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Abstract

Sampling theorem concepts are applied to certain classes of linear
shift variant systems. Various sampling theorem characterizations
arise from different bandlimiting assumptions on the system input
and/or impulse responss. These characterizations are also expressed
in discrete form and in all cases considered, reduce tc an identical
computational form which can be evaluated with a generalized Z trans-

form treatment. The Fourier duals
the system is characterized by its

sponse, are also presented.

1. INTRODUCTION

Past application of sampling theorem con-

0

epts to linear shift variant systems has

o

een to evaluate the system impulse re-
sponse rather than to characterize the in-
put-cutput relationship (1), although ade-
guate sampling rates have been discussed
briefly (2). In this paper, on the other
hand, we present numerous conditions under
which the superposition integral character-
ization of the input-output relation for
linear shift variant systems can be expres-
s2d in sampling theorem type expansions.
Certain ramifications of these treatments,
such as digital characterization of the
system process without loss of information
and generalized Z transform treatment of
discrete superposition relations, are also

discussed.

of the sampling theorems, wherein
freqguency rather than impulse re-

In section 2, certain preliminary notational
ard computational conventions are given

which are necessary in the develcpment of

the sampling theorems. Sections 3 through

5 present three different sampling theorems
corresponding to various bandlimiting assum-
ptions on the system input and/or impulse
response. A direct consequence of these
sampling theorems are infinite matrix char-
acterizations of the system process which,
except for sampling rates, are identical

for all three sampling theorems. The use

of the Z transform in treating these dis-
crete characterizations is briefly discussed
in section 7. 1In section 8§ the Fourier duals
of the sampling theorems are presented where-
in sampling is performed in the freqguency
domain. Section 9 contains some concluding
remarks.




The work of this paper was motivated by in-
vestigation of space-variant systems en-
countered in ccherent optical processing
(3) .

presented here.

Substantial new material, however, is
We note that causality is
not a coanstraint in such spatial systems.
For this reascn, the sampling theorems here
are presented for the more general case

Al-

s a constraint.
though a causal signal (zero for nzgative
e r

where causality i

time) can never b ously bandlimited

(4),

imations can be applied if approxiate (5).

o
familiar time-tandwidth product approx-

The same is true for ths system imgulse re-
sponse with respect to its first varizble.
There are many causal signals and systems,
howsver, which can be considered "essential-

ly" bandlimited. Even the concegt
bandlimited signal, at best, can only
considered as an approximation to real world

phenomena (5).

For clarity of presentation, attention will

be restricted to one dimension. Generaliza-

tion to multidimensional systems is straight-

forward.

2. PRELIMINARIES

The response, y(t), cf a linear system to
an input u(t), can be expressed by the sup-

rposition integral:

vit) S a(t)]
» (1)
J h{t-t;7)u(r)dr

-0

1]

where S(+) is the system operator and the
system impulse response is formally defined
as

h(t-t;7) =

Si§(t-1)] (2)

where ¢(t) denotes the Dirac delta.
h(t-7;71)

This particular choice of impulse response

(For

a causal system, is zero for t<1.)

notaticn has certain computational advantages

(6).
the output

For example, we can directly express

spectrum by

i

Y(E) = Fly(8)]

FoReh(tiniu(n ], _¢

(3)

]

where the Fourier operators are defined by

Fols(tin)] & [: s(t;T)exp(-j2nft)d t (4)

and
(-]

FT[s(t;‘r)]A [ s(t; v)exp(~j2rvr)dr

-0

(5)

Note that for the shift invariant case that
h(t;t) » h(t). Equation 3 then takes ocn the
familiar product form Y(f) = Ft[h(t)]Ft[u(t)].

A transform of the impulse response which
will be of interest is the variation spec-

trum defined as

B (t;v) = FT[h(t;T)] (6)

The support of the variation spectrum is a
measure of the manner in which the impulse
response changes shape with respect to 7.

We consicder here the low-pass case for which
HT(t;v) is identically zero outside the in-
terval |v| < W,. Such systems will be re-

ferred to as variation limited. The quan-

tity 2Wv is appropriately termed the varia-
tion bandwidth.

