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Outline
• POCS: What is it?

– Convex Sets
– Projections
– POCS

• Applications
– The Papoulis-Gerchberg Algorithm
– Neural Network Associative Memory
– Resolution at sub-pixel levels
– Radiation Oncology / Tomography
– JPG / MPEG repair
– Missing Sensors

• Generalized Alternating Projections
– Ambiguity Function Synthesis
– The Gerchberg-Saxton Algorithm
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In a vector space, a set C is convex iff 
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• Bounded Signals – a box
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POCS: Example convex sets in a Hilbert space

• Bounded Signals – a box

    )()(  utxtxC  

then, if 0    1
   x(t)+(1- ) y(t)  u.

 If   x(t)  u and   y(t)  u, 
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POCS: Example convex sets in a Hilbert space

• Identical Middles – a plane
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POCS: Example convex sets in a Hilbert space

• Identical Middles – a plane
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POCS: Example convex sets in a Hilbert space
• Fixed Area Signals – a plane
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POCS: Example convex sets in a Hilbert space
• Fixed Area Signals – a plane
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POCS: Example convex sets in a Hilbert space
• Fixed Area Signals – a plane
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POCS: Example convex sets in a Hilbert space
• Fixed Area Signals – a plane
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POCS: Example convex sets in a Hilbert space

• Bounded Energy Signals – a ball
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POCS: Example convex sets in a Hilbert space

• Bounded Energy Signals – a ball
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POCS: Example convex sets in a Hilbert space

• Bounded Energy Signals – a ball
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POCS: Example convex sets in a Hilbert space

• Bandlimited Signals – a plane (subspace)
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B = bandwidth

If x(t) is bandlimited and y(t) is 
bandlimited, then so is

z(t) =  x(t) + (1- ) y(t)



POCS: Example convex sets in a Hilbert space
• Tomographic Projections
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POCS: Example convex sets in a Hilbert space
• Identical Tomographic Projections – a plane
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POCS: Example convex sets in a Hilbert space
• Identical Tomographic Projections – a plane
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POCS: What is a projection 
onto a convex set?

• For every (closed) convex set, C,  and every 
vector, x, in a Hilbert space, there is a unique
vector in C, closest to x.  

• This vector, denoted PC x, is the projection of x
onto C: 

C
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POCS: What is a projection 
onto a convex set?

• For every (closed) convex set, C,  and every 
vector, x, in a Hilbert space, there is a unique
vector in C, closest to x.  

• This vector, denoted PC x, is the projection of x
onto C: 
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Projections are
idempotent.



POCS: Example projections

• Bounded Signals – a box
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Example Projections
 Bounded Signals – a box
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Example Projections
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Example Projections
 Bounded Signals – a box
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POCS: Example convex sets in a Hilbert space

• Identical Middles – a plane
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POCS: Example convex sets in a Hilbert space

• Identical Middles – a plane
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Example Projections
• Identical Middles – a plane
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Example Projections
• Constant Area Signals

– a plane (linear variety)
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Example Projections
• Constant Area Signals

– a plane (linear variety)
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Example Projections
• Constant Area Signals

– a plane (linear variety)
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Water Analogy



Example Projections
• Constant Area Signals

– a plane (linear variety)

Interval
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Same value added 
to each element.

y(t)
C

Water Analogy



Example Projections

Water Fill  

y(t) Constant Area Signals
Area = ܣ over an 

interval ܶ
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y(t)

Example Projections
• Bandlimited Signals – a plane (subspace)
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POCS: Example Projections
• Tomographic Projections
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POCS: Example Projections
• Tomographic Projections
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Raise (or lower) the 
water on the 
candidate image 
until the sum is  p 
along the line P.
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Example Projections
• Bounded Energy Signals – a ball
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Example Projections
• Bounded Energy Signals – a ball
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Example Projections
• Bounded Energy Signals – a ball
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The intersection of 
convex sets is convex
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Alternating POCS will converge 
to a point common to both sets
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= Fixed Point



