
F
ea

tu
re

A
rt

ic
le

Y
u

h
u

iS
h

i

1. Introduction

Particle swarm optimization (PSO) is
one of the evolutionary computation
techniques. Like the other evolutionary
computation techniques, PSO is a popu-
lation-based search algorithm and is ini-
tialized with a population of random solu-
tions, called particles. Unlike in the other
evolutionary computation techniques,
each particle in PSO is also associated
with a velocity. Particles fly through the
search space with velocities which are
dynamically adjusted according to their
historical behaviors. Therefore, the parti-
cles have a tendency to fly towards the
better and better search area over the
course of search process. Since its intro-
duction in 1995 (Kennedy and Eberhart
1995, Eberhart and Kennedy 1995),
PSO has attracted a lot of attentions
from the researchers around the world. A
lot of research results have been report-
ed in the literature. Special sessions
have being organized in several confer-
ences including the Congress on
Evolutionary Computation since 1998. In
2003, the first IEEE Symposium on
Swarm Intelligence was held in
Indianapolis, Indiana, USA. The first
book dedicated to PSO, Swarm
Intelligence, coauthored by James
Kennedy, Russell Eberhart with Yuhui
Shi (Kennedy, Eberhart and Shi 2001)
was published in 2001 by Morgan
Kaufmann Publisher.

The researches on PSO generally can
be categorized into five parts: algorithms,
topology, parameters, hybrid PSO algo-
rithms, and applications.

2. Algorithms

2.1. Original algorithm
The original PSO algorithm is discov-

ered through simplified social model sim-
ulation. It is related to the bird flocking,
fishing schooling, and swarm theory. The
PSO was first designed to simulate birds
seeking food which is defined as a “corn-
field vector.” The bird would find food
through social cooperation with other
birds around it (within its neighborhood).
It was then expanded to multidimension-
al search. The topological rather than

Euclidean neighborhood was utilized
(Kennedy and Eberhart 1995, Eberhart
and Kennedy 1995, Eberhart, Simpson
and Dobbins 1996). The original PSO
algorithm is described as below:

vid = vid + c1rand()(pid-xid) + c2Rand()(pgd-xid) (1a)

xid = xid + vid (1b)

where c1 and c2 are positive constants,
and rand() and Rand() are two random
functions in the range [0,1]; Xi = (xi1, xi2,
… , xiD) represents the ith particle; Pi =
(pi1, pi2, … , piD) represents the best pre-
vious position (the position giving the
best fitness value) of the ith particle; the
symbol g represents the index of the
best particle among all the particles in
the population; Vi = (vi1, vi2, … , viD) rep-
resents the rate of the position change
(velocity) for particle i.

Equation (1) is the equation describing
the flying trajectory of a population of
particles. Equation (1a) describes how
the velocity is dynamically updated and
Equation (1b) the position update of the
“flying” particles. Equation (1a) consists
of three parts. The first part is the
momentum part. The velocity can’t be
changed abruptly. It is changed from the
current velocity. The second part is the
“cognitive” part which represents private
thinking of itself - learning from its own
flying experience. The third part is the
“social” part which represents the collab-
oration among particles - learning from
group flying experience (Shi and
Eberhart 1998b).

In Equation (1a), if the sum of the
three parts on the right side exceeds a
constant value specified by user, then
the velocity on that dimension is
assigned to be ±Vmax, that is, particles'
velocities on each dimension is clamped
to a maximum velocity Vmax, which is an
important parameter, and originally is the
only parameter required to be adjusted
by users. Big Vmax has particles have
the potential to fly far past good solution
areas while a small Vmax has particles
have the potential to be trapped into local
minima, therefore unable to fly into better
solution areas. Usually a fixed constant
value is used as the Vmax, but a well-

designed dynamically changing Vmax

might improve the PSO's performance
(Fan and Shi 2001).

The PSO algorithm is simple in con-
cept, easy to implement and computa-
tional efficient. The original procedure for
implementing PSO is as follows:

1. Initialize a population of particles with
random positions and velocities on D
dimensions in the problem space.

2. For each particle, evaluate the desired
optimization fitness function in D vari-
ables.

3. Compare particle's fitness evaluation
with its pbest. If current value is better
than pbest, then set pbest equal to the
current value, and Pi equals to the cur-
rent location Xi in D-dimensional
space.

4. Identify the particle in the neighbor-
hood with the best success so far, and
assign its index to the variable g.

5. Change the velocity and position of
the particle according to Equation (1a)
and (1b).

6. Loop to step 2) until a criterion is met,
usually a sufficiently good fitness or a
maximum number of iterations.

Like the other evolutionary algorithms,
PSO algorithms is a population based
search algorithm with random initializa-
tion, and there is interactions among
population members. Unlike the other
evolutionary algorithms, in PSO, each
particle fly through the solution space,
and has the ability to remember its previ-
ous best position, survives from genera-
tion to generation (Shi and Eberhart
2001b). Furthermore, compared with the
other evolutionary algorithms, e.g. evolu-
tionary programming, the original version
of PSO is faster in initial convergence
while slower in fine tuning (Angeline
1998a, 1998b).

2.2. Binary PSO algorithms
The original PSO is designed for the

real-value problems. The algorithms now
have been extended to tackle binary/dis-
crete problems. To extend the real-value
version of PSO to binary/discrete space,
the most critical part is to understand the
meaning of concepts such as trajectory,

Particle Swarm Optimization
Yuhui Shi

Electronic Data Systems, Inc.
Kokomo, IN 46902, USA

Abstract. This paper surveys the research and development of PSO in five categories: algorithms, topology, parameters, hybrid
PSO algorithms, and applications.

