Sy

~ LMITS OF _EAS'SNE lMAGNG WORKSHOP

‘U S Army Resea.rch Ofﬁce
- P.O. Box 12211

-. Research Triangle Park, N C "27.709

ENV!RONMENTAL

RESEARC:




R.J. Marks Il, "Superresolution via analysis",
Proceedings of the Limits of Passive Imaging Workshop, Mackinac Island, Ml, pp.45-55, May 24-26, 1983

SUPERRESOLUTION VIA ANALYSIS

Robert J. Marks, 11
University of Hashington, Seattle
Department of Electrical Engineering

A. THE PROBLEM

The source of the superresolution problem is best illustrated by the
conventional optical system shown in Figure 1. A coherent plane wave
illuminates an object of finite extent, f(x). Thus, incident on the back

focal plane is a field amplitude proportional to the Fourier transform of
the object:

Flu) = [T Floei2mxg,

where the frequency variable u is proportional to the displacement in plane
P2. 1In the pupil plane is a rectangular aperture which passes only those

frequency components corresponding to |u| < W. The field amplitude exiting
the pupil plane is thus

G(u) = ﬁ(u)rect(%h) : (1)

where rect(z) is unity for |€] < % and is zero otherwise. One form of the
superresolution problem is this: given G(u), find F(u). While on the surface
it seems that the lost frequency terms are irretrievable, we must remember
that, since the object f(x) is of finite extent, F(u) is a bandlimited func-
tion. AIl1 bandlimited functions are analytic everywhere. Thus, knowledge

of the function over any finite interval is sufficient to specify it every-
where. Recall, for example, the Taylor series.
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Figure 1: 1I1lustration of a_]oss of resolution in an imaging system. Each of
the three planes is a focal distance from the adjacent lens.
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The field amplitude incident on the image plane in Figure 1 is propor-
tional to the inverse transform of Eq. (1) which can be written

g(x) = 24 fj% f{g)sine 2W({x-g)dg (2)

where sinc £ = sin(wg)/(ne). The superresolution problem can thus alternately
be stated as follows: Find f(x) with knowledge of g(x) and W,

B. CONTROVERSY

Many superresolution algorithms exist that work exactly in the absence
of noise. Unfertunately, the restoration problem, as stated, is il1-posed in
the sense that restoration noise level cannot be bound correspending to an
arbitrarily Tow bound on the input noise level. Upon reflection, this is
reasonable. Knowledge of F(u) for |u| s W should give minimal information
about F(u) at, say, u = 1084. Clearly, however, since F{u) is bandlimited and
thus smooth, one should be able to obtain a "good" estimate of F{u) from G{u) at
u=W+.e. Global stability should thus be distinguished from local stability.

An 111-posed problem can be "regularized" if we can further constrain the
object. Additional information about the object further limits the class of
admissable solutions. For example, the object might be known to be real and
positive or 1lie between two bounds. Possibly a bound on the radiant energy
of the object is known as a result of the illumination power.

C. EIGEN-FUNCTION APPROACH

One method of solving the (unconstrained) superresolution problem is
through solution of the integral equation corresponding to Eq. (2):

A (%) = 20 [ 1y (e)sine 2u(x-g)d (3)

The eigen-functions {wn(x)ln=0,1,2,--'} are prolate spheroidal wave functions.
The kn's are the corresponding eigenvalues. The object can be expanded in
the Fourier Series:

v, (x) (4)

Using Eq. (2) and Eq. (3), we find that

g(x) = nZO *n’n v (%)

The coefficients g, = Anfn can be found from the image:

g, = [, 9(x) v (x)dx

n
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Hence, we can compute fn = gn/).n and, via Eq. (4), the object.

The stabilitly problem in this approach is manifest in the structure of
the eigenvalues, Aps which are nearly unity from zero to the integer corre-

sponding to the degrees of freedom (space-bandwidth product) of the image.
For a greater index, - drops almost to zero. For these values, any -

uncertainty in measuring g_ is greatly magnified in computation of f_ = g /A .
n n n “n

The prolate spheroidal wave functions are nearly computationally
intractible. They serve best as a consise (noiseless) model of superresolu-
tion which can be used nicely in proofs of other more tractible Jinear extra-
polation algorithms.

