itself:

1=-1
x(1,01=0
x[0,1]1 =1
x[1,1]1=1

b. Can a circular convolution of a function, other than one identically zero, with 1tself
result in a function that is identically zero? If so, give an example. .

Z.
o —x[#]0:7)

(3)

o] = QY1) + (0)0)=T2
@ y[\n/[dj e ‘O)m;[(,ofjf C(,)) (i>2+(:)(r)+(fl)(»)+(o )

Solution - - fwe
n] (b) No  Can.on e
| yiod [ DFT (o FZ;Mj o4 xL7)
| 1s ZEreo.. /415,5 troe

md//y when X/[n]z©



4.

4. A two dimensional signal has a Fourier transform that is identically zero outside of a
half circle with radius W. Evaluate the corresponding Nyquist density.

Us




5.
(a) Consider the operation of transposing a function. That is, from x(t), we make x(-t)
where t is a vector. Is this operation linear? Is is shift invariant? Explain your reasoning
in each case.

(b). Give an example of a system that is additive but not homogeneous.

(a) Linear => )’
y(t)~ S xl’«t‘i = x(-t)
Additivity zSax(ey=axC t)
H’oma NG x () + X le) = X, (¢ )+ Xz{—¢)

Lmecu"
Naﬁ §L1 'P*ﬁ ,n\/amant‘
y””‘““ "‘t‘"
oS & Aaﬂ + Cogr_ﬁg’lute =
smift 7 j:ﬂ"ﬁi" ) coxtF) ).
o 3
ub B, =
S hi H» - £ 7:"""5,905
ta
t
P T '
f‘aq ﬁ
Pose shift

(b)How aL@"”&
. y S X=g xX | |
@OHomo: Sax:=a*x*# asx=ax*



6.

A three dimensional signal, x(n,n3,n3), is zero everywhere except the first octant (where
all three variables are not negative). In the first octant, the function is

x(nngns) = (112)Nny+ngtng)
If x(ny,nz,n3) = h(ny,ny,n3) and
Y(n1,nz,n3) = X(n1,n2,n3) * h(ny,ng,ns),
where * denotes convolution, what is y(0,0,0)? -

Hint: CONSIDER THE CONVOLUTION MECHANICS ;

N3

| 2

0=

=

?4

Tf\ar\ginaﬁé‘.in 3-D. .
Only ene nen-2€ro Fomf[f

overlaiﬁj[ng" (0"?56:{'";/1)
- x(e,6,06)= |

=> y(5,60)= |




Elementary Finance Analysis Using Difference
Equations and z-Transforms

Robert J. Marks I1

1 Introduction

Many common problems involving interest in personal finance can be solved by
1. writting, by inspection, a describing difference equation, and
2. solviﬁg the difference equation using a unilateral z-transform.

Examples given in this monograph include analysis of

compound interest on a simple deposit,

e compound interest on periodic deposits

L]

payment scheduling of loans, such as morgages, where premiums are paid
periodically, and

effects of taxes and inflation.

o

1.1 Some Preliminary Math
1.1.1 Unilateral z-Transforms

The unilateral z-transform of a sequence z[n] is

(o]

X(z) = Z zn] 27"

n=0

The transform pair can be written in short hand as

z[n] « X(2)
For example
1
a” p[n] 11 (1)

1When the summation over 1 is over the interval (—00,0), the z transform is said to be
bilateral.



2 Compound Interest on a One Time Deposit.

Interest quotes have two components.
¢ annual interest and
o the frequency of compounding.

Let r be the annual interest and N the number of times per year compounding
occurs. If N = 12, as is the case with most passbook savings, compounding is

performed monthly.
A one time deposite of d is made in an account that yields an interest of »

compounded N times per year. Let bn] be the balance at the end of the nth
period. The difference equation describing the accumulating interest is

b +1] = (1+ —]%) bln] (6)

with the initial condition b[0] = d. This is a special case of the difference
equation in Equation 3 with

z[n] — b[n]

T
5_’1_}_?\7
n — 0

.’170—->d

Making these substitutions in Equation 4 gives the balance at the end of the

nth compounding period as

B[n].:d(1+7’\’,—)".