Note that a shift invariant system has a
variation bandwidth of zero and is thus truly
invariant.
3. A SAMPLING THEOREM FOR VARIATION
LIMITED SYSTEMS

We now will develop a sampling theorem appli-
cable to variation limited systems with band-
limited inputs. For the bandlimited input,
we again consider the low-pass case where
u(t) has kandwidth 2wu. then,

the term h(t;t)u(t) which is the argument of

Consider,



the Fourier operator in Eg. 3. Multiplica- of shift invariant systems each of which
tien in the 7t demain corresponds to convolu- corresponds to a sample impulse response.

tion in the v domain. As such, if u(1) has The switching mechanism required to feed

bandwidth ZWu and h(t;r) has a wvariation each filter its corresponding sample value
bandwidth of 2w, then their product will is representative of the shift variance of
have a bandwicth ZWS ecqual to the sum of the overall system. Note that Eg. 11 is

the component kaniwidihs: not optimal in the sense of utilizing mini-

mum sampling rates. That is, u(T)} only re-
W= 20+ 2u (7) quires a sampling rate of 2W, and h(t:t} a
sampling rate of 2Wv in 1. Both are here
The product h{t;=)u(7) can thus be expanded being sampled at a rate 2WE. The authors
in a uniformaly cenverging (7) Whittaker- have shown however, that the sampling ex-
Shannon sampling theocrem (8) in t: pansion utilizing the minimum allowable
sampling rates is computationally less

hit;t)u(t) = ? h(t;?n)u(Tn)- attractive (3).

o

* sinc QES(t—Tn} (3)
4. AN ALTERNATE SAMPLING THEOREM

where 1_ = n/2W_ and sinc x & sin7x/7x.
e e : c Eri In the previous section, h{t;1) was assumed
Substituting into Eg. 3 and simplifyving ' £
i to be handlimited in 1. Note that this
gives
restriction does not necessarily assure that

Y(E) = 5%_ E Ht(f;Tn)u(Tn) h{t-1;7) i? also bandlimited in T. As such,

§ n we can derive an alternate sampling theorem
) (93 for the case where Ft[h(t"T:T)] is zero out-
side of the interval iv| < W, . If our input
has bandwidth 2wu, then the product h(t-1;71)

u(t) has bandwidth de = zwu + 20, in T and

z £
=42nfT ———
X exp(-32% n)G(zhs

where our transfer function is defined by

h
A UEre)h  Folhitrt)] (10) can be expressed in the sampling theorem ex-
B & pansion:
A = sine is th functi s :
and G(f) rt[51‘- t] is the gate function fili=pa 1= Eh(t—Tn;Tn)u(Tn)SlnC2Wd(T-T )
Inverse Fourier transforming Eg. 9 gives n n
(12)
y () = § h(t-Tn;Tn)u(Tn)*Sinc ZWS t wvhere, here, T = n/ZWd. Substituting into
L (11) the superposition integral [Eg. 1] gives
where "*" denotes the convolution operation. @
We interpret Eq. 11 as follows: For band- gitld = E h(t_'tn"“-n)u('!n){m Sine o L r=7 0 dn
limited inputs, the output to a variation
limited system can be computed by 1) samp- = 5%“ { hit-t_;t. )u(t.) (13)
a n n n n

ling the input, 2) multiplying each input

sample by its corresponding sample impulse Our expansion here is similar to that in Eqg.

response, 3) summing the results, 4) pass- 11 except for the samgpling rate and the fact
irng the sum through a suitable low-pass that no low-pass filtering is required.
filter. As is shown in Figure 1, we can Note also, cdue to our bandlimiting constraints,

interpret this result acs the representation the output in Eg. 13 is bandlimited with band-

of a variation limited system by a bank of width de.



5. A THIRD SAMPLING THEOREM

The sampling thecrems thus far discussed
require sampling in the T or input domain.
An alternate sampling theorem which utilizes
output sampling occurs when h(t;t) is band-

limited in t with (lowpass) bandwidth of,

say, 2Wt. {Note that this conditicn is
eguivalent to h{t-7;7) being bandlimited in
t.) Such 2 condition holds when the system

response to an impulse input is bandlimit-
ed irrespective of the location of the in-

ey

put delta function. TUnder this banilimited

assumption, we can immadiately exprass the
impulse response in ths sampling thecrem

exnansion:

(14)

-
I

E hit :T)sine2w, (t=t )

where tn n/zwt. Substituting into Eg. 3

followed by simplification, leaves

=

Y5 = o3
t

g FT[h(tn;I)u(T)l

v=%
: : £ (15)
exp(—j2ﬂftn)G(§E;)

Inverse transforming yields:

T4 = P o o * v
¥t} = ] hit st-t ult-t )*sinc2W t

(16)

As before we have reduced the system char-
acterization to a summation of convolutions.
In this case, however, we do not have to
place any banélimiting constraints on our

input.