Alternating POCS will converge 
to a point common to both sets

C1
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= Fixed Point

The Fixed Point 
is generally 
dependent on 
initialization
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Lemma 1: Alternating POCS among N
convex sets with a non-empty intersection 

will converge to a point common to all.
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Von Neumann’s Alternating Projection Algorithm
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Consider two or more 
intersecting hyperplanes.
(e.g. identical middles, 

constant area, bandlimited) 
and an external signal ݕԦ	
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There is a unique point 
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Lemma 2: Alternating POCS among 2 
nonintersecting convex sets will converge 

to the point in each set closest to the 
other.
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Limit Cycle



Lemma 3: Alternating POCS among 3 or more 
convex sets with an empty intersection will 
converge to a limit cycle.  
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Lemma 3: Alternating POCS among 3 or more 
convex sets with an empty intersection will 
converge to a limit cycle.  
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Different projection operations 
can produce different limit cycles.

1 2  3 Limit Cycle
3 2  1 Limit Cycle



Lemma 3: (cont) POCS with non-empty 
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Lemma 3: (cont) POCS with non-empty 
intersection.
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Simultaneous Weighted Projections 
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Simultaneous Weighted Projections 
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• Can also use 
weighted average

• Average uses 
௡

ଵ
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• Gives Minimum 
Mean Square 
Error Solution



Outline
• POCS: What is it?

– Convex Sets
– Projections
– POCS

• Applications
– The Papoulis-Gerchberg Algorithm
– Neural Network Associative Memory
– Resolution at sub-pixel levels
– Radiation Oncology / Tomography
– JPG / MPEG repair
– Missing Sensors

• Generalized Alternating Projections
– Ambiguity Function Synthesis
– The Gerchberg-Saxton Algorithm



Application:

The Papoulis-Gerchberg Algorithm
• Restoration of lost data in a band limited function:
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Convex Sets: (1) Identical Tails and (2) Bandlimited.



Application:

The Papoulis-Gerchberg Algorithm

Example



Application:

The Papoulis-Gerchberg Algorithm

Problem: Ill-posed. 
Ill-conditioned



Application:

The Papoulis-Gerchberg Algorithm

Problem: Ill-posed. 
Ill-conditioned

Example: Sum of forces =0. Therefore no motion (?)

Problem: noise



Ill-Conditioned Matrix

close to singular
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Outline
• POCS: What is it?

– Convex Sets
– Projections
– POCS

• Applications
– The Papoulis-Gerchberg Algorithm
– Neural Network Associative Memory
– Resolution at sub-pixel levels
– Radiation Oncology / Tomography
– JPG / MPEG repair
– Missing Sensors

• Generalized Alternating Projections
– Ambiguity Function Synthesis
– The Gerchberg-Saxton Algorithm



A Plane!

Application:

Neural Network Associative Memory
Placing the Library in Hilbert Space



Application:

Neural Network Associative Memory
Associative Recall

Identical (known) Pixels



Application:

Neural Network Associative Memory
Associative Recall by POCS
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Neural Network Associative Memory
Associative Recall by POCS

Column Space Identical (known) Pixels



Application:

Neural Network Associative Memory
Example
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Application:

Neural Network Associative Memory
Example
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A Library of Mathematicians



A Library of Mathematicians

What does the Average Mathematician Look  Like?



Convergence As a Function of Percent of Known Image



Convergence As a Function of Library Size



Convergence As a Function of  Noise Level



Combining Euler & Hermite



Combining Euler & Hermite

Not Of This Library



Outline
• POCS: What is it?

