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P.bstract 

Sampling theorem conce2ts are applies to certain classes of linear 
shift variant systems. Various sampling theorem characterizat.lons 
nrise from different banelimiting assuni>tions on the system input 
and/or impulse response. These characterizetions are elso expressed 
in discrete form and in all cases considered, reduce to an identical 
compctational form which can be evaluated with a generalized Z trans- 
form treatment. The Fourier dlals of the sampling theorems, wherein 
the system is characterizsd by its frequency rather than impulse re- 
sponse, are also presented. 

1. INTRODUCTION 

Past dpplicetion of sampling theoren con- 

cepts to lincar shift variant systems has 

t c - n  to evaluate the system im~ulse re- 

s?onse rather than to characterize the in- 

put-c~tput relationship (1) , althouqh ade- 
quate sampling rates have been discussed 

briefly (2). In this paper, on the other 

barid, we present numerous conditions under 

which the superpositio~i integral character- 

ization of the input-output relation for 

linear shift variant systems can be expea- 

sad in sampling theorem type expansiocs. 

Csrtain ramifications of these treatnents, 

such as digital characterizazion of the 

aysteq process without loss of infornation 

and generalized Z transform treatment of , 

discrete superposition relations, are also 

dlsc~.lssed. 

In section 2, certain preliminary notational 

ard coz.patational conventions are given 

which are necessary in the develcpmeilt of 

the sampling thcorens. Sections 3 through 

5 present three different sampling theorems 

corresponding to various bandlimiting assun- 

ptions on the system input and/or impulse 

response. A direct consequence of these 

sarr.pling thcorens are infinite matrix char- 

acterizations of the system process which, 

except for sainpling rates, are identical 

for all three sampling theorems. The use 

of the Z transform in treating these dis- 

crete characterizations is briefly discusssd 

in section 7. In section 8 the Fourier duals 

of the sampling theorems are presented where- 

in sampling is performed in the frequency 

do~r.air.. Section 9 contains some concluding 

remarks. 
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The work of this paper was motivated by in- (6). For example, we can directly express 

vestiyation of space-variant systems en- the output spectrum by 

cocnterec2 in coherent optical processing 

(3). Substantial new material, however, is Y ( f )  = F,[y(t)l 
C 

presented here. We note that causality is ( 3  
= F F [h(t;i)U(T)~l~=~ 

not a constraint i~ such spatial systems. T t  

For this reason, the sampling theorems here the ~ourier operators are defined by 

are pzeseatel for tke more general case Ft[s(t;r)] s(t;r)exp!-j2vftldt (4) 
where causality is nct a constraint. Al- 

thouqh a causal si1;nal (zero for nsqative & ' 

tine) can never bs riqorously baa5limited 

(4), familiar ti==-Bandwidth product approx- F~ IS rt; r) l4 -ZO Ts(t;i)exp(-jZwi)dr (I) 

imations can be tg2lied if approxiate (5). 

 he same is true for the systein irrpilse re- Note that for the shift invariant case that 

sponse with respezt to its first l?arlcSle. h(t; T) + h(t) . Equation 3 then takes on the 

There are many causal signals and system, familiar product form Y ( f )  = Ft[h(t) ] Ft[u(t) 1. 

however, which can be considered "essential- 

ly" bsndlimited. Ever: the conce* of a A transform of the impulse response which 

bandlimited signal, at best, can cnly be will be of interest is the variation spec- 

trun defined as consiCered as an approximation to zeal world -- 
phenomena (5) . 

I!r(t;v) = Fi [h(t;~) ] (6) 

For clarity of presentation, attention will 

be rest-ricted to one dimension. Generaliza- The support of the variation spectrum is a 

tion to multidimensional systems is straight-measure of t.he manner in which the i~pulse 

forward. responsE changes shape with respect to T. 