Wo can interpret Eg. 16 as shown in Figure
2. Our input is fed into a tapped delay

line which serves as the shift variance of
the overall system. The outputs at various
points along the delay line are then multi-
plied by the appropriate sample resconses.

All these products are then summed and pas-

sed through an appropriate low pass filter

to give the corresponding system cutput.
6. DISCRETE CHARRCTERIZATION

Inspection of the three sampling theorems
thus far presented reveals that the corres-
ponding system output is bandlimited and
thus can also be expressed in a sampling
theorem expansion. We now investigate
direct computation of the reguired output
sample values in terms of the sampled input
and impulse response. The resulting com-
putational forms, in the three cases consid-
ered, are identical. '

(1) Consider first, the variation limited

system with bandlimited input. From Eg. 11,

we define the low-passed system impulse re-

sponse as
h{t-Tn;Tn) A Zwsh(t—Tn;Tn)*sinCZWst (17}

Equation 11 can now be written

o

Yie)l =igge § ble=r.rrdule.) (18)
s n
It follows immediately that
y(t) = =i~ § h(t -t ;7 )ult) (19)
m PIZIS m ‘n''n n

From Eg. 9, y(t) has a bandwidth of ZWS.
m/’ 2w .
s

that Eq. 19 can be straightforwardly expres-

Thus, we require that tm = Note

sed in an infinite matrix form,

Suppose we now make the additional constraint
that h(t;t) is bandlimited in t with band-
width 20, . If W, o>

impulse response in Eq.

Wt’ then the low-passed -

17 is the same as
our actual impulse response:
h(t —Tn:Tn) =

h(t—Tn;Tn) i W > W

s & (20)

Then, Eg. 19 becomes



1

yle J = 'ﬁ: )U(Tn)? wAWL

{(21)

where tn =2 wy n/;hs.

(2) Consider next the sampling theorem in
section IV where h(t-7;7) is bandlimited in
7. Since the output has bandwidth de, it
follows immediztely from Eg. 13 that the

desired output sample values are given by

= l T Y T P g = 9
}(t‘_,) = 2§_‘.d ; nu.n__ .n,tn)u(kn) {22)
where, now tn R n/2hd.
(3) Lastly, consider the sampling th=zcrem
expansion in Eg. 1€ where the ocutput has
bandwidth 2Wt' The correspornding =7 out-
put sample here is g¢given by:
v(t) = § [hit_;t)u(t)*sinc 2V tj:
i} n t S
n e A
m n
(23}
where, new, tm = mjzwt.
A mors computationally attractive Zcrm of

Eq. 23 occurs when, in addition to being
bzndlimited in t, the system is variation

limited and the input is bandlimited such

that EWS < 2W_. In this case Eg. 15 be-
comes
$(£) = =1 T F.[hit st)u(e))
= 2w, Lot n’
; f i
x exp(—j2"’ftn)G(-2—‘5--)G(-é-w—)
. =8 ,
1 (24)

i E Felnlt st)u(t)]

. ,_‘T‘ . < W
exp 32.ttn), Ws “t
inverse transforming and evaluating at: t=
t_ uives

mo”

1
2Wt

5 e

- . - 7 < iy
h(tm Tn,Tn)u(Tn), Ps “t

(25)

where t_ = 1_ =
€ n n

inspection of

n/2wt.
the results of the three dis-

crete characterizations above [Egs. 21, 22

and 25] reveals computationally identical
forms.
is bandlimited, (2)
h(t-1;1) is bandlimited in 1 and, for the
first [Eg. 21] and third (Fq.
that (3) h(t;1)
limited in t.

Our assumptions is all cases are (1)
u(t) either h(t;t) or
25] cases,
[and thus h(t-1;7t)] is band-
Vie can combine the three dis-
crete matrix type relationships into a

single expression:

! e g _
y(E) = 5 E hit -7 57 Jult) (26)
where
_w = m;n[wd, maxfwt, Ws}] (27)

and £t = 1_ = n/2W.
n n

cases considered, sampling of both

We again stress, that
in all
the input and impulse response is performed
at a rate above the reguired minimum aliow-
able sampling rate.

7. Z TRANSFORM TREATMENT

26 takes
on the form of a discrete convolution which

For shift invariant systems, Eqg.

is traditionally treated with the Z trans-
form (8).

choice of impulse response notation, such

We will now show that due teo our

treatment can be generalized to the shift
variant case.

We define two 2 transforms of a two variable .’

discrete sequence s(m,n) by

-n

z, [s(m,n)] = Yz~ s(m,n) (28)
n

and

Z,[5(m,n)] = 7 2™ s(m,n) {29)
m

Note the similarity of the spirit of these
definitions to the Fourier transform oper-

ations in Egs. 4 and 5.