– Convex Sets
– Projections
– POCS

• Applications
– The Papoulis-Gerchberg Algorithm
– Neural Network Associative Memory
– Resolution at sub-pixel levels
– Radiation Oncology / Tomography
– JPG / MPEG repair
– Missing Sensors

• Generalized Alternating Projections
– Ambiguity Function Synthesis
– The Gerchberg-Saxton Algorithm



Application:

Combining Low Resolution 
Sub-Pixel Shifted Images
http://www.stecf.org/newsletter/stecf-nl-22/adorf/adorf.html
Hans-Martin Adorf 

Problem: Multiple 
Images of Galazy
Clusters with 
subpixel shifts.
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POCS Solution:

1. Sets of high 
resolution images 
giving rise to lower 
resolution images.

2. Positivity

3. Resolution Limit



Application:

Combining Low Resolution 
Sub-Pixel Shifted Images
http://www.stecf.org/newsletter/stecf-nl-22/adorf/adorf.html
Hans-Martin Adorf 

Problem: Multiple 
Images of Galazy 
Clusters with 
subpixel shifts.

POCS Solution:

1. Sets of high 
resolution images 
giving rise to lower 
resolution images.

2. Positivity

3. Resolution Limit

2         4



Application:

Subpixel Resolution
using the world’s worst camera

•Object is imaged with an 
aperture covering a large 
area.  The average (or 
sum) of the object is 
measured as a single 
number over the 
aperture.
•The set of all images 
with this average value at 
this location is a convex 
set.
•The convex set is 
constant area.



Application:

Subpixel Resolution

Randomly chosen 8x8 pixel blocks.  Over 6 Million projections.



Slow (7:41)    Fast (3:00)    Faster (1:30)     Fastest (0:56)

Application:

Subpixel Resolution

Randomly chosen 8x8 pixel blocks.  Over 6 Million projections.



Application:

Subpixel Resolution

Blocks of random dimension <33 chosen at random 
locations.  2.7 Million blocks.

Slow (0.58)        Fast (0:29)      Faster (0:14)    



Outline
• POCS: What is it?

– Convex Sets
– Projections
– POCS

• Applications
– The Papoulis-Gerchberg Algorithm
– Neural Network Associative Memory
– Resolution at sub-pixel levels
– Radiation Oncology / Tomography
– JPG / MPEG repair
– Missing Sensors

• Generalized Alternating Projections
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Tomography
Same procedure as subpixel resolution.

102k iterations in ~log time  

Slow (0.19)        Fast (0:09 )    



Tomography
Same procedure as subpixel resolution.

409k iterations in ~log time

Slow (0.43)        Fast (0:21 )    
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Radiation Oncology

Conventional Therapy Illustration



Application:

Radiation Oncology

Conventional Therapy Illustration



Application:

Radiation Oncology

Intensity Modulated Radiotherapy



Application:

Radiation Oncology
• Convex sets for dosage optimization

N = normal tissue

T = tumor

C = critical organ

CN = Set of beam patterns giving 
dosage in N less than TN.

CC = Set of beam patterns giving 
dosage in C less than TC <TN.

CT = Set of beam patterns giving 
dosage in T between TLow and Thi  
(no cold spots or hot spots).

CC = Set of nonnegative beam 
patterns.
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Radiation Oncology

C

T
N

Example POCS Solution
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T
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Example POCS Solution
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Transmission & Error
 During jpg or mpg transmission, some packets 

may be lost due to bit error, congestion of 
network, noise burst, or other reasons. 

 Assumption: No Automatic Retransmission Request (ARQ)



Application

Block Loss Recovery Techniques for 
Image and Video Communications

Transmission & Error
 During jpg or mpg transmission, some packets 

may be lost due to bit error, congestion of 
network, noise burst, or other reasons. 

 Assumption: No Automatic Retransmission Request (ARQ)

Missing 8x8 
block of 
pixels



Application

Projections based Block Recovery –
Algorithm

• Two Steps

Edge orientation detection

POCS using Three Convex Sets




Application

• Recovery vectors are extracted to restore missing pixels.
• Two positions of recovery vectors are possible according 

to the edge orientation.

