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POCS: Example convex sets in a Hilbert space

e Bounded Signals — a box

C = {x(t)|r < x(t) < u}

u_

2

If / <x(t) <uand /<y(t) <u,

then, f0<A<1
¢ < Ax()+(1- 2) y(t) < u.




POCS: Example convex sets in a Hilbert space

 |dentical Middles — a plane
C = {x[n]\x[B] = 1}, n =1,2,3
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CS convex sets
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CS convex sets
* Fixed Area Signals — a plane

i

X(t) y(t)
L : 4\
t {

| [ax)+@-2)yt)t = 1A+ (1-2)A=A




POCS: Example convex sets In a Hilbert space

 Bounded Energy Signals — a ball

X[n]|x*[1] + x*[2] + x*[3] < E
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 Bounded Energy Signals — a ball
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POCS: Example convex sets In a Hilbert space

 Bounded Energy Signals — a ball

o0

| Ax(®) + L= 2)y@® 1P= [ [2x(t) + @~ 2)y®)[ dt

— 00

Triangle Inequality

< )2 j }x(t))zdt+(1—/1)2j ly(t)] dt

<




POCS: Example convex sets in a Hilbert space

e Bandlimited Signals — a plane (subspace)
C :{x(t)\X(u)EO , u > B }

B = bandwidth

I x(t) Is bandlimited and y(t) Is
bandlimited, then so Is

Z(t) = A x(t) + (1- 1) y(b)




POCS: Example convex sets in a Hilbert space

e Tomographic Projections

Ce =L OOV O Y)dddy =pf




POCS: Example convex sets In a Hilbert space
 ldentical Tomographic Projections - aplane

f2(%.y)




POCS: Example convex sets In a Hilbert space
 Identical Tomographic Projections - aplane




POCS: What is a projection

onto a convex set?

e For every (closed) convex set, C, and every
vector, X, In a Hilbert space, there Is a unique
vector In C, closest to x.

* This vector, denoted P x, Is the projection of x
onto C:
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POCS: What is a projection

onto a convex set?

e For every (closed) convex set, C, and every
vector, X, In a Hilbert space, there Is a unique
vector In C, closest to x.

* This vector, denoted P x, Is the projection of x
onto C:

Projections are
idempotent.

Pcy
oy




POCS: Example projections

 Bounded Signals — a box

|

i
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Example Projections
 |dentical Middles — a plane

C ={ x®xt) =c(t) ; te 3|




Example Projections

— a plane (linear variety)
C = {x[n]lx[1] + x[2] = 1}
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Example Projections

— a plane (linear variety)
C = {x[n]lx[1] + x[2] = 1}

The same value (in this example, 1) is
subtracted (or added) to every value.

Water Analogy




Example Projections @ ¢

 Constant Area Signals
— a plane (linear variety)

Same value added
to each element.

Water Analogy




Example Projections
y(t) ¢ C Constant Area Signals

Area = 4 over an

T

ocyln]

Water Fill




Example Projections
 Bandlimited Signals — a plane (subspace)

C = {x(t)[X(u)=0;u>B |}

@ Y1)

Low Pass Filter:
Bandwidth B




POCS: Example Projections

Tomographic Projections

.= 1 o[ 1 Oy - b

Should sum to p




POCS: Example Projections
Tomographic Projections

Ce =L F Y] f(xy)dxdy = pf

Raise (or lower) the
water on the
candidate image
until the sumis p
along the line P.

7




Example Projections
« Bounded Energy Signals — a ball

| x(t) |F< E

y(H) @




Example Projections
« Bounded Energy Signals — a ball

| x(t) |F< E

y(t)




Example Projections
« Bounded Energy Signals — a ball

[ x(t) [*< E

y() @

E Y ivit) > E
JE Ol 1y(@) >

L ' <E




The Intersection of
convex sets Is convex

C,
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Alternating POCS will converge
to a point common to both sets

-

C,

* = Fixed Point




Alternating POCS will converge
to a point common to both sets

-

C,

* = Fixed Point

The Fixed Point
IS generally
dependent on
Initialization




Bounded: 0 < x[n] < 4 and Area: x[1} + x[2} + x[3] = 2
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Bounded: 0 < x[n] < 4 and Area: x[1} + x[2} + x[3] = 2

