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Fig.  4. Frequency response of the 32-tap quadrature mirror  filter. 
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Fig. 5. Reconstruction error between the output and the input of the 
system  of  Fig. 1 (codecs not included).  Eight  taps, 
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Fig.  6. Reconstruction error  between the output and the  input of the 
system of Pig. 1 (codecs not included). 16 taps. 
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Fig. 7. Reconstruction error  between  the output and the  input of the 
system of Fig. 1 (codecs not included). 32 taps. 

TABLE 111 
APPROXIMATIOX ERRORS FOR 8-, 16-, AND 32-T~p FILTERS 

r I I 
W,NDOW,NG 

TECHNIQUE ~ METHOD 
1 METrlODOF [4] ’ PRoPoSED 

IV. CONCLUSIONS 
An automatic  method  has  been  proposed  for  designing  half- 

band  nonrecursive  quadrature  mirror filters with the desired 
behavior  of the stop  and  transition  bands. 

This method is based on an  analytical  formula  which has 
been derived to represent a duly  defined  approximation  error: 
in this way the set of  coefficients  which  minimize  this error 
can  be  computed by means of a well known  nonlinear  opti- 
mization  procedure. 
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Error of Linear  Estimation of Lost  Samples 
in  an  Oversampled  Band-Limited  Signal 

ROBERT J. MARKS  I1 AVI DMlTRY  RADBEL 

Abstract-A finite  number of lost samples  from an oversampled  band- 
limited signal can be  restored  from the remaining  samples.  This  paper 
explores the noise  sensitivity  of  a  linear  algorithm that performs  such 
restoration. Even  though the problem  is well posed,  restoration  noise 
level can become  prohibitively  high for a)  sampling rates  close to the 
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Nyquist rate,  and b) too many lost samples.  Numerical results of res- 
toration noise level are given for the cases of  one  lost sample, two (not 
necessarily adjacent) samples  and  a sequence of M adjacent lost samples. 
The effects of  both truncation and noise are evaluated for the case of a 
single lost sample  in  a stochastic signal. The results are compared with 
the corresponding minimum  mean-square error of the lost sample. Al- 
though suboptimal, the truncated lost sample  sampling estimate is more 
straightforward computationally and does not require detailed knowl- 
edge of the signal  or noise second-order statistics. ' 

I. INTRODUCTION 

In  the  absence  of  noise  a  finite  number of lost  samples  in  an 
oversampled  band-limited  signal  can  be  regained  from  the  re- 
maining  known  samples [ 1 ]. Such  a  restoration  falls  under  the 
title  of  interpolation-a  process  that  is  well  posed [ 2]-[4] ;  
that  is,  the  ratio of restoration  error  to  data noise  levels  can 
be  bound,  Clearly,  the  performance of such  restoration  algo- 
rithms  will  generally  worsen  (and  the  bound  increase)  when 
a)  the  sampling  rate  becomes  closer to  the  Nyquist  rate,  and 
b)  the  number of lost  samples  increases. 

In  this  paper,  we  investigate  the  sensitivity of the  restoration 
algorithm  in [ 1 ] t o  additive  samplewise  white  noise.  The  vari- 
ance of the  corresponding  restoration  uncertainty is  used  as  a 
measure of the  algorithm's  performance. 

For  a single  lost  sample  in  a  zero-mean  wide  sense  stationary 
stochastic  signal,  the  effects  of  both  data  noise  and  truncation 
on the  estimation  error  are  considered:  first using the  truncated 
lost  sample  sampling  theorem  (ST)  estimate  and  then  using  the 
minimum  linear  mean-square  error (MSE) estimate.  Although 
the  ST  approach is suboptimal,  its  implementation  requires 
only  a  bound on the signal  bandwidth.  It  does  not  depend  on 
a  detailed  knowledge of the  second-order  statistics  of  the sig- 
nal  and  noise  as  does  the MSE estimate. 