E
le

ct
ro

ni
c

D
at

a
S

ys
te

m
s,

In
c.

8 IEEE Neural Networks Society February 2004

velocity in the binary/discrete space.
Kennedy and Eberhart (Kennedy and

Eberhart 1997) use velocity as a proba-
bility to determine whether xid (a bit) will
be in one state or another (zero or one).
They squashed vid using a logistic func-
tion s(v) = 1/(1+exp(-v)) while the veloci-
ty is calculated using the same equation
as the Equation (1a). If a randomly gen-
erated number within [0,1] is less than
s(vid), then xid is set to be 1, otherwise it
is set to be 0. The version of binary PSO
outperforms several versions of GAs in
all tested problems except one (Kennedy
and Spears 1998).

Agrafiotis and Cedeño (Agrafiotis and
Cedeño 2002) adapted the real value
PSO to the binary space and applied it to
the problem of feature selection in which
xij can only take 0 or 1 and represents
whether the jth feature in the ith particle
is selected. The real value calculated by
using Equation (1b) is treated as proba-
bilities with which the roulette wheel is
utilized to determine whether the new
corresponding feature is selected or not
in the next generation.

Mohan and Al-kazemi (Mohan and Al-
kazemi 2001) proposed five binary varia-
tions of particle swarm optimization algo-
rithms. The techniques they utilized for
these five binary PSO are named as
direct approach, quantum approach, reg-
ularization approach, bias vector
approach, and mixed search approach,
respectively. The direct approach binary
PSO is a direct translation of the global
version of PSO from continuous space to
binary space. The positions of particles
are the candidate solution and the
Equation (1) is adopted. The results in
the continuous space are converted to
binary bit strings using some repair
approach such as hard-decision decod-
ing process. The quantum approach
binary PSO is similar to the direct
approach PSO except a different repair
approach by which the resulted value is
converted to either 0 or 1 with probability
determined by the resulted value itself.
The regularization approach is designed
from a perspective that unifies PSO with
other evolutionary algorithms by
abstractly expressing PSO as a instance
of Regularization (ref. 6 in Mohan and Al-
kazemi 2001). In the bias vector
approach, the particle in the new genera-
tion is randomly selected from the three
parts in the right side of Equation (1a)
with probabilities depending on the fit-
ness values of the corresponding posi-
tions. The mixed search approach is sim-
ilar to the direct approach except that the
particles are divided into multiple groups
in which each group can adopt local ver-
sion or global version of binary PSO
dynamically.

3. Topologies

The commonly used PSOs are either
global version or local version of PSO. In
the global version of PSO, each particle
flies through the search space with a
velocity that is dynamically adjusted
according to the particle’s personal best
performance achieved so far and the
best performance achieved so far by all
the particle. While in the local version of
PSO, each particle’s velocity is adjusted
according to its personal best and the
best performance achieved as far within
its neighborhood. The neighborhood of
each particle is generally defined as
topologically nearest particles to the par-
ticle at each side. The global version of
PSO also can be considered as a local
version of PSO with each particle's
neighborhood to be the whole popula-
tion. It has been suggested that the glob-
al version of PSO converges fast, but
with potential to converge to the local
minimum, while the local version of PSO
might have more chances to find better
solutions slowly (Kennedy 1999,
Kennedy, Eberhart and Shi 2001). Since
then, a lot of researchers have worked
on improving its performance by design-
ing or implementing different types of
neighborhood structures in PSOs.

Kennedy (Kennedy 1999) claimed that
PSO with small neighborhoods might
perform better on complex problems
while PSO with large neighborhood
would perform better for simple prob-
lems.

Kennedy and Mendes (Kennedy and
Mendes 2002) tested PSOs with regular
shaped neighborhoods, such as global
version, local version, pyramid structure,
star structure, “small” structure, and von
Neumann, and PSOs with randomly gen-
erated neighborhoods. The population
size of their PSOs is fixed to be 20. They
observed that among PSOs with ran-
domly generally neighborhoods, those
PSOs with average neighborhood size 5
have better performance based on their
measurements. They further recom-
mended that the PSO with von Neumann
structured neighborhood may perform
better than PSOs with other regular
shaped neighborhoods including global
version and local version.

Suganthan (Suganthan 1999) applied
a combined version of PSO where a local
version PSO is run first followed by a
global version of PSO at the end of PSO
running. Furthermore in the local version
of PSO, the neighborhood of each parti-
cle is dynamically adjusted. The dis-
tances among particles are calculated
and are then used as reference parame-
ters to form new neighborhoods against
a predefined criterion.

In (Hu and Eberhart 2002a), Hu and
Eberhart introduced a dynamic neighbor-
hood concept for their multi-objective
optimization problems using PSO. The
neighborhood of each particle is dynami-
cally adjusted. The m closest particles in
the performance space are selected to
be its new neighborhood in each genera-
tion. The performance space is the space
each coordinate of which is the variable
representing the performance value of
each objective function of the multi-
objective optimization problem.

In (Mendes and Kennedy 2004),
Mendes and Kennedy proposed a fully
informed particle swarm optimization
algorithm based on ϕ coefficient analysis
and their belief that there is no assump-
tion that the best neighbor actually found
a better region than the second or third-
best neighbors. In this new algorithm , all
the neighbors of a particle is involved in
calculating the next movement instead of
using the previous best positions in the
original particle swarm optimization algo-
rithm. The influence of each particle to its
neighbors is weighted based on its fit-
ness value and the neighborhood size.