41
Bound%}
0

Bounded > 21
-2
11

Bounded > 3

Converges to=>»




Lemma 1: Alternating POCS among N
convex sets with a non-empty intersection
will converge to a point common to all.
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Von Neumann’s Alternating Projection Algorithm

Consider two or more
Intersecting hyperplanes.
(e.g. identical middles,
constant area, bandlimited)
and an external signal y

There Is a unigue point
Closest  in the intersection that is

~ pointin closest to y
intersection

to y
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Von Neumann’s Alternating Projection Algorithm
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Consider two or more
Intersecting hyperplanes.
(e.g. identical middles,
constant area, bandlimited)
and an external signal y

There Is a unigue point
Closest  in the intersection that is
oint in closest to y

Intersection
to y Alternating projections

will converge to that
point.




Lemma 2: Alternating POCS among 2
nonintersecting convex sets will converge
to the point in each set closest to the
other.

P

Limit Cycle




Lemma 3: Alternating POCS among 3 or more
convex sets with an empty intersection will
converge to a limit cycle.

1—»> 2 — 3 Limit Cycle

C,




Lemma 3: Alternating POCS among 3 or more
convex sets with an empty intersection will
converge to a limit cycle.

Different projection operations
can produce different limit cycles.

1—»> 2 — 3 Limit Cycle
3— 2 — 1 Limit Cycle




Lemma 3: (cont) POCS with non-empty

(

Intersection.

1> 2 —» 3 Limit Cycle




Lemma 3: (cont) POCS with non-empty
Intersection.

1> 2 —» 3 Limit Cycle
3— 2 — 1 Limit Cycle




Simultaneous Weighted Projections
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Simultaneous Weighted Projections

1. Take Projections =
4

2. Average

3 Q




Simultaneous Weighted Projections

1. Take Projections 37
2. Average
3. Repeat




Simultaneous Weighted Projections

1. Take Projections 37
2. Average
3. Repeat




Simultaneous Weighted Projections

e (Can also use
welghted average

e Gives Minimum Cl

Mean Square
Error Solution
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Application:

The Papoulis-Gerchberg Algorithm

e Restoration of lost data in a band limited function:

Convex Sets: (1) Identical Tails and (2) Bandlimited.




Application:

The Papoulis-Gerchberg Algorithm

/ O Example

0.1 1 1 1 L 1 1 1 L 1 1 1 1 1
0 20 40 60 B0 100 12 uer R 60 B0 100 120 140 160 180 200

_ﬂ 1 1 1 1 L 1 L 1 1 L
0 20 40 60 80 100 120 140 160 180 200




Application:

The Papoulis-Gerchberg Algorithm

Problem: Ill-posed.
I1l-conditioned




Application:

The Papoulis-Gerchberg Algorithm

Problem: Ill-posed.
l1l-conditioned

Example: Sum of forces =0. Therefore no motion (?)

Problem: noise




[II-Conditioned Matrix

0.9562 0.6889 1.0230 0.4380 0.8832
0.6889 0.6044 0.9112 0.2860 0.7146
A= 1.0230 09112 1.3752 0.4210 1.0710
0.4380 0.2860 0.4210 0.2087 0.3832
0.8832 0.7146 1.0710 0.3832 O.8725J

0.8267 1.5639 —0.5038 —0.5633 —1.2519

| 0.5816 1.1744 —2.0727 —2.4462 2.0681

A =10% x 0.0314 —0.8723  0.9632 0.5381 —0.7361 |.
—0.5853 —2.1954 0.3746 —0.3287 2.0751

L—1.0947 —0.5101 0.8607 2.0575 —0.4342J




[II-Conditioned Matrix

3.9893 3.9893 1.0000
3.2052 3.2052 1.0000
4.8014 A~ 4.8014 1.0000
1.7368 L 1.7368 1.0000

3.9245 3.9245 1.0000




[II-Conditioned Matrix




[II-Conditioned Matrix

A
Cond(A):l max |

[Amin!

