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B. Foundations 

Certain applications in coherent optical processing of two-di- 
mensional signals require the operation of imaging a signal in 
one dimension while simultaneously Fourier transforming it in 
the other. Such parallel operations can be performed by a num- 
ber of different system designs. This paper presents a method of 
analyzing such systems by treating each dimension independent- 
ly and using three basic component sub-systems. The method 
simplifies mathematical analysis of system operation and facili- 
tates intuitive design for particular applications. 

A. Introduction 

An astigmatic coherent processor as discussed in this paper re- 
fers to a coherent optical system which simultaneously performs 
Fourier transform and imaging operations in orthogonal direc- 
tions. Such processors were first used by Cutrona et al.,'' and 
have more recently found use in generalized one-dimensional 
~ ~ a c e - 4 ~  and frequency-' variant processing, as well as in 
Laplace transform display> matrix multiplication,' ambiguity 
function  display,*^ and data retrieval  system^.'^ 

There are numerous ways in which such astigmatic opera- 
tions can be performed. Analysis of the various possible astigma- 
tic processor designs can be accomplished by methods such as 
those outlined by ~oodman ,"  1wasaki,I2 or Vander ~ u g t . ' ~  
These methods, however, often involve complex mathematical 
manipulations of the Huygens-Fresnel diffraction integral, a 
process which, besides being tedious and lengthy, is subject to 
algebraic errors and tends to  impede intuitive design. It is thus 
of importance to  formulate a simple, straightforward method of 
astigmatic coherent processor analysis. 

This paper presents such a method. Utilizing the separability 
of the Huygens-Fresnel diffraction integral in cartesian coordi- 
nates, analysis of astigmatic processors can be performed one 
dimension at a time. One-dimensional system decompositions 
are obtained which invariably fall into one of three classes: A 
Fourier transformer, a one-lens imaging system, or a two-lens 
imaging system. Once the input to  output equation for each of 
these one-dimensional component systems has been formulated 
using the Huygens-Fresnel integral, the input to  output relation 
for any two-dimensional system is obtained simply by multi- 
plying the appropriate one-dimensional equations. The resulting 
relationship, however, is also valid for non-separable type inputs. 

For clarity of presentation, attention will be restricted to a 
first order analysis. Thus, effects of lens aberrations and diffrac- 
tion anomalies are not considered. Familiar assumptions such 
as the thin lens and paraxial approximations are inherent in the 
development. Complex multiplicative constants will be included 
due to their importance in such areas as optical feedback14 
where phased addition of wavefronts is performed. 
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The Huygens-Fresnel diffraction integral permits expression of 
the scalar field amplitude, v(x,y), on the (x,y) plane due to  the 
field amplitude u ( 5 , ~ )  on the ( t , ~ )  plane. The (x,y) plane is 
located a propagation distance z past the (E,v) plane. Then 

jk exp(pz) 17 u([,v)exp { T; [(x - 0' + V(X,Y) = jXz 
ra 

Here, k = 2nlh where h is the wavelength of the spatially coher- 
ent illumination. Consider, for now, the case where u(t,v) is 
separable in cartesian coordinates. That is, 

u(t,v) = u1 (t)uz(v) . (2) 

Then from Eq. ( I ) ,  v(x,y) is also separable, so that 

where 

jkz 
e x p ( 7 )  

vl (x) = - J ~ U I  ( ~ ) e x p [ g ( x  - t12 I d t  6 
jkz 

jk J u2 t v ) e x ~ l ~ 1 ~  - sI2 I dv . 

When these one-dimensional relations are multiplied, they give 
results equivalent to those of the diffraction integral of Eq. (1). 
With these relations we may analyze the performance of the 
three basic component systems required for simplified astig- 
matic processor analysis. The one-dimensional convex lenses in 
these basic systems have a transmittance of" 

where f is the lens' focal length, n is the refractive index of the 
lens material, and A is related to the lens' maximum thickness. 
In applying this separation analysis method, A is, for a cylin- 
drical lens, taken as the actual physical (not optical) maximum 
thickness of the lens; for a spherical lens, A is taken as one-half 
the maximum physical thickness. 

In performing necessary integrations, the identity 

1436 received July 15,1977. will be useful.12 
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1. Fourier transformer tude along the y axis is 

The one-dimensional Fourier transformer is pictured in Figure V~(Y)  = 
l(a). An input transmittance, ut ($1, is placed a distance d, in 
front of thd lens. The field amplitude on the x plane, locatTd a -j -Y 
focal distance to the right of the lens, is, from Eqs. (4), (5) and exp[jkf~(M~+l)lex~[jkn(A~ + A 2 ) 1 ~ 2 ( ~ )  . (11) 

(61, 

Figure 1. Three basic one-dimensional component systems. (a) Fourier 
transformer. (b) one lens imaging system. (c) two lens imaging system. 
Focal lengths are shown on the lenses. 

