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Prof. Dr. A. Lohmann
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University of Washington
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Dear Bob,

Your long letter and the reprints did arrive. Thanks. My detailed

answer will take some time due to the beginning semester.

Thanks again and best regards,



UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

Department of Electrical Engineering

18 September 1978

Dr. John F. Walkup

Department of Electrical Engineering
Texas Tech University

Lubbock, Texas 79409

John,
Enclosed are copies of three unpublished blurbs on the
measure of spatial invariance:

1. "On the Convergence of the PIA" presents some interesting
ideas in an elementary Hilbert (signal) space context.

2. The second paper presents a neat Cantorian view of the PIA.
3. The third paper is on the Lohmann-Paris invariance measure.

There were two ideas I had on measuring spatial
variance:

1. Expansion of the line-spread function, h(x-£,£), about some
point £€=¢ in a Taylor series:
AN
-— 6 ~ A ~
ig—nf)- (6—5—)n h(x;8) = h(x;€) + R(x,£,€) ,
0

1| >~ 8

h(x;€) =
n

where the variance "residue" 1is

S R &
R(x,£,€) = nzl S (E_g_)n h(x;E) .

For the invariant case, the residue is identically zero for all
sample points €. It would seem that some operation on R could
lead to a spatial variance measure. We are, of course, limited
to Tine-spread functions which in some sense are analytical
in £ for a given x.
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2. The second idea is a generalization of the variation bandwidth

concept. A bandwidth is a measure of the dispersion of the
line-spread function with respect to its variation variable. In
prabability, a pdf's "range" is analogous in concept to a spectrum's
bandwidth. A second popular measure of dispersion in the field of
proabability is "variance". Using the variation spectrum, define
the "variance" in v as

o

a(x) = [ |wH

= CO

g(x;\))lz dv .

Using Parceval's theorem:

o(x) = vz | Igp hix,8)]2 de .

Obviously, o(x) =0 for the space-invariant case.

There are a number of possible extensions and generalizations
of this concept. We could, for example, define

L

o (%) = 7 nf+l 1L h(xse) |2 de
n ZZwiz i dg . 2
n

where £, and 241 define an isoplanatic patch's endpoints. The
quantity

can then be intepreted as the variance measure of the patch. We
could calibrate the input plane by choosing the ¢n's such that e
has the same value for all n.

There are a number of further possibilities. We can, for
example, formulate a measure of the contribution of the nth input
patch to the output interval kp<x <kpsp. This would be

mt+1
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Note that
0 = % 0 -

There are number of possible alternatives. 1 have explored
none in depth. I do, however, have an idea that good examples will
be obtained primarily with physical finite energy line-spread func-
tions.

Hope this will be of help to you.

Best regards,
7 "
i

x
f@//771:;}//

Robert J. Marks II
Assistant Professor

RM: bb
enclosures



ON THE CONVERGENCE OF THE

PIECEWISE ISOPLANATIGC

APPROXIMALLON



The authors have presented a model by which Llinear
space-variant system outputs may be approximated by dividing
the input plane into a number of isoplanatic patches(l).

If a linear system has a response of h(x-§;£) to an input
b(x-¢) where b (x) is the Dirac delta, then the system out-
put, go(x), due to an input gi(£) is given through the super-

position integral as

g,cxnf_:g;(a)h(x-:;g)dg o

If the system input plane is divided into m isoplanatic
patches, the nth of which extends from 1; to 1lh+1 4 then
the piecewise isoplanatic approximation to the true output
is
o m. . jn'” h( . X )d
()= 2o gxfﬂ) X-&; Xa)A §
e nai ln

(2)

where

,an?(n-‘-/en'*l (3)



I. On the Absolute Convergence of the Plecewise Isolpanatic
Approximation
In the development of the piecewise isoplanatic approx-

imation (PIA), the authors made the erroncous statement that

1im '?g'o(x)=g2<x) (4)

m =>» oo
Although true in a sampled sense, kg 4 is not exactly true.
The invalidity of kg 4 may be shown by first writting

lim g‘er):lim 2 f_ei"”g';fi)h(x-(; Xn)d €

m=ao m=poo n=1i

JIgEInBhx-G aa) g L) O
"/U,G{ +1n+n) d<

where/a_(x), the unit step function, is defined as

’ (6)
O ; X<O

/a(x)=



Comparing igs 5 and 1, we see that iq 4 is true only if

hix-§2)= 1im 2 h(x-e; Xl (€-Ln ) (4017 € ),

m=>00 Nz

We will now show that Eq 7 is in fact not a valid statement.
Consider Fig. 1 in which a function £(£), zero outside

the interval

a:.Z,q.ﬁ{.‘.b:lm,l (8)

1s represented in a sampled manner as
ﬁ 70(7(")/«(&1,.)/,‘(2,,”-() 9)
ns i

The patch points ln.EWKLXIp are as previously defined.

In order to disprove Eq 7, we must now prove

fee)# lnm% yc(’Xn/u(( j/u(Zrm <)
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Fig 1: Division of the function £(£) into m pulses weighted
by the function. As m becomes arbitrarily large, the

pulse representation does not approach £(§).



To do this, only one counter example neceds to be shown,

As such, let

JOELACIZ (1-€)

, L Y =T I e - s & . BT e T R e TR 1A
As plctured 1n Fig., 2, L(\) i1s a straight line with unity
slope on ths interval (=l1,1). Since no patch division is

cited, we are free to choose our own, If all the intervals

are chosen to have width A , then
maz= 2 (12)
Thus

2N
[n-.-nA': m (13)

We also arbitrarily let

- 3
')(n-(n*z.)A L



f(<)=</a(a'+1}u( 1-£)

- 1 ____________

Fig 2: Relationship employed to disprove Zq 7.

Y



Therefore

n;m' J-‘(?Cn)/a (ﬁ"jn)/“(—znﬂ -<)

22n+1. <2n+| ) 2n+)
/a
e (€ TR Y (3452 -€)

Each term in the above sum is either (2n+l)/m or 0. Since

(15)

both n and m are integers, (2n+l1)/m is a rational number,

In that sums of rational numbers are rational, Eq 15, even
in the limit, can take on only rational values. Observing
that £(§) takes on all rational and irrational values between
-1 and 1 proves our claim that Eq 10 is generally correct
and that the convergence claims made by Egs 7 and 4 are in
fact incorrect.

The crux of the lack of absolute convergence of go(x)
to go(x) as m goes to infinity lies in the order of infinity
of system input-output relationships., For the true case,
each point on the input plane is essentially assigned a
unique output thereby constituting an unaccoutably infindte
of defining relationships. The PIA has only a countably
infinite number of such relationships in the limit, Some
consequences of this non-convergence are now illustrated

via example.



II. Representation of the True and PIA Outputs in Signal Space

The true and PIA outputs may be represented as points

on orthonormal axes in signal space (2)., As such, let

()= T golx)

where
E= f.:’go(x)lzdx
Also, let
E=f | gt "dx
1f

“g'ocx)= o P(x)+ &J&x)

where ¢(x) and.g(x) are orthonormal, then
oz for g“o(x>¢*(x)dx
= o [ £o00 gy

(16)

(17)

(18

(19)

(20)



N o o
With knowledge of E, E, and «, we may view the relationship
of go(x) to go(x) as pictured in Fig, 3, Note that, in
N
most instances, E and «, as well as ¢(x) are functions of

the input plame calibration parameters l, and X,.

A, Illustration of Convergence
As an example of signal space illustration of the non-
convergence of the PIA, consider the ideal magnifier with

an input-output relationship of

ga(")= F4L' gi (}T’ﬂ (21)

From Eq 17

E= #\" f-: ’g;(()laolﬂ (22)

The PIA of the ideal magnifier (1) can be shown to be

gi()(): z:,:' g;[X"(M")xn]/l [X’j,."(M") an (23)
x/u. f'x ¢ Zm, +(M-1) /Xn]

If attention is restricted to the case where M>1l, then
go(x) is recognized as a non-overlapping piecewise shifted

version of gj(x). Thus

=" g:€)|"dg = ME (26



Fig 3: The true and PIA outputs as represented in

signal space.



As pictured if Fig. &, the locus of all possible PIA
representations of the magnifier for M >1 forms a circle

in signal space centered at the origin and with radius

ME o The non=convergence of gg(x) to go(x) is illustrated
by the non-intersection of this locus to the true output poimt,.

A physical example of the non-convergence of the magnifier's

PIA with the corresponding input and true output is offered

in Fig., 5. One sees that as the patch density becomes ar-
bitrarily large, the PIA does not approach the true output

in the strict sense although attempts at mimicking go(x) are

obvious,

B. Input Plane Calibration Optimization
With reference again to Fig.3 , the distance between

éo(x) and go(x) squared is
R(Z 1= | gotn) - G000 dx
[ S o oot 0)-h oo de dx

- =

As with some of the previous measures, R(1,X) is a function

2(25)

of the input plane calibration parameters here expressed

in vector form as

[Z','e ,--- n,---,‘emn]
'x-[?f.,?(z,...,?(,,,...,?(m] (26)

under the constraint of Eq 3. A scheme for optimizing
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Fig 4: Illustration of the nonconvergence of the ideal
magnifierts PIA output to its true output in signal
space. The circular arc represents the locus of

possible PIA's,
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Fig 5: Illustration of the input, true output, and PIA

A

MU X

output for a large patch density. The PIA output

is seen not to converge to the true output.



of the PIA under given physical constraints is minimization
-

of R(L,X)., This quantity may be viewed as the energy of the

difference of the true and PIA outputs.

As an example of such eoptimization, consider the ideal

magnifier with input
= e (x)  ; bro
g (g)= M y b” (27)

We assume physical constraints limit the minimun patch width
to A . Past observation of the magnifier's PIA dictate
the smaller the patch, the better the approximation. We

thus assign a width of A to each patch and write
L,=(h=1)L (28)

From Eq. 21 it can be shown that
hegsmye blx-g-u-nta]

Substituting Eqgs 27 and 29 into Eq 25 under the constraints

of Eq 28, followed by simplification gives

R(a, D= 5 (W) - 2my [ 208 1 ]

xie‘bnd(l*#)e‘b("#)xn (30)




- . o . o
In that R(A,X) is positive real, and the first term is positive,
we nced to maximize the second term in order to minimize R{A,y).
This term is maximum when‘xnis minimum, Under the constraints

of kEq 3, we thus let
An= L) ""(n"i)A (31)

The result, as shown in Fig. 6 can be seen to be the best

PIA of the true output under the given constraints.

C. Limitations
One should note that any signal space representation

is confined to finite energy functions. That is

f_: , 8—0()()'3,‘4 ) (32)
Jo2 [§uol dx < 20

The authors have illustrated a non-finite PIA representation

of a finite energy output in the case of the Fourier

transformer (1).
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Fig 6: Optimal PIA output for the ideal magnifier with

exponential input when each isoplanatic patch has



III., Conclusions

The pilecewise isoplanatic approximation (PIA), although
mimicking linear space-variant system outputs, does not
converge absolutely to the true output. This is due to the
Limited countably infinite defining relationships allowed the
PIA in contrast to the unacountably infinite number of de-
fining relationships demanded by the true output. Signal
space representation of true and PIA outputs is suggested
for illustrating PIA convergence and optimization for finite

energy outputs,



ABSTRACT

System classifications are ranked according to the necessary
transfinite number of input-output relationships required for
system definition. From this consideration, the Llinear space=
variant system output approximation.through piecewise invariant
modeling of the system input, termed the piecewise isoplanatic
approximation (PIA), is shown not to generally converge to the
true system output. BExamples, employing energy comparison be-

tween true and PIA outputs, are given,



I. INTRODUCTTION

The authors have presented a definitive method by which
outputs of linear space-variant systems can be approximated
through division of the system into a number of linear space=-
invariant systems.1 The method proposcd, or special cases thereof,
have been successfully applied to holographic representation of

2
the linear space-variant non-unity magnification imaging system.’s

Unfortunately, in many casecs of interest, the multi-space-
invariant representation of the linear -variant system, termed
the pieccewise isoplanatic approximation(PIA), does mot converge
to the truqbutput as the density of approximating invariant
systems grows arbitrarily large. The underlying reason for the
non-convergence lies in the differing transfinite number of input-
output mapping operations capable of the PIA and required of the
Linear-variant system. The non-convergence of the PIA is many
times exposed by comparison of the energy of the rla and true

output.,



&1 A SYSTEM CLASSIFICATLION HIERaLOHY

Systems can be classified by the number of input-output
relationships required for system definition., Herein, a system
is said to be defined if the system response can be predicted
with knowledge of the corresponding input. A system, consisting
of an input £ (x), a ''black box'", and an output g (x), can be

characterized by the operator S such that

gCx)= S [ £ 1)

where, withait loss of generality, x can be viewed as an n
dimensional variable.

Consider first, the general (non-linezr) case, where no
assumptions are made concerning S. One must know the system re-
sponse for all possible inputs in order to completely define the
system,

A less stringent defining relationship requirement arises
from the sole assumption of system linearity, the property of

which mzy be stated as

5lasy+btd]=a Slseol + b 5[t x)] (2)

where s(x) and t(x) are arbitrary inputs and a and b are constant.



I. INTRODUCTION

The authors have presented a definitive method by which
outputs of linear space-variant systems can be approximated
through division of the system into a number of linear space=-
invariant systems.l The method proposczd, or special cases thereof,
have been successfully applied to holographic representation of
the linear space-variant non-unity magnification imaging systemf,S

Unfortunately, in many cases of interest, the multi-space-
invariant representation of the linear -variant system, termed
the piecewise isoplanatic approximation(PIA), does not converge
to the truqbutput as the density of approximating invariant
systems grows arbitrarily large. The underlying reason for the
non-convergence lies in the differing transfinite number of input-
output mapping operations ca.able of the PIA and required of the
linear-variant system. The non-convergence of the PIA is many
times exposed by comparison of the energy of the PIi and true

output.



L A SYSTEM CLASSIFICATIOUN HIERARCHY

Systems can be classified by the number of input-output
relationships required for system definition. Herein, a system
is said to be defined if the system response can be predicted
with knowledge of the corresponding input. A system, consisting
of an input £ (x), a 'black box", and an output g (x), can be

characterized by the operator S such that

g(x)z S[J:(x)] (1)

where, withait loss of gensrality, x can be viewed as an n
dimensional variable,

Consider first, the general (non-linear) case, where no
assumptions are made concerning 3. OUne must know the system re-
sponse for all possible inputs in order to completely define the
system.

A less stringent defining relationship requirement arises
from the sole assumption of system linearity, the property of

which may be stated as

Slas+btx)]=a S [s¢o] + b S [t )] (2)

where s(x) and t(x) are arbitrary inputs and a and b are constant.



Such systems may be characterized by knowledge of the system
" - Ty , . . . . , 4 y
response to Dirac delta inputs at each input point. The impulse

response corresponding to the imput point x:=§ is written

hix-§;6)= S[§(x-g)] (3

Through the properties of Eg. 2, the input-output relationship of
a linear system can be shown to be defined through the super-

position integral:

glx) = f: Fg)h(x-5;¢)dg

(4)

Classically, the next step in developing the system class-
ification hierarchy is assumption of the linear system's shift
invariance., Shift invariant systems ( not necessarily linear)
L e

are characterized by the property that the output shifts directly

with the input. Uthat is

g(x-§)= S[ﬁ(x-ﬁ)] (5)

For the invariant linear (isoplanatic) system, the impulse re-

sponse takes on the form

h(x-£38)= hix-g)

(6)



and the superposition integral of Eq. 4 becomes the convolution

integral

i

Jo F@ hox-g)de -
FCx) % h(x)

g(x)

Note that the invariant linear system requires only one defining
input-output relationship for complete system definition.

& gystem classification belonging between the linear and
invariant linear categories is the linecar piecewise invariant (LPI)

1 5
system,’ An LPI system is defined as a linear system whose input

th

space is divided into disjoint invariant regions, the m~ of

which extends over the non-zero interval defined by

/u(x-«én)/u(u,,—x) (8)
where Up = _,enﬂ and/a(x) is the unit step function:

/ (9)

1 XZ20

e @



The LPI system is completely defined through knowledge of the
system responses to impulse imputs within each of the invariant

regions. The input-output relationship may then be written as

Un
g (0= [5." $C5) halx-5)de o
= T [Fexm (o Jat (0nm x)] # o)

where

hp(x-%a)= S[6Cx-xnad]

(11)
and

Lpd Xn < U, (12,



III, NuCisumRY NUMBER OF DEFINING RELATIONSHIPS

The Cantorian theory of transfinite number56 conseccutively
orders degrees of infinity, the nth of which is denoted by‘ffn.
Two infinite sets are equally "strong'' if there exists a one to one
mapping between their elements. The first few transfinite numbers
and corresponding example sets of their order ( strength) are
}¢° : Integers

Finite disjoint regions over a plane
N : Real Numbers
1
Points on a plane

)i; : All geometrical curves

Recalling the general (non-lipnear) system, one seces that
with no knowledge of the workings within the '"black box!" the number
of input-output relationships required for complete system def-
inition is of ovrder ‘NZ « That is, one needs to know the system
output for every possible input. Similarly, the linear system
requires f*;. defining relationships since there is nceded one
defining relationship (impulse response) per point in the input
space.7 The LPI system, requiring one impulse respunse for each
of the countably infinate invariant imput regions, requires f*!,
defining relationships. Finally, the linear invariant system re-
quires only one defining relationship.

As is seen in Table I, the LPI system essentially provides a
missing link in the transition between the lincar and invariant

linecar system classifications.



SYSTEM
CLASSIFICATION

T

REQUIRED NUMBER
of
DEFINING RELATIONSHIPS

General
(Non-linear)

Linear

Linear Piecewise
Invariant
(Pieccewilse
Isoplanatic)

Linear Invariant
(Isoplanatic)

Table 1: A system classification hlerarchy with
corresponding number of necessary 1nput-
output relationships for system definition.



IV. ReLaTI NSHIP TO THE CUNVERGENCE OF THE PIZCEWISE ISOPLANATIC

PP ROXIMATION

For purposes of helographically representing a linezr space-
varlant systems, the authors have proposed a model by which iso-

1,8
planatic variant systems might be approximated as piecewise invariant.,
The linear variant system input space is divided intc nonoverlappilng
reglone within which the line spread function essentially meets
the invariance criterion of Eq. 6. The resulting piecewise in-

variant approximation output, g(x), is given by

goo= 2 )" F6) b (x-g5x0) dg

The true output, g(x), is given by the superposition integral of

Eg. 4 which may be written as
Un
gCX“Z,:f,@,, JC<§)A(X‘§;§)C'< (14)

Comparing Eg. 13 and 14, one initially assumes that as the density
of the invariantly modeled input regicns grows arbitrarily large
marked by a corresponding shriniage of each invariant region,. the

£I1IA output would approach the true output. That is

Un"-Qn")O gCXB g(X) A=

n ->go



i

Unfortunately, due to Cantorian considerations, such is not always
the cese, The " A - oo " in kg. 15 should read "A-> Ro ", That
1s, the PI4, in the limit, has only ﬁo possible defining relation-
ghips while g(x), being a variant system output, generally requires
N 1 defining relationships. As such, the PIA does not usually
converge to the true output.

Ecuetion 15 would be satisfied in many cases if

hix;€) :U;%_,b (x 3 Xn)/u_(( —j,,)/u (un - §> (16)
n->

The right side of kg. 16 is a piecewisc constant version of h(x;{)

in { , and thus,in the limit, is capable of defining No values,

J

short of the ml ordered palrs required to completely specify h(xy ﬁ).
In many instances, the nonconvergence of the PLA may be

illustrated through comparison of its energy9 to the true output,

the difference of which manifests the previous Cantorian consid-

erations,



V. EXalMPTES

Illustrution of the effects of GCantorian theory on the con-

vergence of the PIA are now offered.

1. The Ideal One = Dimensional Imaging Systems
The impulse response fa an ideal one dimensional imaging

system with magnification M , is defined as

h(x-£;8)= 5(x-Mg) 17)

One may write equivalently
Lo (25_3
g’Cx)- M| f M (18)

One sees that for M » 1, due to the nonconformance with Eq. 6, the
20

The energy E contained in g(x) is

Lol

system is linear and varian

E =f_: | g(x)lzclx

(19>
= S [#(9)]ds
The imaging system PIa, from Egs. 17 and 13, is
~
=T Flx-t-Dxal wlx-sty- 00w ]

s [=X + Kt CM=1) X ]



te that 'g(x) 1is merely & summation of a pieccewise shifted version
of £(x);.and lacks the T.\L amplitude scaling factor of g (x).

Nonconvergence is immediately suspected. For M » 1, the piecewise

shifted patches are non-overlapping and the energy in the PIA output is

E=Jo| g (x| dx (21)
L2 | $¢x)| *dx
ME

1]

Thus, the energy -difference betwcen the true output and PIA outputs
for a given input, regardless of the density of the input regions,
always differs by a constant. The PIA of the one dimensional
imaging system then, obviously does mnot, in the strictest of.senses
converge to the true output.

In fairmess, it must be said that the above energy approach

is not valid for the two dimensicnal imaging system. +Her—M

The true and PIA outputs do indecd have equivalent energy for all
M » 1. The PIs, however, stili does not converge to the true

output since it has only the power to shift NO input regions,
while the true cutput demands the shifting and amplitude scaling

of m 4 points.



2, The Thin Lens Fourier Transformer
The two dimensional thin lens Fourier transformer system has

an input-output relationship of

o0 s AWM +
ng,r)=_f“fﬁ(p,q)e'°"ﬁ(Px w)d
=§:[-‘F("J Y)]

P‘}q (22)

where £ is the lens focal length and .A the wavelength of the
spatially coherent illumination. The corresponding point spread

function is

hcx'ig Y'nJilh) - e-é‘ % <€x ! nY)

(23)
and the corresponding PIA is
N
g(&Y):;? g:[;c(x-i-xn’ Y+ Yn)
‘/u(mxn-ﬁn}uc-x-xn-un)
x/u(nr,,,-ﬁ,:,)/u(-r-vm-ué,g) oAt
X="Xp

xe-;ﬁ(xx,.wvm) Y="Ym



¢
where ‘en < xs Uy and £M< Y& U”" define the nmﬂ‘ input

reglion., IEf

. . 1
then the rIA of Eq. 24 takes an a Fourler Series type of form.

"
Thus, for most inputs, the energy associated with g; (x,Y) g

nonfinite., Ihrough rarcwal's theorem, the true output of a Fourier
transformer for finite energy inputs has finite energy. It can
thus be stated that the r¢I4 of a Fourier transformer . does not

converge to the true output in the strictest of senses,



3. 'The Integrator

There do exist systems for which the rIA converges to the true
output. Consider , as an example, the linear system which integrates
the input over all X and displays the result as the amplitude.

of an output pulse. That is

glx)= rect [%i] j_:ac(%)d%

(26)
where 2 a is the output pulse width and

rect [5_%] =/qu+a.)/a(a-‘X) (27)
The corresponding line-spread function is

hi(x-%;§)-= rect[%é‘] (28)

and the system FIA output is

ng):’;'& Jc(ﬁ) rect[{ (X*Xn)]d§

(29)

Assuming that for all n

24 )Un'—zn (30)



Equaticn 29 becomes

B beomalicseard e

xn'l'x "a-

If the input functions largest input isoplanatic patch has width

79) max y then within the output interval
VJMA UJMAK
. Woax X =

a > < X < 2

Eg. 3L's middle term gives the PIA output as

gexy = Zn_‘_fl:"f(g)dg
= /7 feg)dg

= g (x) j la- Yeex|<x GO



As the input's isoplanatic patch density grows arbitrarily large
with corresponding shrinkage of patech widths, the second term
in Eq. 31 approaches the true system output. Similarly, in this
limit , the first and third terms in Eg. 31 shrink into zero width
intervals about the points x = -a and a respectively. Thus,
except at these endpoints, the PIA converges exactly to the true
outpute

Actually, the convergence of the PIa of the integrator to
the true output should not be surprising, since the operation of

il
integration may be defined as the limit of a sum.



VI. CONCLUSION

The piecewise invariant modeling of linear variant systems,
termed the piecewise isoplanatic approximation (PIA), does
not in general converge to the true system output as the input
isoplanatic region density grows arbitrarily large. The
restriction of the PIA, in the limit, to ,To mapping operations
opposed to the generally requirped “Pﬂ_ mapping operations for
the variant case, is cause for this non-convergence.

The general non-exactness of the limit of the PIA and
true output, however, does not greatly detract from the PIA's
utility. Good output approximations have been: illustrated
here and elsewherel for the integrator, gemeral invariant
system, ideal imaging system, and thin lens Fourier transformer.
The PIA is just that, an approximation, the consequences of

which should be investigated prior to application.
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Inadequacies of the Lohmann-Paris
Measure of Space Invariance for
Non=Imaging Systems

Robert J. Marks II

Dept. of Electrical Engineering
Texas Tech University

Lubbock, Texas 79409

(Dec. 1976)



I. Introduction: The Lohmann-Paris Invariance Measure

In order to employ such mathematical niceties as Fourier analysis, at-
tention to linear space-variant system input planes is often times confined
to an isoplanatic patch within which the system is somewhat space-invariant
[1]. Summing the effects of adjacent isoplanatic patches yields an approxi=-
mate variant system output [2]. As such, a measure of the "invariance" of a
space-variant system is desirable.

Seemingly motivated by the definition of the complex degree of ccherence
encountered in statistical optics, Lohmann and Paris [3] have offered such
a measure for the specific case of space-variant imaging systems. Their
proposed "degree of invariance" measure of a space-variant imaging system is
a normalized cross-correlation between shifted line-spread functions origi-
nating from impulse inputs at different locations on the input plane. For

the one-dimensional case:

Lo h(x;p)h” (x3q) dx
o(p,q) = .
[ £ IhGxp) [ dx £ [h(xsa)|® ax 127

where o(p,q) is the linear system's degree of invariance, p and q are two
points on the input plane, and h(x - £3&) is the linear system's response to

an input 8(x = £) where 8(x) is the Dirac delta [4]. Due to Schwarz's ine-

quality:
0< |o(p,q)| <1 (2)

For the space-invariant case, the line-spread function shifts directly with the



input impulse., Thus

h(x - £38) = h(x - E) (3)

substituting the above invariant case into Eq.(1) yields a degree of invar-
jance of unity. Conversely, a linear imaging system with a deqree of invar-
iance of zero would be said to have no trace of invariance,

Atso proposed by Lohmann and Paris is an analytic definition of the iso-
planatic patch, If € is the maximum "variance" allowed a patch, then the patch

interval from p to q must satisfy the following inequality:

I 1 - U(P.Q) ' € € (4)

Although intuitive in design, the Lohmann-Paris measure of invariance
seems limited to imaging systems. Application of this measure to certain
non-imaging space-variant systems, as will be shown, yields results in direct

conflict with the theory's intent.

I, Inadequacies

The following applications show that the Lohmann-Paris measure is inade-
quate for measuring the spatial invariance of certain non-imaging space=-variant
systems,

A. The isoplanatic patch constraint

The proposed isoplanatic patch constraint can assign the same variance
to isoplanatic patches of grossly varying widths, Consider the equality ver-
sion of the isoplanatic patch constraint of Eq.(4). It is possible to have a

solution of this relationship of the form



e=|1-alp, )l =1 -alp, a  + Al (5)

where Po and q, are points of the input plane and Aq is a non-zero interval,
Assuming Py< Gy and Aq > 0, the interval from P to q, is assigned the same

invariance as from Py to g, * Aq.

As a specific example, consider the ideal magnifier with magnification M
whose inputs are frequency limited to the interval fx < |W|. The space-variant

magnifier's line-spread function is
h(x - £;8) = 8(x - Mg) (6)

Through Parseval's theorem, the frequency domain equivalent of FEq(1) is

00 *
Lo H (F s (£ 50) df,

a(p,q) = = > 7 % (7)
(£, I (fsp)|® df, [ [H (f 30)|? df,]
where H(f ;) is the Fourier transform of h(x:g):
H (f 38) = [, h(xsE)exn(-j2nf x) dx
W .
=7 [h(x;€)] (8)

Substituting Eq(6) into Eq.(8) yields

H (f 3€) = [8{x - (M - 1)E}]

exn[-j2m(M - 1)ef, ] (9)



and with the cited frequency constraints substituted into Eq.(7) gives the

magnifier's degree of invariance [5] as

a(p,q) = sinc[2(M = 1)(p - q)W] (10)
where
sinc(x) és—if%ﬂ

The Lohmann-Paris isoplanatic patch constraints for the ideal maanifier is

thus

|1 = sinc[2(M = 1)(p - q)W]]| < ¢ (1)

An illustration of Eq.(11) for a typical e is offered in Fia.(1). The constraint
is satisfied in region 1 and 3, but not in reaion 2 even though the interval
p - q is smaller than in region 3. This is in direct conflict with the general

observation that the samller the patch, the greater the invariance.

B. Failure to predict piecewise isoplanatic modeling

The Lohmann-Paris invariance measure can erroneously predict the unsuc-
cessful piecewise isoplanatic modeling of a space variant system [2].

Consider the degree of invariance of the ideal magnifier without frequency

constraint, (i.e. let W » «):

o(p,a) = Tim sinc[2(M = 1)(p - q)¥]

(12)



A similar degree of invariance is assigned to the ideal thin lens Fourier

transformer [5] with the 1ine-spread function

h(x - £3€) = exp( -j—%—x) (13)

where X is the wavelength of the coherent illumination and f is the focal
length of the lens, If the inputs are space limited to the interval (-a,a),

the degree of invariance of the Fourier transformer is

a(p,q) = s1'nc[—2—(%e'—c-‘La]é»tt)[«.i;\%—(n2 - q%)] (14)

The degree of invariance for the unrestricted Fourier transformer is then

a(p,q) = Tim s1'n«:[—z—(P—-;—q—)-a—]exn[-n’;-},-'—(p2 - 9*)]
A

a->oo

0s;p#a

Both the ideal magnifier (M # 1) and the ideal thin lens Fourier transformer
are thus predicted to have no trace of invariance. This implies no suc-
cessful piecewise isoplanatic modeling of these systems can be made. This

is contrary to successful results of such piecewise isoplanatic modeling
previously presented [2]. The frequency limited magnifier can be characterized

exactly by a sampling theorem approach [6].

C. "Quasi=Tinear"system description

A "Quasi=linear" system, as defined by Arsenault and Brousseau [7], is a



system which is space-invariant only for a set class of inputs. These authors
have noted that the Lohmann-Paris method may yield a space variant measure
for such systems.

Conversely, there exist quasi-linear systems which are assianed total
invariance by the Lohmann-Paris measure. Consider the quasi-linear piece-

wise isoplanatic system with line-spread function

h(x - £38) = rectbliéﬁéLdrect(—%E) (16)
where
15 |x] ¢ 1/2
rect(x) = (17)
0 ;3 otherwise

and a and b are constants. Such a system is invariant for object inputs
which are zero outside the interval -b ¢ £ ¢ b, Substituting into Eq.(1)

gives the degree of invariance of this system as

o(p,q) = 1 (18)

Here is a case where a linear system does not meet the classical invariance
criterion of Eq.(3), vet is classified as totally invariant based on the

Lohmann=Paris measure,

D. Separable line-spread functions

As a final example, consider the case where the line-spread function is



separable, That is

h(x;€) = f(x)q(£) (19)

Such a system could be viewed as an invariant system with line-spread function
f(x = £) with a transmittance g(£) placed in its input plane. The Tine=-spread
function in Eq.(16) describes such a system. If the transmittance g(£) is pos=

itive and real, then the predicted degree of invariance is

a(p,a) = 1 (20)

Based on the measure of Eq.(1), total invariance is again predicted for a

system which is classically space-variant.

111, Conclusions

The Lohmann=Paris measure of the degree of invariance previously applied
to space-variant imaging systems has been shown inadequate in the following
more general applications:

1. Definition of the isoplanatic patch (for the frequency limited mag-

nifier with M #,1),

2. Predicting successful piecewise isoplanatic modeling of certain

space-variant systems (such as the Fourier transformer).

3. Measuring the degree of invariance of quasi-linear systems.

4, Measuring the deqree of invariance for linear space-variant systems

with separable 1ine-spread functions.

These inadequacies dictate the need for a revised or augmented measure

of the invariance of linear non-imaging space-variant systems.
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Figure Caprions

Fig. 1 3

Shown is the dearee of invariance of an ideal magnifier as a func-
tion of input patch width, p - q. By the given definition of the
isoplanatic patch, patche widths corresponding to region 1 are
allowable, Patch widths in region 3 are also allowable even though
they are larger than patch widths in region 2. This violates the
observation that the larger the patch, the less the deqree of

invariance.
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UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

Department of Electrical Engineering
27 June 1978

Professor Thomas F. Krile
Rose-Hulman Institute of Technology
5500 Wabash Avenue

Terre Haute, Indiana 47803

Dear Tom,

I really enjoyed our discussions and fellowship at the
Gordon Conference. We'll do it all over again in October in
San Francisco at the 0SA Meeting.

Enclosed are copies of some correspondence I've been
having with Gary Wise on "Laplace series." I'm hoping it's a
good method for inverse Laplace transformation.

The foundation of the Laplace series comes from Szasz's
theorem:

Let x(t) be causal, Lebegue measureable and square integratable:

JIx(t)]2 dt < » .
0

We then say that x(t) € Lo[0,=) = Lo*. The function set,

fe nt |0<t<=, n=1,2,3,...} is complete in L,* iff
Rebn >0 for all n

and
E Re bn ..
n=1 1+ 'b_n-l/zl2 “

In English, this means that we can completely characterize
x(t) with knowledge of the inner product of x(t) with each of the
basis functions. But the inner product of x(t) with o~bpt is a
sample of x(t)'s Laplace transform:

® -b t



Professor Thomas F. Krile
27 June 1978
Page 2

X(s) = ? x(t) e St gt .
0

Thus, upon choosing an applicable sequence {b,|n=1,2,3,...},
we can (in principle) form an interpolation set,

{pp(t) [ n=1,2,3,...} determined solely by the bp's such that
for every x(t) € Lot we can write

M) = T X))

The equality here is rigourously in the Ly norm. That is,
1

N %
um[f x(t) - 5 X(b,) v (D)]2 di{{ =0 .
N> | 0 n=1

The two enclosed memos derive the interpolation function
for the case where by =(n+%)r. The constant r is assumed posi-
tive (but is otherwise arbitrary) and parameterizes the sampling
rate in the Laplace domain. It turns out in this case that the
interpolation function takes on the form

v (t) = rI (rt) ,
where In(t) is a weighted sum of "distorted" Legendre polynomials.
Hope this of help to you!

Best wishes,

Robert J7 Marks 11
Assistant Professor

P.S.: I'd really appreciate it if you could send me some
references on the other methods of inverse Laplace
trans formation that you mentioned. Some references
on the undergraduate lab fiber optics experiments we
talked about would also be most welcome.

RM:bb
enclosures
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N Y
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Best wishes,

V

/
Robert J7 Marks I1
Assistant Professor
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references on the other methods of inverse Laplace
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on the undergraduate lab fiber optics experiments we
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UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

Departiment of Electrical Engineering

28 June 1978

Professor Gary Wise

Department of Electrical Engineering
University of Texas

Austin, Texas 78712

Gary,

Got an application! Inverse Laplace transformation. I
talked to Tom Krile at the Gordon Conference, and he mentioned
there were no "good" digital methods. Maybe the Laplace series
is the answer.

Here's an extention of the Laplace series which allows
sampling to hegin at points other than r/2 on the real axis in
the s-plane: ‘

Theorem

Let x(t) e Lp*. Then, for every t>0, r>0, and complex number
a where Rea>0, we have the relation:

[e]

x(t) = re?t Ty yir(neg) 4] €T 1 ()]
n=1

where the expression for I,(t) was given in my previous letter
to you (16 June 78) and X(s) is the Laplace transformof x(t):

X(s) = ? x(t) e St dt = &Ix(t)] .
0

Equality 1is in the Lo norm.

Before proving the theorem, let me give some personality
to some of the variables. We are sampling X(s) in the s-plane
as follows:




Professor Gary Wise
28 June 1978

Page 2
Jw
sample locations
Kf i
jlma““-"-“”’——"—'*-f*-—'{f--?é— P

As you can see, Rea parameterizes where our sampling begins.
The parameter r specifies our sampling interval parallel to

the o-axis. The imaginary component of a dictates the distance
away from the o-axis we sample. In most applications, I would
imagine we would set Ima=0. The parameter t is not pictured
in the figure. We apparently loose nothing by setting t=0.

T, however, might play a role in the series convergence rate.

Here's the theorem proof. We begin with the expression
developed in the last correspondence:

M) = 1 X(oer] 1(rD) 5 x() e Ly¥, rs 0
n=1

For every x(t) e Lo¥ and every t>0 and for every a with the
property Rea>0, it follows that

-at

x(t-t) e € L2+ .

This statement follows straightforwardly from Schwarz's inequality.
We now make use of the Laplace transform relation:

Zx(t-1) e'at] = X[s +a] e‘"(a+s)T .
Using the Laplace series, we can write:
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Jw
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As you can see, Rea parameterizes where our sampling begins.
The parameter r specifies our sampling interval parallel to

the o-axis. The imaginary component of a dictates the distance
away from the o-axis we sample. In most applications, I would
imagine we would set Ima=0. The parameter t is not pictured
in the figure. We apparently Tloose nothing by setting t =0.

1, however, might play a role in the series convergence rate.

Here's the theorem proof. We begin with the expression
developed in the Tast correspondence:

x(t) = r E K[ (n+s)r] In(rt) ;. x(t) e L?+S r>0.
n=1 -

For every x(t) e L2+ and every t >0 and for every a with the
property Rea>0, it follows that '

-at

x(t-1) e € L2+ .

This statement follows straightforwardly from Schwarz's inequality.
We now make use of the Laplace transform relation:

Zx(t-1) e 2] = x[s +a] e~ (@¥S)T
Using the Laplace series, we can write:
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x(t-1)e b . El X[r(nts) +a] e-[r(n+%)+a]w I (rt) .
ne

A straightforyard manipulation followed by a shift of t to t+ t
completes thy proof.

These pesults have yet to be digi i fi
' ' res ve gitally verified. Only
time and an (pM 370 will tell. |

Best wishes,

Lotr

Robert J. Marks II
Assistant Professor

RM:bb



UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

Department of Electrical Engineering

19 September 1978

Dr. Gary Wise

Department of Electrical Engineering
University of Texas

Austin, Texas 78712

Dear Gary,

Summer's over and I'm looking forward to another year
of fun. Working here at the Applied Physics Lab was enjoyable
this summer, but I Tike independent research much better.

I admit that the 1943 paper you sent me sunk my boat a
little bit. I agree with your comment, though, that there may
still be good things to discover.

In the Legendre polynomial treatment, Mike Hall and I
have come up with some convergence problems I'd 1ike to share

with you.

Let's first backtrack to the June 16 letter to you in
which it was shown that, if x(t) eLo™ and r is a positive con-
stant, then, with equality in the Ly norm, we have

x(t) =
n

il ~1 8

1'un o, (t)

where the orthonoymal basis function is

¢n(t) = [r(Zn—-‘l)]I/2 e-(rt/Z) Pn_l[Ze‘rt-mlj ; n=1,2,3...

and the inner product is

_ [r(an-11E T (-2)8 .
T g Al A G (1)

Here, X(s) refers to the Lap1ace transform of x(t) and
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3 § (-1)%(2n-2k) 1
n+l,q Koo k!(n-k) '{n-2k-q)! -

It turns out that Cn can be put in a better form. Recall
that g '

n
2 k
o 1)"(2n-2k n-2k
Pn(t) -2 kgo ((n kg'?n 2&)' t )

From this, we can show that

= o ;4d,q
Cn+1,q =2 (dt) Pn(l)

which, in turn, can be shown to be

C _ Zn"q§n+g)!
n+l.q ql(n-q)! -

Substituting into (1) gives

ot 5 "L (21)(ntg-1)! 1
SRR C R RS Xir(a+5)] -

We know from Parseval's theorem that
J |x(t)|2 dt = § lanlz .
0 n=1

A necessary condition for the series on the right to converge is that
ap must tend to zero as n gets large.

Let's take a typical Lyt signal:

x(t) = et | ts>0.
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Then, for r=1, we have

Xlq+%] = (g + 1 .