= 1.8874 x 10°
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Application:

Neural Network Associative Memory
Placing the Library in Hilbert Space




Application:

Neural Network Associative Memory
Assoclative Recall

ldentical (known) Pixels




Application:

Neural Network Associative Memory
Associative Recall by POCS

Column Space




Application:

Neural Network Associative Memory
Associative Recall by POCS

Column Space | ldentical (known) Pixels




Application:

Neural Network Associative Memory
Example

v

-*'-3 53




Application:

Neural Network Associative Memory
Example




A Library of Mathematicians
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A Library of Mathematicians

LB |

(1768-1830)

Jean Baptiste Joseph Fourler

Flarm-Siman
Laplace
(1742-1827)

Simaon Denks
Polsson
(1781-1840)

Daniel
Bernoulll
(1700-1782)

Jacob Jacques)
Barnoulll
(1E854-1705)

Gulllaume Frangols Antolne
Marguis de L'HOpital
{1822-1901)

Joseph-Louls
Lagrange
(17361813

Pythagoras
(568 BC-475 BC)

F=s

Johann Carl
Frigdrich Gauss
(1777-1855)

Augustin
Jean Fresnel
(17881827}

Hicolaus (il
Bearmoulll
(1805-1726)

Fredrich Wilheim
Bessal
(1784-1846)

George Blddell
Alry
{1801-1802)

Willam Thomsan
{Lord Kelvin)
(1824-1807)

Michael
Faraday
1791-1857)

Leonardo da vingl
{1452-1519)

Blalse Pascal
(1823-18E2)

- Brook Taylor
Abraham de (1885-1721)
Malvre

(1657-1754)

‘ Fev. Thomas
Henrlk Abel Bayes
e (180e-1228) (17021761)

Laonhard Eular
{(1707-1782)

* 51::
! e
Patnuty Lvovich

Chabyshev
{1821-1834)

S

Georg Friedrich Bernhard
Rlemann
(1826-1258)

—
d v

John Mapler
(18501617

Adrien-Marle
Legendra
(1752-1833)

Carl Gustav Jacob Jacobl
(1804-1851)

Andrel Andreyavich

Cavid Hilbert

Markov (1862-1043)

11856-1822)

James Clerk
Mawell
{1831-1870)

JOSEpI‘I van
Fraunhofar
17871828

Henr Léon
Lesbegue
(1875-1041)

Charles Hermite
{1822-1901)

Banjamln Franklin
{1708-17201)

Viltrado Federigo
Samaso Parelo
{1848-1923)

What does the Average Mathematician Look Like?




Convergence As a Function of Percent of Known Image




Convergence As a Function of Library Size
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Combining Euler & Hermite




Combining Euler & Hermite

Not Of This Library
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Application:

Combining Low Resolution
Sub-Pixel Shifted Images

Hans-Martin Adorf
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Problem: Multiple ! - ,
Images of Galazy e '
Clusters with o i

subpixel shifts.




Application:

Combining Low Resolution
Sub-Pixel Shifted Images

Hans-Martin Adorf

Problem: Multiple
Images of Galazy
Clusters with
subpixel shifts.

POCS Solution:

1. Sets of high
resolution images
giving rise to lower
resolution images.

. Positivity

. Resolution Limit




Application:

Combining Low Resolution -
Sub-Pixel Shifted Images

Hans-Martin Adorf

Problem: Multiple
Images of Galazy
Clusters with
subpixel shifts.

POCS Solution:

1. Sets of high
resolution images
giving rise to lower
resolution images.

. Positivity

. Resolution Limit




Application:

Subpixel Resolution

using the world’s worst camera

*Object is imaged with an
aperture covering a large
area. The average (or
sum) of the object is

measured as a single
number over the
aperture.

*The set of all images
with this average value at
this location is a convex
set.

*The convex set is
constant area.




Application:

i
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50,000 100,000 500,000

Randomly chosen 8x8 pixel blocks. Over 6 Million projections.




Application:

Subpixel Resolution

Randomly chosen 8x8 pixel blocks. Over 6 Million projections.