Note that when the object is placed in the front focal plane, the 
quadratic phase term disappears. 

2. One-Lens Imaging System 

The single lens imaging system, shown in Figure l(b), satisfies 
the familiar lens law 

Again using Eqs. (41, ( 3 ,  and (61, the field amplitude at di due 
to  a transmittance f2(q) at do is 

where the magnification MI is * 

3. Two-Lens Imaging System 

The simple two lens imaging system, as shown in Figure l(c), 
consists of two cascaded Fourier transformers. The field ampli- 

Here the magnification parameter is given by 

C. Example Applications 

We will now illustrate application of the three one-dimensional 
cases t o  analysis of some previously used astigmatic processors. 
In all cases, the two perpendicular components of the system 
may be combined without ambiguity to arrive at the expression 
for the two-dimensional system's input-output relation. 

1. The astigmatic processor in Figure 2(a) was used by Cu- 

Figure 2. (a) An astigmatic processor and its (b) vertical imaging (cl 
horizontal Fourier transformer one-dimensional components. 

trona et al.1>2 and  other^.'^-'^ We begin our analysis by first 
looking at the system in the vertical direction. The resulting 
one-dimensional component system, as shown in Figure 2(b), is 
the two-lens imaging system. The horizontal component shown 
in Figure 2(c), is recognized as the Fourier transformer. We thus 
apply the two-lens imaging system formula (Eqs. (1 1) (1 2)) with 
f = f l  = f 2 ,  and the Fourier transform relationship of Eq. (7) 
with do = 3f. The resulting horizontal and vertical functions are 
multiplied to  obtain the two-dimensional output, 

u(l,-y)exp(+ Ex) 08 . 
-0 

(13) 

This system is seen to perform parallel Fourier transform and 
imaging operations with a quadratic phase factor in the horizon- 
tal direction. The quadratic phase factor can be removed by 
placing a negative cylindrical lens immediately prior to the out- 
put plane. 

2. The astigmatic processor in Figure 3(a), used by ~hodes , '  
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Figure 3. (a) A second astigmatic processor and its (b) vertical and (c) 
horizontal components. 

consists of a spherical lens immediately followed by a cylindri- 
cal lens." Each lens has focal length f. In  the  vertical direction 
(Figure 3(b)), the  system component satisfies the  lens law of 
Eq. (8) and is thus a single lens imaging system where the com- 
ponent lens has a n  effective focal length of f/2.18 The horizontal 
component of the system (Figure 3(c)) is the Fourier transform- 
er. Thus, substituting do = di = f in Eqs. (9) (10) and do = f i n  
Eq. (7), the output  is 

k 
v(x,y) = -& exp(.i2kf)exp(jkn(At +A2)lexp(.iTy2) 

k Y' u(t,-y)exp(-j -7 8x1 dt. . 
90 

(14) 

The parallel transform and imaging operations are again per- 
formed, this time with the quadratic phase factor in the vertical 
direction. Again, the phase factor could be removed by placing 
a cylindrical lens, this time with positive focal length, immedi- 
ately in front of the  output  plane. 

3. Both of the  preceeding processors have spatially varying 
quadratic phase terms in their output.  An  astigmatic processor 
which does not have such a factor is pictured in Figure 4(a).4* '' 
The cylindrical lens L2  has a focal length double that of lenses 
L1 and L3. The vertical component of the processor shown in 
Figure 4(b) is a two-lens imaging system. The horizontal com- 
ponent (Figure 4(c)) is a Fourier transformer with do equal t o  
the lens' focal length which here is 2f. The processor output  
arises through combination of Eqs. (7) and (1 1). The result is . 

The parallel transformlimaging operation is thus performed 
without a quadratic phase factor appearing in the output.  

D. Conclusions . 

Astigmatic processors, used widely in coherent optical com- 
puting, can be analyzed one dimension at  a time. The reduced 
systems can be recognized as belonging t o  one of three basic 
classes. The one-dimensional system equations can then be mul- 
tiplied t o  describe the operation of the original system. This 
description will be valid for  both separable and non-separable 
system inputs. This simplified method of analysis avoids cum- 
bersome manipulations of the Huygens-Fresnel diffraction inte- 
gral. The "basic component" approach also facilitates intuitive 

Figure 4. (a) An astigmatic processor with no quadratic phase factor in 
the output, and the processor's (b) vertical and (c) horizontal components. 

design o f  a n  astigmatic processor for  a particular application. 
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