Detection In Laplace Noise

ROBERT J. MARKS, Member, IEEE
University of Washington

GARY L. WISE, Member, IEEL

University of Texas at Austin

DOUGLAS G. HALDEMAN, Member, IEEE
TRW Defense and Space Systems

JOHN L. WHITED
Rockwell International

Abstract

The discrete time detection of a known constant signal in white
stationary Laplace noise is considered. Exact expressions describing
the performance of both the Neyman-Pearson optimal detector and
the suboptimal linear detector are presented. Also, graphs of the
receiver operating characteristics are given. The actual performance
of the Neyman-Pearson optimal detector. is compared to that pre-
dicted by a Gaussian approximation to the distribution of the test
statistic.
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I. Introduction

Recently, there has been considerable interest in the de-
tection of signals in non-Gaussian noise. Although the
assumption of Gaussian noise is frequently justified, such as
in ultra-high frequency (UHF), in other cases, such as ex-
tremely low frequency (ELF), the assumption is definitely
unjustified. One form of frequently encountered non-Gaus-
sian noise is that known as impulsive noise. Impulsive noise
is typically characterized as noise whose distribution has an
associated “heavy tail” behavior. That is, the probability
density function (pdf) approaches zero more slowly than a
Gaussian pdf. The references in [1] and [2] give a summary
of some forms of impulsive noise and situations where it
arises. In this paper we consider the discrete time detection
of a known constant signal in additive white Laplace noise.
That is, the pdf of the noise is given by

fin)=(y/2) e (1)

Notice that Laplace noise has the heavy tail behavior asso-
ciated with implusive noise.

The Laplace distribution is popular in statistics and many
of its properties have been studied [3]. Furthermore, it is
used as a noise model in engineering studies. For example,
Miller and Thomas [1] used Laplace noise in a numerical
study of relative efficiency. Bernstein et al. [4] comment
on the non-Gaussian nature of ELF atmospheric noise, and
they give a plot of a typical experimentally determined pdf
associated with such noise [4, Fig. 10]. This experimentally
determined pdf is similar to a Laplace pdf, and on a linear
graph the difference is barely distinguishable. Mértz [5]
proposed the following pdf for the amplitude distribution
of impulsive noise: /' (x) = iv(x + )~ "1 x>0, Notice
that if we let v = h/y — 1, then limj,—. o f(x) = ye ™ "*, x > 0.
Thus the limiting case of the Mertz model for the amplitude
distribution of impulsive noise is identical to the distribu-
tion of the amplitude of Laplace noise. Kanefsky and
Thomas [6] considered a class of generalized Gaussian
noises, obtained by generalizing the Gaussian density to
obtain a variable rate of exponential decay. The Laplace
distribution is within this class of generalized Gaussian dis-
tributions. Also, Duttweiler and Messerschmitt [7] refer to
the Laplace distribution as a model for the distribution of
speech.

In Section 1, we present a brief summary of the prob-
lem. In Section III, a derivation of convenient expressions
describing the performance of the Neyman-Pearson optimal
detector for Laplace noise is presented. We investigate the
performance of the commonly used suboptimal linear de-
tector in the presence of Laplace noise in Section IV and
compare its performance with that of the optimal detector.
Comparison of the actual performance of the optimal de-
tector with that predicted by a Gaussian approximation is
the topic of Section V. Section VI contains some conclud-
ing remarks.
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Fig. 1. Structure of optimal detector.

Il. Preliminaries

We consider testing for the presence or absence of a posi-
tive, constant signal s in additive Laplace noise. We assume
that the noise samples are statistically independent. (A re-
stricted receiver bandwidth might cause this assumption to
be violated.) The problem is modeled as the following
hypothesis testing problem:

Ho:xi=ni, i=1,2,..,.N

Hl:xi=s+ni, s>0 .