11. PRELIMINARIES 
Here,  without  elaboration,  we  restate  the  results  in [ 1 1. Let 

f(x)  denote  a  finite  energy  deterministic  band-limited signal 
with  bandwidth  2 W. That  is 

W 
f (x)  = 1, F ( u )  exp  ( j2nux) du 

where 

F(u)  = f(x) exp  (-j2nux)  dx. s: 
Let  2B  be  a  sampling  rate  equal to or  in  excess of the  Nyquist 
rate 2W. Define the  sampling  rate  parameter r = W/B < 1.  Let 
% denote  a  set of indices  corresponding  to M lost  samples. If 
r < 1,  we  can  regain f(x)  from  the  sample  set  {f(rn/2B)lrn 4 ¶i} 
via 

or  

where  the  interpolation  functions  are 

k(x; n )  = sinc(2Bx - n )  

+ r aqp sinc r (n  - q )  sinc(2Bx - p )  (3) 
pEm qEnr 

k,(x; n) = k(x; n )  * 2W sinc(2 Wx) 

= r sinc(2 Wx - rn)  

(4) 

where aqp is the  qpth  element  of  the  matrix A = (I - S ) - ' ,  I 
is the  identity  matrix,  and S is a  Toeplitz  matrix  with  elements 
{xm, = r sinc r (m - n)l(rn,  n )  E % X In }. The  asterisk  denotes 
convolution.  Note  that  the r subscript  denotes  the  filtered 
equivalent of the  nonsubscripted  case.  Correspondingly,  we 
shall  refer  to (1) as the  unfiltered  and  (2) as the filtered  case. 

The  sampling  theorem  is  also  applicable  to  bandlimited 
stochastic  processes.  Let f! (x) denote  a  real  zero-mean  wide 
sense' stationary  random  signal  with  autocorrelation 

Rp(x - Y )  =E[e(x>ecY)l  
where E ( - )  denotes  the  expected value operator.  Let !(x) be 
bandlimited  with  bandwidth 2W in the sense that 

W 
Re(x) = I, sp(u) exp  ( i2nux)  du 

where  the  power  spectral  density of the  process is 
r m  

s e ~  = J-- R)!(x)  exp  (-j2nux)  dx. 

Motivated  by  (1)  and  (2),  we  define  the  following  processes 
in  terms  of  'the  known  samples 

and 

Using (5) 'and (6) one  can  straightforwardly  show in a  manner 
paralleling  Papoulis [ 71 that ,  if r < 1,  f(x)  and  ??(x)  are  equal 
t o  f (x)  in  the  mean-square  sense.  That is 

E[lf(x) - ,&(x)12] = 0 ( 7 )  

and 

E[l!(x) - fr(x)l21 = 0. ( 8 )  

111. NOISE SENSITIVITY 
Let  ((x)  denote  a real  zero-mean  wide  sense  stationary  sto- 

chastic  process  with  autocorrelation 

Rg(x - Y )  = m E ( x ) H Y ) l  
and  noise level - 

t2 = R E @ )  
where  the  overbar  denotes  the  expected  value  operator. We 
shall  assume  that  the  extent of the  autocorrelation is suf- 
ficiently  small so that  when  sampled  at  a  rate  of  2B,  the  sam- 
ples  are  white.  That is 

where 6, is the  Kronecker  delta. 
If f (x)  + ((x) is used  as  input  in  (1) and (2),  the  outputs  for 

the  unfiltered  and  filtered  cases  are  f(x) + Q(X> and f(x)  + Q,(x), and 



650  IEEE  TRANSACTIONS ON ACOUSTICS,  SPEECH,  AND  SIGNAL  PROCESSING,  VOL. ASSP-32, NO. 3, JUNE 1984 

respectively,  where 

and 

The  corresponding  interpolation  noise  levels  follow,  respec- 
tively, as 
- 
a 2 ( x )  = E[V2(X)1 

and 

$(x) = E[$(X)l 
- 

= E' k:(x; n). (1 2) .+.sr 
For  the  unfiltered  case,  $(k/2B) = E'; k 4 R. Upon  inspec- 

tion of the iterative  form of the  restoration  algorithm  in [ I ] ,  
one  can  see  that 

- 

$(k/2B) = v2(k/2B); k E . (13) 

That is, the noise  level at  the  restored  sample  points  is  iden- 
tical  for  the  filtered  and  unfiltered  cases.  For k $ f , the  noise 
level at  the  unknown  sample  locations is generally  decreased  by 
filtering. 