The corresponding an's are
n-1 q
(-1)*(n+g-1)!
3T -
g=0  (q!)*(n-g-1)!(q+3)

o = (-1 [2n- 177

They do not go to zero as n goes to infinity. We've racked our
brains and can't figure out why.

Any ideas?

Best wishes,

rd ) ./'"/—

AP

V- el

Robert J. Marks II
Assistant Professor

P.S.: Will have a draft of the Laplace computer program paper to
you this month.

RM:bb




UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

Departinent of Electrical Engineering

10 October 1978

Dr. Gary Wise

Department of Electrical Eng1neer1ng
University of Texas

Austin, Texas 78712

Gary,
Here's something interesting:

Let u(x) be real and in Ly[-=,»]. Define the linear transform:

1 T ulx) dx

Q(S) - jZ’IT f jS
- 00 x————

2m

Then the sample values, g(A,), are sufficient to characterize
u(s) if the sample Tocations, A3 n=1,2,3..., satisfy Szasz's
criterion. 1In other words, the set -

____.,..___.___1 —
j2ﬂX+>\n
forms a basis set for all real Lp(-~,») signals.
Furthermore, if u(z), z=x+jy, is the analytic continu-
ation of u(x), u(z) is analytic on the upper half-plane, and
Lim u(z) =0 .

y-—>00
Then, from Cauchy's integral theorem:
js
g(s) = u() .

Then, if all A,'s are real (eg., A,=n), then u(z) is character-
ized by sampling u(z) along the positive imaginary axis! (Neat!)

Proof:
If u(t) elp(-=,=) is real, then its Fourier transform is
Hermetian:
U(F) = U*¢F)
where

U(F) = [ u(t) enIF gy
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Also, U(F) eLo(-=,=), which implies that U(f)u(f) eLot, where
u(-) is the unit step function.

From Szasz's theorem, U(f)u(f) can be specified from the
inner product

—Anf

a = [U(f)e " df,
0

where the An's satisfy Szasz's criterion. Then,

P A f

a = [ [ u(x) g J2rfX dx] e " df

0 - 00
w o -(A +j2nx)f

= [ u(x) [e n dfdx
- 00 O

_ 1 ? u(x) dx
j2m oy~ 3%

2m

The statement concerning analyticity of u clearly follows from
Cauchy's integral theorem and the fact that Rea,>0.

Q.E.D.

Let I,(f) be the unique interpolation function such
that

() = § oy 1(0) u()

[This is the function of Legendre polynomials with which we're
having convergence challenges for Ap=n.] Using the fact that

U(F) = UCFIu(F) + U(=fu(-f) ,
it is easy to show that:

u(x) = 2Re J a ¢n(x) ,
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Let me know what you think.

Best wishes,

Robert J. Marks 11
Assistant Professor

RM:bb




UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

Departmment of Elecirical Engineering

23 October 1978

Dr. Gary Wise

Department of Electrical Engineering
University of Texas

Austin, Texas 78712

Dear Gary,

We have solved the convergence problem! It turns out
that the interpolation formula:

x(t) = re "2 E (-1)"(2n+1) Pn[2e-rt-1] o)
n=o
1 (<1)9 (n+q)! 1
(£OEQJ2ES—3%?XD%q+éH

is correct. We cannot, however, make the change of summation
order. That 1is,

[oe] [ee] o

n
D D N

n=0 gq=0 Q=0 n=q

This is due to the fact that, in general, the series is not
absolutely convergent. That is, ‘

(o]

z Ibn(t), = oo,

n=o

where the by's are everthing inside the n summation sign in (1).
[Can we find a x(t) for which it does uniformly converge?]

There must, however, exist a unique interpolation formula,
Iq(t), such that

x(t) = ] X[r(g+%)] I_(t) (2)
- q
q=0
It turns out, though, that we can't find I,(t) by switching the
sum sign in (1). It must be computed in a different manner.
Any ideas?
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Let's see what we can salvage from (1). In any "practi-
cal" situation, our « index will be finite. Call it N. In this
case, we can write '

N n N N

Polo= 1]

N=0 g=0  g=0 Nn=q
Then (1) becomes

N (N)
x(t) =r ¥ X[r(g+%)] I (rt) , (3)
g=0 |
where _
; q N
1, Moy = /2 1, 1 (0" (e) {itallp et 1]

The relation in (3) would seem to be applicable to a good approxi-
mation. Analytically, we could find x(t) from

N Lo
x(t) =r £im )] X[r(q+%)] 1 (rt) . : (4)
N0 g=0 q

By our previous observation, this is not equivalent to

P T XIr(q+s)] ein T Mnt
g=0 Noeo G

We're gonna be playing around with this some more from
two different angles: .

1. Trying to find Iq(t) in (2) via a different approach.
2. Looking at some digital implementations of (3).
By the way, the ap's I said diverged in my letter of

19 September 1978 actually converged. The actual problem was
that the proposed Ig(t)'s were not in Lp*. Now we know why.

‘Best wishes,

e

et

Robert J. Marks II
Assistant Professor
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73 A, ErpiLy.

NOTE ON AN INVERSION FORMULA FOR THE LAPLACE
TRANSFORMATTON

A, ERDELYTY,

1. A sequence A, Ay, A, ... of real or complex numbers will be called a
base for the Laplace transformation if any Laplace integral

g o) = esya

vanishing at all points s = A,, (m =10, 1, 2, ...: Xis the conjugate complex
to A) necessarily vanishes identically. Such bases exist: thus any sequence
{An} with a finite point of condensation is obviously a base, and there are
also bases without a finite point of condensation. Tor example, a cele-
brated theorem of Lerch states that {s,~+m} is such a base. If {A,} is
a base for the Laplace transformation, then both f(t) and g(s) itself (the
former except for an additive null-function) are determined uniquely by
the values the latter function takes at the points s=A,,.

The expression of f() in terms of g(A,) (m =0, 1,2,...) is a new
inversion formula for the Laplace transformation. Of the usual inversion
forinulae, the so-called complex inversion requires the knowledge of g(s)
along o line parallel to the imaginary axis; the Paley-Wiener and the
Boas-Widder inversion formulae assume the knowledge of ¢(s) along the
real axis; the inversion by means of Laguerre polynomials makes use of
the values of ¢(s) and all its derivatives at a finite point; and the so-called
Post-Widder inversion formula involves the values of g(s) and all its deriva-
tives for large positive real s. It is perhaps of some interest to have an
inversion formula which requires the knowledge of g(s) only at a certain
denuwraerable set. Hrom the practical point of view, the new inversion
is likely to be useful in cases when g{s) is determined by numerical methods,
for instance in certain cases of the application of the Heaviside calculus.

The expression of g(s) in terms of g(A,) yields an interpolation forraula.
This new interpolation formula is slightly reminiscent of the cardinal
series und its generalisations, but the resemblance is not as close as perhaps
at first it might appear. Though the new interpolation applies to a certain
class of functions analytic in a half-plane, and so is more general than

* Received 17 Junuery, 1943; read 18 March, 1943,
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the interpolation by means of the cardinal series (which interpolates
certain classes of integral functions), yet the latter is not a particular case
of, anu is simpler than, the former, '

In the present note I restrict myself to quadratically integrable
functions f(t) and the corresponding class of functions g(s) analytic in a
ji)f-plane. The investigation is based on an orthonormal set of functions
which are generalisations of the Jacobi polynomials. In a future paper
I hope to give a more detailed account of the subject, including other
classes of functions, the convergence and summability theory of the
expansions, the so-called Laplace-Stielties. transformation

g(s) =E e da(t),

\

the Stieltjes transformation

and certain representation theorems.

The orthonormal system.

2. Suppose that all the A, are different irom one another and that
the real part of each of them is positive, and consider the sequence of
functions {e*»#. These functions are linearly independent and each is
quadratically integrable over (0, c): hence it is possible to determine an

orthonormal set {¢,} of functions
@) | )= cpe
i.e. a set for which
5: (l)mg?;ndt.: 0 if m#n and =1 it m—n.

The well-known method of orthogonalisation of Gram and Schmidt
yields an explicit expression for ¢,, viz.

(3) . ¢1l (t) = Gn (Dn j)7l~1)~—} Dn (t))

whore D, denotes the determinant whose element in the ¢-th row and
k-th column is ()™ (4, k= 0, 1, ..., n), D, (t) the determinant obtained

Teemr - 5
st i

g oo i
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by replacing (A,-+A,)"1 by e (k= 0, 1, ..., n) in D,, and ¢, is an arbitrary
complex constant of modulus one.

Now D, and the cofactors of e ..., ¢! in D, (1) are double alter-
nants and can easily be evaluated [cf. ¢.g. (3), §353]. With a suitable
choice of ¢, we obtain

n—1

) Cun = Ot Rt T 3) /117 =,
i k=0

=0
where the prime at the product-sign indicates omission of the vanishing
factor k= m. ‘ ‘

The sequence of functions thus determined is orthonormal in L, (0, o),
for any choice of the sequence {A,}, provided only that no two A’s
are equal and that ®(A,) >0 for m=0,1, 2, .... From an important
result due to Szész we deduce, by a simple change of variable, that {e-*nf,

and therefore also {¢,}, ¢s complete with respect to and closed in L, (0, o)
if and only if the infinite series

B@,) )
I'H'\nlz

/

is divergent. In the sequel we assume that this condition is satisfied.

3. In order to abbreviate the formulae, we introduce two sets
of operators {I',} and {I',*}, operating on functions of o, which are

defined for o=2p, A, Ag, ... and o =2, A\, A, ... respecti%ely. The
operators are defined by the equations :

i n — ‘
(5) Fn[g(c)] = Eoclnﬂ g(Ain)’ I‘n*£g(o)] = X Emn g(Am) (/"’ = Os 1’ 2’ “‘)'
m= ) ‘

=0

Obviously I',[g]="T",*[g] and in particular
(6) I1'!1 [ehal] == 5671, (t)’ .FIZ * [e“ql] = 571 (t)‘

The inversion and interpolation formulae.

4, Suppose that f(¢) and g(s) are connected by (1). The Fourier
expansion of f(t) associated with {$,} can be written in the form

o

£ rle | 0T e
=0

0
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Now
[Crormena=rs [ [ joea] =m0

and hence we find the new form

Q) R e )

for the Fourier expansion of f(f). Under suitable conditions on {A,,} and

f(t), or g(s), this series is convergent or in some sense summable to f(t),

and then we have our inversion formula.
Substituting the expansion (7) in (1) for f(¢), and integrating term by
term, we find the expansion for g(s), viz.

£ [T e fe e am, #yto));

n=0.J0

and since

Caen

|, e Taler1a =T, [ emesonas] = v tsor,
0 0

this expansion can be written as

8

& ' 20 Lo [(s+o0) 1T *g (o).

. =
Again we expect that, if suitable conditions are imposed upon {A,}
and g(s), the expansion (8) associated with ¢{s) will converge or be n
some sense summable to this function, and thus furnish us with an inter-

polation formula for Laplace transforms, i.e. for functions representable

by a Laplace integral (1).

5. We give three simple theorems concerning the expansions (7)
and (8). '
Tueorky 1. If f(t) belongs to Ly (0, ) then g(s) is defined for R(s) > 0

the partial sums of (7) converge in mean square over (0, ©) to f(t), und the

partial swms of (8) converge to g{s) for (s) > 0.

The proof is simple. The existence of g(s) for R(s) > 0 is obvious.
The corivergence in mean of the partial sums of (7) to f(¢) follows from
the closure property of {¢,}. IKinally, since (7) converges in mean
square and e~% belongs to L, (0, o), the convergence of (8) may be deduced

by term-by-term integration.

T TR A Y T

e e R

T
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In order to formulate our second theorem, we definet H,* as the class
of functions g(s) analytic for R(s) > 0 and such that

| |7 1gtetintean < b2
for all £ 0.

TamoreM 2. If g(s) belongs to H,* then the partial sums of (8) converge
to g(s) for R(s) > 0; the partial sums of (7) converge, in mean square over
(0, ), to a function f(t) of Ly(0, o©); and (1) holds, with this f(t), for
J(s) > 0. , ‘

Tror, since g(s) belongs to $,¥, there is a function f(t) of L4(0, o) such
that (1) holds for R(s) > 0 [cf. (1), Satz 1}; and we can apply Theorem 1
to this function.

Let us denote the N-th partial swns of (7) and (8) by fx(¢) and gx(s).
Then g(s)—gy(s) is the Taplace transform of f(t)—fy(¢) and the latter
function belongs to L4(0, ). It follows from Parseval’s formula for
Fourier transforms, and the mean square convergence of fy(t} to f(¢) in
(0, ), that gy(s) converges to g(s) in mean square over (—100,1c).
. Further, if £ > 0, then e~ f()—e~* fy(#) belongs to 1,(0, o) for 1 <p <L 2,

and e~ fy () converges to e~ f(¢) in p-th mean over (0, «). An inequality .

due to Titchmarsh} then shows that gy(s) converges to g(s) in p’-th
mean, where p’ = p/(p—1), over ({—1 0, {4i0). We thus have

TuroreM 3. If g(s) belongs lo §,*, then the partial sums of (8) con-
verge to g(s) tn mean square over (—ioo, tco). If £> 0, then they converge
to g(s) in mean, with any index not less than 2, over (£—ido, {41 00).

6. We conclude with a few remarks on the sequence of functions

) hale) = (P Tol(oo) ] = (2m) 5 Lo

A metric can be introduced in $,* by the definition
o) = tim | |g(¢-+in) .
10 J—o

Trom Theorem 3 it follows at once that {i,} is closed in, and therefore
complete with respect to, the metric space defined in this way. Moreover

t Following Doetsch (1),
1 Cf. (6), p. 96, formula (4.1.2),

2. E, Hille and J. D

3, 1, Muir and W. F
4. J. Shohat, “ Lagv

5. 0. Szdsz, . Uher ¢

6. I3, C, Titchmarsh,
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{,} is an orthonormal system; for i, (s) is the Taplace transform of
(2m)~* ¢,,(t), and the orthogonal property of i, over (—iw, 1 0) follows,
by Parseval’s theorem, from that of ¢, over (0, ). Indeed (8) is the
Fourier expansion of ¢(s) with respect to the orthonormal system {4, }.
For, since g(s) belongs to $,#, it can be represenced by the Cauchy integral

gls) = o r 960 g0 ((s)> 0.

—w §— 17

(<]

mg(in) g, (1) dy,

Lol =5 | _gln) Ty llo—iny1)dy = (2m)
and thus (8) may be written

o0

> s/fn(s)j 9 i) o) .
n=0 —@

The convergence of the expansion to g(s), in mean square over (— 0,% 0},
now follows from Theorem 3. )

.. The formulae representing ¢, and i, simplify considerably for par-
ticular sequences {),,}. The most interesting case is that of equidistant \'s.
In this case ¢, can be expressed in terms of Jacobi polynomials and i,
in terms of the generalised hypergeomotric function 4F, of unit argument.
In the limiting case when all the A, become equal, the ¢, reduce to
Laguerre’s orthonormal system and the i, to powers of a linear function
of s: this case has been discussed by many authors, and recently by
Shohat, who gives references to earlier literature.
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NUMERICAL INVERSION OF THE LAPLACE TRANSFORM BY
USE OF JACOBI POLYNOMIALS*

MAX K. MILLER} anp W. T. GUY, JR.}

Abstract. Functional values of a function f are determined from the values F(s)
of its Liaplace transform at discrete points of s, Evaluation of F(s) at points given
bys= @B+1--k3,k=01, , determine coefficients in an infinite series ex-
pansion of f(¢) in terms of Jacobi polynomials. The values of 8 and & determine ths -
position along the real s-axis at which #'(s) is evaluated. An approximation to f{f)
is given by using a finite number of terms of the infinite series expansion of f(¢). .
Numerical examples are given and results are compared with some known numerical
methods for approximating f(¢).

Introduction. The problem of numerically inverting the Laplace trans-
form is known to mathematicians, physicists, and engineers and has been
discussed extensively in the mathematieal literature [1]-{8). A single method -
for numerically inverting the Laplace transform that works equally well
for all types of problems encountered is lacking. In many practical problems -:
where the Laplace transform can be evaluated at diserete points along the
real axis of the independent variables, the method described here is use-
ful. This method is fast (economical) on the digital computers now avail-
able, and it has the advantage that for only a few computations the un-
known inverse can be approximated over a large range of values in the !
domain.

The Laplace transform of f({) is defined by the integral

(1) F(s) = / exp (—st) f(4) dt, Res=c¢c> 0.
0
For purposes of discussion here it will be assumed that the integral in (1)
exists for Re s > 0. A suitable translation of the imaginary axis can be made
if this is not the case, and the theory developed here is still applicable.
The inverse Laplace transform is

2 ()

provided that the integral in (2) converges absolutely for Re s > ¢, ¢ suffi-
ciently large.

Change of variable, Consider the Laplace transform of f(£) defined by (1) -

and assume that F(s) is known or can be computed at discrete points along . %

* Received by the editors March 28, 1966.
T Texas Instruments, Incorporated, Dallas, Texas.
1 Department of Mathematics, University of Texas, Austin, Texas.
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— é;r_?f exp (st) F(s) ds, . y
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the real s-axis. The variable of inte
tution

(3) ‘ @ = 2ex
where 8 is a real positive nﬁmber. 1

exp (—st) =
If this equation is solved for ¢, ther

t = —(1/5)
and a new function ¢ is defined ove
(4) () = J{—(1/8) ke
In order to extend the domain of de

g(1)

and

g(—1) =

Issentially these definitions requir
lim—» f(¢) be finite. If f is contin
tion. Substitution of (3) into (1) a1

(5) F(s) = (1/28) L(

Assume that g can be expanded ¢
thogonal polynomials. The Jacobi po
‘The normalized Jacobi polynomial 0

6 PO =

where the parameter « which uwalll
8> —1.Forn = 0, P, () =
terms of the Jacobi polynomlals the

(7)

If the coefficients C, are known, ﬂlf
J(1) can be calculated for any ¢ “:l‘,:-
Insertion of the previous series int
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FRCHEUp——

the real s-axis. The variable of integration may be changed by the substi-

TRANSFORM BY"‘ C qation
S*

JR.1

3) x = 2exp (—8l) — 1,

where § 13 a real positive number. It follows that

exp (—st) = (1 4 /2)"".

3d from the values F(s)
of F(s) at points given
in an infinite series ex.

f 3 and 8 determine the - 1ithis equation is solved for ¢, then
n approximation to f(s)
eries expansion of f(¢), . t = —(1/8)log [(1 + =)/2]

some known numerical . . )
; and « new function ¢ is defined over ( —1, 1) by

g the Laplace trans- 1) g(z) = fi—(1/8) log [(1 + a)/2]} = f(1).

rineers and has been e g : ‘ o
L8] A single method [n order to extend the domain of definition for ¢, define g(1) and g(—1) by S

t \\'OI'ks'equally well g(1) = lim g(x),
hy practieal problems PN

rete points along the ad

escribed here is use- . .

omputers now avail- g(—1) = Illf}+g(‘”)'

omputations the un- ‘ _ ) L
ae of values in the t +  Fssentially these definitions require that f(0) = lim.e+ f(2) and f( ) )

= limss, f(£) be finite. If [ is continuous, then ¢ is also a continuous fune- g

gml ! tion. Substitution of (3) into (1) and some algebraic manipulation give ; ;
1 . ‘ “; A
¢ > 0, SERY Fs) = (1/20) [ (14 /2" g(a) da. i

Assume that g can be expanded over [—1, 1] in an infinite series of or-
thogonal polynomials. The Jacobi polynomials form such a set over [—1, 1]. ‘
The normalized Jacobi polynomial of degree n is defined by [9] DR e

t the integral in (1)
Ary axis can be made
s still applicable.

em—

W 2@ = - LG - 4 0

‘where the parameter « which usually appears in this definition is zero and S
3> —1.Forn = 0, P,*?(2) = 1. If g can be expanded over [—1, 1] in v

lor Re s > ¢, ¢ sufhi- . k ;
terms of the Jacobi polynomials, then _ : o

R

f (¢ defined by (1) (7Y 9(z) = 3 C,,P,,(O'ﬂ)(a)).
liserete points along n=0

If the coefficients C, are known, then g(2) is known, which implies that
I.t) can be calculated for any ¢ = & by means of (4).

. Texas. Insertion of the previous series into the integral in (5) yields
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1 »n
F(s) = (1/28) /_1 (14 $/2)(SI‘H) [Zﬁn Cn P,.(o'm(a:):] dz.

By substituting s = (8 + 1 + k)4 into the previous equation and simplify-
ing terms one has

@)aﬂw+1+Mﬂ=?“”f(Lwﬁ“b%@PﬁW@]m
_..1 n=|

The factor (1 + 2)* which appears in (8) may be expressed as a finite
linear combination of Jacobi polynomials. That is, (1 4+ ) is given by

(9) (14 2)" = aP"?(2) + e "P@) + - + aP P (2).

For0 = m = k, a typical coeflicient a,, is a function of k and 8. In order to
evaluate a,, , multiply both sides of (9) by (1 4 2)?P,,""P(2) and integrate
over [—1, 1]. Because of the orthogonality property of the Jacobi poly-
nomials, there is only one nonzero term on the right, and therefore,

B+t ‘
2m + -+ 17
The factor (2°7)/(2m + B + 1) on the right is the normalization term for

the Jacobi polynomials. Let it be denoted by h,, .
The Jacobi polynomial P,,*?(2) can be expressed in the form

Pn,(o.ﬁ)(iv) = bO + bl(]. "*—' Q}) + PR + bm(l __I_ :v)m’

where the b’s can be determined. However, this is not necessary. Substi-
0.8 !
tution of P,,"® () in this form into the previous integral gives

1
10) [ (1 @)+ 0P (a) do = o

1 .
Mm=[ﬁLwWWm+M1+m+-~+mu+xﬂwm

(11) of-H+ Qi+ ol Hptmt1
LY oy S ey S L) "y g i

If the unknown a,, is considered as a function of the parameter k, then one

may write

_ Qu(k)
(12) a,h, _[k + ‘ B+DIE+B+2] - k+ B+m+ D]

Q..(k) is a polynomial in the symbol “k” of degree m. The explicit expres-

~sion for @,.(k) may be determined by the use of (9) and (10). In (10) let

k= m — 1 and beecause of the orthogonality of the Jacobi polynomials,

1
f (14 2)"H1 + )PP (2) dv = 0.
-1
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Therefore, one of the roots of @
procedure shows that for k = »
of @u(k) are determined. Ther
and it may be written in facto:

Qu(k) = Ak —

and A is a constant to be dete
Substitution of Q.(k) as giv

Alk — (m -
(k+ B8+ 1)
However, from (12) it follows

A = b2 4
= 9FHHID, 4

(13)  awhn =

Since P.P(1) = 1form =
P.OP(1) =1

Hence, it follows that 4 =
simplification

(14)  aw = 2"@2m +8+1

For k = 0 the right side of (
Substitution of (14) and (

FIUB + 1+ k)6l =

1
[

1
for k=10, 1, -, where a,
(15) gives only k nonzero t

the Jacobi polynomials. Afte
simplification gives

SFL(B + 1 + k)8l
(16) k
m=0 (lv + ﬁ

Again this result is true for k
expression is replaced by co/

(15)




;
i
‘%‘
;
i

,1)(.2:) dz,

as a finite
ven by

Inorder 1o
nd integrate

qon term for

Ty, Subst.

pRee.

) de

mE 1 ;

, then one
’,
Nk L
Cit expres- 5

n(10) let
omials,
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Therefore, one of the roots of Qn(k) must be given by k = m — 1. A similar
procedure shows that fork = m — 2, m — 8, - -+, 1,0, the remaining roots
of Qu( k) are determined. Therefore, @,,(k) is known up to a constant term,
{ it may be written in factored form as
Qu(k) = Alk — (m — DIk — (m — 2)] -+ k,

and A is a constant to be determined.

Qubstitution of Qu(k) as given here into (12) gives

. b A[k—(m-—l)][k—(m—.?)]-~(k~—1)k .

Bl = G )46+ 2 b+ B+ mt D)
However, from (12) it follows that

A = b02k+ﬁ+1 + b12k+‘%2 + . + bm2k+ﬁ+m+l

= 2k+ﬁ+l[b0 + 2600+ 2"bul.

3t

Sinee me.m(l) = 1form =0,1,---,onehas
¢ M
POP(1) = 1 = by + 2bs + -+ + 2"bu.
lence, it follows that 4 = ¥ and from (13) and some algebraic
dmplification

11  okro, Bk —1) [k — (m—1)]
W) e = 2Cn +64+1) g TG T D) b B R m D)

For k = 0 the right side of (14) is replaced by 1.
Substitution of (14) and (9) into (8) gives

2~<ﬁ+k+1)
FI(B+ 14 k)8] = 5
HY . ’ . "
f (1 + 1')5 Z Cm Pm(o‘ﬁ)(x) Z On an'm(w) dz
—1 m=0 n=0
for k=0, 1, -, where an is defined in (14). Integrating termwise in

113) gives only k nonzero terms because of the orthogonality property of
the Jacobi polynomials. After the integration has been performed, algebraic
simplification gives

SFI(B + 1+ k)3l )

(15) _ i k(k —1) -+ [k — (m — 1)] c
TG FATDGFEFY - GEAE I M T
Again this result is true fork = 0, 1, -+ - , and for k = 0 the right side of this
expression is replaced by co/ (S8 -+ 1).

T ket
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By successively allowing = 0,1, -+, one has the system of equations:‘

G

P + 10 = e,

M2 = g ey e Ty

_ G 20y
- B+ 30 = i e D
| L 20,
CFIG+HELE
(B+1+ 300 c 3¢ V
M+ = G S Y G G
3.90, 31C;

G+DE+HET0  GFd . G

The coeflicient €y is determined by allowing & = 0 and knowledge of

F(s)ats = (B + 1)8. For k = 1 the coefficient C1 is determined from the

value (calculated) of Cy and F(s) at s = (B + 2)5. In a simil
remaining coefficients Cy , , =+ can be determined.

If N coefficients are caleulated, then g(x) may be approximated by

gla) ~ >V, CoP P (). Since z = 2 exp (—é&t) — 1, the Jacobi poly-

nomials may be expressed as functions of ¢ directly. From (4) it then follows
that

ar manner the

(18) j(t) ~ ZI\;OCnPﬁ(O'ﬂ)[Z exp (—‘St) — 1]

Application of method. Theoretically, f(£) can be determined for all values
of ¢ from knowledge of F(s) at discrete points along the real s-axis, How-
ever, numerical errors limit the number of terms in (18) that can be ac-
curately computed. Therefore, the accuracy of the approximation to f(t)
may be increased by selecting the position along the real s-axis at which
F(s) is evaluated. The points at which F(s) is evaluated (s = (8 + 1 + k)5

fork = 0,1,2,---) are determinec by 8 and 8. Thus, 8 and & should be

selected so that (in some sense) the “hHest” approximation possible is
obtained.

It is well known that large s corresponds to small  and small s corresponds
to large ¢, [3]. This fact is a guideline to follow and for asymptotic values of
'the values of 8 and & can be selected accordingly. Of more general interest,
however, is the approximation of J(¢t) for values of ¢ which are not asymp- -
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totic. Therefore, for a given errvor n
that the error is minimized.

Error bounds. Since the series in
it may be truncated after N terr
r < [—1, 1]. Thus, there exists an
approaching zero. The rate of conv
the {-space) as a criterion for selec
nitions are needed.

DerintrioN 1. Let g be contimuor

(19) P en(2)] = | g(x)

DewixtrioNn 2. The norm of the
defined by

(20) | enl2)]] =

The theorem that follows gives n

TareoreyM 1. Let ¢ be continuous
sume that there exists a real number
integer p such that forn = p,

l CrymlP 5:015:);(7’)‘
form = 0,1, --- . Under these hyp
(21) fea(2)] = Cona

Proof. Rewrite (19) in the form
| en(@)] = | CanPi(:

Application of the triangle inequalit
[en(2)] = | CatPYR (2

Under the hypothesis of the theore
algebraic manipulation give the rest
It K = maxg; {| CoPYE ()]},
= K/(1 — 7). Hence, the followit
norm || e.(x)|l.
TueoREBM 2. If €.(2) s defined by
continuous over [—1, 1],

| ea(@)]| =
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/
{otic. Therefore, for a-given error norm, 8 and 3 should be selected in order
that the error is minimized.

Error bounds. Since the series in (7) converges uniformly (g cqgjqjguous),
it may be truncated after N terms to give an approximation valid for
v < [—1, 1]. Thus, there exists an no = 0 such that the terms in (7) ave
approaching zero. The rate of convergence of (7) may be used (ov (18) in
the t-space) as a-criterion for selecting g aud 8. First, however, some defi-
nitions are nceded.

Dercyirioy 1. Let g be continuous over [—1, 1] and define e,(x) by

(19) 1mm=¢n—§qum.

Derixmroxy 2. The norm of the error in the approximation for g(a) is
defined by

(20) HMM=ﬁMMWm

The theerem that follows gives an estimate of the error.

Trrores 1. Let g be continuous over [—1, 1] and e defined by (19). 4s-
sunie that there exists a real number r, 0 < r < 1, and there exisis a positive
integer p such that for n = p, '

| CopnPiE0()] £ 07 | CuPi P ()],
form = 0,1, -+ . Under these hypolheses it follows that for n = p,
(21) ()] Cn+1PEPf1)(il’)1/(1 - 7')2-
Proof. Rewrite (19) in the form

|ea(@)] = | CartPEE(2) + CopePil () + -0 |
Application of the triangle inequality to this expression gives

|ea(@)] = | CantPSE ()] + | CasaPlB (@) + -
Uunder the hypothesis of the theorem, use of the geometric series and some

algebraie manipulation give the result in (21).

If K = maxe,; {| CoiPOF (2)]}, then it follows from (21) that | en()]
< K/(1 — r). Hence, the following theorem gives a bound on the error
norm | e;(2)||.

TreorsM 2. If ex(@) 1s defined by (19) and K s given as above, then for g

continuous over {—1, 1],
lea(a)|| = 2K7/(1 = 1"
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Proof of Theorem 2 follows from the definition of || en()] I en(x) given

in terms of K is substituted into (2).
A result similar to Theorem 2 holds in the {-space for any interval (0, T)

Tunormy 3. If en(t) = e(2) and x and t are related by (3), then

LEGEND - € tsm t
o APPROXIMATION

A=0.0
$=02

vALUES oF f(1)

} It w"

1.O 2.0 3.0
DISTANGE ALONG THE t-axis

Fia. 1. Approximations for f(t) = e™* sin ¢

LEGEND —F(1)
o0 APPROXIMATION

1 1

25 50
DISTANGE ALONG THE t-axis

Fia. 2. Approzimations for f{l) = {f’)O f(}:)r 05% t<
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Numerical examples. The examples given in the following paragraphs
indicate the results of this inversion scheme. They were selected because
they have poles at various positions in the complex plane, they have been
used in the literature as examples of different inversion schemes, or be-
cause the functions (in the t-space) do not always have “gentle” slope.

For the first example consider the Laplace transform defined by £7(s)
= 1/[(s + 1)® + 1]. The known inverse is f({) = exp (—t) sin & The
results are shown in Fig. I. For this calculation 8 = 0.0 and § = 0.2; 11
rerms were used in the approximating function defined in (18).

The theory presented here requires that f( 0) and f (») be finite. Thus,

LEGEND —f(t) = 1 +1
0 APPROXIMATION
,9 = 2.0 « APPROXIMATION BY SALZER METHOD
S5 =022 +APPROXIMATION BY GAUSSIAN QUADRATURE
METHOD

VALUES oF f(t)=1+1

1 1 1 1 A
0 1.0 2.0 30 4.0 5.0

DISTANGE ALONG THE t-AXiS
Fi6. 3. Approgimations for f() = 1+ tif ten terms are used
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for the Laplace transform P(s) = 1/s° which has an inverse f(f) = g, The uext.example is for the Laplace &
the theory is not applicable. However, the Laplace transform Fy(s)i:} inverse is given by

= [1 — exp (—st)]/s" has an inverse fi(t) = tfor0 £ ¢ £ T and fi(t) = T for- _exp
T = t. Hence for 7 — » and s7 sufficiently large one has exp (—st) « 1+ f@) = 4(

and I'y(s) =2 F(s). Fig. 2 shows the results obtained for 7' = 50. Tor
these calculations g = 1.40, 8§ = 0.05, and 11 terms were used in (18). For>
this approximation of f(¢) the range of values of ¢ used is quite extensives

This example is given by Bellman, et &
colved in numerically inverting a Lapl

with0 £ ¢ = 75. ) -1 yith a “steep” slope. Ten terms in (1
As it was explained previously, for s7" sufficiently large, exp (—st) < 1.7} used for these calgulam'ons. One ofr J?tl’he
If this is true, then on the register of a computer Fi(s) = F(s). That is, here is illustrated in this example. This
¢ for sufficiently large s, the technique can be applied to F(s) = 1/s% Fig. 3
B shows the results obtained for the approximation to f(¢) = ¢, where- ) o | EGEnND— (1)
. 0=xt¢t=bHandp = 2.0 and § = 0.22. Two other known methods were also - | 35 o APPROXIV
:  used to numerically invert #(s) = 1/s°. One of these methods is due to . { J . APPﬁOX;M
Salzer [7], [8] and the other method uses a Gaussian type quadrature [1], = + METHO
(2], [4]. In each of the approximation schemes a 10-point quadrature {10 . 30 - P
terms in (18)] was used. That is, F(s) was evaluated ab 10 points along the -
real s-axis. Tables used for these comparisons were obtained from {1}, {7}. z
< . Fig. 4 shows the results obtained for f(¢) = Jo(¢). The approximations |
} again use 10 terms. F(s) was evaluated at points determined by 8 = 3.0 and 25 t+
. 6 = 0.5. Values of ¢ are for 0 = ¢ £ 5. Ior a specific value of ¢ a different - :
choice of 8 and & gives better results. For this example it was found that for e
. Jo(2), the values 8 = 4.0 and § = 0.6 give the approximation Jo(2) "L: . S
-* ~ 0.223896, while Jo(2) = 0.223891 (rounded to six decimal digits). o™
B ‘ o
‘. LEGEND :— ug(t) 5
4230 0 APPROXIMATION 2
S:05 « APPROXIMATION BY SALZER METHOD >15 b
. e + APPROXIMATION BY GAUSSIAN GUADRATURE “
) ! METHOD
o O &
{ T
o = Lo
by 2
RS wos L ) g
'§ : L 0.5 -
- ) ! 05 +
w
L 2
pul}
So0 . 1
1.0 2.0 » ‘
0 i
0 0. 0.2
05 b DISTANGE ALONG THE
DISTANGE ALONG THE f-aXIs o Tic. 5 Approzimations
¥16. 4. Approxzimations for Ju(t) if ten terms are used «
i
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The next example is for the Laplace transform F(s) = exp( —14/5). The
inverse is given by

_exp (—t/16)
f(t') - 4(7rt3)"'3 :

This example is given by Bellman, et al., [2] and illustrates the difficulty in-
volved in numerically inverting a Laplace transform which has an inverse
with a “steep” slope. Ten terms in (18) and a 10-point quadrature were
used for these calculations. One of the advantages of the method deseribed
hore is illustrated in this example. This is the fact that f(¢) may be approxi-

o | gGEND— f(1)

o APPROXIMATION
« APPROXIMATION BY GAUSSIAN QUADRATURE

METHOD

i
o

ro
o]

vaLues ofF f(1)

o

1 1 |
(o3| 0.2 03 0.4

DISTANCE ALONG THE t-AXIS

xp (—{/16
Fic. 5 Approzimations for = g‘%)-l/’;—))
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LEGEND: s, (1
O APPROXIMATION
1.O 0—0—-0—-0——-0-—0—-0——0—-«0—-——
o A = 3.00 } <
— S =125
-
< ,6=o.5o},if_$2
w s =0.90
o
» 0.5 F o )
w
s )
-J
<t
> o
0 i 1 o N = ~ O ?
. (o] o o o
° 03 .o 1.5 20

DISTANCE ALONG THE f-AXIS
Tic. 6. Approzimations for (£ = Se(t)

mated ab values of ¢ which lie sufficiently close so that the outhne of S(t) is
well described, as shown in Fig. 5.

The previous examples have been for continuous functions in the ¢-space.
The infinite series representation for these functions converges uniformly
and the termwise integration in (13) is valid. Consider the step function
given by Sy(¢) for values of ¢ in (0, .2). Although it has not been shown that

the termwise integration in (15) may be performed without altering the

results, a “rough” outline of f(¢) may still be obtained in this particular
example. Fig. 6 shows these results.

Numerical errors. Numerical round-off and cancellation errors limit the
number of coeflicients ¢, that can be accurately calculated from the system
of equations in (17). By the use of multiple precision arithmetic, the num-
ber of coefficients that may be accurately computed is increased. The exact
number of coefficients which can be accurately computed depends on a
particular problem. Experience has shown that for these examples and for
ones similar, about 12 to 14 coefficients may be accurately calculated using
single precision arithmetic on a Control Data 1604 computer.

The Jacobi polynomials were caleulated using the recurrence relation

found in [9, p. 71].

Conclusions. The method for numerically inverting Laplace transforms
that has been described herve is applicable to many problems of practical
interest. Round-off and eancellation errors must be considered when calcu-
lating the coefficients that appear in the series approximation for f(¢). For
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1 small number of caleulations f(¢) may be approximated over a wide range
of values. A general guide for the user of this method is to select 8 and & such

that —

05<B8<50and005 =8 = 2.0. For t such that ¢ > 0.1, a more

realistic value of 8is g = 2.0. The required computer time is only a fraction

of o second for computation of 1
a1 Control Data 1604 computer.

5 Jacobi polynomials and 15 coefficients on
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Numerical Evaluation of Cu
Functions Directly frony

tive Probability Distribution
aracteristic Functions™

© Abstract—A method for direct numerical evaluation of the cumu-

tive probability distribution function from the characteristic func-
tion in terms of a single integral is presented. No moment evaluation
or series expansions are required. Intermediate evaluation of the prob-
ability density function is circumvented. The method takes on a special
form when the random variables are discrete.

INTRODUCTION

It often happens in engineering calculations involving random vari-
ables that it is difficult to obtain direct values of the cumulative probability
function but relatively easy to obtain values or a closed-form expression
for either the moment-generating function or the characteristic function.
In a recent letter, Helstrom® presented a technique for calculating cumula-
tive probabilities from a moment-generating function. We wish to present
an alternative numerical technique for calculating the cumulative prob-
ability from the characteristic function, defined only on the real axis.

GENERAL DISTRIBUTIONS

The general case follows directly from equation (4.14) of Kendall and
Stuart:?

P(X) = _1_ + 1 tjé

2 mjy €&

where P(X) is the cumulative probability distribution function (CDF),

and f(£) is the characteristic function (CF) of a random variable x. At a
point of discontinuity of the CDF, (1) takes on the mid-value.?

The integral in (1) is confined to the real axis. Since some CF’s exist only

for real ¢ (for example, exp (—|£)), (1) is a useful and general form for com-

putational purposes. The CF does not have to be analytic at the origin.

[Re {(&)} sin (€X) — Im {f(§)} cos ¢X)], (1)

DISCRETE DISTRIBUTIONS

The expression (1) requires an infinite integral for each value of X.
Here we eliminate this requirement for a special class of random variables.
Specifically, we consider discrete random variables that can take on only
values that are multiples of some fundamental increment A. That is, the
probability density function (PDF) of interest takes the form

p) = 3. cudlx — kA). @
k

(A sum without limits is over the integers from — o to 4-¢0.) Then the CF is

J@) = Y cpexp (KA, &)
k

which is periodic with period 2r/A. Therefore, the coefficients {c,} can be
determined from the CF f(¢) by

d& exp (—ikAd)f(2), 4

Cp = —
2n 2n/A

where the integral is over any interval of length 2z/A.