Based on the observations {x;, i =1, 2, ..., N}, we are to
decide whether the signal is absent or present. The quantity
a will denote the probability of false alarm; that is, a is the
probability of incorrectly announcing ;. Similarly, g,

the detection probability, is the probability of correctly
announcing H, . )

The Neyman-Pearson optimal detector is a detector
which, for a fixed a, will maximize 8. The optimal detector
for our problem is well known [8], and is illustrated in Fig.
1. The observations are passed through a zero memory non-
linearity g(+) and then summed. The result is then com-
pared with a threshold T chosen to give the desired false
alarm probability. The nonlinearity g(+), illustrated in Fig.
2, is the amplifier-limiter given by the following expression:

s x>
gx)=<2yx—7vs, O0<x<s @)
—7S) x<0

For the optimal detector, the test statistic ¢ is given by
the following sum of independent, identically distributed
random variables: r = ¥, g(x;). If the distribution of this
sum were known, then the detection and false alarm proba-
bilities could be found, and the performance of the detector
would be known. However, past attempts at obtaining a
simple expression for this distribution have not been success-
ful. A recursion scheme for obtaining this distribution has
been considered by Miller and Thomas [1,9]. If N were
sufficiently large, the central limit theorem would apply, and
the distribution of ¢ would be approximately normal. How-
ever, the small sample performance of the detector would
still be unknown (see, for example, [1, 10]). Alternatively,
one could establish bounds on the detection and false alarm
probabilities and thus establish a bound on detector perfor-
mance; or Monte Carlo simulation may be employed. In
general, however, it is desirable to have a convenient expres-
sion for the probability distribution of the test statistic ¢.
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Fig. 2. Nonlinearity in optimal detector.

Derivation of this distribution is the topic of the next sec-
tion.

A situation frequently encountered in radar is that of
unknown signal amplitude, due to the unknown amount of
scattering of the incident radiation by the target. In a situa-
tion where it is known that the signal is extremely weak, a
locally optimal detection scheme [8] may be employed;
that is, for a fixed a, maximize the slope of § as the signal
shrinks to zero. In this case the present problem has been
solved [8]. In other situations, although the precise value
of the signal might not be known, a lower bound on the
signal may be known, say s = b. In this situation, in the
context of the problem at hand, if the detector is designed
for the signal s = b, then the minimum value of 8 [as s
ranges over the interval (b, )] is maximized for a given a
[11]. Thus, in this case, although the actual signal strength
is unknown, it is simply replaced by a lower bound, and we
are guaranteed that the actual detection probability is at
least as good as that which we calculate. Therefore, in the
sequel, we will assume a known signal.

I11. Neyman-Pearson Optimal Detector

In this section we derive an expression for the distribu-
tion of the test statistic for the Neyman-Pearson optimal
detector. The test statistic is obtained by passing each of
the observations through the nonlinearity g(*), given by
(2), and summing the outputs.

We first consider the case of no signal, i.e., Hy. If X; has
a Laplace distribution given by (1), then g(X;) will have the
following distribution function:

Fe)=uGc+y5)+4 [ _[exp — % (vs +v)] GO/2ys) dv

+ 3 exp(— ) ulx — ) ®)
where u(-) denotes the unit step function given by
1, x=0
ux) = {o x<0
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and G(+) denotes the gate function given by

Glx) = {(‘)

The distribution function Fp(-) of the test statistic ¢ is
given by
F(x)= f e =v)dF@)
where ', (x) = F(x).

The Fourier-Stieltjes transform of (3) is given by
Flw)y=[ _ exp(—jwx)dF(x)
where j denotes the imaginary unit. A straightforward cal-
culation yields that

F(w) = exp(— 75/2) {cosh [+ +je)ys]

+sinh[(3 +jw)ys] /(1 + 2jw)}. @)
Letting F, n{(*) denote the Fourier-Stieltjes transform of
Fp(x), we get that F’N(w) = [ﬁ'(w)]N. Our derivation of
an expression for F(x) is based upon repeated use of the
binomial expansion. Specifically, we write F(w) using

(4) and the binomial expansion. The hyperbolic sine and
hyperbolic cosine terms are then expressed in terms of com-
plex exponentials. We use the binomial expansion again to
express the powers of the sums and differences of the com-
plex exponentials. After a straightforward simplification,
we obtain the following expression:

N k
- =X N_»(N+k) > %)Y (=1
Fy@)=Z ()2 Iy

N-k
M F)expl-(p + gy
g=0

*expiw® — 2p — 29)1]/( +jw)
N -
+27V % (f:’;) exp(—mys) exp [jw®V — 2mYys].
m=0

Denote the triple sum term by A(co) and the remaining term
by B(w) so that

F(w)=A(w) + B(w). o)
To find the distribution of the test statistic # under H,, an
inverse transform must be performed on (5). That is, find
A(x) and B(x) such that

ﬁz\/ (w)= fcjm exp(—jwx) dF, (x)

= [ _ exp(—jox)dA(x) + f _exp(—joox) dB().
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Note that /f(w) belongs to L,. Thus, there exists an inverse
Fourier transform a(x), defined as a limit in the mean.

a(x) = (d/dx) A(x)

k=1

N k
=X 20 3 ¢y
p=0?

k

N5 exp[—(p + g )]

N—
o Z

q=
< (1/2m) J_ (expliw[V — 2p — 2q)ys +x]}/
¢ +jw)) do (6)
We can evaluate the above integral using contour integration,
the residue theorem, and Jordan’s lemma [12]. After sim-
plification, (6) then becomes

N
ax) =Nlexp[—} (e + M9)] T 27 WO e — 1))

k

g E
(=]

k
» 2 [(=1¥/p'(k - p)']
p=0

A+ @ -2 - 29061 T gV — k- @)}
cufx + (V- 2p —2q)s].

By straightforward manipulation and integration (see [13]),
we obtain the inverse transform A (x) of A(w)
AE)=f _ a(x)dx

-k

N k
Y §(1)”(’°)z %)

* (exp[-(p +qyrs] —exp[- 3 x+Ny)l e,
« Blx+ - 20 - 29)51})

culx+ V- 2p—2q)ys]

where ex(+), the incomplete exponential, is defined by
ex(®) =3k o x /m!. Also, we can easily show that

N
Bx)=27" T (Myexp(~mys)ulx + (N - 2m)yys].
m=0

Letting Fi(x) = Fp(x) denote the distribution function
of the test statistic under the hypothesis Hy, we have

(0)
F, (x)=A(x)+B(x)
x N—k
2N EM T Oz ¢
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Fig. 3. Performance of optimal detector for s = 0.3 and different
values of N.

< (exp[p +q)w] —exp[—3(x + Ny)]
e Blx+ -2 2901 ulx+ V-2 —2q)n]

N
+27V T Myexp(—mys) ulx + (N - 2myys]. ©)
m=0

We now consider the signal present case, i.e., H,. We let
Ffvl) (x) denote the distribution function of the test statistic
under H,. Since the Laplace pdf is symmetric, it can be
shown [1,9] that
FPE)=1-F(x). ®)
Equations (7) and (8) thus completely determine the per-
formance of the Neyman-Pearson optimal detector.

One popular way to describe the performance of a de-
tector is by its receiver operating characteristics (OC) curves.
For the optimal detector, a family of OC curves for a fixed
equivalent signal strength ys = 0.3 for various sample sizes
is shown in Fig. 3. A second family of OC curves is
presented in Fig. 4 for various values of s with a fixed
sample size of N = 10.

IV. The Linear Detector

By a linear detector, we mean a scheme such as that
illustrated in Fig. 1, but where the function g(*) is g(x) = x.
That is, the test statistic is simply the sum of the observa-
tions. The linear detector is Neyman-Pearson optimal for
Gaussian noise and is a commonly used detector.

Consider the signal absent case, i.e., Ho. In this situation,
the test statistic is given by ¢ = Ef-\il X;, where the X; are
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Fig. 4. Performance of optimal detector for N = 10 and different
values of ~ys.

independent identically distributed random variables with
the pdf of (1). Let py(x) denote the pdf of z. Then we
have [3, p. 24]

N-1
p.(x)=[yexp(—ylx)/(v-1)] T 2-W+8)
N k=0

 [WHE = DYV — k= D] (ylxhVE-L

After a straightforward integration [12], we obtain G\ (x),
the distribution of the test statistic of the linear detector
under Hy,

N-1
3+
k=0

ey o (], x=0

2—(N+k) (N+ch—-1)[l e X

G ) = ©)

1 -G (-x), x<o.