Each neighborhood structure has its
strength and weakness. It works better in
one kind of problems, but worse on the
other kind of problems. When using PSO
to solve problem, not only the problem
needs to be specified, but the neighbor-
hood structure of the PSO utilized should
also be clearly specified.

4. Parameters

Velocity changes of a PSO consist of
three parts, the “social” part, the “cogni-
tive” part, and the momentum part. The
balance among these parts determines
the balance of the global and local
search ability, therefore the performance
of a PSO.

The first new parameter added into the
original PSO algorithm is the inertia
weight (Shi and Eberhart 1998a, 1998b).
The dynamic equation of PSO with iner-
tia weight is modified to be:

vid = wvid + c1rand()(pid-xid) + c2Rand()(pgd-xid) (2a)

xid = xid + vid (2b)

Equation (2) is the same as the
Equation (1) except a new parameter,
inertia weight w. The inertia weight is
introduced to balance between the glob-
al and local search abilities. The large
inertia weight facilitates global search
while the small inertia weight facilitates
local search. The introduction of the iner-
tia weight also eliminates the require-
ment of carefully setting the maximum
velocity Vmax each time the PSO algo-
rithm is used. The Vmax can be simply set

F
eature

A
rticle

(C
ont.)

February 2004 IEEE Neural Networks Society 9

F
ea

tu
re

A
rt

ic
le

(C
on

t.) to the value of the dynamic range of
each variable and the PSO algorithm still
performs well enough if not better.

Another parameter called constriction
coefficient is introduced with the hope
that it can insure a PSO to converge
(Clerc 1999, Clerc and Kennedy 2002). A
simplified method of incorporating it
appears in Equation (3), where k is a
function of c1 and c2 as seen in Equation
(4).

vid = k[vid + c1rand()(pid-xid) + c2Rand()(pgd-xid)] (3a)

xid = xid + vid (3b)

with

, (4)

where ϕ = c1 + c2, ϕ > 4
Mathematically, Equation (2) and (3)

are equivalent by setting inertia weight w
to be k, and c1 and c2 meet the condition
ϕ = c1 + c2, ϕ > 4. The PSO algorithm
with the constriction factor can be con-
sidered as a special case of the PSO
algorithm with inertia weight while the
three parameters are connected through
Equation (4). A better approach to use as
a rule of thumb is to utilize the PSO with
constriction factor while limiting Vmax to
Xmax, the dynamic range of each vari-
able on each dimension, or utilize the
PSO with inertia weight while selecting
w, c1 and c2 according to Equation (4)
(Eberhart and Shi 2000).

When Clerc’s constriction method is
used, ϕ is commonly set to 4.1 and the
constant multiplier k is approximately
0.729. This is equivalent to the PSO with
inertia weight when w ≈ 0.729 and
c1=c2=1.49445. Since the search
process of a PSO algorithm is nonlinear
and complicated. A PSO with well-select-
ed parameter set can have good per-
formance, but much better performance
could be obtained if a dynamically
changing parameter is well designed.
Intuitively, the PSO should favor global
search ability at the beginning of PSO
running while it should favor local search
ability at the end of PSO running.

Shi and Eberhart (Shi and Eberhart
1998a, 1999) first introduced a linearly
decreasing inertia weight to the PSO
over the course of PSO, then they further
designed fuzzy systems to nonlinearly
changing the inertia weight (Shi and
Eberhart 2001a, 2001b). The fuzzy sys-
tems have some measurements of the
PSO performance as the input and the
new inertia weight as the output of the
fuzzy systems. In more recent study, an
inertia weight with a random component

[0.5 + (rand()/2.0)] rather than time-
decreasing is utilized. This produces a
randomly varying number between 0.5
and 1.0, with a mean of 0.75 which is
similar to Clerc's constriction factor
described above (Eberhart and Shi
2001b).

In (Ratnaweera, Halgamuge and
Watson 2004), Ratnaweera et al. intro-
duced into the PSO the time varying
acceleration coefficients in addition to
the time varying inertia weight.
Furthermore, a PSO called “Self-
Organizing Hierarchical Particle Swarm
Optimizer” is proposed, in which only the
“social” part and the “cognitive” part are
kept in the algorithm as in (He et al.
1998) while the momentum part is only
used for reinitializing particles when the
particles have stagnated in the search
space, that is inertia weight is set to be 0
except at the time of re-initialization. In
(Fan and Shi 2001), a linearly decreas-
ing Vmax is introduced as mentioned
before.

5. Hybrid PSO Algorithms

Another research trend is to merge or
combine the PSO with the other tech-
niques, especially the other evolutionary
computation techniques. Evolutionary
operators like selection, crossover and
mutation have been applied into the
PSO. By applying selection operation in
PSO, the particles with the best perform-
ance are copied into the next generation,
therefore, PSO can always keep the best
performed particles (Angeline 1998). By
applying crossover operation, informa-
tion can be swapped between two indi-
viduals to have the ability to “fly” to the
new search area as that in evolutionary
programming and genetic algorithms
(Løvbjerg, Rasmussen and Krink 2001).
Among the three evolutionary operators,
the mutation operators are the most
commonly applied evolutionary opera-
tors in PSO. The purpose of applying
mutation to PSO is to increase the diver-
sity of the population and the ability to
have the PSO to escape the local mini-
ma (Miranda and Fonseca 2002,
Løvbjerg and Krink 2002, Blackwell and
Bentley 2002, Krink, Vesterstrøm and
Riget 2002, Ratnaweera, Halgamuge
and Watson 2004). One approach is to
mutate parameters such as χ, c1 and c2,
the position of the neighborhood best
(Miranda and Fonseca 2002), as well as
the inertia weight (Løvbjerg and Krink
2002). Another approach is to prevent
particles from moving too close to each
other so that the diversity could be main-
tained and therefore escape from being
trapped into local minima. In (Løvbjerg

and Krink 2002), the particles are relo-
cated when they are too close to each
other. In (Blackwell and Bentley 2002,
Krink, Vesterstrøm and Riget 2002), col-
lision-avoiding mechanisms are
designed to prevent particle from collid-
ing with each other and therefore
increase the diversity of the population.