• Recovery vectors consist of known pixels(white color) 
and missing pixels(gray color).

• The number of recovery vectors, rk, is 2.

Vertical line dominating area Horizontal line dominating area



Application

Forming a Convex Constraint Using 
Surrounding Vectors

• Surrounding Vectors, sk, are extracted from surrounding 
area of a missing block by an N x N window.

• Each vector has its own spatial and spectral 
characteristic.

• The number of surrounding vectors, sk, is 8N.



Application

Projections based Block Recovery –
Projection operator P1

Convex Cone Hull

Surrounding 
Blocks



Application

Projection operator P1

Convex Cone Hull

P1 r

r



Application

Projection operator P2
Identical Middles

Keep This Part

Replace this 
part with the 
known image

P1



• Convex set C3 acts as a convex 
constraint between missing pixels 
and adjacent known pixels,         
(fN-1 fN).  The rms difference 
between the columns is 
constrained to lie below a 
threshold. 

Application

Projection operator P3
Smoothness Constraint

fN-1 fN

)}(....,),{( ,,10,0,1 NNNNNN ffffg  



Application

Simulation Results – Test Data and Error

• Peak Signal to Noise Ratio
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Simulation Results –
Lena, 8 x 8 block loss

Original Image Test Image



Simulation Results –
Lena, 8 x 8 block loss

Ancis, PSNR = 28.68 dB Hemami, PSNR = 31.86 dB



Simulation Results –
Lena, 8 x 8 block loss

Ziad, PSNR = 31.57 dB POCS, PSNR = 34.65 dB



Simulation Results –
Lena, 8 x 8 block loss

Ancis

PSNR = 28.68 dB

Hemami

PSNR = 31.86 dB

Ziad

PSNR = 31.57 dB

POCS

PSNR = 34.65 dB



Simulation Results – Each Step
Lena 8 x 8 block loss

(a)

(b)

(c)



Simulation Results –
Peppers, 8 x 8 block loss

Original Image Test Image



Simulation Results –
Peppers, 8 x 8 block loss

Ancis, PSNR = 27.92 dB Hemami, PSNR = 31.83 dB



Simulation Results –
Peppers, 8 x 8 block loss

Ziad, PSNR = 32.76 dB POCS, PSNR = 34.20 dB



Simulation Results – PSNR (8 x 8)

Lena Masqrd Peppers Boat Elaine Couple

Ancis 28.68 25.47 27.92 26.33 29.84 28.24

Sun 29.99 27.25 29.97 27.36 30.95 28.45

Park 31.26 27.91 31.71 28.77 32.96 30.04

Hemami 31.86 27.65 31.83 29.36 32.07 30.31

Ziad 31.57 27.94 32.76 30.11 31.92 30.99

POCS 34.65 29.87 34.20 30.78 34.63 31.49



Simulation Results –
Masquerade, 8 x one row block loss

Original Image Test Image



Simulation Results –
Masquerade, 8 x one row block loss

Hemami, PSNR = 23.10 dB POCS, PSNR = 25.09 dB



Interpolation based Coding – Result 1

JPEG Coding

PSNR = 32.27 dB

Size = 0.30 BPP  = 
9,902 Byte

w/ Removed Blocks

Blocks : 447 / 4096    
= 11%

Size = 0.29 BPP

I-based Coding 

PSNR = 32.35 dB

Size = 0.29 BPP  
= 9,634 Byte



Interpolation based Coding – Result 2

JPEG Coding

PSNR = 32.27 dB

Size = 0.30 BPP  = 
9,902 Byte

w/ Removed Blocks

Blocks : 557 / 4096    
= 14%

Size = 0.27 BPP

I-based Coding 

PSNR = 32.37 dB

Size = 0.27 BPP  
= 9,570 Byte



Temporal Block Loss Recovery

• In video coding (e, g, MPEG), temporal 
recovery is more effective.