Denote the Z transform of )(zw) by Y(z)

From Eg. 26, it follows that

§(z)

]
3
—

be=
[
+
—
—

hit -t st Vel

(30)

o B |

O
= 3w Zplalhlty

%

:Tn)utrn)]

This is the generalized Z transform treat-
ment of a discrete shift variant
Note,

as was 'in the case with Eg. 3 trh=2

result reduces to the more familiar- zroduct

form for the shift invariant cass.
8. FOURIER DUAL SAMNMPLING THTORZINSE

The sampling theorems thus far presznted
car also be applied in a Fourier cuzl
to the fregquency domain. The corresnonding
constraints here, take on a physically daf-

ferent meaning and thus widen the class of

systems which can be characterizeid in samp-
ling theorem type expansions.
To change the computational form ¢ the

superposition integral, we apply Parseval's

theorem to Eq. 1:

yi£) = [Tk{t-ev;v)U(v)dv (31)
where U{v) = F_{u(t)] and
k(t-cviv) = fm h{t-1;t)exp(j2rvtidr (32)

-

ki-
system freguency response:

The kernel, ,*} is recognized as the

k(t~cv;v) = Slexp(j2rvt}] (33)
The constant ¢ is included simply to main-
tain dimensional consistancy between the

time variable t and freguency variable v.

' Note that this

(1) Consider first the Fourier dual of the:
sampling theorem for variation limited
llk(t:v)l
be identically zero outside the interval
[t] = T, -
That is, our input, u{t), must be nonzero

systems. Here, we require that F;

Also U(v) must be "bandlimited."

only over the interval |7 < Tu' The re-

sulting sampling theorem, then, is simply

the Fourier dual of Eg. 11: :

k{t- cv iV )Ulv )*51nc(2T t/c)
(34)

1
yigy = = §
€n
where 2T = 2T, + 2T
s u v

and Wi (= n/2Ts.

(2) Consider next the Fourier dual of the

sampling theorem in section 4. Here, we

reguire F_ 1[k{ t-cv;v)] is zero for |T§ > 'I'h

and, agaln, that u(t) is zero for |[T| > Ty

The Fourier dual of the sampling theorem
in Eq. 13 follows immediately as

1
FE] = g E kit-cv ;v )U(v ) (35)

where 2'1‘d = ZTh + 2Tu

and v = n/2Td.
(3) Lastly,
the

Our

we inspect the Fourier dual of

sampling theorem presented in sectiocn 5.
constraint
is bandlimited

in this case is that k(t,v)
in t with bandwidth 2Wt

constraint is the same as re-
quiring h(t;T) to be bandlimited in t.

The resulting sampling theorem expansion

corresponding to Eq. 1€ is
i t-t, THE,
Fle) == E k[t ; )*51nc2htt
(36)
where t = n/ZWt

The three sampling theorems presented here
can obviously be placed in discrete form as
was cone in section €. For brevity, these
discrete cases will not be presented but

can be straightforwardly derived utilizing

previous nctions.



9. CONCLUSIONS

We have presented several sampling theorems
applicable to various classes of shift var-
iant systems envolving certain bandlimit-
ing constraints on the system impulse re--
sponse and/cr input. The system cutput,
in certain instances, is bandlimited and
the computaticnal form required to evaluate

the values fior its sampling theorexs ex-

be

pansion was shown to result in arn infinite
matrix relatica. The computatiornal
in each of the three cases considsrz2d are
_identical differing only in samplinz rate.
The matrix type relationship was shown to
be able to be evaluated in a generalized Z
transform treatment. Fourier duais of the
sampling theorem, where sampling s 1
performed ‘in the frequency domain, were al-
50 presented. Possible areas of

acolica-
tion of the sampling theorems incluls sig-

nal and image processing as well as shift

variant system synthesis with a number of
shift invariant systems and/or tazcped de-
‘lay lines. Investigation into implenmenta-
tion of the sampling thecorems with ccherent

optical processors is also presen:tly under

way (9).
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Figure 1: An implementazZicn of the sampling theorem presented in
section 3. Szample values of the input are fed into a
bank of shift invariant filters each of which corresponds

to a sample oI the parent shift variant impulse response.
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Figure 2: An implementation of the sampling theorem presented in
section 5. Delayed versions of the input are multiplied
by corresponding sample impulse responses, summed, and
passed through a low pass filter to give the output of the

parent shift variant system.