2. PRELIMINARIES 

We consider here the low-pass case for which 

HT(t;v) is identically zaro outside the in- 

terval Ivl ( Wv. Such systems will be re- 
The response, y(t), cf a linear system to ferred to as variation lintited. The quan- 
an inpat u(t) can be expressed by the SUP- tity zWV is appro2riately varia- 
erposition integral: tion bandwidth. - 

y{t) = s h(t)l . . 
o (1) Note that a shift invariant system has a 

= j h(t-T;T)U(I)~T 
--a v~riation bandwidth of zero and is thus truly 

invariant. 
wherc S ( - 1  is the system operator and the 

system impulse res2onse is formally defined . A SAMP~ING VpiRIATION 

as LIMITED SYSTEXS 

We now will develop a sampling theorem appli- 

cable to variation limited systems with band- 
where 6(t! denotes the Dirac delta. (??or limited inputs. For the bandlimited input, 

a cadsal system, h(t-T;T) is zero for t<l.)  We aqain consider the low-pass case where 
This particular choice of impulse response u(t) has bandwidth 2VIu. Consider, then, 
notaticn has certain computational advantagesthe term h(t;T)U(T) whirh is the argument of 



the Fourier operator in Eq. 3. Multiplica- 

tion in the T domain corresponds to convolu- 

tion in the v donain. As such, if u(r) has 

Lnndiridth 2NU and h(t;?) has a variation 

bandwidth of 2ii.,,, then their product will 

hsve a bandriieth 2Ks ecual to the suo of 

the romponent Sa?.ix;lths: 

The product h(t::!u(r) can thus be expanded 

in a uniformaly ccnverqing (7) Whittaker- 

Shannon samplin7 theoren (8) in 7: 

h(t:r)u(r) = 1 h(t;~~)u(r~). 
n - sinc 2iZS(;-rn) ( 8 )  

xhere T = n/2rVs and sinc x L sin-x/x. n .  
Substituting into Eq. 3 and simplifying 

qives 

xhare our transfer function is defined by 

and G(f) = F [sinc tl is the gate function. t 
Inverse Fourier transforming Eq. 9 gives 

y it) = 1 h(t-~~;~~)u(r~)*sinc 2WS t 
n 

(11) 
whcre " * "  denotes the convolution operation. 
We i~iterpret Eq. 11 as follows: for band- 

limited inputs, the output to a variatisn 

limited system can be computed by 1) samp- 

ling the input. 2) multiplying each input 

saaplc by its cclrresponding sample impulse 

response, 3 )  sur?.'ing the results, 4) pass- 

i1q the sum through a suitable low-pass 
filter. A s  is shown in Figure 1, we can 

interpret this result as the representation 

of a variatinr? limited system by a bank of 

of shift invariant systems each of which . . 
corresponds t.o a sample impulse response. 

The switching mechanism required to feed 

each filter its corresponding sample value 

is representative of the shift variance of 

the overall system. Note that Eq. 11 is 

not optimal in the sense of utilizing mini- 

mum sazpling rates. That is, u(7) only re- 

quires a sampling rate of 2WU and h(t:~) a 

sampling rate of 2W in 7. Both are here 
v 

being sampled at a rate 2WS. The authors 

have shown however, that the sampling ex- 

pansion utilizing the minimum~allowable 

sampling rates is computationally less 

attractive ( 3 ) .  

4. AN ALTERXATE SA?iPLII:G TBEOREM 

In the previous section, h(t;7) was assumed 

to be bandlimited in 7. Note that this 

restriction does not necessarily assure that 

h(t-r;r) is also bandlimited in 7. As such, 

ve can derive cn alternate sa~plinq theorem 

for the case where Ftlh(t-r;r)l is zezo out- 

side of the interval !vl 5 Wh. If our input 

has bandwidth 2WU, then the product hlt-T;T) 

U(T) has bandwidth 2Kd = 2WU + 2t.1 in 7 an3 h 
can be rspressed in the sampling theorem ex- 

pansion: 

h(t-T;T) = I h ( t - , r n ; i n ) ~ ( ~ n ) ~ i n ~ 2 \ V d ( ~ n )  
n 

(12) 

where, here, r .  = n/2Wd. Substituting into n 
the superposition integral IEq. 11 gives 

Our expansion here is similar to that in Eq. 

11 except for the sampling rate and the fact 

that no low-pass filtering is required. 

Note also, 8ue to our bandlimiting constraints, 

the output in Eq. 13 is bandl:'.mitxl with band- 

width 2Wd. 
I 



5. A THIRD SAMPLING THEOREM to give the corresponding system output. 

The sampling theorems thus far discussed 

require sampling in the T or input domain. 

