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Department of E l  ectri cal Engineering 

A. THE PROBLEM 

The source of the superresolution problem is best $1 1 ustrated by the 
conventional optical system shown i n  Figure 1. A coherent plane wave 
illuminates an object of f ini te  extent, f (x). Thus, incident on the back 
focal plane is a field ampl itude proportionat t o  the Fourier transform of 
the object: 

where the frequency variable u is proportional to  the displacement i n  plane 
P2. In the pupil plane i s  a rectangular aperture which passes only those 
frequency components corresponding to lu 1 2 bf. The field ampl itude exiting 
the pupil plane is thus 

where rect(c) i s  unity for 1 ~ 1  s 4 and i s  zero otherwise. One form of the 
superresolution problem i s  this: given G(u), find F(u) .  While on the surface 
it seems that the lost  frequency terms are irretrievable, we must  remmber 
that, since the object f (x) i s  of f ini te  extent, F(u) i s  a bandlimited func- 
tion. A1 1 bandl imited functions are analytic everywhere. Thus, know1 edge 
of the function over any f ini te  interval i s  sufficient t o  specify i t  every- 
where. Recall , for exampl e, the Taylor series. 

object 
p1 ane (P7 

Pup i l  (&) 
pl ane 

image (PJ)  
PI ane 

Figure 1: Illustration of a loss of resolution i n  an inaging system. Each of 
the three planes i s  a focal distance from the adjacent lens. 
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The f i e l d  ainplitude incident on the image plane i n  Figure 1 i s  propor- 
t ional t o  the inverse transform of Eq. (1)  which can be u r i t t en  

where sinc < = s i n ( a ~ ) /  (75). The superresolution problem can thus a1 lernately 
be s tated as follows: Find f ( x )  w i t h  knowledge of g ( x )  and W. 

B . CONTROVERSY 

Many superresolution a1 gorithms e x i s t  that  work exactly i n  the absence 
of noise. Unfcrtunatel y ,  the restorat ion problem, as s tz ted,  i s  i l l  -posed in 
the  sense tha t  restoration noise level cannot be bound corresponding t o  an 
a r b i t r a r i l y  low bound on the i n p u t  noise level.  Upon ref lect ion,  t h i s  is 
reasonable. Knowledge of F(u) f o r  l u l  s bJ should give minimal information 
about F(u) a t ,  say, u = l O 8 ~ .  Clearly, however, since F(u) is bandlimited and 
t h u s  smooth, one should be able t o  obtain a "good" estimate of F ( u )  from G(u) a t  
u = W + E. Global s t ab i l i t y  should thus be distinguished from local s t a b i l i t y ,  

An ill-posed problem can be "regularized" i f  we can fur ther  constrain the 
object.  Additional infornlation about the object further l imi ts  the c l a s s  o f  
admissable sofutions. For example, t he  object m i g h t  be knoeln to  be real and 
posi t ive or l i e  between two bounds. Possibly a bound on the radiant energy 
of the object i s  known as a r e su l t  of the illumination power, 

One method of so1 ving the (unconstrained) superresol ution probl em i s  
through solution of the integral equation corresponding t o  Eq. ( 2 ) :  

The eigen-functions {qn(x) / n=0,1,2, - -  - 1 are  prolate spheroidal wave functions. 

The An's are the corresponding eigenvalues. The object can be expanded i n  

the Fourier Series: 

Using E q .  ( 2 )  and Eq.  ( 3 1 ,  we f ind tha t  
00 

The coeff icients  g n  = Anfn can be found from the  image: 

- CQ 

gn - g(x1 +,(x)dx 
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Hence, we can congute f = g n / i n  and, via Eq.  (4), the object. n 

The s t ab i l i t y  problem i n  t h i s  approach i s  manifest i n  the s t ructure of 
the eigenvalues, A n ,  which are nearly unity from zero to  the integer corre- 

sponding to  the degrees of freedom (space-bandwidth product) of the  image. 
For a greater index, A n  drops almost to  zero. For these values, any . 

uncertainty i n  measuring g i s  greatly magnified in computation of f n  = g , / ~ ~  n 

The prolate spheroidal wave functions are  nearly conputationally 
in t rac t ib ls .  They serve best as a consise (noiseless) model of superresolu- 
t ion which can be used nicely in proofs of other more t r a c t i b l e  l i nea r  extra- 
polation algorithms. 