D. ITERATIVE TECHNIQUES

Gerchberg's algorithm is an iterative superresolution technigue involving
only the operations of Fourier transformation and truncation. Each iteration
alternately reinforces the known portion of the spectrum and the bandlimited
nature of the function.

The basic algorithm is pictured in Figure 2. We begin in step 1 by
inverse transforming the known portion of the spectrum. Since we know the
object is of finite extent, we keep only the result for |x| < T. This is
step 2. Step 3 is Fourier transformation. Since we know the answer must be
G(u) for |u| < W, we discard the result over this interval in step 4 and add
in G(u) in step 5. This is the first estimate of the superresolved spectrum,
F(u). The iteration is continued in step 6 and, in the limit (in the absence
of noise) we generate the object.

Figure 2: Illustration of
Gerchberg's iterative
superrasolution
algorithm. In the
absence of noise
FN + F and fN - f.
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In the presence of noise, it has been shown that the restoration noise
level bound is proportional to the number of iterations. Hence, as itera-
tions increase, convergance betters and noise worsens. An optimal finite
number of iterations is immediately suggested. This number, however, varies
widely with the object. _

The Gerchberg-type superresolution algorithm is the most flexible of
the superresolution algorithms. As we shall see, it is highly adaptive to
inclusion of certain constraints.

E. LINEAR MON-RECURSIVE ALGORITHMS

Define the bandlimiting operator
BTH(u) = 2T j:; H(n)sinc 2T(u-n)dn
Since the object spectrum, F(u), is already a bandlimited function, we have
BTF(u) = F(u)
Hence, we can write Eq. (1) as
6(u) = [1-{1-rect (3)8,31F(u) (5)

If we were to simulate this operation digitally, G(u) and F(u) would become
sample vectors G and F, BT would become a low pass matrix §T and rect (%ﬁ)

would become a square matrix R with 1's placed in the center of the diagonal,:
and zero elsewhere. The Eq. (5) becomes

6 = [I-{I-R B}JF

or

where

E

]
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is the "extrapolation matrix."

Again, in the absense of noise, the algorithm works fine. The extra-
polation matrix, however, is ill-conditioned. Small data noise yields
enormous restoration error.

F. STATISTICAL MODELS :
The models thus far discussed are deterministic. If the object and

image are treated stochastically, a wealth of statistical algorithms come
into play. Historically, these algorithms were developed for spectral

48



R.J. Marks Il, "Superresolution via analysis",
Proceedings of the Limits of Passive Imaging Workshop, Mackinac Island, Ml, pp.45-55, May 24-26, 1983

estimation. Most involve finding the solution which extremizes some norm,
e.g. minimum mean square error and maximum entropy.

G. FUTURE WORK

There is much current interest in finding techniques to incorporate constraints
into superresolution algorithms. The Gerchberg type iterative algorithm
seems especially adaptable to this task. There has been success in placing
object positivity constraints via "half wave rectification" in each itera-
tion. Similarly, knowledge of a portion of the original object can be
blended into the algorithm with ease.

Along the same lines, there is a need for close inspection of the
physics of imaging for additional meaningful constraints.

As witnessed by the attached bibliography, there has been a recent
explosion of superresolution papers. The need is evident for some unifying
performance criterion by which these algorithms can be compared. For the
linear algorithms, a possible measure would be the restoration to input
noise levels for a given type of noise. It is the non-linearities (such
as iterative half-wave rectification in the Gerchberg algorithm), however,
that will allow for stable algorithm performance via regularization. In
such cases, the restoration noise level is signal dependent.

Lastly, localized superresolution algorithms are in need of inspection.

Preliminary work on extending spectra over a larger but finite interval has
only recently appeared.
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