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A sampling theorem applicable to that class of linear systems characterized by sufficiently slowly varying line-
spread functions is developed. For band-limited inputs such systems can be exactly characterized with
knowledge of the sampled system line-spread function and the corresponding sampled input. The desired
sampling rate is shown to be determined by both the system and the input. The corresponding output is
shown to be band limited. A discrete matrix representation of the specific system class is also presented.
Applications to digital processing and coherent space-variant system representation are suggested.

INTRODUCTION

This paper presents a sampling theorem applicable to
that class of linear space-variant systems characterized
by sufficiently slowly varying line-spread functions.

For band-limited inputs, such systems can be exactly
characterized with knowledge of the sampled system
line-spread function and the corresponding sampled in-
put. The resulting sampling theorem expression for the
(band-limited) system output is simply a summation of
convolutions. A discrete matrix representation of the
specific system class is also presented.

Areas of possible application for the result include
digital signal processing and the representation of co-
herent space-variant systems. Application limitations
are also briefly discussed.

Previous work in this area has been limited to sam-
pling theorem expansion of the system line-spread func-
tion'? without regard to the input. Huang® has discussed
the minimum required sampling rates taking the input
into account.

For clarity of presentation, and without loss of gener-
ality, attention will here be restricted to one dimension.
Generalization to two or more dimensions may be ac-
complished by straightforward extension.

SAMPLING THEOREM

The output g(x) of a linear system for a corresponding
input f (x) may be expressed via the superposition inte-
gral

g)= [ @t~ g 0ax )

where h(x - £; £), the system line-spread function, is
the system response to an input Dirac delta located at
the point x = £ (after the notation of Lohmann and Paris?).

When the line-spread function is no longer a function
of its second argument, the system is isoplanatic (space
invariant), and Eq. (1) becomes the convolution integral

g6 = [ 7D hte= DAL =fx)xh(x) . @

The direct statement of a space-variant system’s out-
put spectrum may be found through application of Fou-
rier transform operators to the superposition integral
[Eq. )]

G(f,) =5, [gk)]
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- [ 1 @8, w0 ex (- 2ns ) ak

=5, 5. [7 (O rte;0)]l,.y, , (3)

where v and f, are the frequency variables associated,
respectively, with £ and x, and where, for a given two-
dimensional function p(x;£), the Fourier transform op-
erators are defined as

F,.[plx;6)]2 fnp(x;ﬁ)exp(—j2nf,x)dx (4)

and

&, [ plx;8)]2 fP(X;E)exp(—jZW-E)dé ; (5)
Roughly, F,(-) operates on the inpuf variable £, while
F,.(-) operates on the oulput variable x.

We now define the system’s spatial transfer function
as

H,(f;£) 48, [h(x;8)] . (6)
Equation (3) may now be written
G =F LA H(f30]|0ey, - )

In a similar fashion, we define the system’s variation
spectrum as

Hy(x;0) 25, [r(x;8)] . (8)

The variation spectrum is a measure of how the line-
spread function varies with changing £, We say the
line-spread function varies sufficiently slowly if the
variation spectrum is band limited® in v for all x:

Hy(x;v)=0 for |v|>W, for all x . (9)

The bandwidth 2W, is appropriately termed the varia-
tion bandwidth. Note than an isoplanatic system has a
variation bandwidth of zero, and is thus truly “invari-
ant.”

Consider, then, the following form of the superposi-
tion integral’s integrand contained in Eq. (3):

F(E) hlx;E) . (10)

Multiplication in the space (£) domain corresponds to
convolution in the frequency (v) domain. As such, if
f(&) and h(x;£) have respective bandwidths in v of 2W,
and 2W,, then their product will have a bandwidth 2W
equal to the sum of the component bandwidths;

2W = 2W,; +2W, (11)
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FIG. 1. Generation of a sample line-spread function and cor-
responding sample-transfer function for an arbitrary coherent
space-variant system.