D. ITERATIVE TECHNIQUES 

Gerchberg's algorithm i s  an i t e ra t ive  superresolution technique involving 
only the operations of Fourier transformation and truncation. Each i t e ra t ion  
al ternately reinforces the known portion of the spectrum and the bandlimited 
nature of the function. 

The basic algorithm i s  pictured in Figure 2. We begin i n  s tep  1 by 
inverse transforming the knor~n portion of the spectrum, Since we know the 
object i s  of f i n i t e  extent,  \$e keep only the r e su l t  fo r  1x1 r T. This is  
s tep 2. Step 3 i s  Fourier transformation. Since we know the answer m u s t  be 
G(u) for  l u l  < W, we discard the resu l t  over t h i s  interval i n  s tep 4 and add 
i n  G(u) in step 5. This i s  the f i r s t  estimate of the superresolved spectrum, 
F(u). The i te ra t ion  i s  continued in step 6 and, in the l imi t  ( i n  the absence 
of noise) we generate the object. 

Figure 2: I f lu s t r a t ion  of 
Gerchberg's i t e r a t i v e  
superrzsolution 
algorithm. In the  
absence of noise 
FN -+ F and f N  + f .  
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In the presence of noise, i t  has been shown that the restoration noise 
level bound is proportional t o  the number of iterations. Hence, as i tera-  
tions increase, convergence betters and noise worsens. An optima1 f i n i t e  
nunber of iterations i s  inmediately suggested, T h i s  number, however, varies 
widely w i t h  the object. 

The Gerchberg-type superresol ution a1 gori t h m  is the most f lexible  of 
the superresolution algorithms. As we shall see, i t  i s  highly adaptive to  
inclusion of certain constraints. 

E. LINEAR NON-RECURSIVE ALGORITHMS 

Define the band1 i m i  t i ng operator 

~ H ( U )  = 2T 1-z ~ ( 9 ) s i n c  ZT(U-s)ds 

Since the object spectrum, F(u), i s  already a band1 imited function, we have 

Hence, we can write Eq. (1 ) as 

If we were t o  simulate this operation digitally, G(u) and F(u) would become 
-L A 

sample vectors G and F, BT would become a low pass matrix $ and rec t  (&) 
would become a square matrix R w i t h  1 ' s placed i n  the center of the diagonal , a  

and zero el sewhere. The Eq. T5) becomes 
-L A 

G = [I-{I-R - --- B!]F 

where 

is the "extrapolation matrix." 

Again, i n  the absense of noise, the algorithm works fine. The extra- 
polation matrix, however, is ill-conditioned. Small data noise yields 
enormous restoration error. 

F . STAT l ST1 CAL KODELS I 

The models thus f a r  discussed are deteministic.  If the abject and 
image are treated stochastically, a wzal t h  of s ta t i s t ica l  a1 gorithms come 
into play. Historical 1 y, these a1 gori thms were developed for  spectral 
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estimation. Most involve finding the solution which extremizes some norm, 
e.g. minimuin mean square error and maximum entropy. 

G .  FUTURE WORK 

There i s  much current interest i n  finding techniques t o  incorporate constraints 
into superresol u t i o n  a1 gorithms. The Gerchberg type iterative a1 gorithm 
seems especially adaptable t o  this task. There has been success i n  placing 
object positivity constraints via "half wave rectification" i n  each itera- 
t i on .  Similarly, knowledge of a portion of the original object can' be 
blended into the algorithm w i t h  ease. 

Along the same 1 ines, there i s  a need for close inspection of  the 
physics of imaging for additional meaningful constraints. . 

As witnessed by the attached bibliography, there has been a recent 
explosion of superresolution papers. The need i s  evident for some unifying 
performance criterion by which these algorithms can be compared. For the 
1 inear algorithms, a possible measure would be the restoration to i n p u t  
noise levels for a given type of noise. I t  ' is the non-1 inearities (such 
as iterative ha1 f-wave recti f ication i n  the Gerchberg a1 gorithm), however, 
t h a t  will ailow for stab1 e algorithm performance via regularization. In 
such cases, the restoration noise level i s  signal dependent. 

Lastly, local ized superresol ution a1 gori thms are i n  need of inspection. 
Preliminary work on extending spectra over a larger but f ini te  interval has 
only recently appeared. 
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