Application:

Subpixel Resolution

Blocks of random dimension <33 chosen at random
locations. 2.7 Million blocks.
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Application:

Tomography

Same procedure as subpixel resolution.
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Tomography

Same procedure as subpixel resolution.




Application:

Tomography
Same procedure as subpixel resolution.

1600




Tomography

Same procedure as subpixel resolution.

102k iterations in ~log time




Tomography

Same procedure as subpixel resolution.

409k iterations in ~log time




Application:
Radiation Oncology
mm“

Conventional Therapy lllustration




Application:

Radiation Oncology

Conventional Therapy lllustration




Application:

Radiation Oncology

Intensity Modulated Radiotherapy




Application:

Radiation Oncology

e Convex sets for dosage optimization

N = normal tissue

C = critical organ

Cy = Set of beam patterns giving
dosage in N less than Ty

C. = Set of beam patterns giving
dosage in C less than T <Ty,

C- = Set of beam patterns giving
dosage in T between T, and T,
(no cold spots or hot spots).

C. = Set of nonnegative beam
patterns.




Application:

Radiation Oncology

Example POCS Solution
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Application:

Radiation Oncology

Example POCS Solution
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Application

Block Loss Recovery Techniques for

Image and Video Communications
Transmission & Error

During jpg or mpg transmission, some packets
may be lost due to bit error, congestion of
network, noise burst, or other reasons.




Application
Block Loss Recovery Techniques for

Image and Video Communications
Transmission & Error

= During jpg or mpg transmission, some packets
may be lost due to bit error, congestion of
network, noise burst, or other reasons.

= Assumption: No Automatic Retransmission Request (ARQ)




Application
Projections based Block Recovery —

Algorithm

e Two Steps

@5 Edge orientation detection

W POCS using Three Convex Sets




Application
 Recovery vectors are extracted to restore missing pixels.
e Two positions of recovery vectors are possible according

I

to the edge orientation.

I

Horizontal line dominating area

| tH | | HH |

<
=
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q»)
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(@]
QD
=
D
QD

 Recovery vectors consist of known pixels(white color)
and missing pixels(gray color).

 The number of recovery vectors, r,, IS 2.




Application
Forming a Convex Constraint Using

Surrounding Vectors

* Surrounding Vectors, s,, are extracted from surrounding
area of a missing block by an N x N window.

 Each vector has its own spatial and spectral
characteristic.




Application
Projections based Block Recovery —

Projecti;)n operator P,

Surrounding
Blocks

\

Convex Cone Hull




Application
Projection operator P,

4

N

4 Convex Cone Hull




Application
Projection operator P,

ldentical Middles
Keep This Part

Replace this
part with the
known image




Application
Projection operator P,

Smoothness Constraint

HEEEEET

] B « Convex set C, acts as a convex
EEEEER constraint between missing pixels
HEEEEET and adjacent known pixels,
L (fv1 fr). The rms difference

T T T 11 B N )
etween the columns iIs
HEEEEET

BEREER constrained to lie below a
threshold.

1:N-l 1:N

g ={(fnvo—TNo),....,(Fno N —Tn, N)




Application
Simulation Results — Test Data and Error

 Peak Signal to Noise Ratio

N-M -255°

2 2 X ) =%G, )P

=1 j=1

PSNR =10-log




Simulation Results —
Lena, 8 x 8 block loss
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Simulation Results —
Lena, 8 x 8 block loss
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Ancis, PNR = 28.68 dB Hemami, PSNR = 31.86 dB




Simulation Results —
Lena, 8 x 8 block loss

J '\‘:‘:i r
Ziad, PSNR = 31.57 dB POCS, PSNR = 34.65 dB
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Simulation Results —
Lena, 8 x 8 block loss

T T

AnNcis Hemami Ziad

PSNR = 28.68 dB PSNR =31.86 dB PSNR =31.57 dB PSNR = 34.65 dB




Simulation Results — Each Step
Lena 8 x 8 block loss

L
A
i




Simulation Results —
Peppers, 8 x 8 block loss

Original Image Test Image




Simulation Results —
Peppers, 8 x 8 block loss

g

Ancis, PSNR = 27.92 dB | Hemami, PSNR = 31.83 dB




Simulation Results —
Peppers, 8 x 8 block loss

Ziad, PSNR = 32.76 dB | POCS, PSNR = 34.20 dB




Simulation Results — PSNR (8 x 8)