In the signal present case, the test statistic is given by £ =
Zﬁ 1 X; + Ns, where, once again, the X; are independent
identically distributed random variables with the density
function of (1). Let val)(x) denote the distribution func-
tion of the test statistic of the linear detector under H,.
Then we have
GP(x) =G (x — Ns). (10)
Equations (9) and (10) completely determine the perfor-
mance of the linear detector.

A comparison of the performance of the optimal and
linear detectors for various choices of &, s, and vy is shown
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Fig. 5. Performance of optimal detector compared to performance
of linear detector, N = 10,s =1, y=0.5.

in Figs. 5 and 6. Note that, with the convenient closed form
expressions in (7) through (10), a general relative efficiency
study of the linear and optimal detectors could be per-
formed such as that done by Miller and Thomas [1]. Our
treatment, however, 1) is much more flexible in terms of
the choices of s and -y and 2) would utilize less computer
time and storage.

V. Gaussian Approximation

In non-Gaussian detection problems of the type consid-
ered in this paper, the derivation of an expression for the
distribution function of the test statistic for the Neyman-
Pearson optimal detector is frequently a mathematically in-
tractable problem. In many such cases, for sufficiently
large &V, an appeal is made to the central limit theorem to
arrive at an approximation for the distribution function of
the test statistic. Thus it is instructive in the present case
to compare the exact results with those resulting from the
Gaussian approximation.

Let X be a random variable with the density function of
(1). Let g(+) be the optimal nonlinearity given by (2). Then

EE =/ _ sy e " ax

A straightforward integration yields E{g(X)} =1 — ys — e~ 7%,

Similarly, we get

varg [g(X)] = fiw [g(x) — 1+ ys+e Y (y/2)e” 7™ ldx
=3 207 dyse Y5 _ o728,

Thus the mean and variance of ¢ under H, are, respectively,
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0.5

Fig. 6. Performance of optimal detector compared to performance
of linear detector, N =20,s =03,y =1.

Eo{t}=N[1—vys—e "] =m
varg [t] =N?[3 —2e7 5 —4yse™ Y — ¢7275) = o2,

Using the relation in (8), it follows that the corresponding
values under A, are given by

E{t} =—Eo{t} =—m
var, [t] = varg[t] = 0?.
Let Iﬁ) )(x) and 1}\} )(x) denote, respectively, the Gaussian

approximations to the distribution functions of the test
statistic under Hy and H,. Then

ED(x) = @[(x — m)/a]

and

I)G) = ®[(x + m)]o]

where

®() = (AN [ 2 an,

Let g and B denote the false alarm and detection proba-
bilities, respectively, resulting from the Gaussian approxi-

mation. Then we have

a, =1—2[(T - m)o]
and

b =1 = ST +m)ol. (n
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In practice, one may use (11) to set the value of the thresh-
old 7. For example, if ys = 1, N =15, and the desired false
alarm probability is 0.3, the Gaussian approximation yields
a threshold of approximately 1.208 and a detection proba-
bility of approximately 0.628. However, using (7) and (8)
we find that for this threshold « = 0.02 and = 0.91. In
fact, for & = 0.3, we find that the actual detection probabil-
ity is greater than 0.99. Thus, in this case, the Gaussian
approximation is extremely conservative. In Table I we
compare the actual values of « and 8 for the optimal detec-
tor with a; and B for several values of T when NV =25 and
vs =0.5. It is seen from the table that, in this case, the
Gaussian approximation is not very good (even though

N =25).

V1. Conclusion

We have presented closed form solutions for the perfor-
mance of the Neyman-Pearson optimal and suboptimal
linear detectors for the case of a known positive signal in
the presence of additive white Laplace noise. These solu-
tions can be used in a variety of detector studies for arbi-
trary choices of Laplace parameter, signal strength, and
sample size including small sample size relative efficiency
studies and receiver operating characteristic curve genera-
tion. Utilizing the solutions for the distributions of the
optimal detector test statistic, we have also shown that in
certain instances the Gaussian approximation to the optimal
detector is poor even for an intermediately large sample size
of 25.
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