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Streszczenie

This paper provides the review of literature benchmarks (test functions)
commonly used in order to test optimization procedures dedicated for mul-
tidimensional, continuous optimization task. Special attention has been paid
to multiple-extreme functions, treated as the quality test for “resistant” opti-
mization methods (GA, SA, TS, etc.)

1 Introduction

Quality of optimization procedures (those already known and these newly propo-
sed) are frequently evaluated by using common standard literature benchmarks.
There are several classes of such test functions, all of them are continuous:

(a) unimodal, convex, multidimensional,

(b) multimodal, two-dimensional with a small number of local extremes,

(c) multimodal, two-dimensional with huge number of local extremes

(d) multimodal, multidimensional, with huge number of local extremes, .

Class (a) contains nice functions as well as malicious cases causing poor or slow
convergence to single global extremum. Class (b) is mediate between (a) and (c)-
(d), and is used to test quality of standard optimization procedures in the hostile
environment, namely that having few local extremes with single global one. Clas-
ses (c)-(d) are recommended to test quality of intelligent “resistant” optimization
methods, as an example GA, SA, TS, etc. These classes are considered as very
hard test problems. Class (c) is “artificial” in some sense, since the behavior of
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optimization procedure is usually being justified, explain and supported by hu-
man intuitions on 2D surface. Moreover, two-dimensional optimization problems
appear very rarely in practice. Unfortunately, practical discrete optimization pro-
blems provide instances with large number of dimensions, laying undoubtedly in
class (d). For example, the smallest known currently benchmark ft10 for so called
job shop scheduling problemhas dimension 90, the biggest known - has dimension
1980. Therefore, in order to test real quality of proposed algorithms, we need to
consider chiefly instances from class (d). As the shocking contrast, the proposed
GA approaches for continuous optimization do not exceed dimension 10.

Notice, polarization (a constant added to function value) has no influence on
the result of minimization. Therefore, definitions of functions can differ from
these original ones by a constant. All tests are formulated hereinafter asminimi-
zationproblems, nevertheless can be applied also for maximization problems by
simple inverting sign of the function.

2 Test functions

In this section we present benchmarks commonly known in the literature.

2.1 De Jong’s function

So calledfirst function of De Jong’sis one of the simplest test benchmark. Func-
tion is continuous, convex and unimodal. It has the following general definition

f(x) =
n∑

i=1

x2
i . (1)

Test area is usually restricted to hyphercube−5.12 ≤ xi ≤ 5.12, i = 1, . . . , n.
Global minimumf(x) = 0 is obtainable forxi = 0, i = 1, . . . , n.
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Rysunek 1: De Jong’s function in 2D,f(x, y) = x2 + y2
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Rysunek 2: Axis parallel hyper-ellipsoid function in 2D,f(x, y) = x2 + 2y2

2.2 Axis parallel hyper-ellipsoid function

The axis parallel hyper-ellipsoid is similar to function of De Jong. It is also known
as theweighted sphere model. Function is continuous, convex and unimodal. It
has the following general definition

f(x) =
n∑

i=1

(i · x2
i ). (2)

Test area is usually restricted to hyphercube−5.12 ≤ xi ≤ 5.12, i = 1, . . . , n.
Global minimum equalf(x) = 0 is obtainable forxi = 0, i = 1, . . . , n.
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Rysunek 3: Rotated hyper-ellipsoid function in 2D,f(x, y) = x2 + (x2 + y2)

2.3 Rotated hyper-ellipsoid function

An extension of the axis parallel hyper-ellipsoid is Schwefel’s function. With
respect to the coordinate axes, this function produces rotated hyper-ellipsoids. It
is continuous, convex and unimodal. Function has the following general definition

f(x) =
n∑

i=1

i∑
j=1

x2
j . (3)

Test area is usually restricted to hyphercube−65.536 ≤ xi ≤ 65.536, i =
1, . . . , n. Its global minimum equalf(x) = 0 is obtainable forxi = 0, i =
1, . . . , n.
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Rysunek 4: Rosenbrock’s valley in 2D,f(x, y) = 100(y − x2)2 + (1− x)2