In addition to incorporating evolution-
ary operations into PSO, different
approaches to combine PSO with the
other evolutionary algorithms have been
reported. Robinson et al. (Robinson,
Sinton and Rahmat-Samii 2002)
obtained better results by applying PSO
first followed by applying GA in their pro-
filed corrugated horn antenna optimiza-
tion problem. In (Krink and Løvbjerg
2002), either particle swarm optimization
algorithm, genetic algorithm, or hill-
climbing search algorithm can be applied
to a different sub-population of individu-
als which each individual is dynamically
assigned to according to some pre-
designed rules. In (Hendtlass and
Randall 2001), ant colony optimization is
combined with PSO. A list of best posi-
tions found so far is recorded and the
neighborhood best is randomly selected
from the list instead of the current neigh-
borhood best. In (Hendtlass 2001), differ-
ential evolution is combined with PSO.
Particles fly according to Equation (2),
but occasionally differential evolution is
applied to replace one poorly performed
particle with a better one while retaining
its velocity.

Also, non-evolutionary techniques
have been incorporated into PSO. In
(van den Bergh and Engelbrecht 2004),
a Cooperative Particle Swarm Optimizer
(CPSO) is implemented. The CPSO
employs cooperative behavior to signifi-
cantly improve the performance of the
original PSO algorithm through using
multiple swarms to optimize different
components of the solution vector coop-
eratively. The search space is partitioned
by splitting the solutions vectors into
smaller vector. For example, a swarm
with n-dimensional vector is partitioned
into n swarms of one-dimensional vec-
tors with each swarm attempting to opti-
mize a single component of the solution
vector. A credit assignment mechanism
needs to be designed to evaluate each
particle in each swarm. In (Løvbjerg,
Rasmussen and Krink 2001), the popula-
tion of particles is divided into subpopu-
lations which would breed within their
own sub-population or with a member of
another with some probability so that the
diversity of the population can be
increased. In (Parsopoulos and Vrahatis
2004), deflection and stretching tech-
niques as well as a repulsion technique

10 IEEE Neural Networks Society February 2004

are incorporated into the original particle
swarm optimization to avoid particles
moving toward the already found global
minima so that the PSO can have more
chances to find as many global minima
as possible. In (Xie and Zhang and Yang
2002), a "dissipative particle swarm" is
designed by adding negative entropy into
the PSO to discourage premature con-
vergence.

The above hybrid PSO algorithms
incorporate other techniques into PSO to
improve the PSO's performance. On the
other hand, the concept of PSO could
also be “borrowed” and applied into other
evolutionary algorithms to improve their
performance. Wei et al. (Wei, He, Zhang
and Pei 2002) applied PSO's velocity
concept into the evolutionary program-
ming to guide its mutation operations in
order to have a fast evolutionary pro-
gramming algorithm.

In general, there is a trend that the dis-
tinction among evolutionary algorithms is
becoming more and more blur. More and
more hybrid algorithms are being
designed and implemented in the hope
to have better performance. Certainly,
physical meanings beyond the original
algorithms are becoming vague too.

6. Applications

PSO is simple in concept. It has few
parameters to adjust and is easy to
implement. It has found applications in a
lot of areas. In general, all the application
areas that the other evolutionary applica-
tion techniques are good at are the good
application areas for PSO.

6.1. Constrained optimization prob-
lems

Constrained optimization is one of the
most common application areas for PSO.
One of the major issues for solving con-
strained optimization problems is how to
handle the constraints. A straight forward
approach is to convert the constrained
optimization problem into a non-con-
strained optimization problem by adding
penalty for violation of constraints
(Parsopoulos and Vrahatis 2002a).
Another approach is to preserve feasible
solutions and repair the infeasible solu-
tions (Hu and Eberhart 2002b). The third
approach, called hybrid algorithms, usu-
ally employs some information decoding
strategy. For example, in (Ray and
Liew2001), the constraints are handled
by a constraint matrix. The constraint
matrix is used to generated better per-
former list (BPL) which is used to set the
search direction of the rest of the parti-
cles.

6.2. Min-max problems
PSO has been also applied to solve

min-max problems or the problems
which can be converted to min-max
problems (Shi and Krohling 2002,
Krohling, Knidel and Shi 2002, Laskari,
Parsopoulos and Vrahatis 2002a). One
straight forward approach is to treat the
min-max problem as a minimization
problem in the hope that the obtained
solutions can meet the requirements of
the min-max problem by embedding the
maximum part in the calculation of the
fitness values (Laskari, Parsopoulos and
Vrahatis 2002). Another approach is to
use multi-PSO strategy. The min-max
problem is first converted into two opti-
mization problems: one is a maximum
problem; the other is a minimum prob-
lem. Two PSO are used to solve these
two optimization problems, respectively,
and are run independently. Each PSO is
treated as a changing environment of the
other PSO. Therefore, the two PSO
cooperate through the fitness calculation
(Shi and Krohling 2002).