Ar. alternate saxpling theorem which utilizes 

output sampling occurs when h (t:~) is band- 

limited in t r:izh (low~ass) bandwieth Of, 

3 a ~ . ,  2Kt. (:io:e that this conditic2 is 

equivalant to h(t-7::) being bandlixited in 

t.) Such a cocditio- holds when the system 

response to an irgnlse input is bantlimit- 

ed irrespective 05 t t e  location of the in- 

put delta function. Under this ban5licited 

assumption, we can izediately exIjress the 

impulse response in the sampling t5Lokem 

expansion: 

wherc tn = n/2Wt. Substituting into Eq. 3 

foll~wed by simplificetion, leaves 

6. DISCRETE CIiARiiCTERIZATIOli 

Inspection of the three sampling theorems 

thus far presented reveals that the corres- 

ponding system output is bandlimited and 

thus can also be expressed in a sampling 

theorem expansion. We now investigate 

direct cor.putation of the required output 

sample values in terms of the sampled input 

and impulse response. The resulting com- 

putational forms, in the three cases consid- 

ered. are identical. 

(1) Consider first, the variation limited 

system with bandlimited input. From Eq. 11, 

we define the low-passed system impulse re- 

sponse as 

u(f) = 1 1 F,[hIt,,;~)u(~)l / Equation 11 can now be written 2Vt n v=f 

f (15) 1 ,. 
ex?(-j2rftnlG(ql y(t) = 1 h(t-~~;~,,)~(.l~l (18) 

n 

Inverse transforsins yields: It follows immediately that 

As before we have reduced the system char- 

acterization to a summation of convolutions. 

In thin case, however, we do not have to 

pl.ace any bantlimiting constraints on our 

input. 

h'2 car. interpret Eq. 16 as shown in Figure 

2. Our inpvt is fed into a tapped delay 

line which serves as the shift variance of 

tfle overall system. The outputs at various 

points along the delay line are then multi- 

plied by the appropriate sample responses. 

s.11 these products are then summed and pas- 

se2 through an appropriate low pass filter 

From Eq. 9, y(t) has a ban2width of 2wS. 
Thus, we require that t = m/2W . Note m S 
that Eq. 19 can be straightforwardly expres- 

sed in an infinite matrix form. 

Suppose we now make the additional constraint 

that h(t:r) is bandlimited in t with band- 

width 21Yt. If Ws > Wt, then the lo:?-passed 

imp'llse response in Eq. 17 is the same as 

our actual impulse response: 

h(t-T ;Tn) = h(t-T ; T I  ; W > Wt (20) n n n 6 

Then, Eq. 19 becomes 



where tn = T, = n/2cs. 

(2) Consider next the sampling theorem in 

section IV where h(t-?;r) is bandliaited in 

T Since the outpt has bandwidth 2Kd, it 

fol:oh-s irme2is:ely from Eq. 13 that the 

desires output saz.?le values are given by 

where, now tn = rn = n/2Wd. 

(3) Lastly, cocsider the saaplinq ttecre? 

expansion in Eq. 16 where the ostp:: has 
'5 bandwidth 2Nt. The corresponlin,g z out- 

put sample here is given by: 

('3) 

where, now, tm = m/2Wr. 

A mor" computati~nally attractive t o m  of 

Eq. 23 occurs h-hen, in addition to being 

bsndlimited in t, the system is variation 

limited and the in?ut is bandlixitee such 

c:,at 2N < 2i.1,. In this case Eq. 15 be- s - 
comes 

lnvcrse transforming and evaluating at t= 

tq qir7es 

1 
y t  = - h(tm-rn:m)u(r ) ;  PIs< ISt 

2Wt n n 

. (25) 

where tn = rn = n/2Nt. 

Ins?ection of the results of the three dis- 

crate characterizations above [Eqs. 21, 22 

and 251 reveals computationally identical 

forms. Our assumptions is all cases are (1) 

U(T) is bandlimited, (2) either h(t;r) or 

hlt-r;~) is bandlimited in T and, for the 

first [Eq. 211 and third [Eq. 251 cases, 

that (3) h(t:r) [and thus hft-?;?)I is band- 

linited in t. be can combine the three dis- 

crete matrix type relationships into a 

single expression: 

where 

and tn = r = n/2t:. We again stress, that n 
in all cases considered, sampling of both 

the input and impulse response is performed 

at a rate above the required minimum allow- 

able sampling rate. 

For shift invariant systens, Eq. 2 6  takes 

on the form of a discrete convolution which 

is traditionally treated with the Z trans- 

form ( 8 ) .  Vle will now show that due to our 

choice of impulse response notation, such 

treament can be generalized to the shift 

variant case. 