2.4 Rosenbrock’s valley

Rosenbrock’s valley is a classic optimization problem, also known asbanana
functionor thesecond function of De Jong. The global optimum lays inside a
long, narrow, parabolic shaped flat valley. To find the valley is trivial, however
convergence to the global optimum is difficult and hence this problem has been
frequently used to test the performance of optimization algorithms. Function has
the following definition

f(x) =
n−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)

2
]
. (4)

Test area is usually restricted to hyphercube−2.048 ≤ xi ≤ 2.048, i = 1, . . . , n.
Its global minimum equalf(x) = 0 is obtainable forxi, i = 1, . . . , n.
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Rysunek 5: An overview of Rastrigin’s function in 2D,f(x, y) = 10 · 2 + [x2 −
10 cos(2πx)] + [y2 − 10 cos(2πy)]

2.5 Rastrigin’s function

Rastrigin’s function is based on the function of De Jong with the addition of cosine
modulation in order to produce frequent local minima. Thus, the test function is
highly multimodal. However, the location of the minima are regularly distributed.
Function has the following definition

f(x) = 10n +
n∑

i=1

[
x2

i − 10 cos(2πxi)
]
. (5)

Test area is usually restricted to hyphercube−5.12 ≤ xi ≤ 5.12, i = 1, . . . , n. Its
global minimum equalf(x) = 0 is obtainable forxi = 0, i = 1, . . . , n.
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Rysunek 6: Zoom on Rastrigin’s function in 2D,f(x, y) = 10 · 2 + [x2 −
10 cos(2πx)] + [y2 − 10 cos(2πy)]
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Rysunek 7: An overview of Schwefel’s function in 2D,f(x, y) = −x sin(
√
|x| −

y sin(
√
|y|

2.6 Schwefel’s function

Schwefel’s function is deceptive in that the global minimum is geometrically di-
stant, over the parameter space, from the next best local minima. Therefore, the
search algorithms are potentially prone to convergence in the wrong direction.
Function has the following definition

f(x) =
n∑

i=1

[
−xi sin(

√
|xi|)

]
. (6)

Test area is usually restricted to hyphercube−500 ≤ xi ≤ 500, i = 1, . . . , n.
Its global minimumf(x) = −418.9829n is obtainable forxi = 420.9687, i =
1, . . . , n.
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Rysunek 8: Zoom on Schwefel’s function in 2D,f(x, y) = −x sin(
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Rysunek 9: An overview of Griewangk’s function in 2D,f(x, y) = x2+y2

4000
−

cos(x) cos( y√
2
) + 1

2.7 Griewangk’s function

Griewangk’s function is similar to the function of Rastrigin. It has many wide-
spread local minima regularly distributed. Function has the following definition

f(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos(
xi√

i
) + 1. (7)

Test area is usually restricted to hyphercube−600 ≤ xi ≤ 600, i = 1, . . . , n. Its
global minimum equalf(x) = 0 is obtainable forxi = 0, i = 1, . . . , n. The func-
tion interpretation changes with the scale; the general overview suggests convex
function, medium-scale view suggests existence of local extremum, and finally
zoom on the details indicates complex structure of numerous local extremum.
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Rysunek 10: Medium-scale view of Griewangk’s function in 2D,f(x, y) =
x2+y2
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− cos(x) cos( y√

2
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Rysunek 11: Zoom on Griewangk’s function in 2D,f(x, y) = x2+y2
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Rysunek 12: Sum of different power functions in 2D,f(x, y) = |x|2 + |y|3

2.8 Sum of different power functions

The sum of different powers is a commonly used unimodal test function. It has
the following definition

f(x) =
n∑

i=1

|xi|i+1 . (8)

Test area is usually restricted to hyphercube−1 ≤ xi ≤ 1, i = 1, . . . , n. Its global
minimum equalf(x) = 0 is obtainable forxi = 0, i = 1, . . . , n.
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Rysunek 13: An overview of Ackley’s function in 2D,f(x, y) = −x sin(
√
|x| −

y sin(
√
|y|

2.9 Ackley’s function

Ackley’s is a widely used multimodal test function. It has the following definition

f(x) = −a · exp(−b ·
√√√√ 1

n

n∑
i=1

x2
i )− exp(

1

n

n∑
i=1

cos(cxi)) + a + exp(1) (9)