One may then apply the Whittaker-Shannon sampling
theorem® to the product integrand to give

SOV RGE) =Y £(E) Alx;E,) sinc2W(E-£,)

(12)
e
where £,=n/2W and sincy =F[rectx] where
(1, lx|=2, i
a: 3)
rect(x) 2 lo, || >3

Substituting Eq. (12) into Eq. (3) followed by simplifi-
cation leaves

G =53 3 (6 B (38)

x exp(-j2nf, E,,)rect({"w) F (14)
or equivalently, in the space domain,
g(x) :Zf(gﬂ)k(x — £,; £)* sinc(2Wx) . (15)

Thus, providing that k(x;£) and f(£) are band limited in
£, the output to a linear space-variant system can be
computed by (i) sampling the input, (ii) multiplying each
input sample by its corresponding line-spread function,
(iii) summing these products, and (iv) passing the sum
through a suitable low-pass filter.

APPLICATION

It has previously been suggested that multielement co-
herent space-variant systems may be represented by a
number of sample transfer functions.”™? The vast
storage capacity of the volume hologram!' may be uti-
lized for sequential angle-multiplexed recording of
these sample functions. The resulting volume hologram
should exhibit the input—output relationship of the orig-
inal system to a good approximation. Such a system
representation provides for increased orientation sta-
bility, reduced weight, and real-space condensation.

For coherent optical systems, a sample transfer
function can easily be realized as in Fig, 1.7%!® The
impulse input to the system is generated by focusing
an incident plane wave to a line source at the input co-
ordinate £=a. The corresponding line-spread function
h(x - a; a) is Fourier transformed by a displaced thin
lens to yield in the back focal plane an amplitude dis-
tribution proportional to a scaled and shifted version
of the sample spatial transfer function H,(f, — a/M;a).
The scaled spatial frequency is given by

fe=x/N (16)
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where X is the wavelength of the spatially coherent il-
lumination and f is the focal length of the Fourier trans-
forming lens. The amplitude and phase of a number of
such sample transfer functions may then be angle mul-
tiplexed within a single volume hologram. The holo-
gram, in principle, may then be utilized as a space-
variant equivalent to a Vander Lugt filter.® Such
schemes have been proposed by Deen, Walkup, and
Hagler, " and by Marks.!® The method of Deen ef al.
falls short of direct implementation of the sampling
theorem [Eq. (14)] only by not including the required
low-pass filter of bandwidth 2W.

In practice, one is of course limited to recording only
a finite number of holograms, short of the countably
infinite number required by the sampling theorem. We
overcome this problem by application of the familiar
space-bandwidth product estimate of the number of sam-
ples required for a good approximation. If the system
input f(£) is essentially zero outside of the interval [£]|
=g, and the spectrum (in v) of the integrand f(£)h(x;£) '
is essentially.zero outside of the interval |vl< W, then
the required number of samples for a good approxima-
tion is'?

S=4Wa 1

Truncation will of course result in a degree of error,'?

EXAMPLE

As an example application of the space-variant sys-
tem sampling theorem, consider the ideal band-limited
coherent imaging system with magnification M #1,
While a simple mathematical coordinate transformation
reduces the imaging system to an isoplanatic system, 9
the ideal imaging system having nonunity magnification
must rigorously be classified as space variant,' That
is, in the physical sense, one may not use a single
planar holographic filter in the Fourier plane to repre-
sent a simple magnifier,

The line-spread function of the imaging system to be
considered is

hix - £;£) =2f, sinc2fy[x — M£] :
=2f, sinc2f[ (x - £) - (M- 1)£] , (18)

where f; is the cutoff frequency of the system. Note
that for an arbitraily large value of f;, Eq. (18) ap-
proaches the displaced Dirac delta function character-
izing an ideal imaging system. From Eq. (18) we may
write

R(x; £) = 2f, sinc2f[x — (M- 1)¢] . (19)
The spatial transfer function [Eq. (6)] is then given by
H.(f.;£) =exp| - j2m(M - 1)f, £l rect(f, /21, (20)

Substituting into Eq. (7) yields the system output spec-
trum :

G(f.) =F{Mf,) rect(f,/qu) 3 (21)
where ;
F(R)=8lr)] . (22)

Contained in Eq. (21) is the inherent low-pass nature
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of the imaging system,

To apply the sampling theorem, we need first look at
the system’s variation spectrum, Appropriately trans-
forming Eq. (19) gives

H,(x;zﬂ:ﬁ [ JZHU(WY 1)] rect(mv-]—:-ﬁ) .

The finite system variation bandwidth is thus
2w, =2f,|M-1]| (24)

Note that for M =1, the line-spread function of Eq. (18)
is isoplanatic and the corresponding variation band-
width is zero.