Equation (4) gives the area of any impulse in the PDF p(x) in terms of a
finite integral of the CF f(¢). Since we are interested in the CDF P(X), a
sum over {c,} is required. At this point, we restrict consideration to non-
negative discrete random variables, (Extensions to general discrete random
variables have been developed by Nuttall.*) At integer value M, the CDF
becomes ’

Manuseript received June 26, 1969 ; revised August 11, 1969.
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3 Ibid., sec. 4.6, p. 97.
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TABLE 1
NUMERICAL COMPUTATION OF EXPONENTIAL DISTRIBUTION
Finite Sum Increment
X PX) via (1) in ¢
—10 0 0.000 01 0.1
~2 0 ~0.000 07 05
—1 0 0.000 08 0.5
0 0 0.005 32 0.5
0.2 0.18127 0.180 96 0.5
1 0.632 12 0.632 20 0.5
2 0.864 66 0.864 70 0.5
10 0.999 954 6 0.999 963 7 0.1
TABLE Il
NUMERICAL COMPUTATION OF POISSON DISTRIBUTION
M - P(M) Finite Sum via (5)
0 0.000 000 3059 0.000 000 3059
1 0.000 004 894 4 0.000 004 894 5
6 0.007 631 899 6 0.007 631 899 8
14 0.465 653 708 9 0.465 653 708 9
16 0.664 123 200 5 0.664 123 200 4
20 0.917 029 089 9 0.917 029 089 5
29 0.999 581 550 2 0.999 581 550 0
30 0.999 802 686 7 0.999 802 686 5
40 0.999 999 976 5 0.999 999 976 4
M A M
PM)= ) cx=—| dEf(&) Y exp(—ikAf)
k=0 2n 2n/A k=0 )

sin [(M + 1)AZ/2]

s [aga] e U@ e (ZIMA2), M =0,

A nf A
= ~J dé
Jo

where the interval (— /A, n/A) has been selected for integration, and we
have used the property f(— &)= f*(&). (The ratio of sines is interpreted as
M +1 at the origin.) Equation (5) is a single finite integral from which the
CDF P(M) can be evaluated at any M directly from the CF f(£).

EXAMPLES

We shall consider two examples recently examined by Helstrom! for
purposes of comparison,

Example 1: Exponential Distribution

_ Jexp(=x), x=20
plx) = { 0, x< 0}, (6)
JO =0 - )

The integral of (1) was sampled in £ at values indicated in column four of
Table I and approximated by the trapezoidal rule for integration. The limit
of integration in (1) was taken to be the value above 60 where the finite sum
deviated most from the exact answer. Thus the finite sum in column three
of Table I is the worst approximation to the exact answer in column two.

Example 2: Poisson Distribution

© lk .
p(x) = exp (—4) 2 1 S = k), 8)
J(&) = exp [lexp (i) — 1}]. )

The integral of (5) was divided into 25 equal intervals and approximated
by the trapezoidal rule for integration. Columns two and three of Table 11
show that the error in the approximation occurs in the tenth place (and may
be due to computer inaccuracies rather than sampling errors). Also, the ac-
curacy holds on the tails of the CDF as well as near the mean.

ek b P £ Ve <l b a5 poe <o
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CONCLUSIONS

The numerical technique suggested for obtaining CDF’s directly from
CF’s has considerable merit. It requires no moment 2valuations or series
expansions (like the techniques of Edgeworth or Laguerre) for the dis-
tributions. It does not depend upon evaluation of derivatives of CF’s but
only upon the values of the CF itself. (Evaluation of high-order derivatives
can be extremely tedious and time-consuming even if an analytic form for
the CF is available.) The accuracy of the suggested technique can be esti-
mated and controlled by decreasing the increment in the integral evalua-
tions or lengthening the interval of integration, or both; the change in the
approximation is a measure of the error at that point. The method does not
require an inordinate number of samples of the CF, at least for the exam-
ples considered, and the additional functions requiring evaluation are sines
and cosines. Intermediate evaluation of the PDF is entirely circurnvented.

ALBERT H. NuTTALL
Navy Underwater Sound Lab,
New London, Conn. 06320

Saturation of Zn—-O Complexes in GaP Diodes

Abstract-——The red electroluminescence in gallium phosphide at
the maximum quantum efficiency is a constant, independent of injec-
tion efficiency, for a series of liquid-phase epitaxially grown diodes
which have common Zn- and O-doped p-type substrates and variable
Te-doped n-type layers. This behavior and the subsequent decrease in
quantum efficiency with increasing diode current are both explained
in terms of the saturation of Zn-0O complexes by captured electrons in
the p region.

The room-temperature red luminescence in p-type GaP doped with Zn
and O has been identified as radiative recombination of excitons bound to
nearest neighbor Zn-O complexes [1], {2]. It has been observed that the
electroluminescent (EL) intensity in p-n junction GaP diodes varies
linearly with electron injection level at low levels and sublinearly at high
levels, causing the diode quantum efficiency to pass through a maximum
and to decrease [3], [4]. In a series of liquid-phase epitaxially grown
(LPE) diodes having common Zn- and O-doped p-type substrates and
variable Te-doped n-type layers, we find that the total red EL intensity at
the maximum quantum efficiency is a constant, independent of injection
efficiency. This behavior is due to the saturation of the bound exciton
population, limited to the same value in each diode by the fixed Zn-O
complex concentration [5]. However, the forward-bias dependence of the
EL intensity difters significantly from that previously reported [3), [4].
Below saturation the intensity varies as exp (q¥/k7T) as before; above
saturation the intensity varies as gV/kT, which is a marked departure
from the previously reported dependence of exp (qV/2kT). The previous
behavior had been explained in terms of either a single saturable radiative
recombination route for injected electrons in the p region [6] or in terms of
space-charge recombination [4]. The new behavior reported in this letter is
explained in terms of recombination in the p region, using both a saturable
radiative route via Zn-O complexes and a faster nonsaturable route which
dominates the minority carrier lifetime (detailed analysis is given in [7]).
Within this framework, the Zn-O complex concentration and the capture
cross section for electrons can be calculated from the bias-dependent EL
intensity and other experimental data [7], {8].

The p-n junctions were prepared by growing Te-doped n layers onto
solution-grown Zn- and O-doped p-type substrates via an LPE process.
The substrate material was doped with 0.07 mole percent Zn and 0.02
mole percent Ga,0;, reported to be an optimal doping for the red [umi-
nescence [9). Five groups of p-n junctions were grown with Te concentra-
tions varying from 0.0035 to 0.079 mole percent in the melt. Mesa diodes
were fabricated from as-grown p-n layers, and from p-n layers which had
been annealed in forming gas (15 percent H,+85 percent N,) at 600°C
for 6 hours.

The external quantum efficiency 5 for each diode was measured in an
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Fig. 1. Current dependence of the total quantum efficiency for a representative diode tak
from each of five groups of annealed diodes, Each group was prepared with different
concentrations in the melt: 0.0035 mole, percent, 0.009 mole percent, 0.018 mok perce
0.028 mole percent, and 0.079 mole percent. Junction areas are 7 x 10~% cm2. At hi
current levels (2-500 mA), measurements were madé on a pulsed biasis to elimini
heating (i.e., 10 ps pulse at 1 percent duty cycle).
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integrating sphere over several decades of current. As shown in Fig. 1,
maximum is observed for a representative annealed diode from each grou;
The open circles in Fig. ! indicate the maximum efficiency n, and th
current I, at the maximum efficiency. Although n, and I, vary widel
with each group of annealed diodes, an inverse relationship exists, i.e
noocly ', Thus, at f the red external EL intensity L is the same for a;
annealed diodes, Ly =1n0//q, independent of tellurium concentration an
independent of injection efficiency (g is the electronic charge). This be
havior is observed for both as-grown and annealed diodes, with a 2
percent increase in L, observed in the annealed diodes [5]. Electrolumi
nescent spectra taken on the two groups of diodes show that the componen
at 1.36 eV, which has been attributed to infrared O-donor Zn-acceptol
distant pair recombination [10], [11], decreases from 5.3 percent of the
1.8 €V red peak for as-grown diodes to 3.6 percent of the red peak for
annealed diodes, indicating a formation of Zn-O complexes during anneal-
ing [11].

The fact that the red external electroluminescence L, is constant at £,
independent of tellurium concentration and independent of the p-n junc-
tion injection efficiency, indicates a saturation process characteristic of the
p region® [3]. Since the p regions of all the diodes have the same Zn con-
centrations and the same O concentrations and have gone through the
same temperature cycling during the liquid-phase epitaxial process, we
expect them to have nearly equal concentrations of Zn-O complexes.
Assuming that the complexes can be saturated with trapped electrons at
high electron injection levels, the bound exciton concentration should be
limited to equal levels in all the diodes, independent of the electron injec-
tion efficiency. Thus the red EL intensity should be limited to approxi-
mately the same level in each diode at the onset of complex saturation.
This is the point at which the red EL intensity becomes sublinear with
injection level and the quantum efficiency passes through a maximum and
begins to decrease with diode current.

It is interesting to note that for Te concentrations above 0.009 mole
percent, the maximum EL efficiency decreases with an increase in Te con-
centration. This result seems to indicate that the electron injection into the
p region becomes less efficient with an increase in Te concentration, which
is not at all what one would expect on the basis of a simple abrupt junction
calculation. - ‘

While the saturation behavior described above is consistent with the
observations and interpretations given in [3], the bias dependence of the
EL intensity in the saturation regime displays a striking difference (sce
Fig. 2). In saturation the intensity varies as ¢¥/k7., in contrast to the

! We are neglecting changes in the bulk absorption coefficient with Te in our diodes
since the Te-doped n-type layer constitutes approximately 10 percent of the total diode
volume.
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which, as shown in Fig. 2(a), is a straight line passing through 1/0
and making an angle ¢ with the horizontal axis. ‘

Since 4 and B intersect the unit circle at the same points, the
center of B can be found directly by drawing a straight line through
the origin and the center of A. The intersection with the plot of (5)
establishes the center of B. If, in addition, 4 passes through the
origin, the circle B becomes a chord passing through the intersection
points.

Because of the mapping that establishes the negative Smith chart
used by McNaughton and West [1], a locus on one chart for a given
dB value is an inverse circle (within a physical rotation of 180°) to the
locus for the given dB on the other chart.

Constant gain circles on the positive chart present a special case
of Fig. 2(a) for circles whose centers are known to lie on the circum-
ference of a unit circle. This leads to the particularly simple graphical
means of establishing the line that intersects the horizontal axis at
d, as explained in the instructions of Fig. 2(b). Transfer of the points,
d, e, and b to the negative chart establishes the constant gain circle
on the negative chart, as illustrated in Fig. 2(b), The negative chart
inverse “circle” (a straight line) for the zero dB case is shown for
reference,

Except for the zero dB locus itself, the negative chart constant
gain circles for small dB cannot be constructed conveniently because
the centers lie far off the chart. However, because any circle passing
through the center and circumference of a unit circle has a chord as its
inverse, it is possible to determine the point I [see Fig. 3(a)] where
the desired inverse constant gain circle intersects the horizontal axis.
The construction shown on Fig. 3(a) establishes the three points
a’, k', and b’ on the negative chart through which sketched curves, or
even straight lines, can be drawn, depending on the degree of ac-
curacy desired for the small dB locus.

Finally, constant gain curves for dB values in excess of six do not
appear at all on the positive chart and appear on the negative chart
as circles within the chart. From the McNaughton and West [1]
equation for constant gain circles on the negative chart, it can be seen
that circles for the same dB magnitude have the same radii and are
symmetrically located with respect to the zero dB chord. Thus, for
x>0, the x dB circle on the negative chart is found from the —x
dB circle on the negative chart which, in turn, is found from the
—x dB circle on the positive chart. Construction is shown in Fig.
3(b).
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Notes on Formal Expansion Techniques Involving
Laplace Transforms

O. R, AINSWORTH anp C. K. LIU
The Newmann expansion of an analytic function in the series
1) = (0o (z) + Zl AnTu(2)
where
1
Ap =— 0.(0)f(1dt
7wt

l2]=r

is, of course, well known. However, the computation of the coeffi-

Manuscript received April 11, 1966.
‘The authorsare with the University of Alabama, University, Ala.
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except in trivial cases, is rather difficult and prevents one
ely using the expansion., This expansion converges so rapidly
s really quite a desirable one.
now offer a much easier way of computing the 4, for a large
functions f(t).
the Laplace transform of f(t) be given by F(s). Note that

k
L%#Jk(a/) ; = [VsTFa% st

P=+/stFat—s
fter trivial arithmetic
02 —_ p?
2p

S =
-have

LW} = F(s) = F (

= bip*.
2p ) 2 beb
inition of p was such that
kl
L;—at—'.fk((ll)g = [)"
‘efore invert both sides of I, {f(l)} and obtain

"
£ = %) bkaka(at).

S ON EDUCATION SEPTEMBER

Hence,

YQ@) = 3 brakkJi(al).
& .

Of course; we could have taken the transform of f(£)/ by using
a series technique, if necessary, and obtained the Newmann expan-.
sion for f(¢) itself, Also, from Table I we observe the natural exten.
sions to expansions in Ii(at), e~V T (af), 52T} _yp(at), etc. Table
1 is by no means complete since the elementary techniques in Laplace
transform theory give rise to a large number of trivial variations. This
method apparently was known to Cailler in 1905.*

An important variation—namely, 4) and S5) of Table I—wil
permit us to expand functions into the series

f = Z butn V2T i pa(at).

Of course, this has ceased to be a Newmann expansion, but it is of
interest in itself. It is an easy extension of the Cailler method, but

apparently has been overlooked.
Another easy variation would be to use 6) in Table I in the ex.
pansion of the Laguerre polynomial. Here

£z} = 4

s N

1 See G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed, Cam-
bridge, England: Cambridge University Press, 1944, p, 536.

TABLE 1
k 21 g2
1) Lnga (at) s =[5 — /5T = a2}t = pk where s = rre + z
1
2) ]g_’; e~ (Uaty (L ,,()z [\/3 = \/ = (ap)* where s= ap )
k 2 . p2
3) L;k;' Jkau)% —[ViTFai—s}F =g  where s= ”—Z;—'L
TN\ 2 1 \* 1--a%p?
A 111 =(— = p% - &
g Lg () (Za) ]L_m(at); <s2+a2) ? where s ?
CA A AL TL T aipt
A 1 = po% . =X TRE
5) Lg ) (Za) IL_I/_(al)E ( — az) i where s p
1 i 1
Jadly = ph -
6) L{Lk(t)}. S < ; ) . ¥ where s 1=
TABLE II
2 o0
1) gt =5 (= 1)(n + D nn(®)
n=0
x w @ (_l)n-!-lxnd(llﬂ)n—d 2 — %n + 1
2) Erfc \/T = "Z ’Z:,O UL ; Jar-qumnialel)
. 12 2 (=1r@»™ 2 T@n 214 1) 20+ 242
3) Siht) = Z Zo Jlgante r(2n +2) g1 el
- 12
4) sin at = %\KS —2;> J1po(at)
12 a? 1
5) cos at = -5 ,E) ——~———n'(” — 2;( ) LY (D))
2 = T(]
6) =3 = I¢ +”” T 2 O mgaal)
n=0 4
(n! ) (=1
n oo (!
7 Z% 0= L
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ad then if

e immediately have

@) = 2 baLu(®)

shich avoids the evaluation of the integrals

0
f (1) La(t)dt.

' 0
[here exist several trivial variations on this theme derived from
.ombinations of the Laplace transform in L{e(t)}, L{1f ()}, etc.

This last procedure is apparently known to several investigators,
wnd it is difficult to assign priority to any one of them, One really
ases the idea of this method even as a sophomore when faced with
3 transform F(s) which is not to be found in the tables. One merely

pxpands
1
F() = 3 ba—
n S
ind then inverts, getting
. 5,

1) = ——
fQ ; T+ 1)
1'nfortunately, power series very often converge so slowly that many
erms are required, The behavior of J,(2) for large n is such that

hhere is rarely any need for more than the first few terms,
Table 11 lists only a few of the expansions we have obtained,

ntl

'Polynomial Root Determination by an Equivalent
Transfer Function Simulation on an Iterative
Analog Computer

E. F. RICHARDS

Abstract—The methods for determining the roots of polynomials
by analog computer techniques are varied, but stability analysis is
usually of chief concern. The computer approach used in this paper
always produces stable operation, and introduces an equivalent
transfer function representation of the polynomial, a linear trans-
formation, and a generalized iterative analog computer program.
The accuracy obtainable is not comparable to that of digital programs;
however, the procedure is basic to engineering analysis and should
not be overlooked from the academic viewpoint.

INTRODUCTION

The usual process of obtaining the roots of polynomials with the
analog computer consists of a trial-and-error technique using open-
loop programming methods; this procedure can be unstable and
consequently may make root determination very difficult. Bush and
others 1], [2] have presented methods by which closed-loop tech-

266 : SHORT PAPERS
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niques can be used to obtain solutions for sets of linear and nonlinear
algebraic equations. Analog computers, by design, are dynamic tools
and do not lend themselves readily to steady-state problems. The
method to be presented here uses a closed-loop form of solution. An
analogy is made between the polynomial whose roots are desired and
a transfer function whose characteristic roots. are identically the
roots of the original polynomial. '

THEORY
The process consists of the following four steps:

1) Formulation of the analogous transfer function and the direct
programming technique to obtain a convenient state diagram.

2) An S-plane transformation and a corresponding modification

to the state diagram.,

Writing the iterative analog computer program directly from

the state diagram and determining the real parts of the roots

in order: ay, ap, * ¢ ¢+, &y €tC,

4) Determining the next root of the transfer function after first
either directly dividing out the roots as they are found in the
characteristic equation or adding corresponding zeros to the
analog computer program.

3

Qg

The programming technique as suggested in steps 1) and 2) leads
directly to the analog computer program for obtaining the solution to
the characteristic equation (with the possible exception of sign
changes which are inherent in electronic operational amplifiers). The
S-plane axis transformation in step 2) is quite direct and is a well-
known analytical procedure, It has been used successfully by trial-
and-error methods employing Routh's criterion to determine the
roots of equations. However, the technique used here is believed to
be a new analog computer approach to polynomial root determina-
nation,

Procepure

The four steps in the procedure will now be considered in greater
detail.

1) Formulation of Transfer Funclion and State Diagram

Consider the general equation whose roots are desired:

Xt @qua X"t a2 X2 - alXs a0 =0, (€))

where the coefficients are constants.
By assumption, this can be written as a transfer function of the
general form:

G(s) =

1
S7+ 0aaS A 402"k - - @S gy

By direct programming, this can be reduced to a convenient state
diagram, which is the analog computer program directly; the output
of the integrators constitutes here one set of state variables for the
particular problem. .

The general form of the transfer function can be rewritten in a
convenient form for direct programming:

1
IS + 0-0)S + ana)S + anslS+ - -+ +ar)S +ao

The corresponding program is shown in Fig. 1.

2) S-Plane Transformation and Modification of the Direct Program

By applying the transformation S=38—~« to (3), one can shift
the axis of the reals by a factor «. The procedure then is to obtain a
convenient way to increment « in the analog program so that the
roots desired can be shifted to either the right or the left half of the
S plane. To make the process general, a convenient modification of
the program of step 1) must be obtained.

When the transformation S=3 —« is applied to (3),

@

G(s) =

©)]

1

G(©S) =
[

'

Manugeript received February 11, 1966,

“The author is at the University of Missouri, Rolla, Mo,
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C)

The modified program appears in Fig. 2.
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Numerical Inversion of Laplace Transforms’

Louis A. Scmurrrori, Phillips Petrolewn Co., Idaho Falls, Idaho

luetion

wte describes a method for computing the inverse
place transform F(s), when it is known that all
ities of F'(s) lie in the left half-plane, Im(s) < 0.
thod has been programmed for the IBM 650 and
ory results obtained. Some limitations and pos-
ensions will be indieated below.
mpetus for the development of the program came
problem in the design of a reactor control system.
Altl’()l system under consideration uses two control
one of which has two time delays, so that the result-
wfer function is of a complicated type involving
ntinds in a nontrivial manner, It seemed computa-
prohibitive to try the traditional approach of
il vesidues, so the present direct method was de-

L
pri \IEA

1

ander contract to the U. 8. Atomic Energy Com-

The characters introduced by the substitution
have the following meaniugs:

process

G an integer

N a number containing a decimal point

N, anincomplete number, ending in 10

A an incomplete number, ending in 1o

N'  anumber ending with an exponent of 10

I an identifier; a letter followed by letters or digits

v a subscripted variable '

0 a parenthesized expression

S a bracketed subseript

®u aunary arithmetic operator .

®u  a binary operator

®. an ambiguous operator (4 or —), unary or

binary according to context

T, an expression followed by a comma

E., an expression followed by a right parenthesis

T, an expression (or list of expressions separated
by commas) followed by a right bracket

0% an expression followed by a semicolon

RH  the replacement operator := followed by I

p> an identifier or subscripted variable followed by
RH; a well-formed formula
a function

REFERENCES
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munications of the ACM 1 (Dec. 1958), 8-22.
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2. The Complex Inversion Integral

It a given function F(s) fails to fall into a table of La-
place transforms, the usual procedure is to try to invert
it by use of the complex inversion mtegral:

ctiw

L

2'71‘?: e—iw

It) = F(s)e" ds. (1)

Here ¢ is any real constant such that all singularities of
F(s) are in Im(s) < c.

Tt is assumed that F(s) has an inverse f(¢) (continuous
and of exponential order) and that the inversion integral
represents f(¢) in the sense that (see Churehill 1], Ch. 6):

1 et 0; 1 < 0)
L[ Rt as = 00 e =0, ()
2 e ), t>0.
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If F(s) is of a simple nature, e.g., a rational funetion,
one can find the poles and residues and hence evaluate
f(t). However, it often happens that the poles and resi-
dues eannot be found without a prohibitive amount of
computation and a direct numerical method must be
used. Also, the function F(s) may be known only from
empirical data, in which case direct numerical inversion is
the only practical way.

3. Resolution into Trigonometric Integrals

As mentioned above, all singularities of F(s) arve as-
sumed to lie in Im(s) < 0, hence we may take ¢ = 0.
Furthermore we need f(¢) only for ¢ > 0, so that our
formula is:

f@t) = 2_1; f_i F(iw)e™ dw, t > 0. (3)

Since F'(s) = [ F(t)e*'dt is real for s > 0 in practical
0

problems, we may assume that F(5) = F(s), where the
bar denotes comple\' conjugation. We will use the defini-
tions ¢(w) = Re [F(4w)] and x(w) = —Im [F(iw)]. The

condition F (zw) = F'(iw) is equivalent to:

¢(—w) — ix(—w) = o(v) + ix(w)

and hence ¢(w) = ¢(—w) 13 an even function and
x(w) = —x(—w) is an odd function.
Using
L0

] o(w) sin wl dw = 0

and

f x(w) cos wt do = 0,.

~(3) reduces to

() = %}_ fﬂ o(w) cos wt dw
- (4)

+ 1 f x{w) sin wt dw
271" Y .
for ¢ > 0. Replacing ¢t by —¢,

0= 51— f o{w) cos wi dw
LT Jeen
) (5)

1 x(w) sin wt dw.

o

We therefore get the pair of formulas

(1) = i fm (o) sin of do (6)
or
flt) = }r [w olw) cos wt dw. (7)
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Since ¢(w) is even and x(w) odd, these can be written

W) =2 [ (o) sin ot d
J ~7~rf0xw sin wt dw (3)

or
2 0
f) == f o(w) cos wi duw. (0]
T Jo

4. The Hurwitz and Zweifel Method for Trigon,.
metric Integrals

The numerical evaluation of the integrals in (8) or (3
presents three difficulties. First the range is infinite
Second, for large ¢ the integrands oscillate violently, ang
hence conventional methods of evaluation require gy
impractically small interval of integration. Third, thew
are strong cancellations from the positive and negative
half-cycles of sin"wt and cos of.

Hurwitz and Zweifel [2] have devised a procedure which
largely: circumvents these difficulties. They cairry out the
integration over successive half-cycles and then use i
series-summing technique to reduce the number of half-
eycles necessary., The integration over individual half-
cycles is based on a Gaussian quadrature method, Details
may be found in the article quoted.

The essential formulas are as follows, using the sipe
integral (8):

[t =

=N

> L) = ?lim S,.(t) (10}
n=0 -

m>0

3 -
L(t) = (—=1)" f X[ltr(w 4 n 4+ %)J cos mw do (11}
The Gaussian quadrature formula is:

L) = (~1" X WN; (o) + x(wip)] (1)

j=i COS 7 j
where
¥ 2 — 1

Voo Y T i =1.2 ... 7
Ys 2(2N_|_1),J ) 2, , N

(=g + 0+ 3

Wnpj =

~13

Wi =2+t D)

o~

and the 75 are the solution of the system

NA‘y \— 2 (Qj—l)w]_ 1 P()\“l"z)
2 Jz;_; IV, cos™ [:2-—————(2N + 1) _\/— I‘(\ + 1))

N1,

The points w,; span a half-cycle with an o increment of

i

Ty D




‘[he formulas for the cosine integral are very similar. Only
the sine integral was programmed for the 650, but the
program for the cosine integral would be almost, the same.
In general there is no reason for using x(w) in preference
to o In particular cases one or the other might be
bette. chaved, and hence one could achicve more ac-
curacy with the cosine integral.

The econvergence of the series (10) can be accelerated
by applying an averaging process to the partial sums
S, = Z’,’,Lo I, . We define a new sequence
; 81171 = (Sm + Sm+l)/2;
and in general S = (8L 4 Si)/2. For relatively
flat functions x(w), the partial sums S, oscillate about
the limiting value, and hence the average can be expected
to be more accurate than the individual terms. In the 650
program three averages were used. The computation is
stopped if \ ’

.

< € T

i

3 3
Sm  Pmpl

ng-{-l
- where ¢ is an accuracy control constant which is fed into
the program. ‘
5. Modifications for Positive Poles and Small Nega-
tive Poles
Suppose that F(s) has a pole at s = a where Re(a) > 0.
Let G(s) = F(s + a + B) where 8 > 0. Then G(s) can
be inverted by the above method; and

LY@ = ¢ Y(R)
or |
L7NF) = P @).

If F'(s) has a pole at the origin it is of cowrse easier to
subtract off the singular part.

In one problem which was run using the 650 program,
the function x(w) = Im{F(iw)} showed a sharp peak
near w = 0. It was impossible to take a small enough
interval of integration to adequately cover this peak. It
was conjectured that it was due to a negative pole at —a,
where x(a) = max. The value of @ was determined, and
the function 2ax(a)w/(«® + @) was subtracted from
x(w). This corresponds to forming G(s) = F(s) — 2ax(a)/
(s + @), then inverting G(s).

We have in this case

LNF) = L) + ¢2ax(a).
0. A Program for Small ¢

The method described above will work only for ¢ greater
than some minimum value, which depends on the maxi-
um number of points (2V) used per half-cycle. The
do associated with ¢ and N is #/{(2N + 1), so that if ¢ is
very small, N would have to be inordinately large. We de-
cided to use an alternate integration technique for small
l. A program using Simpson’s rule has been written for
s upy( the ¢ such that the more efficient Gaussian inte-
fration van be used.

7. Sample Problems (e = .001)

(A F(s) =
sf+s+1
‘ ¢
1) = 2 ez sin<~— t>
V'3 2
Time Analytical f(1) Numerical f(t)
0.5 0.377 0.372
1.0 0.533 0.534
1.5 0.525 0.525
2.0 0.419 0.419
2.5 0.274 0.274
3.0 0.133 0.133
3.5 0.022 0.022
4.0 —0.0495 —0.0496
4.5 —{0.0834 —(.0833
5.0 ~0.0879 —0.0877
5.5 —0.0737 —0.0735
6.0 —0.0509 —0,0508
6.5 —0.0272 —0.0271
7.0 —0.0076 —0.0076
7.5 0.0057 0.0057
8.0 0.0127 0.0127
8.5 0.0145 0.0144
9.0 0.0128 0.0127
9.5 0.0093 0.0092
10.0 0.0054 0.0053
() =St 1
B)  F@s) =5 Ty
4 0
1(t) =e 2[cos£ Lsinl/—?_)t]
: 7z T MY
Time Analytical f(1) Numerical f(1)
0.5 0.896 0.888
1.0 0.660 0.665
1.5 0.389 0.388
2.0 0.151 0.151
2.5 —0.0233 —0.0233
3.0 —0.124 —0.124
3.5 —0.162 —~0.162
4.0 —0.153 ~0.153
4.5 —0.118 —0.118
5.0 —0.0746 —0.0743
5.5 —0.0336 —0.0336
6.0 —0.0023 —0.0023
6.5 0.0171 0.0171
7.0 0.0256 0.0256
7.5 0.0258 0.0257
8.0 0.0210 0.0209
8.5 0.0140 0.0139
9.0 0.0071 0.0071
9.5 0.0015 0.0015
10.0 —0.0022 0.0021
REFERENCES
1. Cuvremur, R. V. Operational Mathematics, 2nd ed., New
York, 1958.

2. Herwirz, H., Jr., axp SwrrreL, P. F, Nunierical quadrature
of Fourier transform integrals, Math. Tables Aids Comp. 10
(1956), 140-149, ’
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CORRESPONDENCE

tial fraction form) as

) K, Ky Ky
7 {2} = — —— e
_‘;7 : s+s+b~jw 5+ b+ jw
Ky Ky
; - ~., (16
+s—}—c-«yf s+c+jf (16)

The time response of the system is then
given by

() = Ko+ 2 VK| ebsin (ol + é1)
121 Ky | eetsin (ft 4+ ¢2),

0<¢t< @, (A7)

Now assume that the coefficients in (15)
are arbitrarily assigned the following values:
w=160 =382, b= 10,0 =15 ¢ =3,
and f = v/27. The partial fraction expan-
sion coeflicients in (16) and (17) can be
evaluated using these assumed values and
both the single and multiple interval Laplace
Yransform approximations can be made us-
g (17).
- The sample times for the values of m
% given in Table T were used in the
endre~Gauss formula to approximate the
ansform of (17). Table I gives the actual
alve of the system transfer function (15)
s ~aeh value of s along with the approxi-
iate values and the percent error for each
{the nr  <imate values.
to Table II, one sees that the
tiple interval sampling results compare
iy with those obtained using the
& interval technique. In general, the
of the approximate transform is
¢ mare acceurate for fewer intervals,
¥ difference in accuracy is slight.

efnty

2

X

£

CoxcrLusioNs

# principal advantage of the multiple
#al sampling technigue is that more
fm' of a function ean be taken than
et order of available roots and
*uuld otherwise allow. To the best
wthors’ knowledge the highest order
ots and  weights for the
“Uauss quadrature correspond to
et formuls [17]. Using the mul-
A sampling technique and the

ud avights for the 32nd-order for-
“"Wr. the approximation could be
t:" :{3'-" 04, 96, 128, ete. samples.
- » !hquz approximations could
mpared for ench value of s as a
w::.ﬂ}:er thz? guadrature approxi-
* Sonverging,
 the multiple
M 1y be
RArrat,

A,

interval sampling
justified in many
’ barticularly  where the
‘-.{:\:‘ - nXimated is complex and
5 “wk:rﬁze .::unple sizg for satis-
., éi,‘,,;l l ¢ approximation of

Yt should be noted

that the technique is applicable to other
Gauss quadrature approximation formulas;
for example, ses [47] and [57].

Wayne J. Fents
Georce E. Coox
Vanderbilt University
Nashville, Tenn.
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Numerical Inversion of the
Laplace Transform

Abstract—An extension of Bellman's
method for the numerical inversion of the
Laplace transform is discussed, This exten~
sion is theoretically equivalent to the
method of Lanczos. Tables of coefficients
are given which facilitate the inversion of
the Laplace transform with the aid of a desk
computer. -

Bellman, Kalaba, and Lockett [1] have
outlined a method of numerical inversion of
the Laplace transform. An extension of this
method is presented in this correspondence.
The method given here is based on Lagrange
interpolation of the Laplace transform and
is in this sense equivalent to the method of
Lanczos [4], which can be considered as a
Newton interpolation.

Bellman's method is as follows. Let F(s)
be a given Laplace transform and f(¢) the

o
N » pe “where

299
corresponding original ﬁmction. Then
/ e~f(t) de = F(s). (1)
0

Substituting
et=1qy (2)
(1) takes the form

/1 wif (—log u) du = F(s), (3)
0

Applying the Gauss-Legendre quadrature
formula, (3) yields

N
Y waf (~logu) ~ Fs)  (4)
=]

where u; is the 4th zero of the shifted

Legendre polynomial Py* of degree N and

w; is the corresponding weight,

Letting s assume N different values, e.g.,
s=1, 2, ¢+, N, a system of N linear
cquations is obtained with N unknowns
J{=loguy), ¢ =1, 2, +«+, N, This system
can be solved explicitly. The solution takes
the form

. ,
F@) ~ 20 aF (k) (5)

k=1

i = —logus (6)

Equation (5) is the inversion formula
given in [17~[37 In [17, [2], the coeffi-
cients ax¥ arve tabulated for N = 3(1)15,
however, with great roundoff errors.

Unfortunately, the inversion formula (5)
gives only the values of f(£) in a restricted
number of nonequidistant points. To avoid
this difficulty, several techniques are pro-
posed in [17, [2], for instance, a change
of t scale, The purpose of this correspond-
ence is to present an extension of (5),

N
JO = T a®EFE (D)
k=1
where @™ (z) is a polynomial of degree
N -1,

Equation (5), if necessary after applica-
tion of a change of ¢ scale, gives the same
result as (7). However, it is much easier to
use (7) directly.

F(s) can be approximated by an inter-
polating rational function

(=D¥*E + N - DI ﬁ (s — m)

m==1

myEk

M=

F(s) ~

k4
il

1

F (k). 8

N1

(G=00N - I 6 +m

Equation (8) is a generalized Lagrange interpolation in the points s = 1, 2, -.

m=0

.
. N,

Inverting (8), the desired formula (7) is obtained, where

(N + k ~ DIV + m)leme

N-1
W (et = 3 (—1)ktmtt

m=0

Manuscript received December 16, 1968,
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and, particularly,
@ (1)

EN -1 _
= (—1)~* (v = Py*(e™),

(10)

The coelficients of ¢V (r) are integers
and are given in Table I, for N = 3(117,
With the aid of this table and using (79,
the inversion of the Laplace transform can
be carried outl very quickly. Tables II and
11T ave interesting especially for calenlations
with a desk computer. Table II gives the
values of ¢®(e7t) for k= 1(1)6 and { =
0.0(0.5)7.0. Values of ¢ (e7t) for k =
1(1310 and ¢ = 0.0(0.5)10.0 are listed in
Table II1. All the given figures are correct.
Tables II and III are extensions of the
tables given in [17, [2]. The advantage of
the tables given here is that the { values
are equidistant. This facilitates interpola-
tion. Tables I-1II were calculated using the
IBM 1620 and IBM 360/40 of the Com-
puting Centre of the University of Louvain.

Sometimes, particularly for digital com-
puters, it is more convenient to apply a
generalized Newton interpolation,

mw

Rdow & 1
Fp) = 2.~ 11

TR ay
m=0 4 i=g ¥ + P

Inversion of (11) gives

N-1
F = X enPu*( ) 12)
m=0
where

m

ew = (2m +1) 20 amF(j+1) (13)

i=0

and a;0 is the coeflicient of x7 in £.*(x).

Equation (11) does not require the de-
gree N to be chosen at the outset. Thus
the truncation error can be estimated by
adding one or more terms in (12). More-
over, (12) and (13) are more appropriate
for programming on a digital computer.
Equations (12) and (13) are equivalent to
those given by Lanczos [4].

" CONCLUSION

An extension of Bellman’s method of nu-
merical inversion of the Laplace transform
is given, This generalization was inspired
by the fact that, from the theoretical (but
not from the numerical) point of view,
Bellman’s method is a special case of the
method of Lanczos. However, Bellman’s
method and the extension of it presented
here are more suitable for caleulations with
a desk computer, using the tables given
here and in [17, [2].

R. Piessens

Dept. of Appl. Math,
University of Louvain
Heverlee, Belgium

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, JUNY; |

TABLE I
COBFFICIENTS OF ¢V (x)

2 3
k 1 x x X x" xs x6
1 9 ~36 a0
2 -36 192 ~180
3 30 ~180 180
) 16 ~120 240 -140
2 -120 1200 ~2700 1680
3 240 ~2700 6480 ~4200
4 -140 1680 ~4200 2800
i 25 ~300 1050 -1400 630
2 -300 4800 -18900 2680 ~12600
3 1050 -18900 79380 -117600 56700
o ~1400 26880 -117600 179200 -88200 .
5 630 ~12600 56700 ~88200 44100
.
1 36 ~630 3360 ~7560 7560 -2772
2 -630 14700 -B8200 211680 ~220500 83160
3 3360 -88200 564480 ~1411200 1512000 ~-582120
4 -7560 211680 1411260 3628800 ~3969000 1552320
5 78560  ~220800 1512000 ~3969000 2410000 ~1746360
6 -2772 83160 ~£22120 1552320 ~1746360 698540
1 49 -1176 8820 ~29400 48510 ~38808 12012
2 -1176 37632 ~317520 1128960 ~1940400 1596672 ~504%04
3 aszo  -317520 285768C  =10584000 18711000  =15717240 5045040
4 | 29400 1128960 ° -10584000 40320000  ~72765000 62092800  ~20180160
E 48510 -1940400 18711000  ~72765000 133407500 -115259760 37837800
6 | -deeos  18%6672  ~15717:60 62092800 ~115259760 100590336  ~33297264
7 12012 ~504504 S045040  -201805160 37837300  =33297264 11099088
TABLLE
VALurs oF ¢ {e™!) ror =0.000.5)7.0

k 0400 .50 1400

1 ~6400C0CCED -j.30827892 2036090779

2 210sC0O0COCO0 55,9.:481856 ~9B+ 08826666

3 ~16804GUCUOC00 ~513407038083 318453538201

4 5040400000060 1650411371119 2240043876632

5 ~6300400000000 ~2071426016793 2469474350140

6 2772400600000 882,37761424 -954 400546228

k 1450 24C0 2450

3 ~4406524843 ~4404979937 3407752812

2 109+7759C262 1984 49752230F 89073867723

3 467037987000 ~12545 98392697 ~7904149788528

4 T4S. 40459774 2974466310326 2139478629301

5 ~4B8434752235 ~302642657753) 2353045256608

3 1034 733£0290 1114427435660 913477731730

k 3400 3450 4400

1 12407537841 19483761304 25054269674

2 ~910196200963 ~2604B7880139 389407194785

3 202494266033 1173071343114 19254 420R3508

4 ~95417C46307 ~2358400279832 ~41364497755249

5 ~1334 42703551 57351039 40043 72742020

6 106441657502 ~ 750429955139 ~1434180827337

k 4450 5400 580

1 29440573930 314908340207 3348093730

2 ~4774 29563513 ~534.89215284 571038216204

3 2447493710332 2790491184606 3008487863333

4 ~5377468877713 ~6196467766093 ~&T18523507994

5 529166741923 6141472231963 6683485018932

6 =1317:91347467 ~Z223T462926613 “24414761012738

b3 6400 6450 7400

i 36445891583 35.05040236 35042830257

z ~5G4e 10504697 ~60L1COBOBETY ~616466851558

3 31464B70YCT4G 3226466778601 328040403227¢

4 =T7C434913334E6 ~T724043294571 % ~T716R8) 41353004

=3 TOEZCELT) 265 T221eH53581580 TI60e1ALTTLTES

6 ~2569142706194 —FELECENLB1 AR —26964658076917
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TABLE 111

VALEGES OF ¢ (¢t For {=0.0(0.5)10.0

000

k S0 1100
! 10400300600 -1,422210583 —1e20724842
2 990400000000 3234111149776 65408745345
3 =23760+00000000 ~7749453867095 ~219440431998
Py 240240400000000 77207.67278480 ~10190479610533
5 ~1261260+00003000 ~393822.28456122 105478,81020693
6 3783780+00006G00 1132993465156515 =424901439844463
7 ~6726720+00C000C0O ~151€432,53558472 877830426850133
] 70012804¢00000000 1870608 ,85838105 ~987677:16126394
9 =393B22040000C0C0 ~584472,77333481 576511+26149675
10 923780500000000 215348,02820457 =136898,50725871
1450 2400 2.80
1 1991462141 441R05£23C ~{lelopRLEsY
2 ~81494729694 -569401678767 852452270486
3 ~624436193225 15312471857637 —~11408:19329376
4 26585+ 76054532 ~145C01,25562383 6512444R766667
5 ~199496+01639921 68964 ,432401105 =198446,80905003
& 685688¢73918643 ~1811150491033552 347048488539554
7 ~12788064+43431308 28562407459054988 ~348575.21202372
8 1338197+52155336 ~266574C 04290188 1ASAZ] s 66866344
9 =74001C 182551662 INE1645462C11152 ~39091 469599098
’ 10 168548+54020115 “ZE78764109C50456 ~1 125496469644
x 3400 3450 4400
1 ~10a53977611 Be151E5809 d244R724445
2 148241147882 722468838242 ~669+08472279
3 =279894 70574588 ~1B326¢66675231 3982027629269
4 222836435758119, 1662561 78749296 ~1913:88661121
5 ~949834 476526399 ~765357480071197 ~66747494481013
6 2380422.38225424 2C21307494856414 294635464905378
7 »3618428423747348 " =2183277.79437983 «“589357216B42634
8 32808554 72644559 2582787 424072674 63434943105848]
9 ~1632101.80877a51 ~1519467,2AC13852 ~355098454361429
10 342771 482802222 328377441028076 8138740859872
k 4450 5400 5450
i 53499845444 Tiets0zR2447 81428295851
( 2 ~1984.28182345 =307 1456211546 =3719¢67846732
a 2656522992461 LEH20 3471574 6989432555406
4 =178835,0060 ~320838+216€47°03 ~421539: 26497589
5 1303 1747995,36533A82
& 37wl - “4330255.6Q161742
- 957137 LTTOORZ 44618701 H4GAL2P 4 S5IF6261
3 ~2C50273+91287¢7¢4 U273 T75, 56725370 =5971813.1275C053)
9 991926436020443 PL1IA054737ELE7] 2915771{+50809773
in “2TRT727e 2742265 =Ll 18T, ACENTQ =61 1 WFaR”agILT
6200 6450 7.00
1 88s20774526 S2673458502 555158768
2 ~4175160667315 4471455752073 ~465615421248¢6
3 65302184925067 7610987251234 73930475434469
5 ~488413405384027 ~531207+66529755 ~558008488582154
s 20324052 71786061 2219191 425838511 2336281439989085
6 ~50473614 17548961 ~5526616405619371 -~5827588472868261
7 76528688431856316 5397684461407043 8865165.36880940
8 =6942519 484688508 ~7630826493198598 ~B8063039.57225576
] 3460454 ¢ 35849763 3BLOSTS,07508060 40272685+93751891
o 7286774536196 ~87Z862450812107 -849474,00007946
7450 84CC a.50
4 t ©7s28635845 98434835014 | 98499610535
2 4771409819697 ~4841606634671 ~4883476993669
3 7598149101663 TTIEZQeDLE6TTZS 78008415020387
4 =574580+77701925 ~534749,624635548 ~S90960483021483
5 2408721 497287659 24E31874G2106452 2480353454018069
6 ~6013746,05018261 ~6128043418467047 ~6197881442479224
7 9154600420219578 9332342467744512 9440950433263047
8 =8330710405672540 ~B4U5]1 12480748345 ~8595588+10110982
] 4162750+24632353 5562487765507 4296822448578894
lo ~878353400547124 ~E9609447£292578 ~906939, 17840354
9100 9450 10409
! 99435032556 S91E2952E93 95477543353
2 =4909277148507 ~4G22,57683504 ~49354 17995932
3 78475499409822 7S76C 445852817 78933425380378
4 ~5947444 17523523 ~597L44 48] 085080 ~598442239804097
5 249690245743976% 2506966471299404 2513080473637043
6 - ~5624043010600054 ~62663074 11686555 ~6282028,08018428
7 9507139493798659 954739C 40122411 9571844425178973
El ~8656810+123887C31 ~B694046469C49547 ~8716669:93484295
9 4327813492565762 4346664411306742 4358116482971331
.0 ~913547450905764 ~017867,04472352 -920009,209185637
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Procedures to Check the Adjoint
Equations When Using the Method
of Steepest Ascent

Abstract—The method of steepest ascent
is well documented in the literature [1].
However, its application to problems of high
order (over 20) is not straightforward [2].
One problem that arises in the applica-
tion of the method of steepest ascent, par-
ticularly to problems of high order and gen-
erally to problems of any order, is the
pinpointing of errors in programming or in
deriving the adjoint equations. This corre-
spondence presents a systematic method for
pinpointing such errors. First, a derivation
of equations pertinent to the method of
steepest ascent as developed by Bryson
et al. [1] is presented. Then checks on the
adjoints are followed by an illustrative
example of the use of these checks.