tt-1



Simulation Results – Flower Garden

Original Sequence Test Sequence



Simulation Results – Flower Garden

Zero Motion Vector, 
PSNR = 16.15 dB

Average of 
Surrounding Motion 

Vectors, PSNR = 
18.64 dB



Simulation Results – Flower Garden

Motion Flow Interpolation 
(1999), PSNR = 19.29 dB

Boundary Matching 
Algorithm (1993), PSNR 

= 19.83 dB



Simulation Results – Flower Garden

Decoder Motion Vector 
Estimation (2000), PSNR = 

19.21 dB

POCS Based, PSNR = 
20.71 dB



Simulation Results – Foreman

Original Sequence Test Sequence

Zero Motion Vector 
PSNR = 24.71 dB

Average of Surrounding 
Motion Vectors PSNR = 

26.22 dB



Simulation Results – Foreman

Motion Flow Interpolation 
(1999) PSNR = 27.09 dB

Boundary Matching Algorithm 
(1993), PSNR = 28.76 dB 

Decoder Motion Vector 
Estimation (2000), PSNR = 

27.46 dB

POCS Based PSNR = 
29.82 dB



Simulation Results – Average PSNR

Garden Tennis Football Mobile Foreman

MV 16.15 22.40 18.06 17.49 24.71

AV 18.64 21.98 18.72 19.03 26.22

BMA 19.83 23.55 19.41 19.75 28.76

DMVE 19.88 24.04 19.64 20.02 28.77

MFI 19.29 22.77 19.29 19.60 27.09

F-B BM 19.21 22.49 19.05 19.59 27.46

Proposed 20.71 24.52 20.32 20.66 29.82
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Application

Missing Sensors
Idea: 

• A collection of spatially distributed point sensors.
• Their readings are interrelated (e.g. temperature 

sensors in a room). 



Application

Missing Sensors
• A plurality of sensors fail.

X
XX

X X

• Can the failed sensor readings be regained from those 
remaining without use of models?

• Applications: (1) Power Security Assessment (2) 
Engine Vibration Sensors



Application

Missing Sensors

• Step 1: Learn the 
interrelationship among 
the sensors by training 
an auto-encoder neural 
network with historical 

data.
• The mapping of a 
properly trained neural 
network is a projection.



Application

Missing Sensors

• Step 2: Impose 
the second 

convex 
constraint of 

known sensor 
values.  If 

POCS, 
convergence is 

assured

ignorei
g
n
o
r
e

g



Application

Missing Sensors
• Example: Vibration Sensors on a Jet  Engine

x direction y direction z direction



Application

Missing Sensors
• Four Sensors – One Missing

known restored

Original Sensor Data

Reconstructed sensor data when sensor 4 fails.



Application

Missing Sensors
• Four Sensors – Two Missing

ail

Figure 5: Restoration of two lost vibration sensors corresponding to 44 points of data. The real 

known missing



Application

Missing Sensors
• Eight Sensors – Two Missing

(Magnitude Only)

ail

Figure 5: Restoration of two lost vibration sensors corresponding to 44 points of data. The real 

Reconstructed sensor data when sensors seven and eight fail.

missing

Reconstruction Error

known
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Ambiguity Function Signal Synthesis

Woodward’s Ambiguity Function

࣑ ,࣎ ࢛ ൌ න࢞ ࢚ ∗࢞ ࢚ െ ࣎ ࢚ࢊ࢚࢛࣊૛࢐ିࢋ
	

࢚

There exists an inherent trade-off in
the ability of a signal to accurately 

measure both the range 
(determined	by	delay	߬) and

velocity (measured from Doppler shift 
 of a target. Woodward’s ambiguity (ݑ

function measures
this uncertainty for narrowband RF 

signals for monostatic radar

Ambiguity Function of a rectangle



Ambiguity Function Signal Synthesis
Synthesized Signal Constraints:
1. Limited Peak-to-average-power ratio (PAPR)
2. Spectral mask constraint
3. Targeted ambiguity function   