(23)

Since the variation bandwidth of Eq. (23) is finite,
the sampling theorem is directly applicable. Suppose
an input of bandwidth 2W, is sampled at the rate 2w
=2W,;+2W,. The corresponding sampled expansion for
the output spectrum [Eq. (14)] becomes )

G(f)= WZf(g,,) exp(-j2uf, ME,) rect({a,) rect(—z—}%u) .
: (25)

This relationship is recognized as a Fourier series ex-
pansion of the output spectrum of Eq. (21) with period
2W. The rect(x/2W) term merely retains the desired
zero-order term,

MATRIX REPRESENTATION

The space-variant sampling theorem results can be
utilized to express the system input-output relationship
in exact matrix form, Such a relationship would find
use in digital applications,

Consider first the output spectrum expansion of Eq.
(14). The rect(f,/2W) term dictates that a band-limited
input to a space-variant system with finite variation
bandwidth must result in an output with bandwidth not
exceeding 2W. The output spectrum may thus be ex-
pressed by the Whittaker-Shannon sampling theorem as

G(f)= 2WE£-’(X)exp(—JZTrfx)rect(ZfW), (26)
where
X, =n/2W . (27)

From this expansion we will obtain the desired output
sample values given by g(x,). Equating Eq. (26) with
Eq. (14) and multiplying both sides by exp(j2f, ¢,) gives

Eren{- ) e )

=2 L) H s t) em(%w) rect(g%) e

2W

We define the low-pass filtered sample transfer func-
tion as

B (fs8) =H,(f;8,) rect(£,/2W) | (29)
and recognize that '
J’d exp(—jﬁr%(%-—m)rect( )df,

-=2Wsinc(n - m) =2W$,,, , (30)
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where 6, is the Kronecker delta, Thus, integration of
Eq. (28) over all f, gives

g(x,) —ZWZf E) iy = £t (31)
where fi(x; £,) and A,(f,; ¢,) are Fourier transform pairs.
This relationship can be viewed as an infinite matrix
representation of the superposition integral [Eq. (1)].
Coupled with the space-bandwidth product [Eq. (17)] as
a measure of the number of required samples, such a
relationship would appear to have interesting applica-
tions in digital signal processing.

CONCLUSION

Linear space-variant systems with line-spread func-
tions of finite variation bandwidth may be represented
exactly in sampled form for band-limited inputs. Em-
ploying a sampling rate equal to the sum of the input
and variation bandwidths yields a relationship in which
each sampled input point is assigned a corresponding
line-spread function. This result gives further credibil-
ity to the concept of holographic representation of lin-
ear space-variant systems with volume holograms. The
corresponding exact matrix characterization of the
space-variant system input-output relationship has anal-
ogous applications in digital signal processing.
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APPENDIX

The sampling theorem expressions in Eqs. (14) and
(15) are not optimum in the sense of utilizing maximum
allowable sampling intervals, That is, we are sampling
both the input and line- -spread functmn at a rate of 2W,
while the minimum required sampling rates are 2W,
and 2W,, respectively. As will be shown, however,
the resultmg expression employing these minimum sam-
pling rates is rather unattractive for computation and
implementation purposes.

Consider, then, the following sampling theorem ex-

pansion of a space—vanant system’s line-spread func-
tion:

R(x;8) =2 h(x;t,) sinc2W, (¢ - &,) | (A1)
b
where 2W, is the variation bandwidth and £, =p/2W,.

One may similarly apply the sampling theorem to the
system input to g1ve

F® =ijf(s,,) sinczwf(z - &), (A2)

where £, =k/2W; and 2W, is the input’s bandwidth. Sub-
stituting Eqs. (A1) and (A2) into Eq. (3) gives
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1
G(f)= W Z;{f(&.) ;H,(f:;ﬁp)[rect(-z—f;@—v)

) exp(-—errf,g,)] * [rect({ﬁv—)em(—j%f, £,,)]}
: (A3)
Equation (A3) is identical to Eq. (14) yet employs larger
sampling intervals. The above relationship, however,
has the disadvantage of not assigning each sample input
value to a single corresponding sampled line-spread
function,

Lastly, note that the two convolving rect’ s in Eq.
(A3) give an upper bound on the output bandwidth of 2W
=2W; +2W,. This constraint is the same as contained
in Eq. (14).
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