1. ToraL VARIATION OF THE
CosT F'UNCTIONAL

An expression is derived for the total
variation of the payoff fuuction which is
fundamental to the method of steepest as-
cent. For a complete mathematical descrip-
tion of steepest ascent, see Bryson ef al. [17].

Let the system be represented by the set
of first-order differential equations with =
a state vector and u the control vector,

&= f(x, u, t). 1)

Define a payoff functional in terms of
the final state 2(7") and final time T as

¢=2@{),T1). (2)

Such a formulation causes no loss in gen-
erality,

One now forms the incremental system
equations

=) dx+|——) su (3)
GEI u/y

where the subseript zero indicates evalua-
tion along a trajectory about which the
perturbations are taken.

Manuseript received November 27, 1068.
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On the Condition of a Matrix Arising in the

(;,,
Numerical Inversion of the Laplace Transform %

By Walter Gautschi

Abstract. Bellman, Kalaba, and Lockett recently proposed a numerical method
for inverting the Laplace transform. The method consists in first reducing the infinite
interval of integration to a finite one by a preliminary substitution of variables, and
then employing an n-point Gauss-Legendre quadrature formula to reduce the in-
version prohlem (approximately) to that of solving a system of n linear algebraic
equations. Luke suggests the possibility of using Gauss-Jacobi quadrature (with
parameters a and 8) in place of Gauss-Legendre quadrature, and in particular raises
the question whether a judicious choice of the parameters «, 8 may have a beneficial
influence on the condition of the linear system of equations. The object of this note is
to investigate the condition number cond (n, @, 8) of this system as a function of
n, o, and 8. It is found that cond (n, «, 8) is usually larger than cond (n, 8, «) if
8> a, at least asymptotically as # — . Lower bounds for cond (n, o, 8) are ob-
tained together with their asymptotic behavior as n — oo. Sharper bounds are de-
rived in the special cases @ = 8, n odd, and @ = 8 = -£%, n arbitrary. There is
also a short table of cond (n, o, 8) fore, 8 = —.8(.2)0, .5, 1,2,4,8,16,8 = «, and
n = 5, 10, 20, 40. The general conclusion is that cond (n, a, 8) grows at a rate which
is something like a constant times (3 + +/ 8)*, where the constant depends ou o and
B, varies relatively slowly as a function of @, 8, and appears to be smallest near
a = f# = —1. For quadrature rules with equidistant points the condition grows like

(2V2/37)8" B

1. In [4], Bellman, Kalaba, and Lockett propose a numerical procedure to
invert the Laplace transform

(L.1) _/ e u@)dt = F(s) .
0
Briefly, the procedure consists of first substituting @ = ¢, to bring (1.1) into the
form
1
(1.2) / 2" g(@)dx = F(s), g(@) = u(—Inz),
0

and then employing Gaussian quadrature to approximate (1.2) by .

(13) an"kg(a“) :F(k+1); (k:oy 1)2;"')7”—1);

i=1 .
where x; are the zeros of the shifted Legendre polynomieal p,(z) = P,(22 — 1) and
w; the associated weight factors. Letting y; = wg(x,), the method thus boils down

to solving the system of linear algebraic equations

Received May 9, 1968.
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110 WALTER GAUTSCHI

(1.4) Safyi=Flk+1), (*k=012--,n—1).
=1

In reviewing the work of Bellman et al,, Y. L. Luke [8] generalizes their ap-
proach by employing the substitution x = e (» > 0) in (1.1), and by using Jacobi
polynomials in place of Legendre polynomials. This again leads to a system of
equations (1.4) where now z; are the zeros of the shifted Jacobi polynomial p, 8 (z)
= P,@M 2z — 1), and F(k + 1) on the right must be replaced by F((k + 1)v).

The system (1.4) can be solved analytically in a number of ways, the coefficient
matrix being a Vandermonde matrix. However, as noted in [4], the ill-conditioned
character of the system may well require high-precision calculations, especially if
n is fairly large. Luke [8] raises the question of whether or not “the detrimental
effects of ill-conditioning can be removed or mitigated by the use of other choices
of « and B” (other than & = g = 0). The purpose of this note is to give a detailed
answer to this question.

We first obtain a closed expression for the condition number of the coefficient
matrix in (1.4). In Section 3 we compare the condition number for p,@# with that
for p,®* and find that the former is usually larger than the latter if 8 > «, at least
asymptotically as n — o, Section 4 contains a short table of the condition number
for p, @8 where o, 8 = —.8(.2)0, .5, 1, 2,4, 8 16, 8 = o, and n = 5, 10, 20, 40.
Section 5 exhibits lower bounds for the condition number, together with their
asymptotic behavior. Sharper results are obtained in Section 6 in the case a = B,
7 odd, and in Section 7 for general n, and ¢ = f = Z%. For comparison we con-
sider in Section 8 the case of equidistant abscissas 2.

The general conclusion is that the eondition number grows at a rate which is
something like a constant times (3 4+ + 8)” [(2 v 2/37)8" for equidistant abscissas],
where the constant depends on « and 8 and varies relatively slowly as a funetion of «
and B. As expected, there is no escape from ill-conditioning, which, after all, only

reflects the fact that the original inversion problem (1.1) is not well posed (cf., in
this connection, [1], [2], [3], [9], {11], [13], [14]).

2. Let p,(2) be an arbitrary polynomial of degree n whose zeros z; ave distinet
and located in the interval [0, 1]. Let

(2.1) Vip) =

denote the Vandermonde matrix of the zeros x;. We shall consider the condition
number

(2.2) cond,, [V(pn)] = ”V(pn)”w”[v(pn)]_lnw:
where || -], denotes the «-matrix norm (“maximum row sum’’). Clearly,
(2.3) 1V(plle =n.
In [5] we have shown that under the assumptions made,
_ 1+ z;
2.4 V(@) Yo = max <———)
(2.4) IV ()17 nl?\gi lo: — ;]

Combining
obtain

3. Wen
o > '—176

(3.1) eonc

where the ¢

In particuls
(3.2)

and since %

min {(1

Consequent

conu

which is eq
Noting -

(3.3)

we obtain f

(34) co

Our con
in (2.5) is as
cases vy, =
large the co
observed by
(typically |
~1<ep
cond,, [V (px

4. Inor
make use of




[ ‘ ON THE CONDITION OF A MATRIX 111
Combining (2.3) and (2.4), and rewriting (2.4) in terms of p, and its derivative, we
obtain

ir ap- nlpa(—1)]
} . 25 cond,, [V (pn)] = —
acobi 3) Vol = Lt ol oI}
am of .
Dx) 3, We now let p, be the shifted Jacobi polynomial p,«#(z) = P,@&(2z — 1),
)e). a> —1,8 > —1. We first show that
icient P03
ioned 3.1)  condy, [V (0. P)] = v» =2 cond., [V (p.?)] 3 <7 <2
Uy it 6.1 P PP (3) : b ’
;er}tu.l where the constant v, depends on « and g. Indeed, it is well known that
noices
tailed 2.0 @) = (=1)'p (1 ~ a),
- PP (@) = (=P - 2)
icien
. that In particular, if 2; is a zero of p,# then §; = 1 — x,is a zero of p,#), Therefore,
least A+ 2)p"" @)l = (L -+ )lp"" )]
imber - (3.2) 1 It
fl'; o
0,40 S g (R DI R COTR
their
= B, and since 3 < (1 + 2)/(2 — ) < 2for 0 < z < 1, it follows that
con-
. ) 1. Y
o min {d + 2:)|p“? @]} = =—min {A + £)p. " E)N}, < < 2.
lich isy i Tno i
jssas), Consequently, by (2.5),
n of «
; OH!V conde, [V (")) = 7l pa? (—=1)/p®® (—1)| cond,, [V (" )],
{ which is equivalent to (3.1).
, Noting that [10, p. 194]
stlnct n_l/Q
| 63 POOG)~ e G VI (1 ),
g we obtain from (3.1),
| 84)  cond, [V ~ 7. 2% cond,, [V (0.5)], (n— ).
Ech tion Our computations (cf. Section 4) have revealed that in most cases the minimum
i in (2.5) is assumed for x; near § (though not necessarily closest to 3), so that in these
' cases v, = 1. Taking this into account it appears from (3.4) that for n sufficiently
| large the condition number for p, @ # is greater than that for p,®® if 8 > a. As was
observed by computation this remains generally true for smaller values of n as well
(typically for those of Table 1), although in a few instances in the region
' —1 <@ B <0,8 > a it was found that cond, [V(p,@)] is slightly less than
cond,, [V (p, )],
4. In order to compute the condition number in (2.5) for p,(z) = p,@® (), we
male use of the fact that these polynomials satisfy the orthogonality relation
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(4.1) /0 Pa (X)) D (3) (1 — :c)"xﬂd‘v = Rubpom ,

where h, = Tn+ a4+ DNI'n+8+1)/(Cn+a+B8+ D! T +a+ B+ 1))
and §, ., is the Kronecker delta. With p,*(z) = k,~”2 p.(z) denoting the normalized
polynomials, we may compute p,*(r) from the recurrence relation

PEa() = (@ — a)p*@) — bpt s (@) /bryr, (=0,1,2,--,n— 1),
(4.2) Pla+8+2) |7
k) =0, pk) = {I‘(a + TE+ 1)} ’
where
_ (i __a—=8
“““26 a+6+9’
_a1/ o — -}
“““2V”%%+a+ﬁﬂ%+a+ﬁ+m’ =1,
@3 Im+nw+nrz
YTt 8+2 at B3 ’

b, 1 [ 1+ a)c+B8)0+a+p) }m,'@gzy

T ta+p\@ tatBf-—D@ tatp+1)

The zeros of p,*(x) may now be computed from (4.2) by a combination of Newton's
method and successive deflation as described in {6, p. 261]. Hence the condition
number of V(p,) can be computed directly from (2.5) for any value of o and g.
Selected results* are shown in Table 1. (The numbers in parentheses denote the
powers of 10 by which the preceding numbers are to be multiplied.) For reasons
indicated at the end of Section 3 we restriet our tabulation to the region 8 = «.
The results in Table 1 indicate that cond,, [V (p,©@#)] for fixed « is an increasing
function of 8, if —1 < « = 0, and changes from a decreasing to an increasing func-
tion as B varies from —1 to @, if @ > 0. There is thus a ‘“valley” of low condition
number extending approximately (and more or less independently of n) along the

line B = —1 -+ 2a/7, as was determined by additional calculations. Along this
valley, as well as along the diagonal @ = 8, and near the line 8 = —1, the condition
number increases with « and thus appears to be smallest near @ = g = —1.

5. A lower bound for the condition number in (2.5) may be obtained as follows.
Let : » '

(5.1) max |pa(z)] = pa.
0<z<1
*In the range -1 < @ £ 3, -1 < B £ 3,8 = o and for n = 5 and n = 8, the zeros of
sl B (z) as computed were checked against those tabulated in [7]. Disagreement never exceeded
one unit of the last (eighth) significant digit. For n = 40, successive deflation was used only for
the first 20 zeros. The remaining zeros were obtained from the original polynomial by Newton’s
method and a simple search procedure.
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5. i EFFEFE zaw2a : =
s o TarLE 1.
== Selected values of cond., [V(p.@-8)]
-+ &P
E 3 n n
;{.—g . g8 5 10 20 40 o 8 5 10 20 10
- =5 —8 —.8 9822) 6.66(6) 2.99(14) 6.12(29) 20 .5 2393)  205(7)  1.04(15)  2.24(30)
i —6 =8 1053) 7.1506) 3.23(14)  6.60(29) 1.0 271(3)  2.32(7)  1.20(15)  2.62(30)
2 A —.6  1.08(3)  7.48(0)  3.39(14)  6.94(20) 2.0 8.54(3)  3.20(7) 1.72(15)  3.89(30)
— —4  —.8 113(3) 7.68(6) 3.49(14) 7.13(29) 40 —.8 420(3)  3.85(7) 2.11(15) 4.82(30)
IA o —.6  1.I5(3)  8.00(6)  3.63(14)  7.44(29) —.6  3.98(3)  3.647)  1.99(15) 4.57(30) :
¥ —4  1.19(3) 8.39(6)  3.84(14)  7.90(29) —4  3.83(3)  347(7)  1.93(15)  4.42(30) o ;
o 2 -2 -8 121(3 S.24(6)  3.76(14)  7.73(29) —.2  3.73(3)  3.38(7)  1.90(15)  4.34(30) Z :
g = -6  1.233 8.57(6)  3.88(14)  7.99(29) 0 3.66(3)  3.40(7)  1.88(15)  4.33(30) o o
== —4  125(3)  8.94(6) 4.10(14)  8.43(20) 5 3.60(3) 3.52(7) 1.95(15)  4.48(30) = :
T —2 1343 0.53(6)  4.39(14)  9.03(29) 1.0 3.64(3)  3.70(7)  2.10(15)  4.88(30) a |
- = 0 —.8 1.30(3)  8.85(6) 4.07(14)  8.38(29) 20 432(3)  447(7)  2.65(15)  6.36(30) S
= 2 : —.6 13103 0.17(6)  4.18(14)  8.61(29) 40 644(3)  7.67(7)  5.20(15)  1.36(31) g : :
E G —4  133(3)  9.546)  4.38(14) 9.02(29) 80 —.8 103(4)  137(8)  1.01(16) 2.79(31) = : -
z T —2 1.38(3)  9.98(6) 4.63(14) 9.58(29) —6  9.52(3)  1.26(8) 9.20(15) 2.54(31) S -
3 0 1.50(3)  1.08(7)  5.00(1%)  1.03(30) —4  891(3)  LIS(S)  S.58(15)  2.36(31) “
® 5 —.8 1.53(3)  1.08(7)  4.99(14)  1.03(30) -2 S44(3)  L.10(8)  8.03(15)  2.22(31) )
o —6 153(3)  1.09(7)  5.05(14)  1.05(30) 0 8.07(3)  1.048) 7.71(15) 2.13(31) N B
-3 —4  154(3)  112(7)  5.19(14)  1.08(30) 5 745(3)  981(7)  7.23(15)  2.00(31) >
S —2  156(3)  1.16(7)  5.44(14)  1.13(30) 1.0 7.223) 975(7)  7T.a1(15)  1.97(31) 2
g 0 1.62(3)  1.21(7)  B5.74(14)  1.20(30) 2.0  6.953)  LOLE) 754015 2.15(31) =
2 5 1.93(3)  1.45(7)  6.87(14)  1.44(30) 40  8.68(3)  1.31(8)  1.09(16)  3.34(31) 2
= 1.0 —.8 1.80(3) 1.29(7) 6.I3(14)  1.28(30) 80  148(4)  2.99(8)  3.43(16) 1.35(32) g ;
= —6  L77(3)  1.28(7)  6.09(14) 1.28(30) 16.0 ~—.8 3.96(4)  1.10(9)  1.66(17) 7.77(32)
) —~4  L77(3)  1.32(7)  6.23(14)  1.30(30) —.6  3.54(4)  9.83(8) 1.44(17) 6.74(32)
z —2  L79(3)  1.36(7)  6.40(14)  1.35(30) —4  3.22(4)  8.87(8)  1.26(17)  5.93(32) "
< 0 1.81(3)  1.41(7)  6.73(14) 1.41(30) —.2  296(4) 8.07(8) LI5AT)  5.35(32) ;
@ 5 2.05(3 L61(7)  7.81(14) 1.65(30) 0 2.76(4 7.40(8)  1.06(17)  4.86(32) 1
3 1.0 241(3)  1.92(7)  9.38(14)  2.02(30) b5 238(4) 6.15(8)  8.60(16)  4.05(32) ;
o 2.0 —.8 244(3 1.89(7)  9.24(14)  1.99(30) 10 214(4)  5.44(8) 7.78(16)  3.56(32)
i —.6 237(3) 1.81(7) 9.08(14)  1.94(30) 2.0 1.86(4)  4.89(8)  6.67(16) 3.11(32)
i —4 233(3) 1.82(7) 9.00(14)  1.94(30) 40  175(4)  4.63(8)  6.56(16)  3.18(32)
o —2  231(3) 1.85(7) 9.16(14)  1.96(30) 80 2.20(4)  648(8) 1.10(17) 6.28(32) —
- 0 2.32(3)  1.90(7)  9.37(14)  2.01(30) 16.0  4.20(4)  1.98(9)  6.33(17)  6.73(33) =
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(52) (1 + xl)lpn,(xl‘)l = 4722/"‘0; (?' = 1: 2; tty Tl) .
Consequently, by (2.5),

(5.3) cond, [V(p.)] = %, kn = |Da(—1)|/4000n .

If pu(2) = p.“P(z), we may take advantage of known asymptotic results for
Jacobi polynomials to obtain an asymptotic expression for k, in (5.3). Asn — «, we
have [10, p. 380]

pa~n/T(g+1) if ¢z —3 |
(54) . ~ 1]_._1/2'a + ;j|—a/2-«1/4|6 + %[_5/2_1/4l04 + B + 1!(&+B+1)/2n—1/2
if —1<g¢g< -3,

where ¢ = max (e, 8). Combining (5.4) with (3.3) we obtain from (5.3)

(5'5) Ky~ l(_(l_’*‘_l_)~ n—('l+3/2) (3 __|_ _\/8)n+(a+5+1)/2 , (q __2_ _%, n— OO) ,

_\/,”2 (2a+4-13) /4
and
Ia + %Ialzﬂﬂm + %lﬁ/2+1/4 -1 nt-(at-p+1) /2
fn ™ o Gat 1) /1 btz B+ V8™ )
(5.6) 2 lee + 8+ 1]

(—1<g< —§n— o).

The powers of # appearing in (5.5), (5.6) are due to the crudeness of the in-
equality (5.2) and do not reflect the true asymptotic behavior of cond., [V (pn @8],
In fact, if @ is restricted to a closed interval in the interior of [0, 1] (e.g., 7 such that
x; is the smallest zero of p, @# larger than or equal to %), then it is known [10, p. 237}
that

(56.7) Ip,.(“"”l(mi)l ot (n— »),
the symbol ~ meaning that the ratio of the left-hand and right-hand expression

remains between certain positive bounds depending only on « and 8. It thus follows
from (2.5) and (3.3) that

(5.8) cond,, [V(p, )] = &', k' ~ (B + V8", (n— ).

If, as all numerical evidence indicates, the points at which the minimum in (2.5)
is assumed remain in a closed interval inside the open interval (0, 1) as n — o, then
inequality in (5.8) may be replaced by equality.

6. Considerably sharper bounds can be had if @ = 8. We thus consider
. __. () I . _P(U + %)F(n + 20’) (0—1/2,06—1/2) o

(6 1) pn(ﬂ») =Ch (21/ 1) - F(QU)I‘(?L o+ %) P, (2;1, 1) ,

. o> '—%’ ’

and for convenience we assume that # is odd. Then, by symmetry, «; = 3 for some
1 = 1o, so that for this zero,

o (23) = pa’(2) = 20, (0) = 2(n + 20 — 1C1(0) .

Since

we obtain

Hence, fri

cor
(6.2)

I'rom the
from Stirl

6.3) C,

I'urtherm

where T'(.
using Stir
obtain

(6.4)

a result w,
The ea
in which ¢

6.5

The cc¢
general o
(6.4) rema

7. The
then redu¢
weight fac

We be

" 50 that
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o {4\ 2 T{(n 4+ 20 — 1)/2)
C.21(0) = ( 1) ! P(U)P((?Z + 1)/2) (0 # 0)
=2(-1D)"""n~-1), (=0),
we obtain
(1 + wi)lpe (a)] = 6 T t2e E1/2) g

T@)IT((r +1)/2)°
=6, (c=0).

Hence, from (2.5),

'
I

Ny @ oy ITE@IT (0 + 1)/2)
6 & O T 120 + 1)/2)

%a@@% (v = 0).

cond,, [V(p)] = «, Kn (@ 0)

(6.2)

I

From the known asymptotic behavior of P, @=12.5-12(z) as n — < [10, p. 194] and
from Stirling’s formula we find
T+

1
- —“‘W)_“@ +V™, 6 #0,n— ),

v ()
63) G7E) VI (20)2

Turthermore,

CO@) = Z13) ~ e G VI, (),

where 7,(x) is the Chebyshev polynomial of the first kind. Substituting in (6.2), and
using Stirling’s formula and the duplication formula for the gamma function, we
obtain

{odd)

(64) Kn ™ ,/2 <3 + \/8)n+a (a > '—%) n— CD) ]

6-8
a result which obviously improves upon (5.5), (5.6) and is more precise than (5.8).
The case p.(z) = Pu(2z — 1) originally considered in [4] corresponds to ¢ = %,
in which case (6.4) gives '

1 v (odd)
G—-8§(3+\/8)" R e=%n— o). !

The corresponding analysis for even n appears to be rather more difficult, for
general ¢ > — 3, and we shall not pursue this any further, If ¢ = 0, or ¢ = 1, then
(6.4) remams vahd for general n, as will be seen in the next SGCthIL

(6.5) K~

7. The cases @ = 8 = =3 merit special attention since the Jacobi polynomials
then reduce to Chebyshev polynomials (of the first and second kind), the zeros and
weight factors of which are known explicitly.

We begin with @ = 8 = — 1%, or, equivalently p,(z) = T,,(?a, — 1). We have

[pa(=1)| = Tu(3) = 3[B + v8)" + 3 — v/8,7],

o0 that
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(7.1) (=D > 53 + v8)".

Since the zeros v; of p,(x) satisfy
2x; — 1 = cos 8, 9,"—'-‘"5;1—"‘#, (i—~1,2,-'-,77,),

and 7T,’ (cos 6) = n(sin nd)/sin 6, we get
Pl () = 270 (cos 8) = (—1)F! 2n/sin 8,
and so,

3+ cose.-ln.

1+ z)lp/ @)l = sin 8;

The function f(6) = (3 + cos 8)/sin 6 has a unique minimum in the interval (0, )
which is assumed at 8 = 8o, where cos fy = ~1/3,1.e.0p = w/2 + .340. Let 1 = 1o be
such that 7/2 = 6;, < 6o. (The existence of % is trivial if 7 is odd, and if » is even is
assured whenever n > 4.) Since f(8:) £ f(r/2) = 3, we obtain

(1 -+ Tio)lpnl(xio)i = 3n,
and thus, by (2.5) and (7.1),
(7.2) cond, [V (pu)1 > 23 + /8)", (@=B=—3),

in agreement with the case o = 0 of 6.4).
Consider, next, @ = B = 3, i.e. p.(2) = Ua(20 — 1). Here we have

' nti
(7.3) Ipa(—1)] = Ua(3) = GV 7 4 evE)y ™Y,

2/8
and
1 .
2x;f1:cosa;, 0,-=m1r, (¢t=1,2 --,n).
Since now
U,/ (cos 8) = —; p [cos sin (n + 1)§ — (n + 1) sin 8 cos (n + 16},
sin ,
we get
p (@) = 20, (eos 8) = (= 20 ED,
T s’ 8
and so, '
3 9;
(1 + 2dlp @l = T k1)

In the interval (0, =) the function g(6) = (3 + cos §)/sin? 8 takes on its unique mini-
mum at § = 6o, where cos §p = V8 — 3,1.e. 60 = w/2 -+ .173. Picking ¢ = 7o such
that w/2 = 6;, < 6o (which is always possible if 7 is odd, and if n is even certainly
forn > 8), we have g(0;,) = g(n/2) = 3, and therefore

|
Const

|
(7.4) 1

in agre,

8 W
81
Here, (2,

82) !

where

|
Observing

and that t}
inereasing
n 2 2),
ity
Consequen
and we fin

e
(8.3)

CC
Therefore,

(8.4)
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(1 + :E"o)lp",(ml'o)‘ = 3(” + 1) .
Consequently, by (2.5) and (7.3),
(a, n n4l . R -
cmm[ku”U]zzgygff;75@4—vw*w1 (17 + 68"

LB vEeT
v

in agreement with the case ¢ = 1 of (6.4).

(7.4)

=ﬁ=%;n'—)°°))

8. For comparison we briefly discuss the case of equidistant abscissas**

(8.1) gi=i/m+1), @GE=12-n).
Here, (2.3) and (2.4) give

nin+2)(n+3)---@n+ 1)

mm ™3

(8.2) cond,, [V (pa)] =

where

n

=(7'+774+1)H|7’—.71’ (7,'=1,2,---,n).

J=1; 771

Observing that

t4+n4+2 1 .
m+l=z+n+1n—z i, (7‘=1)2)""n'—1))

and that the function f(z) = (z + n + 2)z/((x +n + 1)(71 — x)) is monotomcally
increasing on the interval [1, n — 1], with f(1) <1 (forn = 3), f(n — 1) > 1 (for
n = 2),f(n/2) > 1, f((n — 1)/2) <1, it follows that

wip < T fori £ [(n — 1)/2], Tipl > Ti fori > [(n — 1)/2] .

Consequently, the minimum in (8.2) occurs ati = [(n — 1)/2] + 1 = [(ni+ 1)/2],
and we find that

— n* 2n + 1)!
83 cond,, [V (pa)] = Gt D@+ 1) plm/2)r’ (n even) ,
conds [V(pn)] = 2” Gn + 1) (n 0dd) .

3+ 1) 4+ DI — 1)/
Therefore, by Stirling’s formula,

(84) Coonda [V~ 228, ).

Department of Computer Seiences
Purdue University
Lafayette, Indiana 47907

** Consideration of this case was suggested to the author by Professor C. H. Wilcox during
a recent conversation.
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An Extension of Szasz’s Theerem and Its
Application

ELIAS MASRY

Abstract—A classical result in signal theory is the completeness of
the exponentials {¢~#+*} in L,, the so-called Szasz’s theorem. This
paper generalizes Szasz’s theorem by constructing broad classes of
functions g(x) such that the set of functions {g(y,x)} is complete in L,,
Application to the problem of alias-free sampling of stochastic processes

is considered.

I. INTRODUCTION

NE of the classical results in signal theory is the com-
Opleteness of the exponentials {¢~#**} in L,, the so-
called Szasz’s theorem. It has found numerous applications
in systems and signal analysis, control theory, and time-
domain approximation of network functions, to mention a
few. Let us note that if we let g(x) = e™*, then the ex-
ponential function e™#* can be written as g(u,x) and hence,
for a proper sequence {y,} of numbers, a single function
g(x) = e”" generates a basis by time scaling.

In this paper we consider an extension of Szasz’s theorem
to functions other than the exponential with the same unique
property of generating a basis. Applications to the problem
of alias-free sampling are considered.

Specifically, let L,* be the Hilbert space of all square-
integrable Lebesgue-measurable functions over [0,00). Let
{ua}nz | be a sequence of distinct complex numbers. Szasz’s
theorem [1] states that the set of functions g,(x) = e~ #»*
n = 1,2,-+- with Re y, > 0is complete in L,* if and only
if

O
CRe@w) 0
n=11 + lﬂn - %'2

In particular, if u, = n or y, = 1/n, the sets of functions
{e™™}2, and {e~"'/"*}= are complete in L,*. We con-
sider an extension of Szasz’s theorem in the following sense.
Let g(x) e L,™ and define

gn(x) = g(,u,,x), nh = ],2,' t (2)

where {u,};" | is a sequence of distinct complex numbers.
Under what conditions on g(x) and on {1} is the set of
functions {g,(x)} defined by (2) complete in L,*? Thisis a
very complex problem and there is no general solution to
it. In Section I we solve this problem for two broad classes
of functions ge L,*. These results are represented by
Theorems 2 and 3 of Section II and constitute the main
contribution of this paper. In Section Il we apply these

Manuscript received September 24, 1971; revised April 12, 1972,
This research was supported by the Office of Naval Research under
Contract N00O014-69-A-0200-6037.

The author is with the Department of Applied Physics and Informa-
tion Science, University of California at San Diego, La Jolla, Calif.
92037,
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II. AN EXTENSION OF SzAsz’S THEOREM -

Let H be a Hilbert space and {f,(/)} a complete set in |
Let A be a bounded linear transformation from A into J

Define tich in tu

$ a uniqu

gi(t) = (Af)(0). nsider ne
We then have the following basic result, the proof of whics, I,
is given in the Appendix. ‘ g

Lemma: The set {g,(t)} is complete in H if and onlyd by (6)
the range Z(A) of the transformation A is dense in H. =

Consider next the space L,* of square-integrak
Lebesgue-measurable functions defined over [0,00). Let that T, h
be a fixed positive integer greater than one and define £/

every f'e L, the transformation Finally co
(Tf Xx) = f(rx). ‘pposefe [
:ment of t

Then T is a bounded linear transformation from L,* iny null spac

L,* with rmal as ¢
17712 = (nifI2 e L, fongs to tf

. “have [ =

Hence ) it R(T)) is
1T = 1/r. We thus c

It is not difficult to see that the operator T is norm € resolve
Furthermore it will be shown in Theorem 1 that the invefitains the «
operator T~ ! exists and is bounded. We now tu

Let 2 be the class of nonzero functions ge L,* of Uheorem 2

form ' sequence o

y .
K .en the set «
g9(x) = ae™ "%, i
k=Z—N ,

where N is a finite positive integer and the a,’s are arbitra _
constants. Define a polynomial in z and z~! by somplete in

N
P(z) = ¥ az*

kS—N

and let Prouf @

3 e @P. Ther

P(T = a Tk. .
) R:Z—~N k ;e lSn L2+,

Then P(T) is a bounded linear transformation mapping ¢ ) Suppose
to g(x). Furthermore

gu(x) A gu,x) = P(T)e H~, |

d let {’11:12:\1

It then follows by the previous Lemma that thé set of fu
tions {g,(x)} defined by (9) is complete in L,* if and onl:
the range A(P(T)) of the operator P(T) is dense in L
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Hence the problem reduces to finding the spectrum of the
operator P(T). We first prove the following theorem,
Theorem [ : The operator T on L," has only a continuous
spectrum o,(T) contained in the circle C, = {A: {4 = l/\/r}.
Proof: Let T, = T — Al where 7 is the identity operator
and consider the equation T,f = 0, i.e.,

f@rx) = (). (109)
It is easily seen by taking norms on both sides of (10) that

£(x) = 0 ae. for 2] # 1//r. For the case || = 1\r, (10)
implies

f" [f(x)*dx =0, Vt=0, ¢8))

which in turn implies f(x) = 0 a.e. Hence the operator T,
has a unique inverse so that the point spectrum is empty.
Consider now the norm | T,/

1Tl = 1T = 1 = LT = 1A
and by (6)
ITf1 = 1N = LIS (12)
50 that T, has a bounded inverse for all A satisfying [A| #

1 /\/ r.

Finally consider the range A(T,) of the operator T, and

suppose f € [#(T;)]* where [#(T)]" is the orthogonal com-
nlement of the closure of %(T)) in L,*. Then fe N(T;*),
ne null space of the adjoint operator T,*. Since T} is also
normal as can be easily seen, we have fe N (T,) so that f
belongs to the point spectrum o,(T). Since o,(T) is empty,
we have f = 0 a.e. It then follows that [#(T)] = L, so
that Z(T,) is dense in L,* for all A. ‘

We thus conclude that all 1 satisfying 4 # 1 /\/ r belong
to the resolvent set p(T") and the circle C, = {A1Al = l/\/r}
contains the continuous spectrum o(7T).

We now turn to our first basic result.

Theorem 2: Let g be an arbitrary function in # and {u,}
a sequence of distinct complex numbers with Re i, > 0.
Then the set of functions

gn(x) A g(pyx),

is complete in L,* for every g€ # if and only if

n=12-"" (13)

=11+ “‘n - %lz
Proof: a) Suppose (14) is not true and let g(x) =
e *e P. Then the set of functions {gn(x)};% is not com-

plete in L, *.
b) Suppose (14) is satisfied. Write

_ Rew, _ . (14)

2N
Pz)=z"Y ay*

and let {1,}2", be the roots of the polynomial ZNP(z), i.e.,

2N
P(z)=2z"" Un (z — &)

185

Since the operators T;, commute with each other, P(T) can
be written as

P(T)=T" ﬁ (T = Al). (15)
i=1

By Theorem 1, the range of T — A is dense in L,* for all
4;. Hence the range :

a[fl - W]

i=1

is dense in L,*. Moreover, the range of 77! is obviausly
dense in L,*. Hence the range of P(T) is dense in L. 1t
then follows by hypothesis and the previous Lemma that

{g,(x)} is complete in L,".

Corollary: The sets of functions {g(nx)}., and
{g(x/m)}2, with g e 2 are complete in L.
Remark : The idea for the class 2 comes from a paper by

Neuwirth et al. [2]. It should be noted, however, that in [2]

the domain of all functions is the compact interval [0,27]
and, consequently, the spectrum of the operator T is com-

pletely different from ours.
In the next section we will use Theorem 2 with the addi-

tional requirement that ge & be nonnegative. Since g(x)
given by (7) is a mixture of exponentials, we can use pre-
viously known sufficient conditions for a mixture of ex-
ponentials to be nonnegative [3]. Clearly if all the a, are
nonnegative then g(x) is nonnegative. A nontrivial sufficient
condition for g(x) to be nonnegative is given by [3].
k
a, =0,
r=-N
As an illustration to Theorem 2 and the discussion
following it, we present a special case of the Erlang distribu-
tion [4] with density

k= —N, 0N (16

N
g(x) = Y ae (17)
k=0 :

where
N

oJ
a, = r* ] rf'r"?’ k=01, N (I8
AL

E X~}

i*
Note that the signs of the g, alternate. It then follows by
Theorem 2 that the set of functions {g.(x)} defined by (13)
with g(x) given by (17) is complete in L,".

We now extend the results of Theorem 2 to a larger class
of functions g. We recall first that the resolvent transforma-
tion R(A,T) = (T — A" exists and is bounded for all
complex-valued A€ p(T). Let &/ be the class of complex-
valued functions a(1) that are analytic in some neighbor-
hood D, of the circle C, = {A: 4] = 1/\/;}. We define the
operator a(T) by [5]

oT) = i f a(HR@; T) d. (19)
: B

B consists of a finite number of rectifiable Jordan curves
oriented in the positive sense and is the boundary of an



186

open set 0 containing the circle C, such that 0 U B is con-
tained in D,. Then the operator a(T) on L, is bounded,
linear, and uniquely defined [5].

Define the class & of functions g e L,* by

F ={gel,*: g = a(T)e ™ a(l) e o} (20)

and note that, in particular, 2 < #. We now state
Theorem 3, ‘

Theorem 3. Let a(2) be an arbitrary function in & and
let g = a(T)e™*e F. Let {u,} be a sequence of distinct
complex numbers with Re u, > 0. If a(4) does not vanish
for any A e C, then the set of functions

gu(x) = glu,x), n =12, @1
is complete in L,* for every g € & if and only if
ow
Re 4, 22)

L - 4P

Proof: a) The necessity is trivial if we let a(d) = 1.
b) Let B, and B, be the circles B, = {4: || = (1//r) +
e,} and B, = {A: [A| = (1//r) — &,)}, where ¢, > 0 and

&; > 0. For sufficiently small ¢, and ¢,, B, and B, are in

the domain of analyticity of a(i). We then have

a()R(A,T) di.
(23)

oT) = - | aRAT)ds + L
2ni 2ri

By B

Now on By, |A] > |T| so that [6]
RALT) = ¥ A-rpr-t
n=1

and on B,, |A| < 1/|R(0,T)|| = | T| so that [6]

R(A,T) = f: A'[RO,T)]**! = f Ly SICEEY
n=0

n=0

It then follows by (23) that

a0 -
a(T) = Z C,,..lTn_l ‘+‘ E c_"_lT_”_l
n=0

n=1

or

| (24)

o0
Y ol

n=-w

a(T) =

where ¢, is the nth coefficient of the expansion of a(4) in a
Laurant series

Y A"

n=-=ao

a(l) =

valid in an annulus (I/\/;) -8 < | < (l/\/;) + g. It
then follows by (24) that
00 = ¥ ae (25)

> that

gn(x) = a(T)e "~, n=12-"-, (26)

By the Lemma, the set of functions {g,(x)} is complete in
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L,* if and only if the range of the operator a(T) is dense in
L,*. Now by the spectral mapping theorem [5], the spec-
trum o(a(T)) of a(T) is given by

o(a(T)) = a(a(T))
so that

o(a(T)) = {a(A); Leo(T)} < {a(l); A€ C,}. (27)

Since by assumption a(2) does not vanish for any 1 e C,
we have that 0 ¢ g(a(T)). Consequently, a(T) has a bounded
inverse and hence the range of a(T) is dense in L,*.