6.3. Multiobjective optimization
problems

In multi-objective optimization prob-
lems, multiple objectives need to be opti-
mized simultaneously. In most cases, no
single optimal solution usually can be
found to be optimal to all the objective
functions. Instead, there exist a group of
alternative solutions, known as a Pareto
optimal set or Pareto front. The solutions
in this group are equivalent in the
absence of any preference among all
objectives.

Multi-objective optimization problem
(MOO) has been one of the most studied
application areas of PSO algorithms.
Number of approaches have been uti-
lized and/or designed to tackle MOO
problems using PSO. A straight forward
approach is to convert MOO to a single
objective optimization problem. One sim-
ple implementation of the conversion is
the so-called weighted aggregation
approach which sums all the objectives
to form a weighted combination. The
weights can be fixed and dynamic
changing during the optimization process
(Parsopoulos and Vrahatis 2002b).

The second approach to tackle MOO
problem by PSO is to record a set of bet-
ter performing particles and then move
towards particles randomly selected from
the set instead of the neighborhood best
in the original PSO to maintain a diversi-
ty of population and therefore maintain a
well distribution along the Pareto front
(Ray and Liew 2002, Coello Coello and
Lechuga 2002, Coello Coello, Pulido and
Lechuga 2004). In (Ray and Liew 2002),

Ray and Liew combine Pareto domi-
nance with PSO. Better performing par-
ticles are recorded into a set of leaders
(SOL) based on non-dominated rank for
unconstrained MOO problems and multi-
level sieve implementation for con-
strained MOO problems. The remaining
particles move towards a leader random-
ly selected from the SOL. Leaders with
fewer individuals around them have a
higher probability of being selected. In
(Coello Coello and Lechuga 2002, Coello
Coello, Pulido and Lechuga 2004), the
authors also incorporate Pareto domi-
nance into PSO. The algorithm stores
the non-dominated vectors found so far
in a second population of particles from
which the neighborhood best will be later
randomly selected by the primary popu-
lation of particles to update their veloci-
ties. An adaptive grid is also introduced
to generate well-distributed Pareto
fronts, and special mutation operators
are designed to mutate both the parti-
cles and their dynamic ranges to
enhance the exploratory capabilities of
the proposed PSO (Coello Coello, Pulido
and Lechuga 2004).

Another approach proposed by Hu
and Eberhart (Hu and Eberhart 2002a)
optimizes one objective at a time. They
introduce dynamic neighborhood strate-
gy and particle memory updating into
PSO. In each generation, according to a
particle's distance to the other particles, it
determines its new neighbors from which
it selects its new neighborhood best. The
approach is then further improved by
adding a secondary population, called
extended memory, to store global Pareto
optimal solutions to reduce computation
time (Hu, Eberhart and Shi 2003).

Li (Li 2003) proposed an approach,
called Non-dominated Sorting Particle
Swarm Optimizer (NSPSO), for MOO
problems. It adopts a more effective non-
domination comparison by comparing all
particles' personal bests and their off-
spring in the entire population instead of
a single comparison between a particle's
personal best and its offspring.

6.4. Dynamic tracking
The dynamic tracking problems are

difficult problems for all evolutionary
algorithms, including PSO, to handle
since the landscapes of the optimization
functions are changing over the time,
therefore the currently found good solu-
tions may not be good any more even in
the near future (Shi and Eberhart 2001a,
Hu and Eberhart 2001). A straight for-
ward approach to handle dynamic track-
ing problems is to directly apply PSO
without any change based on the belief
that PSOs have the ability to converge

F
eature

A
rticle

(C
ont.)

February 2004 IEEE Neural Networks Society 11

F
ea

tu
re

A
rt

ic
le

(C
on

t.) fast (Parsoupolis and Vrahatis 2001).
The second approach is to re-evaluate
and reset the previous best when a
change in the environment was found
(Carlisle and Dozier 2000). This is suit-
able for problems with slow-changing
environment. The third approach is to
implement some mechanism to detect
and respond to dynamic functions, and
re-randomize particles when change is
detected (Hu and Eberhart 2002c).

6.5 Other applications
In addition to the above four main

application areas, PSO has been suc-
cessfully applied to solve many other
problems including a lot of practical
application problems. It has been applied
to evolve weights and structure of neural
networks (Eberhart and Shi 1998a,
Kennedy, Eberhart and Shi 2001), ana-
lyze human tremor (Eberhart and Hu
1999), register 3D-to-3D biomedical
image (Wachowiak et al., 2004), play
games (Messerschmidt and Engelbrecht
2004), control reactive power and volt-
age (Yoshida et al., 2000), etc..
Generally speaking, PSO can be applied
to solve most optimization problems and
problems that can be converted to opti-
mization problems.

7. Summaries

This paper surveys the research and
development of PSO in five categories:
algorithms, topology, parameters, hybrid
PSO algorithms, and applications. There
are certainly other research works on
PSO which are not included in this paper
due to the space limitation. In general,
the search process of a PSO algorithm
should be a process consisted of both
contraction and expansion so that it
could have the ability to escape from
local minima, and eventually find good
enough solutions. A mathematical foun-
dation of PSO is in need to have a deep
understanding of the dynamic process of
PSO. There is also a need of an unique
representation of the PSO topology and
a need of standard set of benchmark
functions so that researchers can dupli-
cate each other's work and compare
their work with the others’.

References:
Agrafiotis, D. K., and Cedeño, W.. (2002).