The balance at the end of a year is

and at the end of M years is

BNM]=d (1 n %}-)NM (8)

This is a “zero over zero” situation to which we can apply I’Hopital’s rule, 3

. AR awin(l+§)
Nhi%oh‘(““ﬁ) w@;ﬁ*“
N

This completes the proof.



Thus

BN
1+7r< —[E—l <e".
Note that for modest interest rates, the spread is very small since, for r < 1,
"~ 147 (15)

2.5 Effect of annual taxes.

Consider the same problem of evaluating the balance of a one time deposit
~of d, except that the interest each year is taxed at a rate, t. Let f[M] be the
balance after year M before taxation and ¢[M] be the balance after year M after
taxation. The before taxation balance at year M + 1 is given by Equation 7
with d — ¢[M].

7

fiM 1] = el (14 1)

The taxable interest earned in year M is new balance minus the initial balance.
M= fIM +1] - [M]
The amount payed in taxes is ¢ X {{M]. The after tax balance is
M+ 1] = fIM 4+ 1] — ¢ x [M]

Substituting the previous two equations results in the difference equation
r AN
oM +1] = [(1 —1) (1 + N) —l-t] e[M].

This is a special case of the difference equation in Equation 3 with

n — M
zln] — c[M]
PN
& - (1_t)(1+ﬁ) +t
n — 0

zy — c[0]=d

Making these substitutions in Equation 4 gives the desired result.

oM] = d[(l—t) <1+7’\;—)N+tJM (16)

2.5.1 'Continuous Compounding.

Imposing the limit in Equation b onto Equation 16 gives the continuous com-
pounding solution

lim c[M]=d[(1—t)e" +t]™ (17)

—+00



2.5.2 Extrema.

As a function of N, Equation 16 is minimum for N = 1 and maximum for
N = oco. Thus, from Equation 17, the following extrema of yield results.

-0+ +" < D < - per 4y

From Equation 15, for modest interest rates (r < 1) and moderate M, these
bounds are tight.

2.5.3 Combining the tax and interest rates into an equivalent inter-
est rate.

For a given tax rate, ¢, and compounding frequency, N, an equivalent (smaller)
interest rate, r;, exists. Equating Equations 16 and 8 gives

[ (1+—]%)]Md:(l+%)NMd. - (s)
Solving for r; gives

r=(1—1) [(1+%)N—1J . (19)

The equivalent instantaneous compounding interest rate from a taxed in-
stantaneous interest rate follows from application of Equation 5 to Equation 19.

e
Jim 7y = (1-1) (" - 1)

2.6 Effect of inflation.

A constant inflation rate can be viewed as a negative interest rate. If u is the
rate of inflation, the effect of inflation on d dollars over one year is given by
Equation 10 making the replacement r — —u.

de™

Over M years, the balance has reduced to

[de"“]M = de~M¥,
For example, if you stuffed d = $100 in your matress for M = 3 years, its
purchasing value, at an annual inflation rate of 12%, is diminished to

$100 x e~3%012 — ¢69.77

in terms of the purchasing value of money at the time of the initial deposit.
Adjustment for inflation can be assessed after yield is evaluated. Two ex-
amples follow.



the end of n periods®, the describing difference equation is
~ P\ 2
bfn+1] = (1 + -ﬁ) Bn] + s. (22)

Assume the account starts with a balance of b[0] = 0. Equation 22 is then a
special special case of Equation 3 with

z[n] — b[n]
r
& — 1+ I
77 —
zg — 0 (23)

Substituting thes parameters into Equation 4 gives
. Ns A
b === {(1+5)" -1}.
[n] =~ +w

The balance after one year is thus

- Ns r\N

b[N]:T{<1+J—\f) —1}. (24).
and the balance after M years is

b N] = ]—V; {(1 + %)MN - 1} . (25)

3.1 Continuous time solution.

For the continuous time solution to this problem, assume y is invested yearly in

equal installments. Thus
Y

§ = —

N
For M years, the balance in Equation 25 therefore becomes

b ]—_—%{(H—]%)MN—;}.

Using Equation 5, the balance using continuous time compounding is

7 ¥
]}1_1)1100 b[MN] = - (™ —1).

5The notation b will be used for the case of constant periodic deposits as opposed to b[n]
which denotes the accumulated balance on a single deposit.