Corollary: Let a(l) € o not vanish for AeC,. If g =
a(T)e™™, then the sets of functions {g(nx)}2, and
{g(x/m)}, are complete in L,"*.

As an example to Theorem 3, we note that any series

a®

Yy at

k=~

a(h) =

converging in an annulus o <. |A] < B such that 0 < a <
(l/\/;) < B < oo generates a function g € & given by

)= ¥ ae™

k=—o0

Moreover, if the Fourier series

@) = 3 (e

does not vanish for 0 < x < 2n then the set of functions
{9.(x) = g(u,x)} with {u,} satisfying (22) is complete in
L,*. Note that g(x) is also in L,* since a(4) converges
uniformly and ‘absolutely for A e C,. Hence if the a, are
nonnegative, g(x) can be normalized to become a prob-
ability density function.

(28)

III. APPLICATIONS TO RANDOM SAMPLING

Let x(t) be a real second-order mean-square-continuous
weakly stationary stochastic process with zero mean and
spectral distribution S(4). The process x(¢) is sampled at
times {t,} where {,} is a stationary point process inde-
pendent of x(r). It is required to perfectly reconstruct S(4)
from the correlation sequence {c(n)} of the discrete-param-
eter weakly stationary process {x(z,)}, i.e., from

c(n) _= E[x(’m+n)x(tm)]s n = O’i'ly' t Yy

where the expectation is taken over both x(¢) and the point
process {t,}. It is assumed that the point process {t,} has a
finite average number of points # per unit time and that the
distribution function F,(r) of ¢,,, — t, does not depend
on m. A detailed discussion of the problem can be found in
[7] and [8]. We note here that by taking expectations in

(29)

(29) first with respect to x(¢) and then with respect to {t,} . -

we obtain

o(*+n) = fw C(7) dF (1), n=12--,

o

where C(7) is the covariance function of x(t). Suppose now

that F,(t) is absolutely continuous with corresponding -

(30)-
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MASRY ! EXTENSION OF SZASZ'S THEOREM

density function f,(f)e L,* n L,* and suppose that

/f' e L,. Then (30) becomes
i)
«tn = [ conmdn  n=12: 0D
1]
It then follows by (31) that if &, denotes the family of ab-
solutely continuous spectral distributions S(1) with corre-
sponding spectral density s(A)e L, n L,, the covariance
function C(t) can be uniquely recovered from {c(n)} if and
only if the set of functions {f,(#)}, is complete in L,*.
In such a case we say that the sampling sequence {1,} is
alias-free relative to &,.

Various classes of alias-free point processes were con-
structed in [8]. We limit ourselves in this paper to the class
of simply additive random sampling, which appears to be
the natural counterpart to periodic sampling. Let

h =ty + 9 =01, -(32)

where y is a fixed random variable with density function
S (%) over [0,00) and a finite mean 1/B. It is then apparent
that the sampling instants {r,} are equally spaced with
probability one. From (32) we conclude that the probability
density function of t,,,, — t, is independent of m and is
given by

SO = AmfUn), n=12,- (33)

We thus have that simply additive random sampling is
al  Tee relative to &, if and only if the set of density
fuucaons {f,(t)} given by (33) is complete in L,*.

In [8] we concluded by Szasz’s theorem that simply
~ additive random sampling with exponential distribution is
alias-free relative to the family %, of spectral distributions.
As a consequence of Theorems 2 and 3 of Section II, we
can generalize this result. Let #, < &# be the class of
density functions of the form

o) = 3 ae

=-cw
such that the Fourier series

al(elx) = . i

=—0

1I¢x

(Iry

does not vanish for 0 < x < 2n. Members of #, were
shown to exist in abundance. Note that the assumption on
a,(e™) can be dropped if g(x) is given by a finite series (cf.
Theorem 2). We have by Theorem 3 the following result.

Theorem 4: Simply additive random sampling generated
by a random variable y with probability density fe #, is
alias-free relative to the family &, of spectral distributions.

The special Erlang density (17) is an example for which
Theorem 4 is applicable.

187

Remark : The reconstruction of C(z) € L, from {c(n)} is
very simple when {#,} is alias free. We orthonormalize the
complete set of functions {£,(t)},;%  to obtain {¢,(1)};% , i

o) = ¥ d,

where the coefficients {d, ,} are obtained by the Gram-
Schmidt procedure. We then have

CE = 5, a0

1,2,---, 34

AN,  n=

(35)
in L,, where
a(n) = kZl dk,nc(k)a

1,2, (36)

=
]

IV. APPENDIX
PROOF OF THE LEMMA

a) Suppose {g,(¢)} is complete in H., Then every f€ H can
be approximated by a linear combination of the g, such that

Z Ck, NGk

<e (A1)

Define

h = Sk vk (A2)

,lsz

We then have 4h € #(A) and

If— 4h] < e (A3)
Hence %#(A) is dense in H.
b) Suppose %(A) is dense in H. Then If fe H and
(f,Ah) =0, VYheH (Ad)
we have f = 0 a.e. Since {/,} spans H, we have by (A4)
(f,Af,) = 0, Vintegern = f = Oa.e.
or
(f,gn) = 0, Yinteger n = f = 0 a.e. (A5)

and hence {g,)} is complete in H.
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The optimal addition of abscissas to Gaussian quadrature formulae for the numerical evaluation
of the Bromwich integral is discussed and Gaussian quadraturée rules with a preassigned abscissa
at infinity are studied. Techniques are given for the efficient calculation of theabscissas of the uncon-
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fntroduction

et F (p) be a given Laplace transform and f{(¢) the corres-
oonfilng original function. A very simple numerical method for
the l'nversion of the Laplace transform is the numerical inte-
bration of the Bromwich inversion formula

J@) =5~ fe”‘ F(p) dp ®

vhere L is defined as the Ime {p: Re(p) = ¢} in the complex
lane, and where ¢ is chosen so that L lies to the right of all
fingularities of F(p), but is otherwise arbitrary.

Substituting

- pt=u

jnd

‘ F/t) =u"*G@)
there s is a parameter, (1) yields
MOES

e u™* G(u) du 2

2]t

vhere L' is the line {u: Re(u) = fc}.
We consider now an approximate formula for the evaluation
{f the integrals in (2)

1

27:1 €

N
e u™ G(u) du =~ Z AL Gul)

3

Viessens (1969a) has chosen the abscissas u®) as equidistant
I numbers. The weights A are then determined such that
ormula (3) is exact whenever G(u) is an arbxtrary polynomial
!, of degree < N — 1, Formula (3) is then an integration
ormula of interpolatory type.
Krylov and Skoblya (1961 and 1969), Luke (1969), Piessens
1969b) and Salzer (1955 and 1961) have given formulas for the
thscissas u(® and the welghts A® such that (3) is exact when-
ver G(u) is a polynomial in »™!, of degree < 2N — 1, in
ther words, such that (3) has a precision degree 2N — 1. In
his sense, (3) is a N-point Gaussian quadrature formula, and
fie shall refer to it by the symbol Gy.
The abscissas of the Gy-formula are the zeros of the poly-
omial in p~1

Pyp™') = (=Y ;Fo(~N,N + s — 1;p77) @
he weights are given by
4(5)___. __1N1 (N ) 2N+S‘—'2 5
LD SR o A ] ©
here uy, = uf®.

Substltutmg (3) in (2), we obtain

IOlume 14 Number4

(6)

O E AP <“ZS)> I‘<“;(‘S))

The Gaussian formulas are nuch more accurate than the inter-
polating formulas, but they have several shortcomings. Firstly,
no convenient rule exists for determining at the outset the
order N such that the desired accuracy is obtained. The
practical procedure is then the use of a series of Gaussian
formulas with increasing order. If agreement occurs of two
successive approximations to within the desired accuracy, the
last computed value is retained as definitive result, This pro-
cedure has the well-known disadvantage of using different
values of the abscissas for different values of the order.

A second disadvantage is that, when N is large, the weights
are also large. Since this leads to considerable cancellation
errors, the use of a sequence of Gy-formulas with increasing N
is not recommendable.

Piessens (1969¢) has proposed the use of the Gaussian quad-
rature formulas in combination with new integration formulas
obtained by optimal addition of abscissas to Gaussian quad-
rature formulas. He has given the formulas only for the case
s = 1. Here, in Section 1, we shall generalise his results for
arbitrary s.

Another disadvantage of formula (6) is that for each value of
t, the Laplace transform F(p) must be calculated N times. In
Section 2, we shall consider Gaussian' quadrature formulas
with a preassigned abscissa at infinity. The inversion-formula
is then

™

., IV are the abscissas and

N
S = WELET + 7 T WO 0 FO

where v® and W, k =0,1, 2, ..
weights, and

L= lim p* F(p) ®
o

Formula (7) has a precision degree 2/, and the computation
time for the evaluation of (7) is approximately the same as for
the evaluation of Gy-formula, which has a precision degree
2N - 1.

1. Optimal addition of abscissas to the Gaussian quadratuxe
formula

- The purpose of this Section is the calculation of abscissas and

weights of the formula

1 N M
— | e u Gy du ~ ¥ BO G + 3 CO G(wiY)

. ©)
2 k=1 k=1
]

where {9, k =1, 2, ..., N are the abscissas of the Gy-rule.
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's, we know that, if there exists a polynomial Q,, (p™")
M, with the property

(ep p~* PN,s(p—l) QM,S(P_l) p"dp=20
L

(10)

s 1, ..., M — 1, we can determine the weights B(® and
such that the precision degree of (9) is N + 2M — 1, if
abscissas w® are the zeros of Qy (p~"). This degree of

;. .Jision is maxnmal To find the polynomial @, (p~%), we
alculate in the first place the moments

1
My, =-—|e*p Py p~Dp'd 11
N 2W.fep vs(p" ) pT"dp 1n
J,

t is obvious that
My,=0 forr=0,1,2,..

“urther, we have

SN -1

(N + K)!

W
=1 I'(2N + k + s) k!

(12)

MN,N+k =
ork=0,1,2,.
To demonstrate (12), we note that
MN,r = gDr(l)
vhere
B,(t) = £~ {p~C*) Py (p™ )}
vhere %~ denotes the inverse Laplace transform.
From
a—-1
’p—l —ap -1 =(—1 N t_____
{p N,S(P )} ( ) I—v(a)

'here a is a positive real number, we obtain
GO

N T PO+ s)

* ~tituting the relation

(=N, N+s—1;r+s;1) =

Fi(—N,N+s—1;a;t)

(=N, N+s—1;r+s;1) (13)

I'(r+s)I'(r+ 1)
I'tr+s+ N)I'(r+1—N)
1 (13), we have immediately the required formula (12).
Further, let us set

(0™ = p ™M+ ay_yp

ubstituting (14) in (10), we see that

(i) If M < Nj2, the condition (10) is satisfied for an arbi-
trary polynomial Q, (p~'). Since the corresponding
weights are then zero, this case is not to consider.

(i) If N/2 < M < N, the polynomial O, (p~") which
satisfies (10) does not exist.

iif) If M = N + 1, the required polynomial @, (p~?) exists
and is unique.

Te restrict ourselves to case (iii), which is the most important

ir practical applications.

Che coefficients ay, ay_;, .

~-M+1
+

c+apTt+a, (149

., 4, are calculated recursively

ao = — Mynes
N =
My
_ o Mynserr + Myyeidn + o+ My s 10y-r41
r—5 —
¥ My n

(15)
rk=12...,N.

Jsing (12) the relations (15) become

N+ 1
aN = —_— ——
2N + s
ayx = —[Eyps1 + Eypay + ...+ Ey g 0y pi4]
rk=12,... N, where

B R YT
CN+9)@N +s5+1D...ONFTs+i=Dil

if we 1
(16) ‘sccura

. We c:
The required additional abscissas w{® of the new quadrature
formula (9) are the roots of
On+1, HH=0
There is a certain regularity in the distribution of the zeros of ' in j“l%
Oy 41,0 With respect to the zeros of Py .. This regulauty is- T ble 2
helpful forthe determination of wi® with the aid of an 1terat10n , re due
formula. For s = 1, the position of the abscissas u{? and wf® ~maller
is shown graphically by Piessens (1969c). ’
The formulae for the weights are ‘
. Table 2
o - 1 7 e
2nj Py, (ug ") On+ 1,5k ) Lt 1
1
PNs(p )Q’V+l,s(p ) ——
pt—u;
)
fork=12,..., N, and :
CP® = - ' = ig
2nj Py e Y Oy 1, (Wi ) 60
P S p 5 ! 8'0 ’
N,.( 1)QN+1,1(p )dp (18) 10:0 p

P W 12
fork =1,2,..., N+ 1, and where w, = w{ and u, = uf9, 14.0
In (17) and (18) Py, and Qy,, . are the derivatives with 160 -
respect to 1/p. 180 -
Using the equality
(19) 2. Gauss

, N
Py (uiY) = —

e 2N + s -2 at infinit
and applying the orthogonality property of the polynomials We cons
Py (p™"), (17) becomes .

—DY(N —DI@PN +s5s-—-2 el
( ) (2 ) ( — )—1 +A£S) (20) 27Cj
TN + s)uy Py_q (g ) Onaa, s ) ‘
where A{® is the corresponding weight of the Gy-formila, vhere
given by (5).
In the same way, we obtain

i Py (5 ")

BY =

CP = (DY N! (1) Wehtrg t
s — such tha
I'N + 5) Py (Wi ") Oyt 1,600 ) A resull

For a table of abscissas and weights of this quadrature formula, assigned |
for the case s = 1/2, see Piessens (1970).

In order to compare the weights of the Gy-formula and of the
formula with optimally added abscissas, we give in Table 1 the
largest modulus of the weights for both formulas (s = 1).

the zeros
has the p

Table 1 Comparison of the welghts of both quadrature formulae

—

=
It 1S evic

(2N + 1)-POINT FORMULA
WITH OPTIMALLY ADDED .
or

N GAUSSIAN FORMULA Gy

ABSCISSAS
‘ i The absci
PRECISION ~ MAX|WEIGHT| PRECISION  MAX|WEIGHT|
DEGREE DEGREE ‘
—— The gener
6 11 1:2 x 10% 19 9:4 x 10t | 1
8 15 13 x 108 25 12 x 100 @ W = 5
100 19 15 x 104 31 1-8 x 10* 7
12 23 149 x 105  her
16 31 19 x 107 ) ©

) ?‘: = l/vl(‘s)
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il
_quadratur

r off . s p :
glguf:i (;fand with the new 17-point formula. Results are given in

an iteratioy
) and w

!ln this example we illustrate the difference in loss of significance,
if we use the Gy~formula or the new formula with the same

5 " (I6sccuracy.

We carry out the inversion of

F D) — ——m————
(») T
in single precision on the 1BM 360/44, with the G ,formula

i
%

Table 2. In both cases, for small values of ¢ (1 < 12) the errors

are due to loss of significant figures, but they are considerably

smaller in the second case.

Table 2 Numerical results for the example 1

{ EXACT ORIGINAL ERRORS = ,EXACT VALUE - APPROXI-

» FUNCTION Jo(f) ~ MATE VALUE|
l,s(p )d
=1 P GAUSSIAN 17-POINT FORMULA
) FORMULA G 44 WITH OPTIMALLY
ADDED ABSCISSAS
2:0 0-2239 4-6 x 10-3 12 x 104
40 —0-3971 19 x 103 7-0 x 10~5
6-0 0-1506 56 x 10-¢ 1-1 x 104
| 80 01717 2:5 x 1073 2:5 x 10-*
dp - (18)10:0 —0-2459 36 x 10-3 51 x 10-5
120 0-0477 4.0 x 10-5 2:5 x 10-¢
wo=ud 40 01711 1-0 x 102 15 x 10~
itives withji6-0  —0-1749 1-8 x 10— 9:0 x 10-¢
' 80 —0-0134 66 x 102 9-3 x 103
(19)it. Gaussian quadrature formulae with a preassigned abscissa

Jlynomials
(
F AR (20

y-formula

@0

> formuld, besioned abscissas is that the abscissas ¥, k = 1,2,

ot infinity

We consider now the quadrature formula
— TTGu) du ~ W L* + )_: W GO (22)
) 27rj
Jjwhere
= lim G(u)

We try to determine the abscissas v{) and the weights W (9,
buch that the precision degree of (22) is 2N,

A result of the theory of Gaussian quadrature rules with pre-
., N, are

the zeros of a polynomial Qy (p~1) in p~*, of degree N, which

ind of the
able 1 theﬂhas the prop;rty
= 1). . ’
) ; Jeﬂp PO T Ap =0 (23)
: formulae | fol r=0,1,2, ..  N—1
it is evident that
RMULA  |F » »
DDED i Onsp77) = Pyes1(p™) (24)
or
; Ono(p™) = (=", F(=N, N + 55077 (25)
WEIGHT, The abscissas of (22) are thus
: o =uftD k=1,2,. (26)
The general formula for the weights is
¢ 10 : -1 ~1
- 103 Wk(s) — ,~1_, epp-s p QN s(p ) d
- 104 | 2nj ) (0™ — 40 [On,5(a0) + ax Ow,i(90]
) @7)

here

N 17k~ /v, k=1,2,..., N

Journal
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i

Setting &k = 0 in (27), we obtain

1 s Onsp™h)
W(s) — __'Jiep 5 ZN,§ d 28
T 0@ o
or
1 (-D¥N
W) = — ,F{ (=N, N + s;5;1) =—2"2" (29
()2 1 ( + 5585 1) I'G + M) (29)
Fork =1,2,..., N, we obtain
1 P_1 On (P_I)
W = | e — Ak 30
Y J P T 04 0@ (30)
or
I/Vk(s) — u,(‘s+1) AI(‘s+1) (31)

Using the tables given by Skoblya (1964), Piessens (1969b) or
Krylov and Skoblya (1969) or using the method described
in Section 3, the abscissas ¥{® and the weights W{ can be
calculated easily.

Numerical example 2
In Table 3. the results are given of the inversion of
F(p) = (p* + 1)7*
using the formulae (6) and (7) with s = 1, N = 4. The com-
putation work for both formulae is approximately the same.

Table 3 Numerical results for the example 2

t EXACT ORIGINAL ERRORS= |[EXACT VALUE — APPROXI-
FUNCTION Ji(f)  MATE VALUE|
GAUSSIAN FORMULA WITH
FORMULA G, ABSCISSA AT
INFINITY
1-0 0-765197687 091 x 10-7 0-81 x 10-®
20 0-223890779 023 x 10-* 0-44 x 10-%
30 —0-260051955 093 x 103 044 x 104
40  —0-397149810  0-30 x 10-2 0-10 x 10-2
50  —0177596771  0-18 x 10 092 x 102
60 0-150645257 079 x 10! 020 x 10!
7:0 0-300079271  0-85 x 10 017 x 10

3. Techniques for the calcolation of Gaussian abscissas for the
Bromwich integral

It is proved by Van Rossum (1969) that the zeros of Py ((p™%)
lie in the right half-plane of the complex plane, if s is an even
integer.

Some computations (Krylov and Skoblya (1969) and Piessens
(1969b)) confirm the assumption that this property holds also
for other values of s, but no proof is known.

If the order of the formula is odd, there is only one real
abscissa; if the order is even, there is no real abscissa. Only the
abscissas in the first quadrant of the complex plane and the
corresponding weights are calculated. The other abscissas and
weights are complex conjugated.

The abscissas u{> of the N-th order formula are the zeros of
the polynomial Py (p~1) given by formula (4). They can be
calculated by the Newton-Raphson iteration method or, even
more efliciently, by the iteration method of third order
W =u+ (=2 + s+ 2N) />

N, ) V, p N,s(u) 2
[N Py 1 w) | 2N? (TW)) ] 2

where
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and where u is an approximate value for the inverse of the
* zero of Py (p~!) and u* is the improved value.

The polynomial values are calculated using the recurrence

relation

Py (x) = (ayx + by) Py_1,{(x) + ey Py-24(x) (33)
for N > 2, where
, a=(2N+s——3)(2N+s—2)
L N (N +s—2)
_ @N+s5s=3)(2 -3
m‘%N+s~@@N+s~® (34
oo = QN +s—-2)(N-—-1)
N INF¥s—2@2N +s—4)
and
Py (x) =1
P (x)=sx—1 (35)

However, for small values of s, this recurrence formula gives
large roundoff errors. The roundoft errors are considerably
smaller if the recurrence formula is started at N = 3, thus
using also the explicit expression

Pr) =(+DE+2x*-2s+Dx+1 (36
The derivative, which is required for the Newton-Raphson
method, can easily be calculated using the expression

d - - N _
Py (p H = —<NP s _——.i) Py (p H -

dp 2N + s
N -
L S - . 3
) N 1,s(P ) (7)
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u$? = 4AN/3 + s — 1:5 for N odd (38)
or ‘
u§ = (4Nf3 + s — 1:5) + j(1'6 + 0-07s) for Neven  (39) °
and further
ufy = @ + 067 N)exp (jg) — 06TN  (40)
fork=1,2,..., N — 1, where
¢p = 0:034(2N + 30)/(N — 1) 1) -
fork=12,...,N— 2, and
Py-1=15¢y> (42)

The formulae (36)-(41) were found experimentally and are
based on a certain regularity in the distribution of the abscissas
in the complex plane (see Piessens, 1970). Indeed, for fixed
N and s, the zeros lie very nearly on a circle with centre on the
negative real axis. The radius of this circle is approximately an
increasing linear function of N and s. For fixed N and s, the
angular distance between two consecutive zeros is nearly
constant.

The starting values (38)-(40) are tested for s = 0-1(0:1)4:0 and
N = 4(1)12, using the Newton-Raphson method, and for
s = 01(0-1)6:0 and N == 8(1)12, using the iteration formula
(32). Each abscissa was found to at least 10 accurate significant
figures, in at most six steps of the Newton-Raphson method
and in at most four steps of the iteration method based on (32).
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Book review

Marhematical Model Building in Economics and Industry (Second
Series), by M. G. Kendall (editor), 1970; 277 pages. (Charles
Griffin & Co., £3-75)

This is the second volume of essays by various leading authorities
on topics connected with Econometric model building. All the
papers are written from the practical point of view by people active
in the fields of actual applications, so that their papers tend to be
factual rather than theoretical. These essays are all of a very high
standard, as was volume one, but special mention might be made of
Professor Ball’s two papers which open and close the book. They
by give clear illustrative examples of the ideas under discussion
aniu outlines of several of the most important techniques in this field.

Other interesting papers are one by Professor Pyatt, on various
ways of estimating brand loyalties among the consumers, and by Dr,

436

Hughes, on a computable model for assessment of the effects of
advertising media. All the papers have actual numerical examples in
their text, and lists of further references, at the end. Another paper
surveying a wide field of application, is that by Dr. Orcutt on Micro-
analytic models, and the various methods used for solving them. He
gives a very good outline of the whole field and discusses the wide
range of computing methods used in this field, Again a valuable list
of references is given.

Mr. Duffett and Mr. Chadwick give two papers on manpower
planning and staff control which again emphasise the practical
approach and outline the actual computing techniques which can &
used: This book can be highly recommended to every student of
modern econometrics and to those who have to apply modert
computers in this field.

L. J. SLATER (Cambridge)
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An Efficient Method of Numerical Inversion
of Laplace Transforms!

By
0. Wing, New York
( Received April 26, 1967)

Summary. The CooLey-Tukry algorithm for the calculation of complex FOURIER
Series is applied to the numerieal inversion of Laplace Transforms in which the original
function is expanded into Laguerre polynomials,

Zusammenfassung, Der Coorey-Tukry-Algorithmus zur Berechnung komplexer
ForrieErscher Reihen wird hier zur numerischen Umkehr der Laplace-Transformation
verwendet, wobei die urspringliche Funktion nach Laguerre-Polynomen entwickelt
wird,

The Coorey-Tukey algorithm [1] for the machine calculation of
complex FOURIER series can be applied advantageously to the numerical
inversion of Laplace Transforms. The presently known methods [2—7]
of inverting the Laplace Transforms numerically all require N2 operations,
where & is the number of sample points of the transform and an operation
is defined as one which consists of one complex multiplication followed by
one complex addition. The new method, which is described below, requires
N log N operations. The savings in computer time is clearly substantial.
The new method is a modification of that reported by WrEks [6] and it
makes use of the Coorey-Tuxrry algorithm in the evaluation of the
coefficients of expansion of the original funection.

Let f (t) be the original function, defined over (0, o). Let F (s) be its
Laplace transform. f(f) and F (s) are related by

F )= [ e dt (1)
~and
- e+jm
fO) = g5r f F(s)etds, { >0 2)
e—jw

where ¢ is a suitable constant. The problem is to find [ (¢) at selected values

of {, given F (s) at selected values of s.
—————

! This work was done while the author was a Ford Foundation Engineering
Resident at TBM Research Center, Yorktown Heights, New York, 1965—19G6.
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Let f (t) be expanded into a series of orthogonal functions:

FO) =Y a,e5T L (7). 0< L < (3)
n=20

where L, (x) are Laguerre polynomials of z, and T is & parameter which

can be used to control the accuracy of the results. Substitution of (3) into

(1) yields
A

F(s) = T T o
T 112.—.:0a (S —c 4 i‘l‘lT)n+1 N

Let F (s) be approximated by the first N terms of (4). The coefficients «,
can be found as follows. Rewrite (4):

1 ¥ .o )—]:{F n
[s =+ Fr)F@sYal- T (%)
n=0 s—o¢+ EYi
Tet (5) be evaluated at s =¢ +jo. We have
. 1
X P
, 1 . 2’ .
(.7(’)"'(_ QT}F(C+.7('));2an T (6)
: w—o \JOt o
Let ¢ = [ ] L L] so that
et ¢ = (yco - (j(}) —l— QTJ so tha
= (?f%ﬁJ oot (0/2) (7)
Eq. (6) becomes '
- AY .
jHﬂWHWHq%Pm;Z%wG (8)
i n=20

where F (0) is F (¢ + j o) with @ replaced by (71?) cot (6/2). The right
side of (8) is a complex FOURIER geries with «, real. The CooLEY-TUKEY
d to find a,. As shown in [1], the number of

operations for this purpose is N log N.
The behavior of F () at 0 =20 corresponds to the behavior of
F(c+jw)ato= w Tt is easy to show that the left side of (8) at 0 =0

can be evaluated from

Fd)y + F(—4) | F)—F (=4
SRS s H ¥ v R )

where 4 is a small quantity. In this way F (¢ + j o) need not be evaluated

at w = 0.

Int
corres)c
paramet
of (8) is

A co:
A listing

[1] Coor:
of Co
(2] Paro:
of Ap
(3] Laxc:
[4] SHIRT
Salzer
(1961)
[5] BELL
Proce:
{6] WEEK
[7] CHEex.
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¢ Q)
C JOR
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An Efficient Method of Numerical Inversion . 1

In the evaluation of (8), equally spaced values of 0 are chosen. The
corresponding values of w are determined by relation (7). Note that the
parameter T controls the spacing of the folues of w at which the left side
of (8) is to be evaluated.

A computer program for the new method has been written in I‘ortran 1v.
A listing of the program is given in the Appendix.
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Appendix

NUMERICAL INVERSION OF LAPLACE TRANSFORMS ~ — - —— OMAR
WING THE TRANSFORM IS DEFINED BY THE USER USING
FORTRAN FUNCTION SUBPROGRAM. THE TFOLLOWING IS AN
EXAMPLE.

LT‘T F (S) BE THE TRANSFORM. LET FORG (TIME) BE ITS ORIGINAL

UNCTION.

LET F(S) = 1/(S *S + 1) BE THE TRANSFORM WHOSE INVERSE IS
DESIRED.

THE FUNCTION SUBPROGRAM READS AS FOLLOWS.
§ IBFTC FUNCF
COMPLEX FUNCTION F
COMPLEX P
P = CMPLX (C, W)
F=1.0(P*P -+ L 0)
RETURN
END
NOTE THAT THE FUNCTION NAME IS F.
THERE ARE FIVE PARAMETERS TO BE SET.
(1) M = AN INTEGER EQUAL TO LOG (N), BASE 2, WHERE N IS THE
NUMBER OF SAMPLE POINTS OF THE TRANSFORM. NOT TO
EXCEED 512.
(2) C = ABSCISSA OF LINE ALONG WHICH INVERSE TRANSFORM TS
TO BE EVALUATED. IT IS A REAL CONSTANT GREATER THAN THE
REAL PART OF THE RIGHTMOST POLE OF THE TRANSFORM.
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INTRODUCTION
Given
as"tta, "t a, Al

l:",(s): S by 4t b,  BE) .

(

where F(s)=2[ f(t)] is the unilateral Laplace transform of f(f), the
initial values of f(¢) and its first (n—1) derivatives can be expressed as

{1}-f6]
J©) = A,
and
SED0) = (1) A, k=23-,n 2

Specifically, the initial values are evaluated at t=0+. A, A,, Ay, oo, A,
are a set of determinants in terms of a; and b; possessing the recursive rela-

tions [5]

Ay =a,
and
k—1
Ak = Z (—l)i—“‘biAk*i + (_l)k_lan—k—l- 1 k= 2a 3) PR (3)
i=1

Intherecent letters [7}-[8), the initial value theorem (IVT) for a bilateral
Laplace transform (BLT) is shown to be

lim sFy(s) = f(0+) — £(0-), @
where F"(s)=,Z’,,[f(})]=_[°2mf(t)e“'dt. When Fy(s) is in the form of a
rational function as in (1), the IVT for the BLT can be extended as
SED04) = SOTV0-) = (DA, k=23m ()
(’ Proor

Rearrange sF(s) as

—As" a,, —aby)st T A,
SFy(s) = Ay + — — 5 : £ (o)
By the differentiation rule {1},
1]
S"Fys) = £y I:ﬁdt"_ . )]

Recognizing that f(f) has an impulse of strength A, at t=0, apply (4)
to the remainder [9] (a proper rational fraction) in (6) to get

FOO+) — fO0-) = [690+) — §MO0-)]A, - A, (8)
The BLT for f*2(¢) can be expressed as
S2Fy(s) = Ags — A,

Ay 4 [a,-3 — @by ~ (@ y — @b )by} 7% 4+ - + Agh,  (9)
+ B(s) .

As before,

JOO+) = [O0~) = [82(0+) — 67(0-)]A,

— [890+) — 890-)]A, + A, (10)
A generalization of the above results in

j-1
L 904 - 90-) = Y [89790+4) - 89700 (~ A,

i=0

(=W J=23n—1 (1)

ver ST 3
PROCEEDINGS OF THE IEEE, MARCH 1969

However, from the theory of distributions [10] it follows that the delta
function and all its derivatives are identically zero for ¢#0, including the
evaluations at t=0+ and t=0-. Equation (11), therefore, simplifies to

FEDO+) — fEBO—) = (=1 1A, Q.ED.

K. R.Rao

Dept. of Elec. Engrg.
University of Texas
Arlington, Tex. 76010
N. AaMED

Dept. of Elec, Engrg.
Kansas State University
Manhattan, Kan.
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Approximate Calculation of Cumulative Probability
from a Moment-Generating Function

Abstract— A numerical method is presented for calculating the camula~
tive distribution of a positive random variable from its moment-generating
function. It involves an expansion of the rectangular function in Laguerre
functions. As examples, the cumulative exponential and cumulative Poisson
probability functions are approximated.

A common problem is the calculation of the cumulative probability
distribution

0<x< oo, ()

ox) = J p(y)dy,

[}

of a positive random variable y of which one knows only the moment-
generating function (MGF),

©

uls) = E(e”) = J. e”p(y) dy, @

0

where p(y) is the probability density function (PDF) of y.

@

In signal detection theory, for instance, y is related to the likelihood .

ratio, and 1 — Q(x) is the false-alarm or detection probability for a decision
level x. Often the MGF can be worked out rather easily, but it is impossible
to determine p(y) from p(s) analytically by, for instance, taking the inverse
Laplace trapsform of u(—s) or the inverse Fourier transform of u(iw).

A technique for calculating Q(x) numerically can be derived by writing
(1) as ’

Ox) = j R(y/x)p(y) dy, &)}
1)

where R(¢) is the rectangular function

Manuscript received December 2, 1968. Thiis research was supported by NASA Grant
05-009-079.
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TABLE 1
COEFFICIENTS OF LAGUERRE EXPANSION
TABLE I
m 4] 1 2 3 4 5 6 7 8
a, | 2 -2 2 =2 19999  —1.9992 19956  —1.9800 1.9261 EXPONENTIAL DISTRIBUTION
m 9 10’ 11 12 13 14 x 0.1 0.3 0.5 1.0 1.5 2.0
a, |- ~L7766 14460 —0.87710 . 0.15695  0.41416 —0.49039 Error (%) 0.743  0.561 0422  —0.351 —0336 —0.285
m 15 16 17 18 19 x 3.0 4.0 5.0 6.0 80 100
a, 0071648 033527 —0.22910 —0.I8569  0.24351 Error (%) -0.170 —-0.0878 —0.0408 ~—0.0174 -0.00239 —0.000224
TABLE Il
PoissoN DISTRIBUTION
x 6 8 10 12 14 16
o 0.00763 0.0374 0.1185 0.2676 0.4656 0.6641
Error (%) —59.6 —~17.6 ~2.82 —0.133 0.00493 0.135
x 18 20 22 24 26 28 30
Q ‘ 0.8195 0.9170 0.9673 0.9888 0.99669 0.99914 0.99980
Error (%) 0.241 0.735 1.199 1.379 —0.415 —20.2 72.2
Rit)y=1, 0<t < 1; R(t) =0, t > 1. (4) and the Poisson,
One expands R(1) in a series of Laguerre functions,’ 2
pands R(1) g ’ py) = e Y 8(y — myn! (14)
o n=0 '
R(f) = e™ 12 a,L,,(kt 5 .
@ ’ r:x;o L) ©) whose MGF is
where? uls) = exp [AUe* — )] (15)
1 First it was necessary to determine the best value of the scale parameter
ay = k| e ML (kt) dt = 207 Lu_ (k) = Ly(K)] — G-y (6) ) ) . aep
n o m g k when M terms are used. This was done by hunting the value of k that
yielded the minimum mean-square error
The series in (5) is to be truncated at a finite number M of terms. Mot
The cumulative distribution is Z a 16y
=0 .
(5]
2(x) = ¥ a,C,(x), (7)  in fitting the truncated version of (5) to R(z). For M =20, we found that
m=0 k=43 gives a mean-square error § =0.01567. The coeflicients a,, are listed
where the coefficients in Table I ) o
For the exponential PDF we list in Table 1I the percentage error in
@ Q(x) for 0< Q(x)<1/2 and the percentage error in 1 — @(x}for 1/2 < Q(x)<1.
Clx) = J e OPEL, (ky/x)p(y) dy (8)  The relative error decreases with increasing x.
0

can be expressed in terms of u(—k/2x) and its derivatives. In particular,

Colx) = p(—k/2x), ]
and by using the formula®
L. =(~ 1)"’t’"/m' — Z (*-1)'< ) m—rl)- (10)

a recurrence relation for C,,(x) is easily obtained,

- Z (—1)< ) Co-rx), (11)

Co(x) = 2"(m '-)"’{s — (s )]}
d s=—ki2x r=1
which facilitates numerical computation.
The method was tried out with two very different distributions, the
exponential,

:

pM=e? y>0; p(y)=0 y<0, (12)

whose MGF is

us) =(s—1)7"% Rls < 1, (13)

' J. W. Head and W. P. Wilson, *Laguerre functions: Tables and properties,” Proc.
1EE (London), vol. 103C, pp. 428-436, June 1956.

2 Ibid., eq. (38), p. 434,

3 Ibid., eq. (67), p. 435,

For the Poisson distribution we evaluated Q(x) by the approximation

" method for values of x halfway between the integers and compared the

results with the Poisson distribution summed from y=0 to the greatest
integer in x. Table II1 lists the percentage errors in Q(x) for 0<Q(x)<1/2
and in 1 —Q(x) for 1/2<Q(x)<1. Here A=15.

The accuracy is greatest near the mean and poorest in the tails of the
Poisson distribution, and this can be expected in most applications. There
exist other approximation methods best suited for the tails of a distribu-
tion. For large x, the inverse Laplace transform of u(-s) can be approxi-
mated by the method of steepest descents.* For x near 0, an approximation
to Q(x) can be obtained from the asymptotic behavior’ of u(—s) for
large 5. The method described here fills the gap.

An alternative method is the Edgeworth series, but it has an asymptotic
character that restricts its usefulness.® There is an optimum number of
terms in the Edgeworth series, and if more are used, the accuracy decreases
markedly, Numerical Fourier transformation of u(iw), followed by numer-
ical integration of the PDF p(y), might be used in some cases, but would
hardly be suitable for a discrete random variable like the Poisson-dis-
tributed one of our second example.

CarL W. HELSTROM

Dept. of Appl. Electrophys.
University of California

La Jolla, Calif. 92037

4 G. Doetsch, Handbuch der Laplace-Transformation, vol. 2. Basel and Stuttgart:
Birkhiuser Verlag, 1955, ch. 3, §5, pp. 83-88.

5 Ibid., ch. 3, §1, pp. 45-50, and §7, pp. 92-94.

® T, C. Fry, Probability and lts Engincering Uses, 2nd ed. Princeton, N. J.: Van Nostrand,
1965, p. 262.
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NUMERICAL INVERSION OF THE LAPLACE TRANSFORM USING

GENERALISED LAGUERRE POLYNOMIALS

R. Piessens, Dr.-Ing., and WMaria Branders, M.A.

Indexing terms:

Abstract

4
gfwé@a
&Q’ 7

Laplace transforms, Transient response, Polynomials

The calculation of the transient response corresponding to a given frequency response is a problem of
numerical inversion of a Laplace transform. Two methods are presented: a very economical method, which _
is suitable only for a limited class of Laplace transforms, and a general method. FORTRAN programs for
both methods are described. The general method is compared with other general methods.

List of principal symbols
p = complex variable
t = independent time variable
f(¢) = original function
F(p) = Laplace transform of f(¢)
#—1 = inverse Laplace operator
I'(z) = gamma function
L@)(t) = generalised Laguerre polynomial of degree n
Si (¢) = sine integral
Ci (¢t) = cosine integral
J(t) = Bessel function of the first kind
I(¢) = modified Bessel function
f.f.t. = fast Fourier transform
D = differential operator

1 Introduction

The main difficulty in applying Laplace-transform
techniques is the determination of the original function f(¢)
from its transform

F(p) — J-O:_P’f(t)dt Y

In many cases, analytical methods fail and numerical methods
must be used. The best known numerical methods for the
inversion of the Laplace transform are based on the numerical
integration of the Bromwich integral'~1? or on the expansion
of the original function in a series of orthogonal functions,
particularly orthogonal exponential functions and Laguerre
polynomials, Orthogonal exponential functions are very often
used for the calculation of transient responses.’>2! Even
Bellman’s method?223 is, in fact, a special case of one of
these methods, as has been pointed out by Piessens.?%25 The
principal reason for the importance of orthogonal exponential
functions is that only real values of F(p) are required for
calculation of the coefficients of the series expansion of f(z).
However, the computation of f(#) from values of F(p) on the
real axis is numerically unstable.!8-26 Therefore, if a high
degree of accuracy is desired, the calculation must be carried
out in multiple precision, or methods must be used which
determine the original function from values of the transform
in the complex plane or from values of the derivatives of the
transform, if these can be easily calculated. For this reason,
Laguerre expansions are preferable to expansions in ortho-
gonal exponential functions. This has already been noted by
several authors,!3,18,21,27-41

In this paper, we shall consider an extension usmg
generalised Laguerre polynomials, as proposed by Luke,!3
and shall present new methods for the calculation of the
Laguerre coefficients of the original function.

Programs CP77 and 78, first received 9th November 1970 and in
revised form 14th June 1971 The program listings and accompanying
documentation are held in the IEE Computer-Program Library and
are available on appllcatlon and on payment of charges of £6:60
(CP77) and £6-30 (CP7

Dr. Piessens and Miss Branders are with the Applied Mathematics
BDx]wsnon, University of Leuven, Celestijnenlaan 200B, B 3030 Heverlee,

elgium

PROC. IEE, Vol. 118, No. 10, OCTOBER 1971

2 Description of the method
Assume that f(r) can be expanded in a series

f@) =19 kgo akLga)(t) @>-H . . . . @
where L{@(r) is the generalised Laguerre polynomial of
degree k

Lo = e’t aDk(e=ttk+a)y = }_‘, (—1)ym * +a) 3)
m=0 m/ m!