Feature selection for structure-activity cor-
relation using binary particle swarms.
Journal of Medicinal Chemistry, 2002, 45,
1098-1107.

Angeline, P. J.. (1998a). Using selection to
improve particle swarm optimization.
Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 1998),
Anchorage, Alaska, USA. 1998.

Angeline, P. J.. (1998b). Evolutionary opti-
mization versus particle swarm optimiza-
tion: philosophy and performance differ-
ences. Evolutionary Programming VII:
Proceedings of the Seventh Annual
Conference on Evolutionary Programming,
1998.

Blackwell, T., and Bentley, P. J.. (2002). Don't
push me! collision-avoiding swarms. IEEE
Congress on Evolutionary Computation,
2002 Honolulu, Hawaii USA.

Carlisle, A., and Dozier, G.. (2000). Adapting
particle swarm optimization to dynamic
environments. Proceedings of International
Conference on Artificial Intelligence, 2000
pp. 429-434. Las Vegas, Nevada, USA.

Clerc, M.. (1999). The swarm and the queen:
towards a deterministic and adaptive parti-
cle swarm optimization. Proc. 1999
Congress on Evolutionary Computation,
Washington, DC, pp 1951-1957.
Piscataway, NJ: IEEE Service Center.

Clerc, M., and Kennedy, J.. (2002). The parti-
cle swarm: explosion, stability, and conver-
gence in a multi-dimensional complex
space. IEEE Transactions on Evolutionary
Computation, vol. 6, p. 58-73.

Coello Coello, C. A., and Lechuga, M. S..
(2002). MOPSO: A proposal for multiple
objective particle swarm optimization. IEEE
Congress on Evolutionary Computation,
2002 Honolulu, Hawaii USA.

Coello Coello, C. A., Pulido, G. T., and
Lechuga, M. S.. (2004). Handling multiple
objectives with particle swarm optimization.
IEEE Transactions on Evolutionary
Computation (accepted for special issue on
PSO).

Eberhart, R. C., and Kennedy, J.. (1995). A
new optimizer using particle swarm theory.
Proceedings of the Sixth International
Symposium on Micro Machine and Human
Science, Nagoya, Japan, 39-43.
Piscataway, NJ: IEEE Service Center.

Eberhart, R. C., and Shi, Y.. (1998 a). Evolving
artificial neural networks. Proc. 1998 Int'l.
Conf. on Neural Networks and Brain,
Beijing, P.R.C., PL5-PL13.

Eberhart, R. C. and Shi, Y.. (1998 b).
Comparison between genetic algorithms
and particle swarm optimization. In V. W.
Porto, N. Saravanan, D. Waagen, and A. E.
Eiben, Eds. Evolutionary Programming VII:
Proc. 7th Ann. Conf. on Evolutionary
Programming Conf., San Diego, CA.
Berlin: Springer-Verlag.

Eberhart, R. C., and Hu, X.. (1999). Human
tremor analysis using particle swarm opti-
mization. Proc. Congress on Evolutionary
Computation 1999, Washington, DC, pp
1927-1930. Piscataway, NJ: IEEE Service
Center.

Eberhart, R. C., and Shi, Y.. (2000).
Comparing inertia weights and constriction
factors in particle swarm optimization.
Proc. CEC 2000, San Diego, CA, pp 84-88.

Eberhart, R. C., and Shi, Y.. (2001 a). Tracking
and optimizing dynamic systems with parti-
cle swarms. Proc. Congress on
Evolutionary Computation 2001, Seoul,
Korea. Piscataway, NJ: IEEE Service
Center.

Eberhart, R. C., and Shi, Y.. (2001 b). Particle
swarm optimization: developments, appli-
cations and resources. Proc. Congress on

Evolutionary Computation 2001, Seoul,
Korea. Piscataway, NJ: IEEE Service
Center.

Eberhart, R. C., Simpson, P. K., and Dobbins,
R. W.. (1996). Computational Intelligence
PC Tools. Boston, MA: Academic Press
Professional.

Fan, H., and Shi, Y.. (2001). Study on Vmax of
particle swarm optimization. Proceedings
of the Workshop on Particle Swarm
Optimization. Indianapolis, IN: Purdue
School of Engineering and Technology,
IUPUI . April, 2001.

He, Z.,Wei, C., Yang, L., Gao, X., Yao, S.,
Eberhart, R., and Shi, Y.. (1998). Extracting
Rules from Fuzzy Neural Network by
Particle Swarm Optimization, IEEE
International Conference on Evolutionary
Computation, Anchorage, Alaska, USA.

Hendtlass, T and Randall, M.. (2001). A sur-
vey of ant colony and particle swarm meta-
heuristics and their application to discrete
optimization problems. Proceedings of The
Inaugural Workshop on Artificial Life
(AL'01), pp. 15-25.

Hu, X., and Eberhart, R. C.. (2001). Tracking
dynamic systems with PSO: where's the
cheese? Proceedings of the workshop on
particle swarm optimization Purdue school
of engineering and technology,
Indianapolis, IN.

Hu, X., and Eberhart, R. C.. (2002a). Multi-
objective optimization using dynamic
neighborhood particle swarm optimization,
Proceeding of the 2002 Congress on
Evolutionary Computation, Honolulu,
Hawaii, May 12-17, 2002.

Hu, X., and Eberhart, R. C.. (2002 b). Solving
constrained nonlinear optimization prob-
lems with particle swarm optimization. 6th
World Multiconference on Systemics,
Cybernetics and Informatics (SCI 2002)
Orlando, USA, 2002.