Consider  next  the  stochastic  signal  case. We assume  ((x)  is 
not  correlated  with  the signal [ ( y )  for all (x, y )  

E[t(x)#XY)l = 0 .  (14) 

%(X) = [ (x)  + UX). (1 5 )  

;(x) = p w  + 17 (x). (16) 

Define  the  observed  signal 

If %(x) is sampled  and  restored  using ( 5 ) ,  the result  is 

In  general, ~ ( x )  is not  $ationary,  Note,  from  (1 5 ) ,  g(x )  is 
uncorrelated  with  both f ( y )  and [,.cy). 

The  restoration  error  here is 

= E[7)2(x)1 =$(x). 

For  the  filtered  case,  define 

;Ax> = P A X )  + %(X). 

%(X> = E[I !(x) - &(x)l21 

The  restoration  error  here is 

__ 

To  evaluate  this  sum,  we  rewrite  (2)  with  f(x) = r sinc 2W(a - x): 

r sinc 2 ~ ( a  - x) = r 2  s i n c ( 2 ~ a  - rn)  s i n c ( 2 ~ x  - rn) .  

(21) 

m 

n= -m 

Setting r = 1  (and  thus W = B )  along  with a = x,  we  can  evalu- 
ate (19): - _  

$(x) = t2.  (22) 

Thus,  the noise  level  of the  interpolation  at all  points is the 
same  as  that of the  data samples.  Although we have assumed 
samplewise  white  noise,  one  can  straightforwardly  demon- 
strate  that  (22) is true  for  any  wide  sense  stationary  noise. 

For  the  filtered case  and  empty,  (12)  becomes 
-- 
v,2(x)/t2 = x k,2(x; n) 

n &W 

= r 2  x sinc2(2wx - rn) 

= r  (23 1 
where  we  have  used  (21)  with a = x.  Thus,  increasing  the  sam- 
pling  rate  reduces  the  noise  level.  Contrary  to  appearance,  the 
noise  level  cannot  be  made  arbitrarily  small  by  a  corresponding 
increase  in  sampling  rate.  Eventually,  adjacent  samples will  be- 
come  correlated  and  the  white noise  assumption  violated. 

One Lost Sample 

the origin.  For  the  unfiltered  case,  (1 1) becomes 

oc 

n=-m 

Let M = 1.  With no loss in  generality,  let  that  sample be at 

-- r 
sinc ( rn)  sinc  (2Bx) 

n f o  1 - r  l2 

2r 
1 - r  

+- sinc  (2Bx - n )  sinc ( rn )  sinc  (2Bx) 

(1  7) 1 
_ -  I sinc2(2Bx). 

1 - r  
With  appropriate  choice of r and a,  (21) can  be  used to  evalu- 

(18) ate  each  of  the  three n sums.  After  simplifying, we obtain 

= 77; (x>. (1 9)  
Note  the  normalized noise  level approaches  unity  for  large x - 

Thus,  the  restoration noise  levels  in (17)  and  (19)  are  the  equal  to  the  no  lost  sample case  in (22).  The  noise  level of the 
same  as  for  the  deterministic signal  case in (1 1) and  (12).  interpolated  point  at  the  origin  follows  from  (24) as 

- 
No Lost Samples $ ( O )  = - r p  
where ?li is empty.  For  the  unfiltered  case,  (1  1)  becomes = v; (0). 

For  purposes  of  later  comparison,  consider  first  the  case 
1 - r  
__ 
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The  result is monotonically  increasing  on 0 < r < 1 .  Inter- 
estingly,  for r < :, the  normalized  interpolation  noise  level  in 
(25) is  less than  unity  which is  less than  the noise  level  of the 
known  sample  data.  Note,  however,  that we have  yet  to  filter 
the  high-frequency  components of the  samplewise  white  noise. 

For  the  filtered  case  for  one  lost  sample,  (1  2)  becomes -- 
v? (x YE: ' 

= r 2  x [ E i n c ( 2 ~ x - r n ) t -   1 - r  r sinc  (rn)  sinc  (2 Wx) . 
n f o  1' 

Proceeding  in  a  manner  similar to  that  for  the  unfiltered case 
above,  we  obtain 

For large x,   the  noise  level  goes to  the  no  lost  sample  filtered 
equivalent  in  (23). 

Two Lost Samples 

Let M = 2  and  let  the  lost  samples  be  located  at  the  origin 
and  at x = k/2B  for  some  specified k.  The  2 X 2 A matrix  then 
has  elements 

I - r  
a11 = a22 = - A 

a12 = a21 = 
r  sinc(rk) 

A 

where 

A = (1 - r)' - r ' sinc' (rk) .  