In eqn. 2, a is a free parameter, the choice of which will be

discussed below. For a = 0, eqn. 2 is an expansion in ordinary

Laguerre polynomials. Coefficients g, of the series expressed

by eqn. 2 are given by

% =T + a+ I)J “YOLEWdr . . . . (@)
or
k' m k + a m
%= .5 (e ) e troman
®)
or
ok k+a)l£F(p) ©
ak*l‘(k—l-a#—l)j:o k—j/ 0 dp et

Therefore, if the Laplace transform of f(¢) is known, coeffi-
cients gy, of the series expansion of eqn. 2 can be calculated
by means of eqn. 6. If eqn. 2 is truncated after N terms, an
approximation of the original function is obtained. Eqn. 6
is not suited to numerical calculations. There are other
methods for the calculation of a;. By termwise transformation
of eqn. 2, we obtain

© Ta+k+1)(p—1DF
F(p)=k§_=‘,oak X ST (7

If we consider

b=

)mF(liZ) L ®

o  Tk+a+1)
?S(Z):kgo k—_k' P L N )

so that

.eqn. 7 yields

__ 1 &
% =TU +a+)dzg

Eqns. 6 and 10 are theoretically equivalent, but eqn. 10 is
better suited to numerical calculation, as will be explained in
Sections 4 and 5.

The foregoing results can be generalised: if F(p) is the
Laplace transform of f(r), and if f(¢) can be expanded in a
series

- (10)

f(t)=e_”’t“k§0akL§f)(bt) A ¢ 5)
1517




$@59(z) = i Mkzk L. (12)

where
$@b,(z) = (

and thus the a,’s are given by eqn. 10 if ¢(z) is replaced by
@@ b:9)(z), Henceforth, we shall omit the superscripts a, b
and ¢, and shall write qﬁ(z) in all cases.

Parameters a, b and ¢ in egn. 11 are introduced in an attempt
to smooth out any irregularity in f(¢) and to accelerate the
convergence of eqn. 1. It is very important to choose a so
that #79f(¢) can be easily approximated by a polynomial.
Therefore parameter @ must be so determined that p#t1F(p)
is analytic, having no branch point at infinity, so that we
can write

p““F(p)=§ckp“k R ¢ 7))

The optimal value of @ is obtained if, in eqn. 14, ¢4 % 0.

" The advantage of using generalised Laguerre polynomials

thus becomes evident. Owing to the introduction of para-
meter @, a much larger class of Laplace transforms can be
efficiently inverted. However, an optimal value of ¢ does not
always exist. This will be demonstrated below by examples 5
and 6 in Section 6. The value of ¢ is determinative for the
asymptotic behaviour of the truncated series of eqn. 11 for
t—> 0, If possible, it is preferable to choose —c equal to
the real part of the dominating pole of F(p). The value of b
will be discussed in Section 5.

There are two problems: the numerical calculation of
coefficients a; and the evaluation of the truncated Laguerre
series. The numerical aspects of the second problem will be
considered in Section 3. For the calculation of coefficients ay,
we shall give two methods:

(i) some functions ¢(z) can be easily expanded in a power
series through algebraic operations. This will be discussed
in Section 4

(ii) for any Laplace transform, the derivatives in eqn. 10 can
be evaluated by contour integration in the complex plane.
This method is quite general, and will be discussed in
Section 5.

3 Evaluation of the truncated Laguerre series

There are two methods for the evaluation of the
truncated Laguerre series. If the number of terms of the
truncated series is determined at the outset, the summation
technique of Smith?? is very efficient. For generalised
Laguerre polynomials, the method is as follows: Let
BN+2 == BN+1 = 0, and

bt+] a
e (T 5 ()
(135
forr=N,N—1 , 0. Then
N
S aqL@®ty=B8y, . . . . . . . . (16
k=0

Usually, however, eqn. 11 is calculated with N -+ 1 and with

N + L terms (L ~ Nf4) to control the truncation error. In

this case, a direct summation of eqn. 11 is preferable. The

Laguerre polynomials are then calculated by the recurrence

relationship

LD =Q@n+a—1—0LL @) —(n—1+a)L@,0)
an

where n =1,2, ...

and L@(r) = 0 and LP(s) =1
1518

(-——~c) Ly

For some types of Laplace transforms, the power-
series expansion of the corresponding function ¢(z), given
by eqn. 8, is explicitly known, or can be easily obtained by
algebraic operations, e.g. by multiplication of known series
or, if F(p) is a rational function, by long division.

First, as a simple example, consider the Laplace transform

F(p)=p~Vlexp(—uwp~) . . . . . . (U8

in which u is an arbitrary positive real number. In conformity
with eqn. 14, we choose a = v. Eqn. 8 then gives

Mzy=exp(—u-+uz) . . . . . . . (19
Therefore, the original function is given by

Vo—HU < llk v,
f(t) =t k§0 ml;x)(f) e (20)

From eqn. 20, an interesting result can be obtained., Since
it is known that

L= p " exp (—up™ D} = (Hlu)21,{2+/ ()} (21)
the following important series expansion for the Besse
function of the first kind is obtained:

iy oM
T = e B R iy T D

In the same manner, we can derive

LY 4w)  (22)

1,(x) = e"(x[2) Z (=D L(x*{4u)

(23)

F(k+f+1)

Eqns. 22 and 23 are extensions of series expansions given by
Ainsworth and Liu.43

Many Laplace transforms can be likewise inverted. We
have written a computer program LAGRA (CP77) for the
inversion of some types of rational and irrational transforms;
namely

app™ + aleH] +...+a,_1p+a,
F = p¥ 24
(p) boP" + blpnﬁl +ooo+ bn—~1p + bn ( )
V(app™ + alpm*l +. .. ta,ap+a,)
F(p) = p* : . 25
(P) 2 bOPn + blpnﬁl I bn—lp + bn ( )
app” + alpm—l +.00+ An—1P + Am
F(p) = p* 26
(2 =» W (bop™ + by p* =1 + o+ by 1D+ boy) @)
F(P) — (aoP"’ + alpmﬁj + ..+ 1P + am) (27)

op" +op" Rl p 8

where w, g, and b, are arbitrary real numbers. It is supposed,
however, that F(p) is analytic for Re (p) > 1.

In the program, the optimal value of ¢ according to eqn. 14
is determined, the coefficients of the expression for ¢(z), given
by eqn. 8, are calculated, and finally coefficients a, are
calculated. For the computation of these coefficients, the
only operations necessary are long division of two poly-
nomials, root squaring of a series and raising a series to a
square, Once coeflicients a, are known, the truncated series
of eqn. 2 is evaluated using the recurrence formula given
by eqn. 17.

41 Examples

All the calculations of these examples were carried out
in single precision on an IBM 360/44 computer,

Example 1; Consider a rational Laplace transform. In the
case of simple poles, the best method for the inversion of
rational transforms is undoubtedly partial-fraction expan-
sion.** The determination of multiple poles, on the other
hand, is a very difficult task, and in such cases an appropriate
method such as that given above is particularly useful.

For the Laplace transform

D e o il i o A
P5 + 5p* + 10p3 + 10p% + 5p + 1
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F(p) (28)
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in which &, b and ¢ are free parameters, the coefficients a, in
eqn. 11 are also the coefficients in the power-series expansion

'tk +a+1 a2

$(@:9)(z) = kgo 7 (12)
where
qS(a,b,C)(z) - ( (———— — C) (13)

and thus the a,’s are given by eqn. 10 if gS(z) is replaced by
¢{a8:9(z). Henceforth, we shall omit the superscripts a, b
and ¢, and shall write qS(z) in all cases.

Parameters a, b and cineqn. 11 are introduced in an attempt
to smooth out any irregularity in f(¢) and to accelerate the
convergence of eqn. 11. It is very important to choose a so
that ¢ —2f(¢) can be easily approximated by a polynomial.
Therefore parameter @ must be so determined that p?+1F(p)
is analytic, having no branch point at infinity, so that we
can write

«©w
P*HIF(p) = kZO cpk (14)
The optimal value of 4 is obtained if, in eqn. 14, ¢y # 0.
The advantage of using generalised Laguerre polynomials
thus becomes evident. Owing to the introduction of para-
meter ¢, a much larger class of Laplace transforms can be
efficiently inverted. However, an optimal value of @ does not
always exist. This will be demonstrated below by examples 5
and 6 in Section 6. The value of ¢ is determinative for the
asymptotic behaviour of the truncated series of eqn. 11 for
t— co. If possible, it is preferable to choose —c equal to
the real part of the dominating pole of F(p). The value of b
will be discussed in Section 5.

There are two problems: the numerical calculation of
coefficients @, and the evaluation of the truncated Laguerre
series. The numerical aspects of the second problem will be
considered in Section 3. For the calculation of coefficients a,
we shall give two methods:

(i) some functions ¢(z) can be easily expanded in a power
series through algebraic operations. This will be discussed
in Section 4

(i) for any Laplace transform, the derivatives in eqn. 10 can
be evaluated by contour integration in the complex plane.
This method is quite general, and will be discussed in
Section 5.

3 Evaluation of the truncated Laguerre series

There are two methods for the evaluation of the
truncated Laguerre series. If the number of terms of the
truncated series is determined at the outset, the summation
technique of Smith*? is very efficient. For generalised
Laguerre polynomials, the method is as follows: Let
‘BN+2 = BN+1 = O, and

b 1—
Br=0r+(2“‘t+ )B r42
(1%
forr=N,N—1,...,0. Then
N
2 akac")(bt) = Bo (1 6)
k=0

Usually, however, eqn. 11 is calculated with & + 1 and with

N + L terms (L ~ N/[4) to control the truncation error. In

this case, a direct summation of eqn. 11 is preferable. The

Laguerre polynomials are then calculated by the recurrence

relationship

nL@() = QCn+a—1—HLD (1) — (n — 1 + LD ,()
(17

where n =1,2,...

and L@ =0 and L@() = 1

4 Special method for the calculatnon of
coefficients a,

For some types of Laplace transforms, the power-
series expansion of the corresponding function ¢(z), given
by eqn. 8, is explicitly known, or can be easily obtained by
algebraic operations, e.g. by multiplication of known series
or, if F(p) is a rational function, by long division.

First, as a simple example, consider the Laplace transform

F(p) =p=v~lexp (—up™?) 18)

in which u is an arbitrary positive real number. In conformity
with eqn. 14, we choose a = v. Eqn. 8 then gives

P(z) = exp (—u + uz) 19
Therefore, the original function is given by
0 k
— Vol H (V)
SO =ve U wrr,rn (20)

From eqn. 20, an interesting result can be obtained. Since
it is known that

L-Yp—v—lexp(—up~ )} = (f/lle/ZJv{Z\/(lll)} 2D

the following important series expansion for the Besse
function of the first kind is obtained:

k
Ju(x) = e "(x[2)¥ 2 mLﬁ)(ﬁ/"f“) (22)

In the same manner, we can derive

e v

. (M2

Tk Fv T l)L" (x*f4u)
(23)

Eqgns. 22 and 23 are extensions of series expansions given by
Ainsworth and Liu.®

Many Laplace transforms can be likewise inverted. We
have written a computer program LAGRA (CP77) for the
inversion of some types of rational and irrational transforms;
namely

1) = /)" 3 (—DF

oG0P+ a pm Loyl + ay

F(p) ——P bo?" + o L ...+ b, 10+ b, (24)
i - p Y e ';i SRt e
Ry = ph RO PGP bl En
P = e )

where u, @, and by are arbitrary real numbers. It is supposed,
however, that F(p) is analytic for Re (p) > 1.

In the program, the optimal value of a according to eqn. 14
is determined, the coefficients of the expression for ¢(z), given
by eqn. 8, are calculated, and finally coefficients q, are

calculated. For the computation of these coefficients, the . - !

only operations necessary are long division of two poly=
nomials, root squaring of a series and raising a series to a
square. Once coefficients a,, are known, the truncated series
of eqn. 2 is evaluated using the recurrence formula given
by eqn. 17.

4.1 Examples

All the calculations of these examples were carried out
in single precision on an IBM 360/44 computer.

Example 1: Consider a rational Laplace transform. In the
case of simple poles, the best method for the inversion of
rational transforms is undoubtedly partial-fraction expan-
sion.** The determination of multiple poles, on the other
hand, is a very difficult task, and in such cases an appropriate
method such as that given above is particularly useful.

For the Laplace transform_
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series, are given in Table 1.

Table 1
NUMERICAL RESULTS OF EXAMPLE 1

Exact FAGRA,

-~

40 terms
2 0-766900 0-766900
4 1:483567 1-483547
6 0-939447 0-939445
10 0120353 0-120354
14 0-008009 0-008017

16 0-001774 0-001844

Example 2: The transform

pV(p+1)
W . . . . . . B (29)

has the original function

F(p) =

4
1) = jocos (t — wexp (—i)v/(mdu . . (30)

which is difficult to calculate. Approximate values obtained
through LAGRA, using 40 terms, are given in Table 2

AU LVUAUIV U 1Y VUL Y VUL MY LAY WADAUEL  YYILAL AL MM

LAGRA, we write

—0-5,

S PP+ L5p +1-5625 7 p? +15p+15625
(36)

where each term is to be inverted separately.
The results of this approximation inversion, with 40 terms,.
are given in Table 3.

Table 3

NUMERICAL RESULTS OF EXAMPLE 3
‘ Exact 40 terms
2 —0-0063098 —0-0063105
4 —0-0102381 —0-0102385
6 —0-0071937 —0-0071940
10 ~0-0038493 —0-0038486
14 —0-0024373 —0-0024238
20 —0-0014244 —0-0014556

Table 2

NUMERICAL RESULTS OF EXAMPLE 2
‘ Exact 40 terms
2 ~0-056675 —0-056678
4 —0-753892 —0-753884
6 0-655745 0:655759
10 —0-826932 —0-826927
14 0-425004 0-424963
20 0-610817 0:610916

Example 3. Laplace transforms which are rational functions
in the variable 4/p are very important in electronics.*>~47 For

their inversion, Vlach!? has proposed a partial-fraction .

expansion
4

¥Vt |
followed by termwise inversion. If g; is complex, however,
the complementary error function of a complex argument
must be calculated. Although there are many algorithms for
this purpose,*8-50 it remains .a rather difficult task. Further-
more, there are. considerable - difficulties ‘in the case of
multiple poles. We therefore propose the following approxi-
mate procedure. F(p) is split up into a sum of two functions

Fp) =vWR(P) +Rfp) . . . . . . (32

in which R{(p) and R,(p) are rational functions. Both terms
of eqn. 32 can be inverted through LAGRA. If desired, R,(p) can
also be inverted by partial-fraction expansion. This procedure
is only possible if the poles of R,(p) are in the halfplane

Re(p) < 1.
As an example, consider the Laplace transform

_ V@) +05
F(p)“p_—+\/(p)+1~25 . N X))

The exact original function of eqn. 33 is

SO =@ "2 —y2—v . . . . . . (3D
in which u and v are defined by

u+p=wid+05)ve} . . . . . . (35

and w(z) = e—zz(l + %j:eﬂdt)

€2y

Values of # and v have been tabulated by Abramowitz and

Stegun’! and by Faddeeva and Terent’ev.52
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General method for calculation of
coefficients

This method is based on the theory of complex func-
tions. If F(p) is analytic for Re (p) > b/2 — ¢, ¢(z) is analytic
in and on the unit circle. We then have

®©0) @) ,
# zmjc(zﬁki‘ e

in which C is the circle |z| = r with r < 1.

Substituting
e s 1))
we obtain
) !
¢ k'(O) = r"‘j plrePitye=2miktgy . . (39)
! 0
k=0,1,2,.... Since z'¢(z) is analytic in and on C, we have

1
2 2nda)dz = J' S+ i (o g2rity it = 0 (40)
c 0

n=20,1,2,.... By combining eqns. 39 and 40, we obtain
(k) 1

d k|(0) =2rk f Re {¢(re*™ )} cos 2mketdt . . (41)
! 0

*) !
and ¢ /(l(O) = —2jrk j Im {¢(re?it)} sin 2mkrdt (42)
3 0

From eqn. 41, with r = 1, can be derived

Re {$(e/%)} :/:0 E(f”rk’!‘——ﬁ aycoskd . . (43)

This result can also be obtained by directly substituting
eqn. 38 in eqn. 12.

The problem remaining is therefore the calculation of the
Fourier cosine coefficients of the function Re {¢(e/%}, This
can be done by one of the following well known approxi-
mate formulas:>3

2k! wlk
a; = m E i/J(W[/M) COS—-* (50)
or
2k! 2141 = 2141 ka
Ttk +DMF 1) ,2‘ '/(1\44 1 2) (M—H 2
(61
where
b x  bhyet! b x b
tﬁ(x):Re{(jicoth—l—E) F(,jicotga—c—{—i)}
' (52)
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For the evaluation of egns. 50 and 51, the fast Fourier
transform can be applied, but often the number of terms
needed in eqn. 11 is not large, so that use of the f.f.t. is
unnecessary. We shall now discuss the choice of free para-
meter b. It is intuitively evident that the convergence of
eqn. 49 is better as the singularities of :,lz(z) are further
removed from the unit circle or, in other words, as the
singularities of F(p) are more removed from the vertical line
Re (p) = bj2 —c in the complex plane. Therefore, a large

tlue of b is favourable to a good convergence of the series.
But then, only a small number of terms can be used because,
using the approximate expressions of eqn. 50 or eqn. 51, the
relative error of the coefficients a, increases greatly with k.
If, due to roundoff errors, there is no further reduction of
coefficients a, after N + 1 terms, the series is truncated and
the truncation error €y is approximately equal to the first
neglected term

€y = aN+le—"’t“LX,'§_ l(bf) . . . . . . (53)

The largest zero ¢ of L2 (bt) is given apprdximately by
(see Tricomi’¥)

£~ (4N + 2a -+ 2)/b

Therefore, for ¢ < £, the error e, oscillates; but for larger
values of #, the error increases greatly. This discussion is
only valid in the case of fast convergence of the sequence of
coefficients a;. The conclusion is that, with b increasing, only
a small number of terms can be used in eqn. 11, and that the
approximation interval is less. Therefore, if the original
function must be known in a large interval, we must take a
small value of » and calculate more terms in eqn. 11. A
computer program LAGUER (CP78), which computes coeffi-
cients g, by means of egn. 50, has been written. The f.f.t. is
not used. )

6 Comparison with other methods
The method described in Section 5 requires values of

~ the Laplace transform F(p) for values of p which lie on the

:aginary axis or on another vertical line in the complex

" plane. In the literature, some other methods are known

given by Clendenin’® based on the piecewise linear approxi-
mation of ¢(w). We then obtain

Ze‘” M—1 .
f === (¢(0)A sin (t4/2) + B3, (hi) cos (thi)

+ ([t~ sin (re) — A sin{r(c — hj2)}] + RN) (56)

where ¢ = Mh

h = length of subintervals in which ¢(w) is approxi-
mated to by a linear function

A =272~ 1sin (th2)
B = 4~ sin? (h/2)

Ry = J‘O b(w) cos wirdw

In a practical situation, M must be chosen large enough so
that, in expr. 56, Ry is negligible. For some types of Laplace
transforms, an asymptotic approximation of ¢(w) can be
constructed so that Ry can be estimated quite accurately.
This has been done by Kowerskil® for rational Laplace
transforms. In the following examples, we shall compare our
method (subroutine LAGUER) with that of Dubner and Abate
and with that of Clendenin.

6.1 Numerical examples

All calculations of the following examples were carried
out in double precision. M -+ 1 indicates the number of
evaluations of the Laplace transform, i.e. the number of
terms in exprs. 50, 55 and 56. N is the number of terms in the
approximation for f(¢). Therefore, in our method, N is the
number of terms of the truncated Laguerre series, and in both
other methods N = M + 1. For the other symbols in the
Tables, we refer to the text.

6.2 Example 4
In Table 4, the numerical results of the inversion of

F(p) = (p* + 172 .
are given. They illustrate the influence of the value of 5.

Table 4
NUMERICAL RESULTS OF EXAMPLE 4
LAGUER, @ = ¢ = 0, LAGUER, @ = ¢ = 0, Dubner and Abate, | Clendenin, LAGRA.
t Exact M = 250, N = 190, M =20,N =15, M =800,d =0-5, | M=1400,h=0-1, 110 terms
b=0-6 b=28 =20 =0-5
2 0-2238907791412 0-2238907791411 0-2238907791417 0-223895 0-2229 0-2238907791412
4 —0-3971498098638 | —0-3971498098633 | —0-3971498108067 —~0-397138 —0-3939 —0-3971498098638
8 0-1716508071376 0-1716508071395 0-174119 0:171738 0-1632 0-1716508071376
10 —0-2459357644513 | —0-2459357644487 0-461037 —0-245705 —0-2287 —0-2459357644513
20 0-1670246643406 0-1670246643510 0-1670246643406
40 0-0073668905842 0-0073668911301 0-0073668658
60 —0-0914718040891 | —0-09147173 —0-09151
80 —0:0697421655122 { —0-06971420
100 0-0199858503042 0-02155037

that have the same feature.®: 19 They are based on the evalua-
) tion of

f(t)zg?f:c'osw@(w)dab O

| where ¢(w) = Re{F(d + jw)}

and d is a real number, so that F(p) is analytic for Re (p) > d.

The methods differ only in the numerical method used for

the calculation of the infinite oscillating integral (eqn. 54).
‘bner and Abate® have proposed a simple trapezoidal rule.
The final inversion formula is

d
1) ~ e—Tl{gb(O)IZ ¥ kgl k| T cos k—;’} 5)

They also provide formulas for the choice of free parameters
d and T in eqn. 55.
The integral of eqn. 54 can also be evaluated by a formula

For small values of b, very high accuracy can be obtained at
the cost of much computation work. To compare LAGUER
and LAGRA, results calculated with a double-precision version
of LAGRA are given in the last column. Note that, with respect
to computation time, LAGRA is much more economical.

6.3 Example 5

For some Laplace transforms, there are no optimal
values of a. The obtainable results are less accurate. In
Table 5, results are given of the inversion of

plogp

F(P) :PZ 1

The exact original function is

f() = —sintSi(¢) — cost Ci(¢)
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NUMERICAL RESULTS OF EXAMPLE 5

LAGUER, g-:ilbiel:atc Clendenin,
¢ Exact M = 200, M =490,
d=10-5 — 4
T =20 h=0-1
1 —0-9784 —1-0222 —0-9759 —0-95
2 —1-2838 —1-2833 —1-2775 —1-31
3 —0-1425 —0-1406 —0-131 —0-11
4 1:2385 1-19 1:26 1:21
5 1-5402 1-50 1-57 1:47
6 0-4634 0-57 051 0:53
7 —1-0135 —1-11 —0-93 —1-08
8 —1+5396 —1-49 —1:40 —1:40
9 —0-6358 —0-63 —0-41 —0-50
10 0-8640 0-83 1:24 0-45

6.4 Example 6

Sometimes, F(p) can be written as a sum of two or
more Laplace transforms which can be inverted separately,
each with a different value of a.

For instance,

F(p) =p~Pexp(—p~1?)
can be written as
F(p) = p~ "2 cosh (p—112) — p~12sinh (p—11?)

Here, the first term of the second member can be inverted °
with ¢ = 05, and the second term with g = 0.
The exact original function is

1) = 5;71(-7;) L:Z exp (—u/40)Jy(2A/ 1) du

Results are given in Table 6. The methods of Dubner and

-Abate, and of Clendenin, do not provide reasonable results.

Table 6
NUMERICAL RESULTS OF EXAMPLE 6
t Exact LAGUER, M = 50
1 —0-010723429 —0-010723401
10 —0-024785984 —0-024785988
20 —0-003081880 —0-003081881
50 0-002719950 0-002719946
100 0-000210929 0-000210934

In these examples, our method offers more accuracy for
less computation work.

7 Conclusions

We have given two methods for the numerical inversion
of the Laplace transform: the first is applicable only to special
types of Laplace transforms, but is very efficient; the second
is a general method. The latter is compared with other methods
and is found to be very accurate and economical.
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9  Program descriptions

9.1 LAGRA (CP77)
9.1.1 Program details

(a) Language: FORTRAN IV

() Number of variables:
integers: 22
real scalars: 20 >
arrays: 9

(¢) Number of statements: 140

9.1.2 Performance guide

(a) Computer used: IBM 360/44 of the Computing Centre
of the University of Leuven

(h) Core-size requirement: 0011EC bytes

(¢) Output medium: line printer

(d) Time: the calculation of 40 terms of the Laguerre
expansion and the calculation of the original function of

F(p) = (p% -+ 1)~112 for 15 values of ¢ requires less than,

1s

(e) Limitations: the program is applicable only to certain
types of Laplace transforms as described in the paper
and the poles must lie in the halfplane Re (p) < 1

(f) Accuracy depends on the Laplace transform t
verted and on the values of ¢ for which the original .
must be calculated. In general, accuracy is very h

9.2 LAGUER (CP 78)
9.24 Program details

(a) Language: FORTRAN IV
(b) Number of variables:
integers: 9
real scalars: 20
complex scalars: 4
arrays: 2
(¢) Special word-length requirements: the progi
written for double-precision arithmetic
(d) Number of statements: 68

9,22 Performance guide

(a) Computer used: IBM 36044 of the Computing (
of the University of Leuven

(b) Core-size required: 0015E8 bytes

(¢©) Output medium: line printer

(d) Time: the inversion of F(p) = (p? 4 1)1 for ,
2, . , 30, so that the maximal error in thxs inter
less than 103, requires 5s

(e) Accuracy: depends on the Laplace transform 1
inverted and on the choice of the free parameter.
demonstrated in the examples, accuracy can be extre
high
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%e raken into account in any practical example where some upper bound for the
<ror should be estimated.

HerBeErT E. SArzER
vrénance Corps
rramond Ordnance Fuze Laboratories
% :shington, D. C.
NOTE BY REFEREE

The function F(#) is subject to certain restrictions because it is a Laplace transform. In order
ier F(p) to be the Laplace transform of the function f(#) given by (1), it is sufficient that F(p) have

the | f. G. DoEtscH [5]):
e form (¢ P r) = o+ Py,

=kere 5 > 0, @ is a constant, and Fi(p) Is analytic and bounded in the half plane Re(p) > c.
e assume that this condition is satished. Whether this condition is also sufficient for the con-
«erzence of the n-point quadrature formula to the true value of f(#) in (1), when » tends to infinity,
225 not been determined. The author makes use here of the fact that the convergence occurs
=Renever F(p) is a polynomial in 1/¢ without a constant term; in fact, the quadrature is exact
izr polynomials of degree not greater than 2z. G. SzeG6 [10] has shown that under quite general
ceditions a Gauss-Jacobi type quadrature formula which converges for polynomialsalso converges
ier 2 much wider class of functions. Unfortunately his theorems do not seem to apply directly to
txe present case because the integral (1) involves a complex valued weight function which is not
= bounded variation.
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6. The shift in notation from (z-+1) to z in 4:™ will cause no confusion after the 4;'s have
Sern computed and are ready for use in (6).
7. It 'was called to the author’s attention by H. L. KraLL that Po(x) = (—1)"y.(x, 1, —1)
=tere y.(x, @, b) are “‘generalized Bessel polynomials” (see [47]).
8. G. SzeG0, op. cit., p. 41-42.
9. Formula (14) holds for = = 2 if we define Po(x) = 1.
10. G. SzEGS, op. cit., p. 341-342.
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On the Improvement of the Solutions to a Set of
Simultaneous Linear Equations using the ILLIAC

The basic method used for solving simultaneous linear equations on the Uni-
versity of Illinois’ electronic digital computer, the ILLIAC, has already been
gescribed in detail by WHEELER and NasH [1]. The routine currently in use on
the ILLIAC, programmed by Wheeler [27], makes use of the method of elimina-
ten to solve the set of # simultaneous linear equations

{ 4 et

. n—1 7
u) Zaijxj+ain= ’L.=0,1,2,°",7i—‘1

=0

/e s
191644

22 manner very similar to that used by a human solving such a system.
In brief, the procedure used is as follows:
a) The augmented matrix
@ =0,1,2, -, n—1
=0,1,2,---,n




TABLE oF ZEROS AND CHRISTOFFEL NUMBERS— Conlinued

l/Pi(")

n =20
4,03884 07 04698 447 4.09708 14.015¢
4.03884 0¢ 04698 447 —.09708 ‘ — 43.516 14,0154
6.47051 . 1z 09821 855 4.07438 226.060 305.1032
0.47051 1z 09821 855 —.07438 - 226.060 305.103¢
7.49064 9 12752 426 +.02760 — 185.544

917.794:

7.49064 97 12752 426 —.02760 —~ 185.544 917.794

n=17
—10.16969 3¢ 03571 656 +.08203 2.053
+10.16969 37 .03571 656 —.08295 2.053
— 6.62304 67 07528 041 +.06981 ) 515.229
+ 6.62304 64 07528 041 —.06981 © 515.229
— 3.28101 44 10228 557  4.03942 —2490.669
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n =8
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1.64920 ) 09581 390 4-,01553 - —2613, —13549, 4
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P‘(n)

000 -

000 ~
000 +

288
288
425

++ 1

69
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30
30

+ 14|

43
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33
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47 +

+ 14

.00000

1.41421
1.41421

3.05043
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4.77308
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1.56747
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6.54373
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3.21026
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0007

3560
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0207
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0007

751
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65¢
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697
561
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002

1/1)‘.(") .

n =1

11,00000 0000 ~+.00000 00003
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.16255
16255
27488

.09705
.09705
18866
.18866

06506
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13317
13317
15906

n=2
3333 +-.23570
3333 —.23570

n=23
5585 +4-.18494
5585 —.18494
8830 +.00000

n=4
0482 -.14418
0482 —.14418
3804 +.06177
3804 —.06177

n=23_5
5779 +4.11646
5779 —.11646
9077 +.07499
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5845 --.00000

22601
22607

93244
93244
00004

24707
24701
44214
44217

85281
85281
45112
45114
00007
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1.00000 00
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7.64874
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273.3433
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.00000 0004
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174 ORTHOGONAIL POLYNOMIALS IN INVERSE LAPLACE TRANSFORMS
where
- .2
= (—~1" and re, = — (2 — 7 — 1)a,a, for > 0.

Working backwards from (12’’), by equating coefficients of x™1, one sees v
(12”") must arise from (16).

VIII. Explicit expressions for polynomials. Because these polynomials P (2
are of fundamental importance, and their role in the inverse Laplace transfory
is comparable to the role of the Laguerre polynomials in the direct Laplace trans
form, their explicit expressions are given below for = = 1(1)12:

Pi(x) x—1

Pa(x) 6x? — 4xx + 1

Pi(x) 60x® — 36x®> + 9x — 1

Py(x) = 840xt — 480x® -+ 120x* — 16x -+ 1

Py(x) 15120x3% — 8400x* + 2100x® — 300x% | 25x — 1

Pe(x) 3 32640x% — 1 81440x% + 45360x* — 6720x* 4 630x*> — 36x -+ 1

P(x) 86 48640x7 — 46 56960x¢ 4 11 64240x5 — 1 76400x4 + 17640x3
— 1176x% 4+ 49x — 1

Py(x) 2594 59200x® — 1383 78240x7 4 345 94560x° — 53 22240x5
: + 5 54400x* — 40320x3 -} 2016x® — 64x -+ T

Py(x) 88216 12800x° — 46702 65600x8 -} 11675 66400x" — 1816 21440z
+ 194 59440x° — 14 96880x* 4 83160x* — 3240x* -+ 81x — 1

Pio(x) = 33 52212 86400x1° — 17 64322 56000x° + 4 41080 64000x® — 6918

12000x7 4 7567 56000x% — 605 40480x° -+ 36 03600x* — 1 58-;00:;‘
-+ 4950x% — 100x 4+ 1

Pii(x) = 1407 92940 28800xt — 737 48683 008000 - 184 37170 75200+
— 29 11132 22400x% -+ 3 23459 13600x7 — 26637 81120x° 4 1664
86320x% — 79 27920x* 4+ 2 83140x® — 7260x% - 121x — 1

Pio(x) = 64764 75253 24800x'2 — 33790 30566 91200x" -+ 8447 57641 7280
— 1340 88514 56000x° - 150 84957 88800x% — 12 70312 24320«

-+ 82335 05280x% — 4151 34720x% 4 162 16200x% — 4 80480x®
+ 10296x% — 144x -+ 1.

IX. Zeros and Christoffel numbers. In the numerical table below there
given the values of the reciprocals of the zeros of P,.(x) or $:™, the zeros.:
P,(x), or 1/p, and the corresponding Christoffel numbers 4™, for n = 1(1)
Use of these quantities in the quadrature formula (6) above can give theoreticallf
exact accuracy for any polynomial in 1/p (with no constant term) up to the 16
degree. However, the fact that these tabulated values of ., 1/, and AL
are correct to only about a unit in the last significant figure that is given, must

ORTHC

’I‘ABLE oF ZEROS AND CHRISTOFFEL NUMBERS
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eargral coefficients, or, in other words, that
2P.(x) + 27 + 1)P,. 1(x) =0 (mod (2n — 1)).
a2y last congruence, by (14), is equivalent to

P o(x) + 2n + 1)Praa(x) =0 (mod (2 — 1)),
&0

(?27; : 13)2 Pos(®) + %};lfnlz(x)‘ =0 (mod (27 — 1)),

s&ich in turn is expressible as

(n—=1) @n — I?P”*I(x) T 2Pna(®) =0 (mod 2n — 1)),
. - 2n—3 ' :

- 1) 2+ 2n —3)Ppa(x) + (2n—1 — (2n — 3)) P, 2(x) 0
2n — 3

~ (mod (27 —1))

Batunder the assumptions that (15) holds for m = %, and that P, (x),m < n — 1,
s integral coefficients, the last quantity in brackets is a polynomial with integral
eefhcients, which shows that the last congruence is satisfied identically in x.
~Thes (15) holds for m = # + 1 and P,,1(x) has integral coefficients. We proceed
= this way to every z. There is a slight subtlety in the argument of this induction
= the sense that the integral coefficients of P,(x) up to m = n — 1 only are
wmeded t0 go from m = n tom = » -+ 1 in (15), but then use is made of the in--
*=z7al coefficients of P, (x) in using (14) with » + 1 in place of n.

VIL. Differential equation. It is easy to show that P,(x) satisfies the differ-
=l equation

as) P, (x) + (£ — DP./(x) — n*Pa(x) = 0.
Thus one merely expresses (12) in the form

B2 P) = (—pyr| 14 3 P =2 P r 1)

r!

ff“_ t%leﬂ observes that (12) is equivalent to the automatically terminating
minite series.”

{32”) P.(x) = 3 ax,

=0
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explicit formula for P, (1/p) in (12). For, in view of (8), it suffices to consider ¢

_1_- c+zaoep( 1)"»(2”__1) | (}_) ‘
(H) 273 ﬁ—m p P 7 P P ap,

- (717 nﬂr(r)(znn—r-: 1) (n =)

2n — r)! '

2n—1 i nnr—1)---(n—r+1) n—r—1)---(n+1)
(J)( ) ,5::,( 2 7l Q2n—r)Q2n—r—1)--- (n+1)st

which, after cancellations, is written as

2n—1)(2n—2)--n n
(n—7)ln!

nn—1)---(n—~r+1)(n—7)!

2n—r r!

K 3 (=1)

=0

1 2n—0@2n—2)---n
(n —r)ir!

3

(L) 7 Z (=17 —

r=0
and this, in turn, is expressible in the form
M) (1)~

Xz C—0)(—1)---

(2n—0)(2n—1)2n—2)--- 2Qn—[r—1D2n—[r+1])- - - @n—n,
== 1De—[+1]---(r—n)

In (M), the 3(—1)» is multiplied by the sum of the coefficients of the Lagrangas
interpolation polynomial for the (# 4+ 1) points 0, 1, for the varialjk
equal to 2z. But that sum is identically equal to 1, ie., for any value, 2%
otherwise. Thus we obtain once more 3(—1)* for the normalization.

V1. Integral coefficients. It may be of interest to show that (14) alone, without
any knowledge of (10), implies that P,(x) has integral coefficients. We prm
this by noting that Pn4.(x) will have integral coefficients if P, (x), m < », 08
integral coefficients and the following identical polynomial congruence hold
form =n+1: ‘

(15) 2P, a(x) + 2m — DPus(x) =0 (mod 2m — 3)).

Now the existence of integral coefficients of P, (x) and congruence (15) ca
verified for the first few values of m. We then show that if (15) holds for so
particular m = n, it holds for m = n + 1, provided P,(x), m < n — 1,

ORTHOGONAL

1] coeflicients, or:

Y

2P, (x)

last congruence,

2(7
o = P‘.l(\) + A
e — 3
T g e
(2n — 1“)2 P,
Zn .o

whah 101 turn is expre

{2n = 1)[(2;'Z

:§ — 1‘) [Lz,_i_gﬁ_—.

:under the assumpt
=zs inteygral coefficient
”rft:dcms which shq
Thzs {13) holds for m
= 1his way to every #.
== the sense that the
=reled 1o go from m
rrzral coeffictents of F

¥1I. Differential e
«=123l equation

LGl x*F
*Zws one merely expr

i P,,(x) = (—1)3

===i then observes 1]
Tefinire senes
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$. Hecurreace formula. It is easy to obtain the recurrence relation for the
C .. P.ix) by employing a fundamental theorem about the existence of

ormula connecting any three successive orthogonal polynomials

Pﬂ (5") = (anx “I— bn)Pn—l(i‘C) + CnPﬂ_g(x).

o immediately seen to be 4z — 2. Equating constant terms in (13), one

" —~ 5, + 1, and after substitution into the equation derived from the
et s vl X, One obtains.

2 2n — 1
=, =",
21 — 3 2n — 3

n

sher the securrence formula satisfied by P, (x) is seen to be 97
12— HP(x) = [(@n — 2) 27 — 3)x + 2]Pi(x) + 21 — ) P._s(x),
V : for = > 3.
Fems 14 and (8) only, without making use of (10), one can again find the
spessizzation factor given in (11), through the following inductive argument:
usitply. (14) by Pa2(x) and then operate with
» ' i c+j=s i

— pP— ... g
27 C—j«:ej) p

f e 3

Sa - 220 — 3) [etin 1\ 1 1
2 I e () e (L) ap
2% ein »/p p

— ctjo - 2
yo+ & e () .