It is recommended to seta = 20, b = 0.2, c = 2π. Test area is usually restricted to
hyphercube−32.768 ≤ xi ≤ 32.768, i = 1, . . . , n. Its global minimumf(x) = 0
is obtainable forxi = 0, i = 1, . . . , n.
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Rysunek 14: Zoom on Ackley’s function in 2D,f(x, y) = −x sin(
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Rysunek 15: An overview of Langermann’s function in 2D.f(x, y) =∑m
i=1 ci exp(−(x− aj)

2/π − (y − bj)
2/π) cos(π(x− aj)

2 + π(y − bj)
2), m = 5,

a = [3, 5, 2, 1, 7], b = [5, 2, 1, 4, 9], c = [1, 2, 5, 2, 3]

2.10 Langermann’s function

The Langermann function is a multimodal test function. The local minima are
unevenly distributed. Function has the following definition

f(x) =
m∑

i=1

ci exp[− 1

π

n∑
j=1

(xj − aij)
2] cos[π

n∑
j=1

(xj − aij)
2] (10)

where (ci, i = 1, . . . , m), (aij, j = 1, . . . , n, i = 1, . . . , m) are constant numbers
fixed in advance. It is recommended to setm = 5.
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Rysunek 16: Medium-scale view on Langermann’s function in 2D.f(x, y) =∑m
i=1 ci exp(−(x− aj)
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2.11 Michalewicz’s function

The Michalewicz function is a multimodal test function (ownsn! local optima).
The parameterm defines the “steepness” of the valleys or edges. Largerm leads
to more difficult search. For very largem the function behaves like a needle in
the haystack (the function values for points in the space outside the narrow peaks
give very little information on the location of the global optimum). Function has
the following definition

f(x) = −
n∑

i=1

sin(xi)

[
sin(

ix2
i

π
)

]2m

(11)

It is usually setm = 10. Test area is usually restricted to hyphercube0 ≤ xi ≤ π,
i = 1, . . . , n. The global minimum value has been approximated byf(x) =
−4.687 for n = 5 and byf(x) = −9.66 for n = 10. Respective optimal solutions
are not given.
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Rysunek 19: Michalewicz’s function in 2D form = 10, f(x, y) =
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Rysunek 20: Branins’s function

2.12 Branins’s function

The Branin function is a global optimization test function having only two va-
riables. The function has three equal-sized global optima, and has the following
definition

f(x1, x2) = a(x2 − bx2
1 + cx1 − d)2 + e(1− f) cos(x1) + e. (12)

It is recommended to set the following values of parameters:a = 1, b = 5.1
4π2 ,

c = 5
π
, d = 6, e = 10, f = 1

8π
. Three global optima equalf(x1, x2) = 0.397887

are located as follows:(x1, x2) = (−π, 12.275), (π, 2.275), (9.42478, 2.475).
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Rysunek 21: Easom’s function

2.13 Easom’s function

The Easom function is a unimodal test function, where the global minimum has a
small area relative to the search space. The function was inverted for minimiza-
tion. It has only two variables and the following definition

f(x1, x2) = − cos(x1) cos(x2) exp(−(x1 − π)2 − (x2 − π)2) (13)

Test area is usually restricted to square−100 ≤ x1 ≤ 100,−100 ≤ x2 ≤ 100. Its
global minimum equalf(x) = −1 is obtainable for(x1, x2) = (π, π).
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Rysunek 22: Zoom on Easom’s function
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Rysunek 23: Goldstein-Price’s function

2.14 Goldstein-Price’s function

The Goldstein-Price function is a global optimization test function. It has only
two variables and the following definition

f(x1, x2) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2]·

[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2]. (14)

Test area is usually restricted to the square−2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2. Its global
minimum equalf(x) = 3 is obtainable for(x1, x2) = (0,−1).
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Rysunek 24: Six-hump camel back function

2.15 Six-hump camel back function

The Six-hump camel back function is a global optimization test function. Wi-
thin the bounded region it owns six local minima, two of them are global ones.
Function has only two variables and the following definition

f(x1, x2) = (4− 2.1x2
1 +

x4
1

3
)x2

1 + x1x2 + (−4 + 4x2
2)x

2
2. (15)

Test area is usually restricted to the rectangle−3 ≤ x1 ≤ 3, −2 ≤ x2 ≤ 2. Two
global minima equalf(x) = −1.0316 are located at(x1, x2) = (−0.0898, 0.7126)
and(0.0898,−0.7126).
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Rysunek 25: Zoom on six-hump camel back function
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2.16 Fifth function of De Jong