Spectral mask constraint Ambiguity function constraint



Ambiguity Function Signal Synthesis

Dylan Eustice, Charles Baylis and Robert J. Marks II, 
"Woodward’s Ambiguity Function: From Foundations to 
Applications,'' 2015 IEEE Texas Symposium on Wireless 
and Microwave Circuits and Systems (WMCS), April 23-
24, 2015. Waco, Texas (pp. 1-17). DOI: 
10.1109/WMCaS.2015.7233208
Dylan Eustice, Charles Baylis, Lawrence Cohen, and 
Robert J. Marks II. "Waveform synthesis via alternating 
projections with ambiguity function, peak-to-average 
power ratio, and spectrum requirements." 2016 IEEE 
Radio and Wireless Symposium (RWS), pp. 190-192. 
IEEE, 2016. DOI: 10.1109/RWS.2016.7444401
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Gerchberg-Saxton Algorithm

,ଵݐሺݔ ଶሻݐ
ଶݐ

ଵݐ
ଶݑ

,ଵݑଵ~ܺሺݑ ଶሻݑ

Fraunhofer (far field) diffraction 

ݔ ,ଵݐ ଶݐ ൌ ݔ ݁௝∠௫ ܺ ,ଵݑ ଶݑ ൌ ܺ ݁௝∠௑࣠
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Gerchberg-Saxton Algorithm

,ଵݐሺݔ ଶሻݐ
ଶݐ

ଵݐ
ଶݑ

,ଵݑଵ~ܺሺݑ ଶሻݑ

Fraunhofer (far field) diffraction 

ݔ ,ଵݐ ଶݐ ൌ ݔ ݁௝∠௫ ܺ ,ଵݑ ଶݑ ൌ ܺ ݁௝∠௑

Square Law Detector measures ݔ and ܺ .  

Problem: Given  ࢞ and ࢄ , find phase ∠࢞ and ∠ࢄ

࣠

Note: ܥ ൌ 		|			ݕ ݕ ൌ |ݔ| is not convex

But we can impose an idempotent projection: keep the 
phase and impose the magnitude:  ℘஼ ݕ ൌ ݔ ݁௝∠௬



Gerchberg-Saxton Algorithm

݃௡ ൌ 	ݔ ݁௝∠௙೙

ଶݐ

ଵݐ

݊ ൌ ݊ ൅ 1 Iteratively impose 
magnitude in both 

domains

࣠ ௡ܩ ൌ 		௡ିଵܩ ݁௝∠ீ೙

௡ܨ ൌ ܺ ݁௝∠ீ೙࣠ିଵ
௡݂ ൌ ௡݂		 ݁௝∠௙೙

,ଵݐሺݔ ଶሻݐ

ଵݑ

,ଵݑଶܺሺݑ ଶሻݑ
࣠

Iterative Restoration:



Gerchberg-Saxton Algorithm

ଶݐ

ଵݐ

ଵݑ

ଶݑ

ܺሺݑଵ,  ଶሻݑ

࣠

,ଵݐሺݔ  ଶሻݐ

Example: Sad 
to Happy



Gerchberg-Saxton Algorithm



Gerchberg-Saxton Algorithm



Final Comments
• POCS: What is it?

– Convex Sets
– Projections
– POCS

• Applications
– The Papoulis-Gerchberg Algorithm
– Neural Network Associative Memory
– Resolution at sub-pixel levels
– Radiation Oncology / Tomography
– JPG / MPEG repair
– Missing Sensors

• Generalized Alternating Projections
– Ambiguity Function Synthesis
– The Gerchberg-Saxton Algorithm

• R.J. Marks II, Handbook of Fourier Analysis 
and Its Applications, Oxford University Press, 
(2009).

• http://robertmarks.org/REPRINTS/Marks-
Pubs.htm