271’_7 c—j= P P

iﬁ“‘mﬂg the left member of (11) by F,, still making use of (8) to replace in the
¥ = ihe above integrals (1/4)Pas(1/p) by

1 1

=——_'—Pn—— 3
idn — 6 ! b

e mow obraing

_ (dn —2)(2n — 3)
B 4n — 6

0

Fﬂ_l + (271/ - I)F —a,

‘o7 = F.s. Since Fy = — &, (11) follows by induction.
== =ermalization given in (11) can be seen in a third way, directly from the

o P N T - ey P O, T

.
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of s between 0 and 7, would always be eventually annulled because the initialf
occurring differential operator d»+/dpm " *isof orderm —7 +# > n - 1 =
even for the highest valueof # — 1 — swhens = 0 (duetom — 7 + 2> n =
for every 7 between 0 and m). Thus (E) vanishes, which proves (10), and es
lishes at the same time that this normalization yields all integral coeffici

v. Recurrence
lvnomials Pa(x)
. securrence formu
5. Szepd [8]), na

for P.(1/p). ‘ | -
1V. Normalization factor. To obtain the normalization factor, which turns oy .
to be given by : Thus da 1s immedie
{1 [feti® 1 1\ T2 o mads o = ba + 1,
(D) E;—; o—jen ep; P ; dp = 3(—1)n ‘ cxmettic imt: of x, or
we repeat the preceding argument for m = n and now notice that in the ﬁn:J
integral (E) the lowest power of p»%~* will survive the integration by parts,
because it is equal to 1/p. Retaining in the double summation in (E) oaly t
single non-vanishing term s = 7 = m = n, we get . : - that the recurre
—1)en+tn etjoo — n k
(F) _(_1_)___[ ’ ('Zn 1 ) Py il 14 ( ) ap, 14y (2n— 3) P,
21 Je—io \ 7 “pdpr \pn ,

which is integrated by parts 7 times, the integrated part always vanishing, to give ]

. ; » From (14) and

(G) (“1)'?—*“"(2” -1 ) - chﬁw (= 1)” 2-3--- (n - Dn dp. ;:drmaliZfltiOn fact
2] n e—joo prit : Multiply (14)

But (G) is E » -

(2n -1 1 (=)@n—D@n—2) -7
(=1 ( n )’“”! Q! l T gy

‘ 20 obtain (making
which reduces to (—1)"1n/2n or 2 (—1)~, thus proving (11).
From (10), the explicit formula for P,(1/p) is seen to be [7]  dn—=2(2n

L 2n—1
12) P”(-;.)z(—-l)n (-1 ( ”n )n!
()

(-
() Yos
o () (2

2rj

2n -2 ‘ | : .
(n — 1)1 ; Denoting the left
arst of the above

...I_

+

wile Now obtains

.l_
P'n—r

o F,‘__x = - F

n—

The normaliz
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1 75} has the following more elegant definition:

£ () - e o (2)

+.: (10) yields the leading coefficient of 1/p™ in P, (1/9), namely

1, for n= 1,\

(4n — 2)(4n — 6) --- 6, for = > 2,

2 siwious by induction. To prove the Orthogonahty property, or (8), it suffices
»» =¢ove the vanishing of

P n 1
LT o] e 2 (5) || omene 2

— — d
ZTj c—joo dpn Pn P

dp™
e = < n. This last expression is written as
( — 1>m+n c+jm
—_— i ap,
2xj e—jso p" dp”

s afrer integrating by parts m times, noting that the integrated parts always
=sh, we have

—f\m (-~ mtn ot Am
GVl Gt Vil sl 12 4,
27 o~j dp™ i

whch by LEIBNITZ's rule is expressible as

o Db (e (m) . drrin ( )
55} —————— P Mt n— —
GBV 27rj . c~—Jao dpr P * 1) d@m—r-’-n pn dP

Application of Leibnitz’s rule a second time to
T
apr

- & the above and cancellation of e?/pm™, yields

gr) (=D)m(—1)mtn (etio ™ m) T (1) (Z) (m_!_n_l,s!p"”l*"

271‘ 7 c—joo
dm—4~f-n
Pm—-—‘r+n ( ) p

Now we integrate by parts (m — 7 - #n) times each term of the above double
=mmation. The integrated part will always vanish since it will have a factor of
/5 to at least the first power. Furthermore, at some stage in the partial integra-
on of each term, that stage varying with the term, the integral part will also
Tanish if 2 < #. This last follows because the lowest power of $7 13 is positive
c!’zero since s can equal at the most 7 which can equal at the most m < # — 1.
Then in the integration by parts the positive or zero power p*1~*, for each value

(7

v
"
)
e
)

&

&

:
I
£
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Hence the points 1/p;, now denoted by 1/p:™, are the zeros of a Certam&‘i“
of orthogonal polynomials in the variable 1/p.

The condition of orthogonality (8) is also mathematically equivalent, i
terms of actual polynomials (by setting x = 1/9), to having a polynomial of
nt degree ¢.(x) which is orthogonal to any p,—1(x), with weight function eli:j
where the path of integration is a circle of radius 1/2c whose center is at (1/2, 0}

If the polynomial p,(1/p) is written as :

1\~ 1\»? 12 1
() e () 00 0
(?) + baa > + » 3 + bo

the determination of b;,7 = 0, 1, ---, # — 1, to satisfy the conditions of orthogo
nality (8), making use of :

1 ctin gp 1

21rj c—joo P"”H m!

is in the solution of this system of linear equations:

(1 bai bz by | bo
— 1 c . — _—
'(n——l)!+(n—2)l+ +1!+0!

1 bn—l bn—~2 bl bO
) A+ T T e T T

(z + D! 7l (n

1 + bn 1 bas oyl —0
L @n—1D!" Q2n—2)! " (2n—3)! (n— 1)1

For numerical work it is somewhat easier to solve (9") in the form

(1 + #bps + 2 — Dbos + -+« +nlbr + 2lbo = 0
14 &4 Doy + (2 + Dnbpg + - -
+ @1 -3+ (1) - 2h =
14+ @7 — Dby + @n — 1) (@27 — 2)bps + -+
+@r—1) - (n+ Db+ 2n —1) --- nbo

III. Explicit expression for orthogenal polynomials. It is convenient to nor:
malize the polynomials $.(x), where x = 1/p, by multiplyiag p.(x), for » >12
by (4n — 2)(4n — 6) --- 6. This normalization produces polynomials with a:
coefficients integral (proven below) and it is not the usual norrnahzauon b

multiplication by
[/ Q) o]
[ D —
27 Je—jx ¢ b P b a@| -

Denoting (4n — 2){(dn — 6) --- 6p,(1/p) by P.(1/p) for » > 2, and p.(1/) b
P:(1/p), one can avoid the labor of solving (9°) or (9) d1rect1y by showing thats

T ORTHOGONAL.

»_:1/2) has the follov

Sal
PRS
:103}

Thar (10) yields the |

{

-~ obvious by inducti
25 prove the vanishin
ety 1
A = er =
c 27.' c—jo P
ior m < n. This last
(—=1)
27

and after integrating
wanish, we have’

Oy ——(_1)7;€

~hich by LEIBNITZ'S

by (EDREDT
- 2wy

Application of Leibn

it the above and ca:

(=D~ (=D=+
277

Now we integrate t
summation. The int
175 to at least the fi
ton of each term, 1
vanish if m < #. Tl
ir zero, since s can

Then in the integra:
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gwe o0 the right hand side of (2)

’“"1,1 1 "“,1 1
p‘gp Dr gpi b

e T denoting the absence of & = 4. In (2), pay1is ®, so that there is actually
e i3 = 1)-th term in (2) and LYV (1/p) is not used. (The summation in (2)
. written with 7 -+ 1 instead of 7 to avoid confusion with the (n — 1)-th degree
wcents L™ (1/p) which differ from the L, (1/4) by not having the
s g ?n?)

Falowing the method in G. SzeGd [3], we consider the (27)-th degree poly-
semial in 1/p, namely, p:.(1/p) — L& (1/p) which vanishes at 1/p = 0, 1/ps

1.2 ---,m and thus has =~ R

R

1 1 1z i i
2\ = B 5

3 {actor. Writing
1 1

-2 U e L(n—H'), o~ +'— n
\p ? ?

£ milows that

1 oo 1 1 oo 1
[ o2 ) ap = o [ erew (S ) ap
27_] c—joo . P 271‘_? c—joo P )
1 etie” 1 £ 1 1
— e —pa bl — el = ) dp.
_ 2rj Je—jm P p P
Tams if the second term in'the right member of (5) alwaysy vanishes, (5) will be
x =-point quadrature formula that is exact for any (2#)-th degree polynomial in
i/2 without a constant term, namely,
1 fretim 1 .
epa { — ) dp = 3 A:™psn
P 1=}

E;_‘]: c—joo

where the “Christoffel numbers” 4™ are given by [6]

» 1 e+ 1
I 1) AW = — e L (=) dp.
) 27{‘] c—Jw P

- A sufficient condition for (6) to hold is obviously the “orthogonality” of
1/2)p.(1/p) with respect to any arbitrary pa_1(1/p), namely,

1 Cac I | 1 1y¢
3 27 “% (’) (’) =0, i=01,--,n—1
R s SAVYA VY Bt

The necessity of (8) is also obvious from (6) by choosing

pen(1/9) = (1/D)Da(1/D)pas(1/P)
here p,_,(1/ $) is any arbitrary polynomial in 1/ of the (n — 1)-th degree.
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only to solution in series or numerical integration, with an F(p) that is given
a tabulated function of p. Also, the solution F(p) might be given explicitly
closed form as a combination of integrals of such complicated analytic expressic
that it might be easier to evaluate it for different numerical values of p th ‘
find its poles, residues, and branch points.

The purpose of this present article is to discuss the properties of a ne
of orthogonal polynomials which can be the basis for convenient formulas fg
approximating f(¢) in (1) for different positive values of ¢ when one has an F@
that is too complicated to show its analytic character, but which can be calculatgﬁ
for any p.

All further discussion will now be for F(p) assumed to be exactly o

m
a, . . g . .
form Y —~: , i.e., a polynomial in 1/p without a constant term.

r=1
To obtain a definite integral without a parameter £ in the exponential term,
which is the “‘weight function,” let pt = = in (1), so that we obtain :

(1) F@O ==

c1+jo0 "
e F (—) du,
c1—7%0 ‘t

wy. . L. .
where F (;) is still a polynomial in 1/, without a constant term.

II. Use of orthogonal polynomials. At this point one may recall the applicatica
of the theory of orthogonal polynomials to quadrature formulas for defini
integrals where the integrand is the product of a preassigned weight function and
a polynomial P(¢). There it is possible to employ the value of P(f) at » fixed
irregularly spaced points £, 1 =1, 2, , #, such that the resulting gquadrature
formula is-exact when P(¢) is any arb1trary polynomial of (Zn — 1)-th degr

Thus for the direct Laplace transform of P (f), namely f e~?tP (£)dt, which
. . :

essentially f e~tQ(t)dt for polynomial Q(¢), the pointé t; are taken equal to th
4]

zeros of the Laguerre polynomials, which have been tabulated extensively (H.
Savrzer and R. Zucger [2]). In the present case, even though we are not dealin
with a polynomial in p, we can still solve the problem of finding a Gaussian-typg
quadrature formula for (1) of approximately double the degree of accuracy ofa

ordinary quadrature forrnula based upon the same number of equally spa
points.

Thus let p2,(1/p) be any arbitrary (2z)-th degree polynomial in the vanabI A

1/p, which vanishes at 1/p = 0. Consider # distinct points 1/$:;, 7 = 1,2, --:
other than 1/p = 0 and construct the (# 4+ 1)-point Lagrangian polynomi
approximation (of the 7 degree in 1/p), to ps.(1/p), based upon the points 1/4
2=1,2,---,nand 1/p = 0. The (# + 1)th point 1/p = 0 is needed in order
provide for the property that ps,(1/p) vanishes at p = . We have for
polynomial approximation L&+ (1/p) the explicit expression

o () Eaen(n(2)

i=1

ORTHOGONAL
weee on the right han

L‘.(n-l-l) :

yae [T" denoting the ab
w0 (n 4+ 1)-th term in
= written with 7 + 11
socthcients L (1/P)
szt Pif P-)

Following the meth
semial in 1/p, namely
. =1,2 ---,n and th
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153 . Pan (
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o ePpay,
221'_] c—joo
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_—ula that 1s exact when p,, is any arbitrary polynomial of the (2z)th degree

ctjo
. - =1/p without a constant term, namely: (2) (1/2wj) f _7 ePpo, (1/p)dp
&—jm

é A ™paa(1/92). In (2), x; = 1/p; are the zeros of the orthogonal polynomials

n

o= 11 (e — =) where (3 (1/2n)) T e (1/p)pa (L)) (1/p)Yidp = 0,5 = 0,

=1 c—jo
+ ... n—1 and 4;" correspond to the CuHRISTOFFEL numbers. The nor-
o ization P.(1/p) = (4n — 2)(dn — 6) --- 6p.(1/p), » > 2, produces all in-
.ezral -coefficients. P.(1/p) is proven to be (—1)"e?pd=(e?/p™)/dp™. The
~malization factor is proved, in three different ways, to be given by (4)
.
Tef _] e?(1/P)[Pn(1/p) Jdp = 3(—1)". Proofs are given for the recur-

c—jo
werce formula (5) 2r—3)P.(x)=[@r—2)2n—3)x+2 1P _1(x)+ 2n—1)P,_s(x),
. 5> 3, and the differential equation (6) x*P," (x)+ (x— 1) P,/ (x) —#*P,(x) =0.
The quantities p™, 1/p:™ and 4, were computed mostly to 6S — 85, for
c= 1D, =11)8.
I. Introduction : Occurrence of inverse Laplace transforms. For a given func-
Tn ot p, F(p), which is the direct Laplace transform of some unknown function

i1, for £ > 0, one usually finds the f(¢) from the following explicit expression:

Rlw gt

1 c+j0 7
f@® = 53 ) . eF (p)ap.
] Je

Formula (1) is known as the inverse Laplace transform of F(p). In (1) the quan-
utv ¢ is a real constant =0 that is greater than the real part of all the singular
moints of F(p). In practice ¢ is usually positive, but ¢ can be negative as long as
for 7(t) satisfying Dirichlet’s conditions in any finite positive interval the integral

J} e~ctf(t)dt is absolutely convergent (H. S. Carsraw and J. C. JaeGer [17).

A note by the referee follows this paper and indicates relations between the
peesent work and work published elsewhere.

The examples treated in most textbooks on operational calculus and Laplace
ransforms contain such functions F(p) that their poles and branch points (and
wsidues also) are obtainable without too much difficulty, and the inversion
integral in (1) is evaluated by suitable deformation of the path of integration,
nd the use of Cauchy’s theorem. But there are countless other examples where
F5) might be too complicated to yield explicit information about the location
xnd nature of its singularities without a prohibitive amount of labor. For instance,
one will recall that in most textbook examples treating the solution of ordinary
22d partial differential equations by operational means, the original system of
differential equations is transformed into a system whose solution F(p) is usually
some known elementary function or a very extensively tabulated function of a
simple differential equation (like a Bessel function), so that its analytic character
*ad singularities are well known. But in actual practice one might not be fortunate
=0ugh to obtain such a comparatively simple F(p). Thus the transformed differ-
*atial equations might not yield a known function. Instead it might be amenable

BRI N B ew? B R
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four digits of the final result. The result has been tabulated to 3089D; the finaf
digit is unrounded.

Running time for the 3093D was approximately thirteen minutes. The prd_,
gramming takes account of the number of zeros generated to the right of tj
decimal point in each factor, so that the number of operations required for ez,
term in the series decreases. This leads to the following statement—if the tim
to compute 7 to m digits is ¢ units, then the time to produce &z digits is roughl
k% units; this holds true as long as the calculation is contained in high-speed
storage. .

The following table gives a count of each of the digits in .

(1) (2) (3) (4) &)
1-3090 1-2036 2037-3090 @)/ 3)

269 85 46
315 102 A7
314 104 .50
276 85 45
322 124 .63
326 115 .54
311 107 .52
297 97 49
318 111 .54
342 124

0
1
2
3
4
5
6
7
8
9
2

3090 1054 , .52

S. C. NICHOLSON
J. JEENEL

Watson Scientific Computing Laboratory
612 West 115th Street
New York 27, New York

1. The IBM-Naval Ordnance Research Calculator, now located at Naval Proving Ground;
Dahlgren, Virginia.

2. GEORGE W. REITWIESNER, “An ENIAC determinaticn of = and ¢ to more than 2000 decimal
places,” MTAC, v. 4, 1950, p. 11-15.

3. For a description of the NORC checking system, see W. J. ECRERT & R. B. JoNEs, Fostery:
Faster, McGraw-Hill Book Company, New York, 1955, p. 98-104.

Orthogonal Polynomials Arising in the Numerical
Evaluation of Inverse Laplace Transforms

Abstract. In finding f(£), the inverse LAPLACE transform of F(p), where (1)
ctjoo
f@® = (1/27rj)f _J e?*F(p)dp, the function F(p) may be either known only
e—Jco

numerically or too complicated for evaluating f(¢) by CaucaY’s theorem. When
F(p) behaves like a polynomial without a constant term, in the variable 1/
along (¢ — jo,c + j=), one may find f(¢) numerically using new quadrature:
formulas (analogous to those employing the zeros of the LAGUERRE polynomials
in the direct Laplace transform). Suitable choice of p; yields an #-point quadratur

_ORTHC
semula that i
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- Y A.'(")P‘ln(
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malization Pal
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ctjea
1172x7) ¢

3%
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Formula (1) is
v ¢ 1s a real
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oo wwnang weudrical aischarges and, assuming
1009, eﬁmency of the bond-breaking process in the poly-
thene molecule, has calculated that 3 x 10° discharges are
necessary to produce optically detectable damage at any given
site. He also quotes the results of experiments, made under
alternating-voltage conditions, indicating that 10° discharges
are necessary at a given site for the start of visible erosion at
the inception stress, and deduces that the efficiency of the
bond-breaking process need only be low to account for the
nbserved damage. Bearing in mind that the degradation of
solid dielectric by electrical discharges is highly stress dep-
endent, the present measurements would appear to be
consistent with Garton’s figures.

The authors wish to thank M. W. Humphrey Davies
for his help in providing the facilities for this work and E. J.
Spall for experimental assistance. They are also grateful to
the UK Science Research Council for financial support and
to British Insulated Callender’s Cables Ltd. for the supply of
polythene.

S. BEG
B. SALVAGE

21st February 1969

Department of Flectrical & Electronic Engineering
Queen Mary College
Mile End Road, London El, England
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NUMERICAL INVERSION OF LAPLACE
TRANSFORM

An explicit formula for the inversion of the Laplace transform
is derived. The formula permits the inverse to be readily
evaluated numerically.

A well known problem which arises frequently from the
application of the Laplace transform to scientific and en-
gineering problems is the numerical evaluation of the inverse
of the transform. The problem has recently received a good
deal of attention,! and it appears that no completely satis-
factory solution has been offered. This letter presents a new
method for the numerical inversion of the Laplace transform.
Let f(¢) have a Laplace transform

F(s):ff(r)exp(—st)dr Re(s) >0 . . . ()
(1]

Thus it is assumed that f(¢) is integrable and of exponential
order o.

Let 8(~ —_ 1) denote the scaled delta function defined by

J:S(? — 1) dA =t

8(?-—1):0 PEX L B

O<t<T . . . . @

120

1:;{/()\)8(’5#1)(1/\ 0o<I<T . . @

Making use of the property of the delta function given in
eqn. 3, whenever ¢ is a point of continuity of f, we can replace

the integrand of eqn. 4 byf(f)B(? — 1), and therefore

T
-1

Hence, using eqns. 2 and 4, we obtain the sifting integral
. , A
associated with 8(~ — 1):

1)(1/\ 0<tI<T. . . (5

(r)-—Jf(A)8(~~l)dA 0<t<T. . (6

At those points ¢ where the function f jumps discontinuously
from f(t — ) to f(¢ -+), the Lh.s. of eqn. 6 should be replaced
by

kS =) + kaf ()}
where k; and k, are real nonnegative constants so that
ki + ky = 2. In particular, k; = k; if 8(— — 1) is defined

as the ‘limit’ of a sequence of functions which are symmetrical
about the vertical line A = ¢,
1t can be proved (a proof will be presented elsewhere) that

the scaled delta function & /—\— 1) can be expanded into
the series d

8(%ﬂ1 :élKiexla(——a,?) N )

More precisely, it can be shown that a sequence of functions

{SN (? — 1)} exists, so that at every continuity point 7 of f,

f(t):A}imfN(l) 0O<t<T . . . . . &

T
wherefN(/):;jf(A)SN(;—\~I>d/\ 0<t<T . 9
0

N
SN(%::I = 2 K;exp ‘“O‘i?)-_ R

i=1
(@) the constants «; and K; are either real, or occur in com-
plex-conjugate pairs, e.g. «; = «f, and hence K| = K*
(b)) o; and K; depend on N
(&) as N—> 00, 50 also Re (o) — 0 and | K;| - o0
(d) Re (e;) >0
(e) the «; are distinct, i.e. o = a if, and only, if { = j.

From eqns. 9 and 10, we have

fN(t)~—ff(7\)§3Kexp<— )d)\ 0<r<T. (i)

Hence
1y A
o) =7 3K (/\)exp(woc,-;>d/\ 0<t<T. (12)
Allowing T'— o0, and using egn. 1, we obtain
N
v fN(’) = ;— 2 KIF(O(i/f) 0 <t <C t(.‘ . . . (13)
where 7, = min {Re(e;fo)} o>0. . . . (14
i=1,2,,..N

As N o0, Re(e;) — o0, and hence £,—> 0. Therefore, using
eqn. 8, we obtain the explicit inversion formula
f) = hm ~ Z K, F(oyft) 0<r<oo . (19
N—soo b i=
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A number of methods for obtaining optimal sets of constants
o; and K are being investigated, and the full results will be
presented later. One (nonoptimal) set of constants for N = 10
is given in Table 1, where 4; = K [e;.

Table 1

i ag Ai

1 5-2038 — j15-7212 —10-15471 — j4-260437
2 5-2038 4 j15:7212 —10:15471 + j4-260437
3 8-7980 — j11-9391 189-2250 + j250-7353
4 8-7980 + j11-9391 1892250 — j250-7353
5 10-9343 — j8-4096 —866-2283 — j2313-588
6 10-9343 4 j8-4096 —866:2283 -+ j2313-588
7 12-2261 — j5-0127 1560540 - j8422-502
8 12-2261 4 j5-0127 1560540 — j8422-502
9 12-8376 — j1-666 —872-8822 — j15431-37
10 128376 4 j1:666 —872-8822 + j15431-37

The truncated inversion formula of eqn. 13 was used in
conjunction with the constants of Table 1 to invert a large
number of transforms. One example, the significance of which
has been discussed,? is given by

(s — D(s — 2)(s — 20)
(s — D(s — 2)(s — 20)(s -+ 1)
and the corresponding approximate and exact inverses are
shown in Table 2.

Table 2

F(s) = J(t) =exp(~1)

! 0 0-2 0-4 0-8 16 22

S{t) (1-0000 10-8187310-6703210-4493310-20190;0-11080
S10(1)10-9995810-81865)0-67051|0-44990]0-20282|0- 11181

_ Iam grateful to A. Rodrigues, who computed the results
given in the Tables.

V. ZAKIAN 27th February 1969

Conirol Systems Centre
University of Manchester Institute of Science & Technology
PO Box 88, Sackville Street, Manchester 1, England
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IMPLEMENTING AN
ERROR-LOCATING CODE

A binary code which locates the position of a single subblock
containing errors in a code word is described briefly, and a
decoding technique employing feedback shift registers is
discussed.

Although codes for error location have been known for several
years,! there is little published work on the implementation
of these codes. It has been shown that some error-locating
codes are equivalent to cyclic codes under co-ordinate per-
mutation,? which gives the opportunity of using standard
shift-register {echniques to determine the syndrome com-
ponents for a received word.? The problem of determining the
location of subblocks containing errors from the syndrome
remains, however, This letter describes a decoding procedure
for an error-locating code which indicates the location of a

cetmvala crtlItAanl At et ey e sn oy v da s d

The code used to demonstrate the method is equivalent to
the (63, 51) code first described by Wolf and Elspas,! and is
also a member of a more general class of codes described by
Goethals.?2 The 63-digit code word is subdivided into 9 sub-
blocks of 7 digits, and the position of a single subblock
containing not more than 6 errors can be located in a code
word. A parijty-check matrix for the code is formed by the
Kronecker product of the parity-check matrices for a (7, 1)
cyclic-error-detecting code over GF(2) and a (9, 7) Bose-
Chaudhuri-Hocquenghem single-error-correcting code over
GF(2%).

The error-detecting code has a generator polynomial

£100 = (L x + (1 + 2% + 29

Roots of the generator polynomial are 8 and B3, where §is a
primitive 7th root of unity.* The error-correcting code has a
generator polynomial

g2(x) =14 Box + x?

w? is a root of g,(x), where w? is a primitive 9th root of unity.
The only other root of g,(x) is w5, since (w*? = w’ and
(w¥)? = w.

Taking the Kronecker product of the parity-check matrices
of these two codes gives the parity-check matrix H for the
error-locating code.

o [SEREEBEE S ) D). ]
- LO[BORBRBBBY i BBBC .. ] BB .
This error-locating code can be shown to be equivalent to a
cyclic code having generator-polynomial roots w*f = «??
and w*B® = «*!, where o is a primitive 63rd root of unity.?
Taking the minimum function of o2? and «3! gives the

generator polynomial

gx) = (A + x5+ 290 + 22 + x* + x5 + x9)

The relationship between this code and the double-subblock
error-locating code described in Reference 2 will be apparent,

Encoding 51 data digits into the 63-digit equivalent cyclic
code word presents no problem, and may be accomplished
in the usual manner by using a 12-stage feedback shift
register.’ Digit interchange then takes place, rearranging the
positions of the digits to form the error-locating code word.2
This digit interchange also takes place at the receiver to
convert the error-locating received word into its equivalent
cyclic form, which enables the syndrome components to be
generated using 6-stage feedback shift registers. Four such
registers are used, corresponding to substitution of x = w“ﬁ,
’B, w3 and w’B? in the received word. Fig. 1 shows the
register used for substituting x == wSB in the word.

input

Fig. 1 Shift register with multiplication by w4f = 50 on each shift

Suppose the received word contains a detectable error
pattern in subblock j, described by the error vector #;(x), The
four parity-check registers will contain the following syndrome
components:

Register 1: (w*)/v;(8)
Register 2: (w')/v;(B%)
Register 3: (w®)/v;(B)

ﬂf}i BanAg
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Comparing (4) with (2), we get the required formula as

+ a'uarax(hs(lzz(‘l)z -+ (1'14(1'41(1123(132‘(—']

. e F Ny :
k Liy*k k e

i by = (—1) 2 Z; (=D C(Gos); + a’lzarzaara-la-n('“l)l + s Ay, 0 (— 11

;i I

(’C = 1, 2) Tt n)- (5) + alaagla‘;g(lm(—l)l + (,113(1,,“(1‘“03,2(~1;}. :

s . f . . . : ITH at , g . ;

The application of this formula is greatly facilitated by means of T 1)1 T U430y oty 1

the graph drawn in Fig. 1, since all the branches are parallel and
there are no cross-branches.

As an example let us find the coefficients of the characteristic MIRKO M. My
polynomial ‘ Electrotech. Fm-um‘
University of Beoger./
= 2\* 3 2 / O
PN = A= DN A Dol = D A by Beograd, Yugoslavy
From the flow graph given in Fig. 1 and formula (5) we have directly %ﬂéf,,,,
. P
b, = -—(——Gn — Qgg — A3z — (l44) {)?« ﬁ’w@ )
= Gy, + Qo + Gz Oy 4\& {}0\’ L\ W
‘ , \
by = [@as0us(— 1)2 + a34a43("1)1] ¥ o Cﬁh
Lk e

+ [Aas(— 1) + Gastan(—1)"] %M{%%w
+ [azzaaa(‘“ 1)2 + azsaaz(—‘ 1)1] O ;
+ [a51a54(—1)* + ana4(—1)'] On the Inversion of Laplace Transforms by Means cgg

+ [anaaa("‘l)z -+ 013(131('—1)1] . ) . .
In his paper “On the Representation of Transients by Serie
4 [a1,025(— 1) + a150,,(—1)"];  Orthogonal Functions,” Armstrong [1] discusses a procedurc fs
. . inverting a transfer function F(s) by means of an orthonormss
by = —[s5304(—1)" + arzzaua;a(——l) exponential series expansion of f{{). [For the purposes of this papss l
F(s) is assumed to be of the following form: :

bs” 4 b’ ™ A oo 4 b & by,
s' + dq—xsq—l 4+ e+ dis + d,

3 2
— (01105305, (—1)" + antyiau(—1) The exponentials, as he shows in an earlier paper {2}, ean be
2 2 pressed interms of the Jacobi polynomials J,(2,,2]e™!).4 Armstron

W33y (—1)" + @1aa5,a53(—1 : ) \ v .

T G0atss(—1)" + Gutantes(—1) inversion formulae are summarized below [(2)? — (3¢)), sinec
1 1 X p i hi icle, In addi
4 U sa@i(— 1) F @n054055(—1)"] are refe.rred to th}oughoflt the remainder of (1}15 article, 'In '\'ddm
the series expansion which defines the Jacobi polynomiuls is gy

- [(l,”a”a“(—l)s -+ anaua«u(“l)z in (4).

~

Truncated Series of Orthonormal Exponential bunctioa%&f

+ (124‘1‘12@33(’”1)2 + @agaa(— 1)2

+ “24(132@43("‘1)1 + az:}aqzau(”l)l] F('S) =

T ontted =1 duduon(-1) FO) = L0 = 3 Ag)
1 + @siap0,(—1)" + 0'41“'24(‘12(",1)’] n=201-, N "
) o [CL11(1226L33('_'1)3 + 01‘023032(—‘1)2 ‘;’n(t) — (_l)n(2ﬁ)l/2(n + 1)3/26—1“;],.(2; - c“ﬁ‘)
| -+ CL12(L21(L33(—1) + amaax(lzz(—‘ 1) An — ("1)'1(26)1/2(77/*‘ 1)3/2 iCmnF[ﬂ(lin_" 1)]

e B oy N A A SR SR B O TS

BpLA A GSh

=0

(n +n 4+ Hin!
m!n — m)! (m 4+ D! (n 4 D!

-+ (121(13261'13(_1)‘ -+ asxazaalz(’“l)l];

Cnm = (_1)"1

by = [anazzaasaum("l) 4+ ‘111(122(134@13(’“]-)3
-+ (111@23&32@44(”“1)3 + (1'11024@42@33(—1)3 J{a, ¢ l e—ﬁ‘)

+ 120205300 (—1)° + @15050000,(—1)° _ }’i (_D,,,(n) (e + m + W)T(c) o
m/ T(a + )T + m)

i‘L\'IalnuscripL recefi\'edl Septen{)ber ?, 1963; lrevisedlDecembel:ti]%(\,\lgali'mm,a
) 2 This notation for the Jacobi pelynomials is in keeping with Armstr
+ a“auaazaym(- 1) -+ amamauam(ﬂ 1) 2 This equation is a mmvatef version of Armstrong’s (2) which is T
below, for convenience. In practice one truncanies the infinite series, ‘—“(-
2 9 + 1 terms, N can be determined from the truneation error, a T“E’“‘"‘”f 1" :
~{~ (l31a230,12(1,44(-—' 1) + (1141(124(1,12(133(— 1) is given by the integral-squared error, The truncated series is dusngmm“ Nt
distinguish it from f(1). The convergence of fa(t) is discussed thoroughly
literature {3] and, therefore, will not be discussed in the present article.

m=0

-+ (114(1411122(1,33(-—1)3 + a,“a“a“a%(——l)z

+ a‘l.’ia"lla.’i‘za’»l-i(—l)z + ‘1’13(1:51(’/2»1(1'42(—1)2 ©
eEE)) = (1) = 20 Au(D).

4 030 Qyelas(— 1)2 + a14azla4zasa("l)2 n=0

=,

4

7 SR :

TR




or
“fixe. -0e values of a and ¢ at two. It is clear, however, that this

“choice constrains fu(¢). In particular, one ean show from (2) and

ias can be seen, Ju(a, cle™) is a function of three parameters g, ¢
nd the variable . It is not clear from [1] or {2] why Armstrong

a) that

R

lim F,(s) = lim ¥,(s) = oo

‘which from (1) is 1/s%77, and, which is always known at the onset of
““{he inversion, that f.() will match f(¢) poorly at (and in the vicinity
of}t = 0,for g — » > 1. Thisfollows from the Initial-Value Theorem.

Loyhere

_al[rePre+a—c+ 1) @
T (e 4+ 20)D(e + 2T + n)

wds a set of exponentials which are orthonormal with respect to a
~uniform weighting function. These exponentials have the property
s:that their Laplace transforms approach 1 /g'@=/21+1 for large values
iFof s; that is to say,®

K,

2.0, (@) = 9—%—”3 + 1. ®)

le purpose of the present communication is to present a gener-
shzation of Armstrong’s inversion procedure, Here a and ¢, in (1),
-gre chosen =0 as to improve the inverse, which in this case is

1.0 = 2. A0, )

n=0

for small values of time.

wiRemark 1. The main advantage of Armstrong’s procedure is that
i enables one to invert F(s) into a series of exponentials without a
iriori knowledge of the poles of F(s). The inclusion of the asymp-
totic order of F(s), which is known a priori, into the inversion pro-
seedure means that the initial values of fo(f), f.(), -+, and
LT (1) will equal the zero initial values of £(¢), f(8), -+ , and

BT ) respectively; thus, the inverse will be enhanced in the
vicinity of zero ime, as desired.!

“Remark 2. It is quite obvious that (3a) is a special case of (6).
Bpecifically,

) = ¢ut) lamocan (10)

““The results derived in the following section for A, in (9) should,
““therefore, include (3b) as'a special case.

“+Remark 3. The unity asymptotic order case does not necessarily
Frestrict ¢ and ¢ to two; it merely requires a = ¢, as is evident from
* {8). A procedure for choosing « and ¢ s discussed in the proceeding
“ section,

' Sets of ¢n(f) which are orthonornal with respect to nonuniform weighting
sulictions, which are given by an equation similar to (6), and which also are of any
e “)'ﬂld)t.otic order are given in Mendel {4]. Their use in the inversion procedure
:“““! v complicates the evaluation of A, considerably; however, their use improves
- (\e Inverse fa(f) for, not only srnall values of time, by virtue of their asymptotic
oder, but, also other intervals of time, by virtue of their normulity with respect to
‘28 vonuniform weighting funetion,

PA, O, (d) is read “the asymplotic order of ®,(5).”
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Following Armstrong’s derivation of A, (3b), [1] one can show
first, that ®,(s), the Laplace transform of ¢.(¢) in (0), i3

B {a=¢c)/2 n ) 1
:[&_-' ;} Zo g;:m ¢ (11)
o s+ <Ic 4+ m -+ —2~>B

D,(s) = (—1)"

where

_— remf (@ — ¢)/2Y(n ) T(a + m + W)T{c) |
g = (=1) ( k )(m) IMa 4+ I + m)’ (12)

second, that 4, can be evaluated {rom the integral

L[ F(s)®,(—s) ds (13)

n = .
27T] g—jo

by contour integration; and finally, that
’/3— (a=e)/2 =n c

A, = (—1)"\/— 20 2o Gl ﬁ(lc + m *) + (14)
Ifn k=0 m=0 2

The complete inversion procedure follows from (9), (6) and (14),

once B, a and ¢ are specified.

Remark 4. Note that

Cmn = g,I:m ‘a=v=2- . (15)
The truth of the conjecture in Remark 2 {follows directly.

Remark 5. The specification of 8, which corresponds to the spacing
of the poles of &,(s) [4], bas heen discussed by Armstrong [1] and,
therefore, will not be further discussed here. @ and ¢ need not be
specified arbitravily. They may, for example, be determined from a
specification of A.O. () and aglthe first pole of @.(s)], as follows:

1) The asymptotic order of F(s) is known; thus, setting A.O.
(@) = A.O. (J"), it follows, from (8), that

¢
5 + 1. (16)

a
AQ. (F) =
2) The first pole of #.(s), aq, is located at

w=2 (17)

Tts location is not immediately available from the given infor-
mation F(s). One procedure for determining ao involves an analog
computer simulation of F(s), from which f(1) is recorded. Since
ag is the first pole of F,(s), it represents the term in fo(¢) with the
longest time constant. Suppose, for example, that, from the analog
computer simulation of F(s), f(1) is found to approach zero ampli-
tude in 8 seconds. It is safe to assume then, that if a single term
in f(2) contributed the 8-second response, it would be of the form
e+, Based upon this assumption, one would choose @y = %.
a and ¢ are found, from (16) and (17), to be

@ = 2[A.0. (F) — 1] + 2%0 (18)
¢ = 2ay, (19)

5 A diseussion of the contour integration details can be found in Armstrong [1];
hience, they will not be eluborated upon here,
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—m—— ARMSTRONG'S THREE-TERM APPROXINATION

= —— = THREE-TERM APPROXIMATION HAVING THE CORRECT
ASYMPTOTIC-ORDER I THE S-DOMAIN
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Fig. 1—Plot of Armstrong's and the author's three-term approximations of te~¢,

Ezample

Armstrong (1] considers the inversion of

1

TR

(20)

by means of the following three-term series:

10 ~ 1.0
= S CUANVI T e, 2 ). @D

The constants d,, 4, and A, are determined from (3Dh) with g = 1.
Carrying out these calculations and expanding f.(£) in (21), it is
straightforward to show

f() = 2.5833¢™ — 5.000067 - 2.500067% . (22)

This function is plotted in Fig. 1 along with f(¢). In addition, a three-
term result of the inversion procedure, outlined in the preceding
section,

fo(t) = 3.0692¢™" — 8.5412¢7%
+ 9.4200¢™% — 3.9480¢" (23)

is also plotted in that figure, The calculations (omitted for the sake
of brevity) which were performed in the determination of (23) were
based upon the following specifications of 8, a and c:

1) The spacing of the poles of Fa(s) in Armstrong’s results, (22),
is unity; thus, for the sake of comparison, g8 is also chosen to be
unity.

2} A.O. (F) = 2; thus, A.O. (®,) = 2.

3) The location of the first pole of Fu(s) in (22) is at s = —1,
Again for the sake of comparison, e is chosen to be unity.

From 2), 3), and (18) and (19), ¢ and ¢ are found to be 4 and 2 re.
spectively.

It is apparent, from Fig. 1, that both Armstrong’s and this
author’s three-term approximations approximate f(¢) quite well
{in the sense of closeness-of-fit as measured by the magnitude of the
difference between f(£) and fo(¢)). It is also apparent, however, that
choosing the correct asymptotic order for the approximation does |
improve it for small values of time. The price paid for this is the
addition of a fourth exponential in the “three-term’’ approximation
(23).8

CoNcLuUsIoN

This communication is not intended to be all inclusive. It points
out the possibility of and a method for improving the inverse for small
values of time. In effect, the inversion procedure discussed above
represents one solution to the problem of inverting a transfer func-
tion, whose poles are not known « priori, such that the initial values
of (the inverse) f.(t), f(), -+ , and f{""2)(¢) are constrained
to the zero initial values of f(£), fV(2), «++ , and £~ "= (¢) respec-
tively; that is to say, it represents an inversion with “initial-value
constraints.”

Jerry M, MENDEL
Astrodynamics Branch

Missile and Space Systems Div.
Douglas Aireraft Co., Inc..
Santa Monica, Calif. -

8 In general, an # < 1 term expansion in (9) of asymptotic order N consistd ® =5
of n -+ A exponeutials.
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:G‘roup Delay Characteristics of Chebyshev Filters

“ Insertion loss characteristics of Chebyshev filters are well known
+nd synthesis procedures are readily available from existing liter-
gture.t In certain applications, knowledge of the group delay char-
geleri- * 1 is required. Orchard? bas derived explicit formulas for
P.ghe g ! delay of both Chebyshev and Butterworth filters and
Cohn? has presented some group delay curves for n_ = 5. A complete
wt of curves is however not available in existing literature.
. In this communication, normalized group delay characteristics are
presented graphically* for n = 2 through 15 and for ripples of 0.02
~db, 0.05 db, 0.1 db, 0.2 db, 0.5 db, and 1.0 db, labelled on the curves
w5 ¢, b, ¢, d, ¢, and f, respectively. Two graphs are drawn for each n
.to give a clear presentation. Since the peaks of the curves lie beyond
=12 forn = 2, 3, and 4 with ripples @, b, and ¢, the frequency
-mange bas been extended to 2.4 to show up the peaks. For n = 13,
‘14 and 15 with ripples d, ¢, and f, an expansion of the frequency

scale in each graph is the group delay normalized to the de value.
These values are shown in Table I. The curves are applicable to
"-{both the zero insertion loss response

TR S
)" = 1 B0 (w)

.and the finite insertion loss functions

e 1
)l = T W)

since in the former case the ripple is given by 1 + k% and in the
latter by 1 k2 -+ h2/1 + k2 The poles are identical if the ripples are
the same so that the phase responses will be the same in this case.

TABLE I
. )
RIPPLE—DB

n

0.02 0.05 0.10 0.20 0.60 1.00
2 0.503 0.618 0.716 0.818 0.940 0.996
3 1.243 1.436 1.6056 1.804 2.145 2.521
4 2.087 2.292 2.445 2.583 2.705 2.694
5 3.029 3.287 3.506 3.759 4.206 4,726
6 3.957 4.190 4.354 4.488 4.563 4.456
7 4.956 5.243 5.487 5.776 6.300 6.958
8 5.901 6,142 6.303 (.423 6.439 6.231
9 6.925 7.230 7.492 7.810 8.417 9.107
10 -7.871 8.113 8.268 8.369 8,322 8.010
11 8.911 9.229 9.500 9.849 10.53 11.44
12 9.8562 10.09 10 .24 10.32 10.21 9.781
13 10.90 11.23 11.562 11.89 12.65 13.68
14 11.84 12.07 12.21 12.27 12.09 11.57
15 12.90 13.24 13 .54 13.94 14.76 15.92

y Note: Curves for » = 2 — 15 are shown in Figs. 1-14, on pages 105-108.