Hu, X., and Eberhart, R. C.. (2002 c). Adaptive
particle swarm optimization: detection and
response to dynamic systems. IEEE
Congress on Evolutionary Computation,
2002 Honolulu, Hawaii USA.

Hu, X., and Eberhart, R. C., and Shi, Y..
(2003). Particle swarm with extended
memory for multiobjective optimization.
Proc. of 2003 IEEE Swarm Intelligence
Symposium, pages 193-197. Indianapolis,
Indiana, USA, April 2003. IEEE Service
Center.

Kennedy, J., and Eberhart, R. C.. (1995).
Particle swarm optimization, Proc. of IEEE
International Conference on Neural
Networks (ICNN), Vol.IV, pp.1942-1948,
Perth, Australia, 1995.

Kennedy, J.. (1999). Small worlds and mega-
minds: Effects of neighborhood topology on
particle swarm performance, Proceeding of
the 1999 Conference on Evolutionary
Computation, 1931-1938.

Kennedy, J., and Eberhart, R. C.. (1997). A
discrete binary version of the particle
swarm algorithm. Proc. 1997 Conf. on
Systems, Man, and Cybernetics, 4104-
4109. Piscataway, NJ: IEEE Service
Center.

Kennedy, J., Eberhart, R. C., with Shi Y..
(2001). Swarm Intelligence, Morgan
Kaufmann, 2001

Kennedy, J., and Mendes, R.. (2002).

12 IEEE Neural Networks Society February 2004

Population structure and particle swarm
performance, Proceeding of the 2002
Congress on Evolutionary Computation,
Honolulu, Hawaii, May 12-17, 2002.

Kennedy, J., and Spears, W. M.. (1998).
Matching algorithms to problems: an exper-
imental test of the particle swarm and some
genetic algorithms on the multimodal prob-
lem generator. Proc. Intl. Conf. on
Evolutionary Computation, 78-83.
Piscataway, NJ: IEEE Service Center.

Krink, T., and Løvbjerg, M.. (2002) The
LifeCycle model: combining particle swarm
optimisation, genetic algorithms and hill-
climbers. Proceedings of Parallel Problem
Solving from Nature (PPSN), Granada,
Spain, September, 2002.

Krink, T., Vesterstrøm, J., S. and Riget, J..
(2002). Particle swarm optimization with
spatial particle extension. Proceedings of
the Fourth Congress on Evolutionary
Computation (CEC-2002).

Krohling, R. A., Knidel, H., and Shi, Y. . (2002).
Solving numerical equations of hydraulic
problems using particle swarm optimiza-
tion. IEEE Congress on Evolutionary
Computation, 2002 Honolulu, Hawaii USA.

Laskari, E.C., Parsopoulos, K.E., Vrahatis,
M.N.. (2002). Particle swarm optimization
for min-max problems, Proceedings of the
IEEE 2002 Congress on Evolutionary
Computation.

Li, X.. (2003). A non-dominated sorting parti-
cle swarm optimizer for multi-objective opti-
mization. Lecture Notes in Computer
Science (LNCS) No. 2723: Proceedings of
the Genetic and Evolutionary Computation
Conference 2003 (GECCO 2003),
Chicago, IL, USA. pp. 37-48, 2003

Løvbjerg, M., and Krink, T.. (2002). Extending
particle swarms with self-organized critical-
ity. Proceedings of the Fourth Congress on
Evolutionary Computation (CEC-2002).

Løvbjerg, M., Rasmussen, T., and Krink, T..
(2001). Hybrid particle swarm optimiser
with breeding and subpopulations.
Proceedings of the third Genetic and
Evolutionary Computation Conference
(GECCO-2001), vol. 1, p. 469-476

Mendes, R., Kennedy, J., and Neves, J..
(2004). The fully informed particle swarm:
simpler, maybe better. IEEE Transactions
on Evolutionary Computation (accepted for
special issue on PSO).

Messerschmidt, L., Engelbrecht, A. P.. (2004).
Learning to play games using a PSO-
based competitive learning approach. IEEE
Transactions on Evolutionary Computation
(accepted for special issue on PSO).

Miranda, V., and Fonseca, N.. (2002). New
evolutionary particle swarm algorithm
(epso) applied to voltage/VAR control. The

14th Power Systems Computation
Conference (PSCC'02), Seville, Spain,
June, 2002.

Mohan, C. K., and Al-kazemi, B.. (2001)
Discrete particle swarm optimization.
Proceedings of the Workshop on Particle
Swarm Optimization 2001, Indianapolis, IN.
2001

Parsopoulos, K.E., Vrahatis, M.N.. (2001).
Particle swarm optimizer in noisy and con-
tinuously changing environments, M.H.
Hamza (ed.), Artificial Intelligence and Soft
Computing, pp. 289-294, IASTED/ACTA
Press (Anaheim, CA, USA).

Parsopoulos, K.E., Vrahatis, M.N.. (2002a).
Particle swarm optimization method for
constrained optimization problems.
Proceedings of the Euro-International
Symposium on Computational Intelligence
(E-ISCI 2002).

Parsopoulos, K.E., Vrahatis, M.N.. (2002b).
Particle swarm optimization method in mul-
tiobjective problems. Proceedings of the
2002 ACM Symposium on Applied
Computing (SAC 2002), pp. 603-607.

Parsopoulos, K. E., and Vrahatis, M.. (2004).
On the computation of all global minimizers
through particle swarm optimization. IEEE
Transactions on Evolutionary Computation
(accepted for special issue on PSO).