We define two Z transforms of a two var.iable 

discrete sequence s(m,n) by 

and 

-m zmIs(m,n)l = 1 z s(m,n) (29) 
m 

Note the similarity of the spirit of these 

definitions to the Fourier transform oper- 

ations in Eqs. 4 and 5 .  



A m 
Denote the Z tracs2orm of y(=) by Y ( 2 ) .  

Fr3a ~ q .  26, it follows that 

.. 
Y(%) = Zrnly(tm)l 

1 -n 
= 1 (1 Z h(tm-~n:~n)l~(~n) 

n m 

1 -n = fiZg[h(tm:~n)l~ u(T~) (30) 

1 = -- 2v; Znfi_ih(tm:In)~(~,,) i 

This is the gezeralized Z rransforz. treat- 

ment of a discreke shift variant prczess. 

Kote, as wasic the case with Eq. 3 tte 

result. reduces to the more faniliar SrsEcct 

(1) Consider first the Fourier dual of the 

sanpling theorem for variation limited 
-1 systeas. Here, we require that F [k(t;v) 1 T 

be identically zero outside the interval 

I T !  L Tv. Also ~ ( v )  must be "bandlimited.' 

That is, our input, u(r), must be nonzero 

only over the interval 1 T I  2 TU. The re- 

sultiny sampling theorem, then, is simply 

the Fourier dual of Eq. 11: 

1 y (t) = - 1 ktt-cvn;vn)u ( V ~ ) * S ~ ~ C ( ~ T ~ ~ / C )  
n 

( 3 4 )  

where 2Ts = 2TU + 2Tv and vn = n/2Ts. 

(2) consider next the Fourier dual of the 

lorn for the shift invariant case. scxpling theorem in section 4. Here, we 

reqvire F-' [k (t-cv;v) 1 is zero for 1 r / > Th 
7 

8. FOURZER DUAL SAMPLIXG TBLOXE:.:~ and, again, that u(r) is zero for 171 > T ~ .  

The Fourier dual of the sampling theorem 
The sanp1ir.g theorems thds far prsst-red in Eq. 1 3  follows imediately as 

can also be applied in a Fourier 6:al sense 

to the frequency domain. The corres:ondi~~q 1 
y(t) = 1 k(t-cvn;vn)U(vn) (35) 

constrajcts here, take on a physicaliy dlf- d n 

ferent meaning and thus widen the class of where 2Td = 2Th + 2T and vn = n/2T6. u 
systems which can be characterize? 11 samp- 

ling theorem t:.'se expansions. - (3) Lastly, we inspect the Fourier dual of 

the sampling theorem presented in section 5. 
To ctanne the co~sutatioxal forn c: the Our constraint in this case is that k(t,v) 

sv?erposition integral, we apply Parsev+l's is bandlimited in twith bandwidth 2Wt. 
theorem to Eq. 1: Note that this constraint is the same as re- 

quiring hit;?) to be bandlimited in t. 
y(t) = Imk(t-cv;v)U(v)dv (31) The resulting sanpling theorem expansion -- 

corresponding to Eq. 16 is 
where Ulv)  = F;lu(r)] and 

1 t-t, t-tn 
~ ( t )  = , 1 k[tn: 7 1 U(c) *sinc2wtt 

k(t-cv;v) = fa h(t-r;r)exp(j2%vr)d~ (32) n 
-- (36) 

where t n = n/2Wt. 
The kernel, k(.,.) is recognized as the 

systcm frequency response: The three. sampling theorems presented here 

can obviously be placed in discrete form as 

k(t-c,:;v) = Slexp(j2~vr)l (33) was Bone in section 6. For brevicy, these 

discrete cases will not be presented but 
The constant c is included simply to main- can be straightforwardly derived utilizing 
tain dimensional consistancy between the previous notions. 
time variable t dnd frequency variable v. 
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, .. .. . . 
Figure 1: dn iir.plements~:ion of the samplihg theorem presented in 

section 3. Sa.-?lo values of the input are fed into a 

bank of shift invariant filters each of which corresponds 

to a saeple of the parent shift variant inpulse response. 

5 1.1 

FILTER 

Figure 2: An implementation of the sampling theorem presented in 

section 5 .  Delayed versions of the input are multiplied 

by corresponding sample impulse responses, summed, and 

passed through a lo!* pass fjlter to give the output of the 

parent shift variant system. 