- The authors are indebted to Prof. P. J. B. Clarricoats for his
constant encouragement and many valuable discussions throughout
the work.

‘ JiN-Twan L

J. O. ScANLAN

Dept. of Elec. Engrg.
University of Leeds,
Leeds, Yorkshire, England

M}m_uscript received March 30, 1964, This communication is published by
Permission of the Navy Department, Ministry of Defense, Iingland.

r 'L, Weinberg and P. Slepian, “Takahasi’s results on Chebyshev and Butter-
“l?rl;t.h ladder networks,” IRE Traxs. on Circuir THEORY, vol. CT-7, pp, &8-101;
e 9

) 2 Orehard, “The phase and envelope delay of Butferworth and Chebys-
cthefl . g, IRE Trans. on Circvorr TREORY, vol, CT-7, pp. 180-181; June, 1960,
*8. B, Cohn, "Phase-shift and time-delay response of microwave narrow-band
Bliers,” ificromare J., vol. 8, pp. 47-51; October, 1960.
¢ Detailed tables nre available from the authors on request.,

scale between 0.9 and 1.05 has been found necessary. The vertical
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probability of error P,, and hence may be
proposed as a suitable criterion for the selec-
tion of effective patterns in multiclass pat-
ter ognition.
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Numerical Calculation of Cumula-
tive Probability from the Moment-
Generating Function

Abstract—A numerical method for
determining the cumulative probability dis-
tribution of a nonnegative random variable
is based on the steepest descent approxima-
tion of the inverse Laplace transform of its
moment-generating function. Good numeri-
cal agreement with the cumulative exponen-
tial and Poisson distributions is demon-
strated.

It is often important in detection theory
to Jate the tail distribution of a non-
neg.. @ random variable g, that is, the

probability that g exceeds a certain value

Manuscript received June 29, 1972; revised July
28, 1972, This research was carried out under Grant
NGL 05-009-079 from the National Aeronautics and
Space Administration.
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In many problems the Laplace transform
of the protability density function (PDF)
P(g), definedd by

k(s) = Elev] =

where s=a-tiw is complex with «>0, is
easily determined. )

In recent letters, Helstrom?! and Nuttall?
presented numerical techniques for calculat-
ing the cumulative probability from k(s).
However, neither technique gave good ac-
curacy for the tail distribution. On the
other hand, for a nonnegative random vari-
able, the tail distribution can be approxi-
mated by the asymptotic expansion of the
inverse transform of A(s) through the
steepest descent method. The numerical
calculation is not complicated, especially
when there is only one saddle point involved.
Daniels? discussed the approximation of the
PDF of the sample-mean statistic. Rice?
applied the steepest descent method to
approximate the cumulative distribution of
the noncentral chi-square statistic and
presented a more general discussion for
cases involving more than one saddle point.
In the present letter, only one saddle point is
considered.

The tail distribution from (1) can be
expressed in terms of the Laplace transform

h(s) by .

1 atieo 1
Qg = 1 - *“‘_f — e0ohi(s)ds
27t J acine S

1 atio |
=1 = e 3.
2wid goin S
where
é(s) = g ln h(s) + 5 )

is the complex phase of the integral. Assume
the integrand has only one single real saddle
point, which can be determined from the
equation {d/ds)¢(s) =0,

()

d
go = gln h(s) l«’=w

Then the integral in (3) can be approxi-
mated by a uniform asymptotic expansion!
in terms of go and the derivatives of the
complex phase evaluated at so:

Q(g)) = 1 — E(go) — I(go) (6)

where
(1 —erfc [(—2gop(so)) 2], 50 <0
P69 = ot [ 2500y ], 0> 0

3} C. W, Helstrom, “Approximate calculation of
cumulative probahility from a moment generating
function,” Proc, IEEE (Lett), vol. 57, pp. 368-369,
Mar. 1969, :

2 A, H. Nuttall, “Numerical evaluation of cumula-
tive prohability distribution function directly from
characteristic functions,” Proc. IEEE (Lett.), vol, 57,
pp. 2071-2072, Nov. 1969,

3 H, G. Daniels, “Saddle point approximations in
statistics,” Ann, Math, Statist., vol. 25, pp. 631-650,
1954,

48, O. Rice, “Uniform asymptotic expansions for
saddle point integrals—Application to a prohability
distribution occurring in noise theory,” Bell Sys!.
Tech. J., vol, 48, pp. 1971-2013, Nov. 1968.
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and
) = P [go(s0)]
£ [2rrgop @ (s0) ]2
o _2 )k -
Lgo; <go¢>‘”(so) *
2k n
. Z (— sy~ %tn Z Arn(B) e
n=0 =0
— ) (50)\ 12
— 1y,
Smmm”<wm
Ggopoo |
where
i ! ) " exp (—a?/2) d
erfcy = —— exp (—a o
Y ’\/27l' u P
sgn (so) = 1, for 50 > 0
sgn (so0) = —1, for 50 <0
0, forn<lorl=0,n2>1
Al.n = g
1, forl=n=20
—2 N ()
Al+l,n+l= Lin—m+1

PR = CEPCes)
Bn=@EHD) - - - Gm=1), (=1
and

d\" ‘
¢ (s) = go? (;i—) In k(s), forn > 2.
s

The coefficients Ay, can be obtained by
the recurrence relation through the deriva-
tives of the complex phase ¢(s) at s=so
This scheme is easily programmed for a
digital computer. The tail distribution for
g>po is then obtained by adding up the
terms in the asymptotic expansion given by
(6) until they become insignificantly small or
until they stop decreasing and begin to
increase.

When the random variable g is Gaussian

distributed, the term I(go) in (6) vanishes,
and the asymptotic expansion provides the
exact tail distribution, which is the error-
function integral. Equation (5) shows that
the value go at so=0 is the mean value of
the random variable g. The expansion from
(6) will diverge at so=0 because the origin
is also a simple pole of the integrand. The
tail distribution at this particular point
can be approximated by interpolation from
neighboring points, or other methods'? can
be used.

For a discrete random variable g, the
‘tail distribution is

0 =Prlg>pl= D Pl ()

a>ag

and the moment generating function is

given by

ha(s) = Ele] = 3o Ploen.  (8)

< g0

The calculation of the tail distribution is
simpler and more accurate if one first ap-
proximates the probability p(g) and then
adds up the probabilities for all g>go as
given by (7). For instance, when g takes
only nonnegative integral values
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TABLE 1
EXPONENTIAL DISTRIBUTION

20 0.05 0.3 0.6 0.7 2.5 10 20 40 60
Error

%% 0.0072 0.0194 0.3243 0.3310 —0.0174 —0.0866 —0.0866 0.2039 0.6614

TABLE II
Po18sON DISTRIBUTION

2o 6 10 14 18 22 26 30 35
Error

%% —0.0061 —0.0062 —0.0087 —0.0049 —0.0043 -—0.0058 —0.0045 -—0.0028

a’+ix

1
P =5  explepals)lds
exp [gpa(so)] "’( -2 )m

~ [2gda® (50)]11% 26 \ gbat® (s0)
. lf‘, Ao t4m )
with -
$a(s) = g In ha(s) + s 10)

where the integral is over an interval of
length 27 with o’ >0. The saddle point s,
the coefficients A.,, and the derivatives
of the complex phase ¢4(s) can be obtained
as before. .

Examples

1) Exponential distribution

PO~ P B2 ap
where
h(s) =1 + )
$() = —go'In(1 +5) +s
so=(1 — go)/g0
& W(se) = (— g™ Un — 1)1, forn > 2.

The tail distribution calculated by the
asymptotic expansion from (6) is compared
with the exact value in Table I, which shows
the percentage errors for several values of

gu.
2) Poisson distribution

P(g) = e™M\a/g! (12)
where
ha(s) = exp [Me™ — 1)]
¢a(s) = g1 Me = D] +5
so=Ino (\/¢g)
$a™(sq) = (—1)n,

The numerical calculation of the tail dis-
tribution by (9) and (7) is compared with

forn > 2,

~ the exact value and the percentage errors

for different go are shown in Table Il for
A=15.
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Noise in Two-Way Cable-
Communications Systems

Abstract—Equations for determining the
reverse direction noise are provided., This
noise results in a reduction of the system
signal-to~noise ratio in the forward direction,
The resulting correction term describes the
reduction and is a function of the type and
number of vertices in the system tree.

Consider the cable-communications sys-
tem representation [1]in Fig. 1. The vertex
[2] designated by 1 is a signal source, or
central vertex, for the other vertices in the
graph, This source provides transmission in
the forward direction. Vertices 2 and 3 are
designated as terminal vertices. Additionally,
cable length /; contains m; vertices where
amplifiers provide gain and equalization {3]
for signals en route to the central vertex.
Each of these reverse direction amplifiers
has gain g;, and similar statements apply to
the other cable lengths. Moreover, unity gain
exists for cable and amplifier pairs.

The noise returning to the central vertex
is identified as either amplified noise (V,) or
network noise (¥,). This description results
from the following noise figure equation [4]
for cascaded networks

Jus=fi+ (o= D/ei+ (s — D/gigs (1)

and is rewritten as
Sro3g1g2¢sKTB = (KTB)gigags .
+ [(i = DKTBgi)gets
+ [(f2 — DK TBg:]es
+ [(fs = DKTBgl.  (2)

This output noise equation contains a source
noise term K TB amplified by the product of
gains ggsg:. The other terms represent the
noise originating from within the networks.
Specifically, the noise originating in network
1is (fi—1)KTBg, and it is amplified by an
amount gog;.

Returning to Fig. 1, the noise at the
central vertex from terminating vertices 2
and 3 is equal to 2KTB with unity gain
existing for cable and amplifier pairs. For p
terminating vertices this noise contribution
becomes

N. = pKTB. 3)

Manuscript received July 14, 1972, This work was
performed in partial fulfillment of the requirements for
the Ph.D. degree in engitieering at the University of
California, Irvine, Calif,
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Fig. 1. Two-way system noise example.

For cable length I;, there are m; amplifiers
and each has a noise figure f;. The resulting
network noise (V,) is 2 2wy (m,fi—1)K TB,
and the total noise in this example is

3
Nr = 2KTB + ) (mifi — )KTB. (4)
it
With M cable lengths and p terminating
vertices this equation becomes

M
Np = pKTB + 2, (mifi — )KTB. (5)
i=1

To include additional noise contributions
from specific vertices, the noise term Ny, is
added. Thus the returning noise becomes

M

Nr=pKTB+ ) ((mife—1)KTB+Ng). (6)
=1
The total noise after #» amplifiers in the
forward direction, as a result of noise addi-
tion from the reverse direction, is

Np = mgfKTB + Nrp. ()]

Equation (7) is next converted to dBmV
(0 dBmV corresponds to 1 mV) by using
logarithms and subtracting the result from
the amplifier output signal value SindBmV.
Symbols G and F are for the power gain g
and noise figure f, respectively. These quan-
tities are expressed in decibels. Accordingly,
the resulting signal-to-noise ratio is

10 log (s/Ny) =S — G — F — 10log KTB
—~10logm — C (8)
where the correction term C is given by

C = 10log (1 + Nz/(mgfKTB)).  (9)

This signal-to-noise ratio equation without
the correction term has appeared in {3].

These equations provide a simple means
of determining the signal-to-noise ratios in
systems with partial or complete two-way
usage.
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A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORMF*

BY
ATHANASIOS PAPOULIS
Polytechnic Institute of Brooklyn

Introduction. In determining a function r(£) from its Laplace transform R{p)

R = [ " ey dt )

ne applies either a partial fraction expansion or an integration along some contour in
“the complex p-plane; one thus obtains 7(f) in terms of the poles and residues of E(p),
r from the values of R(p) on a contour of the p-plane. Both methods have obvious

isadvantages for a numerical analysis.
In the following we propose to develop a method for determining r(¢) in terms of the

alues of R(p) on an infinite sequence of equidistant points

k=01, ,m, - 2

P = o+ ko

n the real p-axis, where a is a real number in the region of existence of R(p), and an
4 ‘arbitrary positive integer. That R(p) is uniquely determined from its values at the
~above points, is known [1]. Tt should therefore be possible to express r(¢) directly in
“terms of R{a - ko). In this paper it will be shown that () can be written in the form

"0 = 3 Cnld, @)

here the ¢,'s are known functions, and the constants C, can readily be determined
from the values of E(p) at the points a + ke.

The ¢.’s can be chogen from several sets of complete orthogonal functions; in our
-discussion we shall use the familiar trigonometric set, the Legendre set and the Laguerre
olynomials,

The trigonometric set. We introduce the variable 6 defined by

e™ =cosd o >0. 4

The (0, ») interval transforms into the interval (0, w/2), and () becomes

r(—l In cos 0).
ag
For simplicity of notation we shall denote the above function by r(6) using the same

letter ».
The defining equation (1) takes the form

R = [

i o
(cos 6) f”“"‘ sin 6r(6) df - 6))

*Received January 6',‘ 1956. Part of & p'aper presented at the Symposium on Modern Network Syn-
thesis, Polytechnic Institute of Brookiyn, April 1955.
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hence with

P =0k + )¢ k=0,1,2, ...
we have

. In the following we shall assume, without loss of generality, that r(0) =

- nterval into an odd-sine gerieg

interval,
We shall next determine the coefficients (', . We have

ig —ib0\2n g )
(cos 6)*" sin o (%) M )
2 27 !
expanding in the right hand side and properly collecting terms we obtain
2"(cos 6)* sin g — sin 2n + 1o 4- ...

ST (/R ) E N o T

n

w/2
/; [sin (2n + o> de = g ,
we have

R[(2n + 1)¢] = g T {[(in) B (n 2_n1)]00 .

L) o

| hence with = 0,1,2, .- we obtain the system
L ‘

N

4
; aR(cr) = (, ,

2o 4
2 ;UR(30’) =0+ C,,
Ce .. : 9

22"3 oR[(2n + 1)o] = [(i") - (n 2n 1)]00 ...

(/RN

[Vol. XIV, No. ¢

ol[(2k + 1)¢] = /0‘ ” (cos 6)* sin 0r(9) do. (6)

. e fg 0 subtracting.
if necessary, a constant from »(4). The function 7(6) can be expanded in the (Oac:?‘;g), :

r6) = k\f; Csin (2K + 1), @

This can of course be done by properly extending the definition of 7(6) in the (—q + )
b

19571 IN

Thus R(s) gives C, .
together with the coeffi
obviously be written in
alone, but not much is gz
be used as easily. Table
the right hand side of (¢

0 1
1 1 1
2 2 3
3 5 9
4 19 28
5 42 90
6 132 207 2
7 429 1001 1¢
8 1430 3432  38;
9 4862 1174 132
10 16796 4} 484

Thus a method of an
the known methods of
B((2k + 1)0) presents n
the trigonometric functio
accuracy from the series
sum

of the first N 4 1 terms
the approximation is wel
are related by the equatic

~(6)

thus the approximating fi

as the weighting factor, F1
established by (4); howeve
since
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Thus B(s) gives Co , R(30) give C, and each value of R(p) at the points (2k + 1)e
wgether with the coeflicients Cy , C; -+, Ci_, , determines C, . The system (9) can
gviously be written in such a way as to give directly C, in terms of R(s), B(30), - - -
Jone, but not much is gained, since in a numerical evaluation of the C,’s equation (9) can
me used as easily, Table 1 gives the numerical values of the coefficients of the C\’s in
the right hand side of (9), fork = 0, 1, -+-, 10.

Tasue 1

C» Cs C, Cs Cs ¢,

1
5 1
1 20 7 1
4 75 . 35 9 1
132 275 154 54 11 1
429 1001 637 273 i 13 1
1430 3640 2548 1260 440 104 15 1
4862 13260 9996 5508 2244 663 135 17 1
16796 48450 38760 23256 10659 3705 950 170 19

Thus a method of analysis has resulted which compares sometimes favorably with
i known methods of numerical evaluation of 7(f). Indeed the computation of
R{((2k + 1)o) presents no difficulty, and the C)’s can be readily determined from (9);
the trigonometric functions are available, hence 7(0) can be computed with any desired
accuracy from the series (7). In a numerical evaluation of »(f) one computes the finite
sum

ra(0) = lﬁ, Crsin 2k + 1)6 ) (10)

of the first N -+ 1 terms of (7); as N tends to infinity ry(6) tends to 7(6). The nature of
the approximation is well known from the theory of Fourier series [2]; »y(8) and #(6)
are related by the equation :

/2
o) =2 [ )

sin [3(4N + 3)(6 — »)]
sin 3(6 — %) dy, (1

thus the approximating function ry(6) is the average of 7(6) with the Fourier kernel

sin [3(4N + 3)(0 — )]
sin 3(0 — )

a3 the weighting factor. From r(8) one can readily obtain r(¢) with the change of variable
established by (4); however, ¥q. (7) can be written directly in the time domain, Indeed
since
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where Un(z) are the Tchebychefr sine—polynomials of order » ang
Sin G = (1 — g-2eny12

we have from 7)
r(t) — (1 - e-zvl 1/2 g OkUzk(e_”).- (12)

The choice of 4 depends on the interval (0, T) in which 7'(t) is best to be describeq ;
if it is chosen 50 that I

then the 0, 7 interva] transforms intg the (0, 7/3) interval. If a detailed descriptiop
of 7(t) is desired both near the origin and fop large values of ¢, then the function ¢ap be

The above provides g simple proof of the announceq theorem that the Laplace
transform R(p) is uniquely determineq from its valyeg at the sequence

De=q 4 ks /c=0,1,~~,n,--- 2

of equidistant points on the real p-axis, Thig proof uses the well-known orthogonah'ty
and completeness of the trigonometrie set. Indeed r(6), and hence r(®), is completely
determined from the coefficients C, of (7); these coefficients can be determined from
Bla + ko); knowing 7(t) one clearly hag R(p) therefore B(p) is uniquely determined
from itg values at the points (2), . : .
The Legendre set. We shal] next expand r(t) into a series of Legendre Polynomials,
We introduce the logarithmje time-scale defined by ‘

by r(z). Equation (1) takes the form &
1 ’
oB(p) = f ' “'r(z) dy ‘ (14),

] o
from which e obtain with P = (2k + 1), ‘
. 1 ;

Rk + 1)5] — / (@) de. (13)

o .

Thus the value of the funetion R(p) af the point [k + 1)01 gives the 2kth momené
of the function () in the (0, 1) interya] » :

It is known that the Legendre polynomialg Pi(z) form 5 complete orthogonal set
in the ( —=1, 1) interval; We extend the definition of 7(z) in the (=1, 1) interval by -

r(—2) = ().

1957]

This function, b
polynomials, We

using the time sc

To determine the
nomial in ¢™**, of

where N (p) is a e

From Egs. (18) anc
\

hence the roots of 7

and ®,,(p) can be
P,

where 4 is a constan

and since Py(l) = 1

Thus the Laplace

d,

Taking the transform
&(p)

If we replace D by

|
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)
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This function, because of its evenness, can be expanded into a series of even Legendre

lynomials. We thus have

@) = ki P2, (16)

| Jsng the time scale we can write (16) in the form

() = k)i O Pue™). ()

2o determine the coefficients Cj, in (17) we observe that Pa(e™"), being an even poly-
omial in €™, of degree 2k, will have as transform the function

_ N(p)
q’zk(p) —p(p+2<f) -~-(p—|—2ka)’

khere N(p) is a polynomial of degree less than 2k. It is further known that

1
f Py(e) de = 0 for n < k. (18)
1]

i{‘rom Egs. (18) and (15) follows that
&,l@2n + De] =0 n=0,1,-+,k—1

rence the roots of N(p) are
@2n + Do n=201,-,k—1

nd ®,,(p) can be written in the form

_(p—o)p—380 - [P — 2k — o]
2u(p) = S ERCE S AT R

determine A we observe from the initial value theorem that

here 4 is'a c'onstant; to
1im pq)gk(p) = A = Pg},(l)
g

iand since Pa(1) = 1, we must have
A =1

Thus the Laplace transform of P,.(e”°") is given by

(- o)p—30) - [p — (2 —")o]
) = 20) - (b 2) (19)

aking the transform of both sides of (17) we obtain

0 > (p—a) - [p— 2k — Do
R(P)=%+,;(p ;_,_([ergcff) Del g, . (20)

a,30, +o+ , 2k + Do, -+
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in Eq. (19), we obtain the system -

G’R(U’) = Co )
oR(3s) = %9 + ?2)—031 ,
ORIk 4 1)o] = Lo 4 2C,

%+1 T @ Ty Fy T

4 — 2k(2k — 2) ... 20,

@k + Dk +3) - @k + 1)

Again R(o) gives C, , E(30)C, and so on. The p

r(x) with the Legendre kernel as the weighting factor
same considerations as in 7.

The above discussion furnishes g proof of the

function 7(z) in the (0, 1) interval is uniquely dete

1

M, = [ r@)z" dx m=0,1, ...,
o ;

artial sum ry(c¢) is the average of
. The constant ¢ is chosen with the

“Moment theorem’ [1], [4]: that a .
rmined from its moments, e

a

The proof is based on the orthogonality and completeness of the Legendre poly-
nomials. In fact we also succeeded in writing 7(z) as an infinite sum of Legendre poly-
nomials that can be determined from the moments of r(z); these coefficients are given
by the system (21) where on the left hand side we replace R(2k + 1)o) by M,, . v

The Laguerre set. As a last case we shall consider the Laguerre set which has already
been used in network analysis and synthesis [5]. The method described here will give a
simpler way of determining the coefficients of the resulting expansion; it will also make
clear the nature of the approximation, if the series containg only the first N 4+ 1 terms.

The usual definition of the Laguerre polynomials L,(#) is L

T . : ) L
Li(t) = ¢ rd kit (22)
With .
| oilt) = e L)
“we easily obtain for the transform of ¢, ()

k
(p) = (p*fﬁ

Since the derivatives of D,

(p) of order less than & are zero af the origin, we must
have [7] : , .

f Po) dt =0 for n <k — 1.
. A ,
With

() = kz\; Cian(t) (26)

1957]
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It can be shown by differentiating n times the power series expansion at the origin

1 .we have

@

PR fl)m ot Y (" ;f ’“)(—1)";)". (28)

‘Fxpanding the function R(p) at the origin we obtain

R@p) = ij wp'. (29)

i...(4k+1)'

7x(z) is the average of

ant o is chosen with t}, From Eqgs. (27), (28) and (29) we obtain equating equal powers of p

'at):CO:
U/1=01"Co,

‘gorem” [1], [4]: that 4
1ls moments.
e (30)

. ]c k
ot et o=~ (%o o (DG
sum of Legendre poly-
3 coeflicients are given
+ 1)o) by M,, .

e set which has alreadv
cribed here will give a
;_jllgr;{ lltt ‘},\lfu also make ' Thus knowing the coeflicients a; of the series expansion (29) of E(p) we can readily
st J + 1terms. ~ determine from (31) the coefficients of (26). |
) + Suppose that (¢) is approximated by the finite sum

The above system can be solved explicitly for C, , with a simple induction [6]; the
esult is given by

C,, = Zk <I;.>ak_,- .. (31)

=0

.\ N
= () = 23 Cunnll) (32)
o ‘of the first N 4 1 terms of (26); then the transforms R, (p) and R(p) of ry(f) and »(¢)
(23) “have equal derivatives at the origin of order up to N, therefore [7]
f e dt= [ Bd nsN 33)
(2 1) 0 ) 0 :

hat is the function #(¢) and ry(¢) have equal moments of order up to N.
Examples. In the following applications we shall use for our expansions the trig-

the origin, we must ,
‘onometric set. We have approximated the inverse of E(p) by

where the coefficients C, are given by (9) which we write in the form

(20) | G0 = o2"R(@n + Da] - ) [(J on 1) - (n _2]."_ 1)]0 : (34)

i=0

R N S ke it
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- LGy D

It can be shown by differentiating n times the power series expansion at the origin

k
P n + Ic) v
GigT =" E( (=) (28)
‘Expanding the function E(p) at the origin we obtain .
R(p) = I; ap”, (29) N
From Eqgs. (27), (28) and (29) we obtain equating equal powers of p B
“dy = Cf , '1,: I
ay = 01 - Oo ’ A .
(30)

ap = Okv— (If)ck—l + R (“cho .

The above system can be solved explicitly for C, , with a simple induction [6]; the
result is given by

¢, = 3> <’”ﬁ)ak_,. .I @31

i=0 \J
Thus knowing the coefficients a, of the series expansion (29) of R(p) we can readily
Suppose that r(¢) is approximated by the finite sum
N
n(t) = k}: Crpi() (32)
=0

f the first N <4~ 1 terms of (26); then the transforms R, (p) and R(p) of ry(¢) and r(f)
ave equal derivatives at the origin of order up to N, therefore [7]

[ enwar=[ owa asw (33)
(4] 0 :

hat is the function 7(f) and ry(f) have equal moments of order up to N.
Examples. In the following applications we shall use for our expansions the trig-
nometric set. We have approximated the inverse of E(p) by

rn(6) = ZN) Cosin (2% + 1)0 (11)

where the coefficients C, are given by (9) which we write in the form

EC’,. = o2"R[(2n + l)a]‘ - ’il [(J 2-1} 1) B (n —Zjn— i):lci ' (&4)

i=0
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, As examples we shall take functions whose inverse 7(¢) is known, so as to compare 0]
with 74(¢). For the choice of ¢ we are guided either by the (0, T) interval of interest,

or from the (0, p) interval of the real p axis in which E(p) has its greatest variation;
the choice of ¢ is not critical.

Ezample 1. :
Rip) =< L - we take ¢ = 0.2
, 7(p+0.2)°+1
§ :
{ TaBrLE 2
1’; Example 1 Example 2
:
i k Ci 10 C; 104
1
H 0 1724 1961
! 1 3154 4899
g 2 205 4009
g 3 —2075 460
4 380 633
5 530 1762
6 —754 166
7 474 862
8 —193 718
9 —40 199
! 10 58 982

‘ From equation (34) we obtain for the coefficients C,, the numbers given in Table 2.
' These values inserted into (11) give for r,(8) at the points

P 0:0}5,...,900‘

the numbers in Table 3.

. -?e'“tsml

-2

v N

+ ——

1957]

The curve o

of R(p); the -+
¢ and £ is establ

Ezample 2.

This example is

r(6) will be disci

The values o

is plotted; the -

We see from
The oscillation
obtained if inste
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| !' as to compare (1) The curve of Fig. 1 gives the inverse
nterv  f intereg
H

. ™ 9. .
|| Breatess variatio. 7(f) = i° % gin ¢
¥

#of R(p); the + points give the values of ry(f) as computed. The relationship between
¢ and ¢ is established in (4).

b

Ezample 2.

T 1 _
R(p) ~ZW o= 0.2

| TasrLe 3
Example 1 Example 2
!
9 rn(6) X 104 ry(6) X 10%
5 308 8133
10 432 8739
! 15 1158 6958
20 2511 87
| ——— 25 3362 7896
. 30 4215 6363
tven in Table 2, 35 5571 5077
b 40 6029 5241
' 45 5181 2612
50 4048 615
55 1944 —834
60 — 1502 —3208
65 —~3272 —3190
70 —1590 286
75 ' 570 1748
80 694 —~11
85 —33 —412

The values of €, and ry(6) are listed in Table 2 and Table 3. In Fig. 2 the inverse
LY

plotted; the -+ points give the computed values of 74 (t).

We see from the above examples that 7y (f) is a good approximation of »(¢).
he oscillation near ¢ = 0 of Example 2 could have been avoided and a better fitting
obtained if instead of R(p) the function

() — PRPLee _ W( 1 1)

p A\@H+ D p
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were chosen, since its inverse satisfies the condition

r(0) = 0.

P DAL

n
Qa
N

]
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UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

Department of Electrical Engineering
29 March 1978

Prof. Gary L. Wise

Department of Electrical Engineering
University of Texas

Austin, Texas 78712

Gary,

I have some new and interesting results in the signal-
Hilbert transform sampling scheme that grew out of Szasz's
theorem.

Our signaT class consists of all real signals, x(t),
for which there exists an a > 0 such that e
2X(f) exp(af) u(f) e Lo

\

where u(+) is the unit step function and X(f) is the spectrum
of x(t):

X(f) = ? x(t) exp(-j2nft) dt .

A subset of this class is all real L2 band1imited signals.

By Szasz's theorem, the basis set

e " exp(-j2nft,) u(f) (M

is complete for 2X(f) exp(af) u(f) iff

L)

a
n=1 1+ Ja + jomt - F|2

= [= <]

The sample times, t = n, are thus not applicable. Possible
values of t, includ8 nz and exp(-n).

Let's suppose we have chosen a sample set {t.} and have
applied a Gram-Schmidt orthonormalization to the Sza%z basis
elements in (1). Denote the mth orthonormal basis set by

A (f) = eaf %

n L exp(-j2nft ) u(f) . - (2)

c
nm
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At worst, the coefficient Com could be numerically computed and then

stored. We can now expand 2X(f) eaf u(f) in an orthonormal series:

21(f) ¢*F u() - °z°] (2x(f) 2F u(n 1A (M) A (D (3)
1

Using (2), the inner product can be written as

m w m
2 nZ] c* g X( f) exp(j2nft ) df = Z c* o X(t) (4)
“where %(t) is the analytic signal corresponding to x:
x(t) = x(t) + JHIx(t)] .

Here, A (+) denotes Hilbert transformation. Substituting (4) into
(3) and using the identity

I 1
b =
m=1 n=1 ™ n=

gives

X(F) u(f) = ;— -af of x(t ) of cx A(f) . (5)
m=n :

n

From this, define the 1nterpo1at10n function

0,(7) = 2 e T e A () u(f) (6)

so that (5) becomes
K(F) u(f) = °z° R(e) o (F) . o m

This is how we regain the half spectrum from the samp1ed ana]yt1c
signal.

Let's investigate Dn(f) further. Substituting (2) intb (6)

gives
D (f) = 1 g-2af E c* '? exp(~32nft ) u(f) .
n 2 e nm‘p;] pm 7
Using the identity R '
o m ® o
L1 by = L1 Pp

p=1 m=max(p,n)

e
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gives
\ l_ ~2af o o
Dn(f) = 3 ev pz] hnp exp( Jantp) u(f)
where
Ly h = C* C (8)
7 :
np m=max(p,n) nm. - pm
Inverse transforming:
© . i © hnp
d (t) = / D (f) exp(j2ntf) df = = Z —— - (9)
0 p=1 t - (tp -37)

(It might be possible to evaluate hnp directly from the tn% without
first computing the cnmk.) Interestingly, dn(t) is recognized as a
countable number of poles on the complex t-plane at {tp - j%}}. The
residue of the pth pole is j(hnp/4w).

Using the Hermetian nature of X:
X(f) = X*(-f) ,
we can write from (7) -

X(f) = X(F)u(F) + X*¥(-f)u(-f) = nz] X(t )D (f) + X*(f )D *(-f) .

Inverse transforming and recognizing that

? Dn*(—f) exp(j2nft) df = dn*(t)

e OO

gives, after simplification,

x(t) =
n

nHe~1 8

: x(tn) Redn(t) - Hx(t)] -t Imd (t)

That's it! That's how we regain x{t) from the sampled analytic signal.

It all rests on finding the c s in the Gram-Schmidt procedure (or the

~ hyps) for a given sample time set {t }.
One final challenge (in the real world) is sampling the
signal's Hilbert transform. Seems as if this might be done to a
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"good" approximatioh by sampling the input times t_ and approximating
the Hilbert transform by a coordinate distorted vellsion of Sabri and
Steenhaart's Hilbert transform matrix.

Let me know what you think.

Best personal regards,
A
e
Robert J. Marks II
Assistant Professor

RM:bb

*M. S. Sabri and W. Steenhaart, "Discrete Hilbert Transform Filtering,"

IEEE Transactions on Acousitcs, Speech and Signal Processing, ASSP-25,
p. 452, 1977.



UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

Department of Electrical Engineering

18 May 1978

Professor Gary Wise

Department of Electrical Engineering
University of Texas :
Austin, Texas 78712

Gary,

A quick note to update some fi?téf~and=samp1e scheme
results.

Consider the filter in figure 1 (from Papoulis). f
is a given frequency constant. One can easily show that

y(t) =

QO

u() exp(—j2wf02tr) dt .

The system is then kind of a Fourier transformer.
Let u(t) e L,[0,b]. Then, for t > b, we get

b
.V(t) = f u(t) eXp(—jZﬁfoth) dr s t>b .
0

Thus, if we define the Fourier transform

2]

U(F) = [ u(t) exp(-jonft) dt ,
then
y(t) = U(f2t) 5 t>b
and
- 2y . 2
U(F) = y(F/f2) 5 f>bf 2.

By Shannon's sampling theorem, the sample values
{U(n/b)] n=0,+1,22,...} completely specify u(t). If we further




Professor Gary Wise
18 May 1978
Page 2

restrict u(t) to be real, then U(f) = U*(-f) and
{U(n/b)| n=0,1,2,...} completely specifies u(t). We can get
these samples by sampling y(t):

ny - n . 2¢ 2
U(b) y(bfoz) 9 n > b fO .
We can get the n = 1,2,3... samples by simply requiring that
fo?b2 < 1. The n = 0 sample can be obtained elsewhere by an
integration.

This filter, then, is kind of an analog FFT processor
for short pulses. Kind of neat.

In practice, implementing the complex valued filter
and chirp modulators in figure 1 might be a problem. An alter-
nate filter is shown in figure 2. Here the input-output
relation is kind of a Laplace transform:

t —SOZtT
y(t) = [ u(x) e dr ,
0
where 502 is constant. Again, let u(t) e LZ[O,b]. Then for
t > b, ‘

y(t) = ﬁ(soz/t) 5 t>b,

where U is the Laplace x form of u:
¥ _ 7 -st
U(s) = [ u(t) e dt .
0

From Szasz's theorem, we can sample U(s) in a number of ways that
will uniquely characterize u(t). If desired, we could obtain
Fourier coefficients or Legendre coefficients from the vector of
Laplace transform samples by a simple matrix transformation.

Best wishes,
J/l/’}

Robert J. Marks II
Assistant Professor

Ri:bb

P.S. Doug tells me he's been snowed in his job lately but will
sendme a draft of the Laplace Il paper by next week.



u(t) € L2[0,b]

u(t)

y(t) = U(f ?t)

") - T2 =X O FOR t > b

jﬂfoztz _ jﬂfoztz

FIGURE 1

= L,[0,b] (t) = U(s_2t)
,—{§§>' ™ h(t) = e~(sozt2V2 —z—~————-£;g—FOR t>b
(Zoztz)/Z (§i2t2)/2

FIGURE 2



UNIVERSITY OF WASHINGTON
SEATTLE, WASHINGTON 98195

Department of Elecirical Engineering

16 June 1978

Dr. Gary Wise

Department of Electrical Engineering
University of Texas

Austin, Texas 78712

Dear Gary,.

The following is a derivation of the procedure for
regaining an Lyt signal from its uniformly sampled Laplace
transform. Some theorems are also given.

We begin with the orthogonality of the Legendre

polynomials:
1 2
._fl Pn(x) Pm(X) dx = Pl Gnm .

Making the variable substitution

x = 2201 srso0

gives the following orthonormal basis set elements:
rt

[r(2m1)]%e 2 P [2077F 211 5 m=0,1,2,...
m

Szasz's theorem, however, requires indexing to begin at
unity. Thus, setting n=m+l, we obtain

rt
L. T o Ry
o, (t) = [r(2n-1)]%e 2 P21 =123,
From Szasz's theorem, {¢p(t) | n=1,2,3,...} is complete on
Lo* since, for every n> 1, there exists a unique set
{bqn] q=1,2,...,n} such that

H
exp[-(n-%)rt] = qgl b ¢4(t) -
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The basis elements, exp[-ant], are complete in L, since

a = (n-%)r > 0 for all positive n
and
o Rean _

n=l 1+ |a -%|2

Let x(t) e Lo*. Then

w

X(t) = nZ_l o ¢n(t)

w

where

a, = £ x(t) ¢n(t) dt .

Using the expression

(4
po(t) = Lo g (-1)*(2n-2k-2)1 Ak
n-1 2n~1 Ko kt{n-k-1)1(n-2k-1)T" ~
gives
(24
. = [r(2n-1)1% f (-1)%(2n-2k-2)1
n <*2?—1 koo K!(n-k-1)1(n-2k-1)!
w rt .
[e Zr2eton™l () at
0

Exapanding the integrand into a binomial series gives
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4
o = [r(2n-1)7% § (-1)%(2n-2k-2) 1
f 21 Ly KI(nk-1)T
n-2k-1 G
qZQ q' (n'(‘zng]“l)—T X[Y’(q + 1/2)] 9

where the Laplace transform of the signal is defined by:

X(s) = [ x(t) et dt .
0
Using the identity
n-1 n-g-1
[57) -2k i Lo
) ) = ] )
k=0 g=0 g=0 k=0
gives
% n-1
o, = Ltizn%%%;_ ) L?%l— X[r(q+)]
(-2) Q=0
[D:H:l]
2 k .
. y (-1)"(2n-2k=1) !
o KIn-k-1)T(n-2k-g-1)!

Substituting into the orthonormal expansion and using the
identity

R n"l o )

T )

n=1 qg=o0 g=0 n=qg+l

gives the final result:

x(t) = r E

X[r(q+%)] Iq(rt) ,
g=0
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where our interpolation function is

-t o
1(t) = e 2 iiﬁli g =l ety

“ n=g+l (-2)""
' ! - i 3 B
[n—9—1] (}‘,‘ ' ’
2 (-1)%(2n-2k-2) 1
z N-2ZK= )
Lo KInk-1)T(n-2k-g-1)T -

This is the simplest version I've found though I'm
sure with some "lengthy but straightforward manipulations,"
it can be placed in a better form.

Following are some theorems:

THEOREM 1: A Generalized Method of Expansion.
Let © be a given constant. Then

x(t) = r ) Xr(q+%)] exp[-r(q+%)r] Iq[r(t-FT)] :
q=o0
[NOTE: Our original interpolation of the signal was fort=0.]

Proof:
From the shift property of the Laplace transform:

Lix(t-1)] = X(s) e™" ;5 x(t) e L2+

Thus:
x(t-1) = r J X[r(q+%)] exp[-r(q+)r] I trel
q=0 '
Letting t=t+r completes the proof.

Lemma: The inner product of two basis elements, rI (rt) and
- rIq(rt), is given by the expression: P

o0

2 (1 ty T (rt) dt = r .
r g p(r ) q(r ) Bap

where
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Dt © A
Bap  ~ (—%'i - ' c _(2n-1)
® a-p: n=max2§,q)+1 nq np (—2)2”'2
and
n-g-1
(244 )
c.. 0= ) (-1)"(2n-2k-2)!
hq Lo KInk-1)T{n-2k=g-T)1

The proof follows directly from the orthogonality of
the Lengendre polynomials. Note that

fog = Bgp -

Note also that Bgp is independent of our sampling rate index,
r.

THEOREM (Parseval):
The squared Lo norm (energy) of x(t) can be written

as
E = g |x(t)]2 dt = r L qzl Xd Bap xp 5

where
X, 2 X[r(p+x)]

and the overbar denotes complex conjugate. In matrix form:
E = rX'BX,

where X denotes the (infinite) column vector of sample Laplace

values and B. is the square matrix that contains the offline
computed By,'S. This relation will help in determining the
required nB%ber of Laplace samples.
Corollary: Sample Energy Updating.
Let
‘ N N _
E, = r X X
N gchlfl%P p

denote the "energy" associated with N Laplace samples.
Obviously, from the previous theorem,
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E = 1im E

N

EN can be updated by the following relation:

T t)|2 dt .
S RO]

E = E, + 2r Z 8

¥ K 2
N+1 N GE1 N Re [X Xygryd v DXyegl® Byag ot

where Re(-) denotes "the real component of." Note that

find 2

Ey = %078y

Proof:
N+1 N+1 g
E = r X
N1 pzl qél q Pap "p
N+1 _ N
= Byt rfya Zl Xg Bqner 7 Kyag pzl o Byel,p

Taking advantage of the fact that Bp we combine the
sunmations and arrive at the desired resu?ts Updating Ep

will tell us how many more samples we need.

That's all for now. The fascinating part to me is
the arbitrary nature of the sample rate parameter, r. Let
me know what you think.

Best wishes,
Robert J. Marks II
Assistant Professor

RM:bb