Ratnaweera, A., Halgamuge, S. K., and
Watson, H. C.. (2004). Self-organizing hier-
archical particle swarm optimizer with time
varying accelerating Coefficients. IEEE
Transactions on Evolutionary Computation
(accepted for special issue on PSO).

Ray, T., and Liew, K. M.. (2001). A swarm with
an effective information sharing mecha-
nism for unconstrained and constrained
single objective optimization problem.
Proc. congress on evolutionary computa-
tion 2001 pp. 75-80. IEEE service center,
Piscataway, NJ., Seoul, Korea., 2001.

Ray, T., and Liew, K. M.. (2002). A swarm
metaphor for multi-objective design opti-
mization. Engineering Optimization. 34(2):
141-153, March 2002.

Robinson, J., Sinton, S., and Rahmat-Samii,
Y.. (2002). Particle swarm, genetic algo-
rithm, and their hybrids: optimization of a
profiled corrugated horn antenna. IEEE
International Symposium on Antennas &
Propagation. San Antonio, Texas. June,
2002

Shi, Y., and Eberhart, R. C.. (1998a).
Parameter selection in particle swarm opti-
mization, Proceedings of the 1998 Annual
Conference on Evolutionary Computation,
March 1998

Shi, Y., and Eberhart, R. C.. (1998b). A modi-
fied particle swarm optimizer. Proceedings
of the 1998 IEEE International Conference

on Evolutionary Computation, 69-73.
Piscataway, NJ: IEEE Press. May 1998.

Shi, Y., and Eberhart, R. C.. (1999). Empirical
study of particle swarm optimization.
Proceedings of the 1999 Congress on
Evolutionary Computation, 1945-1950.
Piscataway, NJ: IEEE Service Center.

Shi, Y., and Eberhart, R. C.. (2000).
Experimental study of particle swarm opti-
mization. Proc. SCI'2000 Conference,
Orlando, FL.

Shi, Y., and Eberhart, R. C.. (2001a). Fuzzy
adaptive particle swarm optimization, Proc.
Congress on Evolutionary Computation
2001, Seoul, Korea. Piscataway, NJ: IEEE
Service Center.

Shi, Y., and Eberhart, R. C.. (2001b). Particle
swarm optimization with fuzzy adaptive
inertia weight. Proceedings of the
Workshop on Particle Swarm Optimization
2001, Indianapolis, IN. 2001

Shi, Y., and Krohling, R. A.. (2002). Co-evolu-
tionary particle swarm optimization to solve
min-max problems. IEEE Congress on
Evolutionary Computation, Honolulu,
Hawaii USA. 2002.

Suganthan, P.N.. (1999). Particle swarm opti-
mizer with neighborhood operator.
Proceeding of the 1999 Conference on
Evolutionary Computation. 1958-1962.
Piscataway, NJ: IEEE Service Center.

van den Bergh, F., Engelbrecht, A. P.. (2004).
A cooperative approach to particle swarm
optimization. IEEE Transactions on
Evolutionary Computation (accepted for
special issue on PSO).

Wachowiak, M. P., Smolíková, R., Zheng, Y.,
Zurada, J. M., and Elmaghraby, A. S..
(2004). An approach to multimodal biomed-
ical image registration utilizing particle
swarm optimization. IEEE Transactions on
Evolutionary Computation (accepted for
special issue on PSO).

Wei, C., He, Z., Zhang, Y., and Pei, W.. (2002).
Swarm directions embedded in fast evolu-
tionary programming. Proceedings of the
IEEE Congress on Evolutionary
Computation (CEC 2002), Honolulu,
Hawaii USA. 2002

Xie, X., Zhang, W., and Yang, Z.. (2002). A
dissipative particle swarm optimization.
IEEE Congress on Evolutionary
Computation, 2002 Honolulu, Hawaii USA

Yoshida, H., Kawata, K., Fukuyama, Y.,
Takayama, S., and Nakanishi, Y.. (2000). A
particle swarm optimization for reactive
power and voltage control considering volt-
age security assessment. IEEE
Transactions on Power Systems, Vol. 15,
No. 4, pp. 1232-1239.

F
eature

A
rticle

(C
ont.)

Yuhui Shi received his Ph.D degree in digital signal processing from Southeast University, China in 1992. His expert-
ise is in the areas of computational intelligence, biomedical engineering, embedded systems, and mobile multimedia
systems. Dr. Shi served as the General Chair of the 2003 IEEE Swarm Intelligence Symposium, the Technical Chair of
the 2001 Particle Swarm Optimization Workshop, and a member of the program committees of numerous conferences.
He is the Proceedings Chair of the 2004 Congress on Evolutionary Computation (CEC2004). He was invited to give
tutorial on the introduction to computational intelligence at 1998 World Congress on Computational Intelligence, and
tutorial on evolutionary computation and fuzzy systems at 1998 Conference of Artificial Neural Networks in Engineering.
Dr. Shi is the co-chair of the Task Force on Swarm Intelligence, Evolutionary Computation Technical Committee, IEEE
Neural Networks Society, and an Associate Editor of IEEE Transactions on Evolutionary Computation. He co-authored
a book on swarm intelligence together with Dr. James Kennedy and Dr. Russell C. Eberhart, and a book on computa-
tional intelligence, which is to be published by Morgan Kaufmann Publishers, together with Dr. Russell C. Eberhart. He
has published more than 40 technical papers in the areas of his interests.

F
eature

A
rticle

(C
ont.)

February 2004 IEEE Neural Networks Society 13

