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In certain linear coherent processing tech-
niques, a temporal signal is spatially encoded as
an amplitude transmittance which serves as the pro-
cessor input. In this paper, a technigue is pre-
sented whereby the temporal signal is alternately
used to amplitude and/or phase modulate a raster
scan of the processor's input plane. Using the
temporal integrating and summing properties of a
hologram placed in the processor's output plane,
one can then regain the identical processor output
which would have arisen from the spatial encoding
technique. Preliminary experimental results are
presented along with the theory of the input scan-
ning technigue.

Introduction

In certain coherent processing schemes, a pro-
cessor input is received as a temporal electronic
signal. Conventionally, this signal is spatially
encoded as a two-dimensional amplitude transmit-
tance which then serves as the processor input.

It is, however, usually the corresponding pro-
cessor output which is of interest.

In this paper, we present a scheme whereby one
can achieve an identical linear processor output
by utilizing the temporal signal to amplitude and/
or phase modulate the field amplitude of an input
raster scan. The time-varying field amplitude at
the system's output is then temporally integrated
and summed using holographic techniques.
back, the hologram is shown to produce a diffracted
term which is identical to that which would be ob-
tained by placing a corresponding input field
amplitude transmittance mask at the processor's in-
put. This scheme, then, eliminates the necessity
of spatially encoding the input. Use of erasable
photographic media suggests possible implementa-
tions near real-time.

Input scanning has been used extensively in
incoherent processing to add the temporal degree
of freedom to the already available spatial vari-
ables. Vardous incoherent processors and corres-
ponding references are given in the excellent re-

view paper by Monahan, Bromley and Bockerl. Scan-
ning techniques have also been extensively applied

in holography2-7 as hﬂVfothe effects of time-vary-
ing field amplitudes,
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Theory

We limit our scanning techniqgue to those
systems which are linear. Such systems can for-
mally be expressed via the superposition integral:

o
glx,y) = slutx,y)] = [f uw(E,mh(x-E,y-n;E£,m &kan
-0
(1)

where g is the system output corresponding to an in-
put u into a system S[*]. The point spread function
is defined as

h(x-£,y-n;€,n) = s[8(x-E,y-n)] (2)
where 6(*,*) denotes the Dirac delta. We are here

using the Lohmann-Paris point spread function (im-

pulse response) notation.ll'lz

Consider, then, the scanning geometry shown in
Fig. 1. For the fixed value of n = N, We scan the

input plane over £ at speed v. Modeling the scan=-
ning point as an amplitude and/or phase modulated
delta function, the field amplitude to the right of
the input plane at time t is

u(vt.nmlé(ﬁ-vt.mnn) (3)
From Eq. (2), the corresponding complex field
amplitude incident on the output plane is
(4)

u(vt,nm)h(x-Vt,y-nn:Vt.nul

Placed in the output plane is a photosensitive
medium on which is also incident a planar reference

beam exp(jkay), where o is a direction cosine.g
The corresponding intensity at time t is thus given

by

: 2
I (x,yit) = |ulve,n Jhix-ve,y-n sve,n) + exp(jkay) |
(5)

Assuming the resulting hologram's amplitude trans-
mittance is proportional to the exposing intensity
function, we have, for one scan, an amplitude trans-
mittance ch-lo -

t (x,y) = [ I (x,yit) dt (6)
m =0 m



where T is the exposure time for a single scan.
For M scans corresponding to various values of nu,

the hologram's amplitude transmittance is

C 2 L O -

2 (7N

1

2 M A
tx,y) = ] e (xy) =t 5

m=1

where

T
€ = [iu(vt,nn)h(x-vc.y-nn,v:.qm)at]exp|-jkuy)

)
m (8)
tt

% 1

2

T
£y = TM+ E i[u{vt.nn)h(x-vt.y-nmnvt.nm)|2 at

Here, "*" denotes complex conjugate. It is the t

1
term in which we are interested. Making the vari-
able substitution £ = vt and assuming each scan cov-
ers the entire input pupil at n = M gives

t = %E{ Jut@imnx-goy-n s €.n )€l exp (~3kay)
(9)

Playback is performed as shown in Fig. 2. The
playback beam gives rise to three diffracted terms.

The term t ejkuy is the zero order through beam and
tze:'m-"r is the twin image conjugate component. The
term of primary interest is

texp(jkay) = 3 £ [ wEnhx-Eoyon 8oy a
(10)

This expression is recognized as a semi-discrete
version of the superposition integral in Egq. (1).
That is, the integral over 1 is approximated by a
summation. In some instances, Eq. (10) will be an
adequate approximation for the true system output.

Under certain bandlimited assumptions on the
input and point spread function, we can obtain a
better approximation by performing a low pass fil-

tering operation in the y direction. This stems
from space-variant system sampling :heory.13'14 If
L -]

[ u(€,mexp(-j2zmuv)dg = 0 for |v| > w (11
e u

and

L]

[ nex,y:Emexp(-32mv)dn = 0 for |v| > w  (12)

-3

then the desired low pass filter is unity over the
frequency band
-('v + wu) <v 5_(wv + wu) (13)

As shown in Fig. 2, this filtering can be performed
by conventional spatial filtering techniques.g

Exgerment

To illustrate the temporal integration capa-
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bilities of the hologram, we consider the system in
Fig. 3. A point source makes a single 8can agross
the one-dimensional double-slit input aperture
a{x). The linear processor in this example is the
familiar Fourier transformer which consists of the
single lens L. . The scan is performed along the

1
line n = 0.

Following the previous model development, the
field incident on the photosensitive medium is

a(vt) exp(-jkvtx/f) + exp(jkax) (14)

where f is the focal length of lens Ll. Under the

previously stated recording assumptions, the re-
sulting holographic field amplitude is

Py

tix,y) = trE, (15)
where
T/2
t, = [ a(vt) exp(-jkvtx/f) dt exp(-jkax)
-1/2
t, = tli (16)
T/2
ty =T+ [ lawey|? at
-T/2

When the hologram is played back, the dif-
fracted term immediately to the right of the holo-

gram corresponding to t1 is

o

[ a(f) exp(-3xEx/f) a&

1

=3

v

(17)

where we have made the variable substitution

E = vt and have assumed the scan completely covered
both input pulses. Equation (17) is recognized as
the one-dimensional Fourier transform of a(x). Thus
we should be able to regain a(x) by an additional
Fourier transform. This is accomplished by a single
cylindrical lens. The result of playback is shown
in Fig. 4 and, as can be seen, compares gquite favor-
ably with the theory. Similar results for a single
pulse (slit) input are given in Fig. 5.

Conclusions

We have demonstrated a technique whereby
temporal signals can be linearly processed without
first being spatially encoded as an amplitude trans-
mittance. The scheme makes use of the temporal
integration and summation properties of the holo~
gram.

This technique is potentially applicable to
all linear coherent processors. By using a scan-
ning modulated line source, it is also directly
applicable to the recently presented class Y; 16
linear one-dimensional coherent processors. '
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Figure 4. Experimental output for a double slit Figure 5. Experimental output for a single slit
input. input.
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