After  straightforward  yet  tedious  calculations, (1 1) and  (12) 
become -- 

$(x)/E' = 1 - ( ~ ' + P 2 ) + 2 r [ u 1 1 ( ~ ~ + P ~ ) + u l ~ ( a p + P . r ) ~  

=- 1 - r  
r 011 - p1 sinc(rk) 

All of the sums above  are  evaluated  as  special  cases of (21). 
Numerical  examples of (27)  and  (28)  are  shown  in  Fig. 1 for 
k = 1  and  5  with r = 0.2.  The  lost  sample  locations  here  are 
at  the  minima of the  unfiltered noise  level  curves. Note  the 
consistency  with  (12).  A  second  example  for r = 0.8  and 
k = 1 is shown  in Fig.  2.  The  lost  samples  are  at  zero  and 
unity.  The  filtered  and  unfiltered curves  are  indistinguishable 
near those  points. 

At  the  lost  sample  point  locations 

For large k ,  the  noise level at  the origin  approaches  that  for  a 
single  lost  sample. If kr is an  integer,  the noise  levels for  one 
and  two  lost  samples  are  equal  at  the  lost  sample  locations.  A 
plot of (29) is shown  in  Fig. 3 for k = 1,  2,  and  5.  The single 
lost  sample  noise  level  in  (25) is nearly  graphically  indistin- 
guishable from  the k = 5  curve. 

Sequence of Lost Samples 
Clearly,  closed  form  expressions  for (1 1)  and  (12)  become 

intractible  for  larger M. Numerical  results  for  three  lost  sam- 
ples  in  a  row  are  shown  in  Fig. 4. The  noise  level  at the  lost 
sample  locations  is  shown  in  Fig. 5 for M lost  samples  in  a  row. 
The noise  level  increases  drastically  with  respect to  the  number 
of  adjacent  lost  samples  and  sampling  rate  parameter.  Cor- 
respondingly,  the  condition  number [ 6 ]  of the A = [ I -  SI-' 
matrix  increases  greatly  with  larger M and  r. 

Iv. TRUNCATION EFFECTS FOR A LOST SAMPLE 
IN  A  STOCHASTIC  SIGNAL 

Consider  the case  where  a  single  lost  sample is estimated  by 
N samples  on  each  side of the missing  point. In the  limit, we 
know  the  sampling  estimates  in  (5)  and (6) are  optimal  in  the 
sense of minimum  linear  mean-square  error.  Truncation  and 
noise  destroy  this  optimality.  In  this  section,  the  effects of 
these  sources of error  are  considered.  The  corresponding  mini- 
mum  mean-square  error  is  then  evaluated  for  purposes  of 
comparison. 

Let M = 1 and , with  no loss in  generality,  let  the  lost  sample 
be  at  the  origin.  The  estimate of the  lost  sample  follows  from 
(16)and(18)as  

Using  only N samples  from  each  side,  the  corresponding  trun- 
cated  estimate is 
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Fig. 1. Restoration noise  level for two lost  samples  when  sampling at 
five  times the Nyquist rate (r = 0.2). The  solid  curves are for k = 1. 
The lost samples are at zero and one. The broken line graphs are for 
k = 5 with lost  samples at -2 and 3. In  both cases, the lower  curve 
represents the filtered  case and the upper curve the nonfiltered case. 

IO - 
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2 B x  

Fig. 2. Restoration noise  level for  two lost  samples  when  r = 0.8 and 
k = 1. The lost  samples  are at zero and one. The solid  curve  is for 
the unfiltered case  and broken line plot for  the filtered  case. The  two 
plots are  graphically  indistinguishable in the region  of the lost  samples. 
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Fig.  3. Restoration noise  level for two  lost  samples at the lost  sample 
location as a function of the sampling rate parameter.  The  noise 
level for a  single  lost  sample  is  almost  graphically  indistinguishable 
from the k = 5 plot. 

n#O 

The mean-square  error of this estimate is 

2 B x  

Fig. 4. Filtered restoration noise  level for three lost  samples  at 0, 
and -1. 

+l. 

I"} x 
x ' x  
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Fig. 5. Restoration noise  level for M lost  samples in a  row at the lost 
sample  locations. The lower dot values  in  each  case  correspond to 
r = 0.5 and the upper x's t o r  = 0.8. 