This is a multimodal test function. The given form of function has only two va-
riables and the following definition

f(x1, x2) = {0.002 +
25∑

j=1

[j + (x1 − a1j)
6 + (x2 − a2j)

6]−1}−1, (16)

where

(aij) =

( −32 −16 0 16 32 −32 . . . 0 16 32
−32 −32 −32 −32 −32 −16 . . . 32 32 32

)

The function can also be rewritten as follows

f(x1, x2) = {0.002+
2∑

i=−2

2∑
j=−2

[5(i+2)+j +3+(x1−16j)6 +(x2−16i)6]−1}−1,

(17)
Test area is usually restricted to the square−65.536 ≤ x1 ≤ 65.536, −65.536 ≤
x2 ≤ 65.536.
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Rysunek 26: An overview of fifth function of De Jong
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Rysunek 27: Medium-scale view on the fifth function of De Jong
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Rysunek 28: Zoom on fifth function of De Jong
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Rysunek 29: An overview of “drop wave” function

2.17 “Drop wave” function

This is a multimodal test function. The given form of function has only two va-
riables and the following definition

f(x1, x2) = −1 + cos(12
√

x2 + x2
2)

1
2
(x2

1 + x2
2) + 2

(18)

Test area is usually restricted to the square−5.12 ≤ x1 ≤ 5.12, −5.12 ≤ x2 ≤
5.12.
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Rysunek 30: Medium-scale view on “drop wave” function
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Rysunek 32: An overview of Shubert’s function

2.18 Shubert’s function

This is a multimodal test function. The given form of function has only two va-
riables and the following definition

f(x1, x2) = −
5∑

i=1

i cos((i + 1)x1 + 1)
5∑

i=1

i cos((i + 1)x2 + 1), (19)

Test area is usually restricted to the square−5.12 ≤ x1 ≤ 5.12, −5.12 ≤ x2 ≤
5.12.
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Rysunek 33: Medium-scale view on Shubert’s function
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Rysunek 34: Zoom on Shubert’s function
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2.19 Shekel’s foxholes

This is a multimodal test function. It has the following definition

f(x) = −
m∑

i=1

(
n∑

j=1

[(xj − aij)
2 + cj])

−1, (20)

where (ci, i = 1, . . . , m), (aij, j = 1, . . . , n, i = 1, . . . , m) are constant numbers
fixed in advance. It is recommended to setm = 30.
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2.20 Deceptive functions

A deceptive problem is a class of problems in which the total size of the basins for
local optimum solutions is much larger than the basin size of the global optimum
solution. Clearly, this is a multimodal function. The general form of deceptive
function is given by the following formulae

f(x) = −
[

1

n

n∑
i=1

gi(xi)

]β

, (21)

whereβ is an fixed non-linearity factor.
It has been defined in the literature at least three types of deceptive problems,

depending the form ofgi(xi). A complex deceptive problem (Type III), in which
the global optimum is located atxi = αi, whereαi is a unique random number
between 0 and 1 depending on the dimensioni. To this aim the following form of
auxiliary functions has been proposed

gi(xi) =





− x
αi

+ 4
5

if 0 ≤ xi ≤ 4
5
αi

5x
αi
− 4 if 4

5
αi < xi ≤ αi

5(x−αi)
αi−1

+ 1 if αi < xi ≤ 1+4αi

5
x−1
1−αi

+ 4
5

if 1+4αi

5
< xi ≤ 1

(22)

The two other types of deceptive problems (Types I and II) are special cases
of the complex deceptive problem, withαi = 1 (Type I), orαi = 0 or 1 at random
(Type II) for each dimensioni, i = 0, . . . , n. Clearly formulae (22) should be
suitable adjusted for type I and II.

For all three types ofgi(xi), the region with local optima is5n−1 times larger
than the region with a global optimum in then-dimensional space. The number
of local optima is2n− 1 for Type I and Type II deceptive problems and3n− 1 for
Type III.
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Rysunek 37: Deceptive function of Type III in 2D.α1 = 0.3, α2 = 0.7, β = 0.2
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Rysunek 38: Deceptive function of Type III in 2D.α1 = 0.3, α2 = 0.7, β = 2.5
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