Peppers Elaine

27.92 29.84

29.97 30.95

31.71 32.96

31.83 32.07

32.76 31.92




Simulation Results —
Masqguerade, 8 x one row block loss
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Simulation Results —
Masqguerade, 8 x one row block loss

Hemami, PSNR 23.10 dB POCS, PSNR i 25.09 dB




Interpolation based Coding — Result 1

A
] \ \

JPEG Coding
PSNR = 32.27 dB

Size = 0.30 BPP =
9,902 Byte

w/ Removed Blocks

Blocks : 447 [ 4096
=11%

Size = 0.29 BPP

,
1. .\-' ?

P s

I-based Coding
PSNR = 32.35 dB

Size = 0.29 BPP
= 9,634 Byte




Interpolation based Coding — Result 2

JPEG Coding
PSNR = 32.27 dB

Size = 0.30 BPP =
9,902 Byte

w/ Removed Blocks

Blocks : 557 / 4096
= 14%

Size = 0.27 BPP

,
1. .\-' ?

P s

I-based Coding
PSNR = 32.37 dB

Size = 0.27 BPP
= 9,570 Byte




emporal Block Loss Recovery

* |In video coding (e, g, MPEG), temporal
recovery Is more effective.




-
Pt
s

e o

By

Test Sequence

-
Q
o
©
O
O
=
O
LL
_
0
=
S
0
Q
nd
-
O
©
S
=
U)

Original Sequence




5 L] 1
; _._m.r- iy

18.64 dB

Average of
Surrounding Motion
Vectors, PSNR
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Zero Motion Vector,
PSNR =16.15 dB
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Boundary Matching
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Motion Flow Interpolation
(1999), PSNR =19.29 dB
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POCS Based, PSNR
20.71 dB
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Decoder Motion Vector
Estimation (2000), PSNR
19.21 dB




Simulation Results — Foreman

N
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Original Sequence

% R
@

Zero Motion Vector
PSNR =24.71 dB

% R
@

Test Sequence

% R
-

Average of Surrounding
Motion Vectors PSNR =

26.22 dB




Simulation Results — Foreman

N N

ﬁ

ﬁ
\anf \anf

Motion Flow Interpolation Boundary Matching Algorithm
(1999) PSNR = 27.09 dB (1993), PSNR = 28.76 dB

ﬁ ﬁ
Decoder Motion Vector POCS Based PSNR =

Estimation (2000), PSNR = 29.82 dB
27.46 dB




Simulation Results — Average PSNR

Garden

Tennis

Football

Mobile

Foreman

16.15

22.40

18.06

17.49

24.71

18.64

21.98

18.72

19.03

26.22

19.83

23.55

19.41

19.75

28.76

19.88

24.04

19.64

20.02

28.77

19.29

22.77

19.29

19.60

27.09

19.21

22.49

19.05

19.59

27.46




Outline

« POCS: What is 1t?
— Convex Sets
— Projections
— POCS

 Applications
— The Papoulis-Gerchberg Algorithm
— Neural Network Associative Memory
— Resolution at sub-pixel levels
— Radiation Oncology / Tomography
— JPG / MPEG repair
— Missing Sensors

 Generalized Alternating Projections
— Ambiguity Function Synthesis
— The Gerchberg-Saxton Algorithm




Application
Missing Sensors

ldea:
* A collection of spatially distributed point sensors.

* Their readings are interrelated (e.g. temperature
sSensors in a room).




Application

Missing Sensors

* A plurality of sensors fall.

« Can the failed sensor readings be regained from those
remaining without use of models?

o Applications: (1) Power Security Assessment (2)
Engine Vibration Sensors
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o Step 1: Learn the
Interrelationship among
the sensors by training
an auto-encoder neural
network with historical

data.

 The mapping of a
properly trained neural
network Is a projection.
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Application

Missing Sensors

e Step 2: Impose
the second
convex
constraint of
Known sensor
values. If
POCS,
convergence Is
assured
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Application

Missing Sensors

 Example: Vibration Sensors on a Jet Engine

X direction y direction Z direction




Application

Missing Sensors
 Four Sensors — One Missing

Original Sensor Data




Application

Missing Sensors
* Four Sensors — Two Missing
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Application

Missing Sensors

e Eight Sensors — Two Missing
(Magnitude Only)

sensors seven and eight fail.
. - L} _I

Reconstruction Error




Outline

« POCS: What is 1t?
— Convex Sets
— Projections
— POCS

 Applications
— The Papoulis-Gerchberg Algorithm
— Neural Network Associative Memory
— Resolution at sub-pixel levels
— Radiation Oncology / Tomography
— JPG / MPEG repair
— Missing Sensors

e Generalized Alternating Projections
— Ambiguity Function Synthesis
— The Gerchberg-Saxton Algorithm




Ambiguity Function Signal Synthesis

Woodward’s Ambiguity Function

y(t,u) = fx(t)x*(t — 7)e JAmuldt

There exists an inherent trade-off in
the ability of a signal to accurately
measure both the range
(determined by delay 7) and
velocity (measured from Doppler shift
u) of a target. Woodward’s ambiguity
function measures
this uncertainty for narrowband RF
signals for monostatic radar T




Ambiguity Function Signal Synthesis

Synthesized Signal Constraints:

1. Limited Peak-to-average-power ratio (PAPR)
2. Spectral mask constraint

3. Targeted ambiguity function

Frequency

Spectral mask constraint Ambiguity function constraint




Ambiguity Function Signal Synthesis

Minimization Function Optimum Ambiguity Function
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Magnitude (dB)

-2 0 2 4 8
Frequency (MHz) | —— signal Spectrum
Spectral Mask

Imaginary

Time (us)

x(t,u) = jx(t)x*(t — 7)e J2mutgy

t

x(T,u) = fx(t)x*(t — 7)e J2mutqgy

t

x(t,u) = jx(t)x*(t — 7)e J2mutgy

¢
x(t,u) = jx(t)x*(t — T)e J2mutgy

t

x(t,u) = fx(t)x*(t — 1)e 2™t dy
t
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 Applications
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Gerchberg-Saxton Algorithm

Fraunhofer (far field) diffraction

x(ty,t,) = |x|e/4* F > X(uq,up) = |X|el<¥




Gerchberg-Saxton Algorithm

x(t1,t)

Fraunhofer (far field) diffraction

x(ty,tp) = |x|e/* F > X(uq,uy) = |X|e/4X

Square Law Detector measures |x| and | X]|.

Problem: Given |x| and |X]|, find phase zx and X




Gerchberg-Saxton Algorithm

U
x(tl' tZ) Uq

Fraunhofer (far field) diffraction

x(ty,tp) = |x|e/* F > X(uq,uy) = |X|e/4X

Square Law Detector measures |x| and | X]|.

Problem: Given |x| and |X]|, find phase zx and X

Note: C = {y | |y| = |x|} is not convex

But we can impose an idempotent projection: keep the
phase and impose the magnitude: g@.[y] = [x|e/<”




Gerchberg-Saxton Algorithm

:F'

)

lterative Restoration:

In = | x |ej4fn




Gerchberg-Saxton Algorithm

Example: Sad
to Happy




Gerchberg-Saxton Algorithm
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Final Comments
e POCS: What Is 1t?

NGl D&Y © R.J. Marks Il, Handbook of Fourier Analysis

— Projections (2000).

and Its Applications, Oxford University Press,

— POCS o http://robertmarks.org/REPRINTS/Marks-
o Applications EEsClEann
— The Papoulis-Gerchberg Algorithm

— Neural Network Associative Memory
— Resolution at sub-pixel levels

— Radiation Oncology / Tomography
— JPG / MPEG repair

— Missing Sensors

Fourier Analysis
& Its Applications

Robert J. Marks 11

 Generalized Alternating Projections
— Ambiguity Function Synthesis
— The Gerchberg-Saxton Algorithm