For samplewise  white noise (3 1) becomes 

n#o 

n f o  m#O J 
We normalize the error to the noise  variance 

Note that the corresponding  normalization 

&(x) = R f ( x ) / p  
is, for x = 0, the signal to noise  ratio.  Then (3 1) becomes 
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Discussion of Various Approaches to the Linear System 
Identification  Problem 

TAPAN K. SARKAR, SOHEIL A. DIANAT, 
A K D  DONALD  D.  WEINER 

Abstract-This paper  deals  with the pole zero identification  of a linear 
system  from a measured  input-output  record.  One  objective  is to show 
that  the pencil-of-function  method  minimizes a weighted  version  of the 
Kalman  equation error. It follows that  the pencil-of-function method 
is  capable of yielding  robust  estimates for poles  located  in a given  region 
of the complex s plane.  The  second  objective  of this paper  is to illus- 
trate  that identical sets of  equations  arise  in three supposedly  different 
analytical  techniques for obtaining the impulse  response of a system. 
The techniques  investigated  are 1) the least  squares  technique  based on 
the discrete  Wiener-Hopf  equation, 2) Pisarenko’s  eigenvalue method, 
and 3) Jain’s  pencil-of-function  method. The proof  of  equivalence is 
valid  only  for the noise-free  case  when the system  order is known.  In- 
stead  of  using the conventional  differential  equation  formulation, 
equivalence  is  shown  with the integral  form  utilized  in the pencil-of- 
function  method. 

I. INTRODUCTION 
In linear  system  identification,  one is often  interested in 

obtaining a pole-zero  model  of  an  unknown  system  from  mea- 
sured  records of the,input  and  output. If x (f) and y (f) are  the 
respective  time  domain  input  and  output to the  system,  then 
we  are  interested  in  characterizing  the  impulse  response h ( t )  
by a sum  of  complex  exponentials,  i.e., 

n 
h ( t )  2 Ai ex~(s i t ) .   (1 )  

i = l  

Here n is referred to  as the  order of the  system. si and Ai are 
the  poles  and  the  residues  at  the  poles,  respectively. In the 
Laplace  domain,  the  problem  is  to  model  the  transfer  function 
H ( s )  [which is the  Laplace  transform of h ( t ) ]  by a ratio of 
two  polynomials as 
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where Y ( s )  and X ( s )  are  the  Laplace  transforms of the  input 
and  output,  respectively.  Zero  initial  conditions have  been as- 
sumed  in (2). Equality  in (2) is attained  when y ( t )  and x(t)  
are  noise  free  and  the  system  order n is exactly  chosen. 

Three  basic  approaches to  solving the  identification  problem 
are  a)  the  least  squares  approach  (based  on  the  Wiener-Hopf 
technique [ 11 -[31),  b)  the eigenvalue method  (based  on 
Koopman’s  results [ 121  which  were  later  applied  by  Levine 
[ 11 I and  Pisarenko  [41-[5] ), and  c)  the  pencil-of-function 
method  (based  on the linear  dependence/independence of  a set 
of functions)  [6]-[8]. 

In  this  paper,  we  show  that  the  three  techniques yield  ana- 
lytically  equivalent  equations  when  there is no noise in the  
measured  waveforms x ( t )  and y ( t )  and  the  system  order n is 
correctly  chosen.  However,  in  the  presence  of  noise,  perfor- 
mance  differs  from  one  technique  to  another [ 81. 

11. THE CONCEPT OF ERROR IN THE VARIOUS 
TECHNIQUES 

Given a specified  input x ( t ) ,  one  would  like  to  minimize  the 
mean-squared  error  between  the  actual  output y ( t )  and  the 
predicted  output  from  the  system  model.  In  the  Laplace  do- 
main,  this is mathematically  equivalent  to  minimization  of 
IE1 ($)I2 where 

and  the  unknowns  and bi appear  in A and B [as  defined  in 
(211. . , -  

However,  even  though  minimization of !E1 (s)I2 with  respect 
t o  bi is a linear  problem,  the  minimization  of  the  squared  error 
with  respect t o  ai is a nonlinear  problem [ 91.  Hence,  we  tend 
t o  minimize IE(s)I2 (where E(s )  is  popularly  known as the 
equation  error,  after  Kalman [ 101 ) rather  than IE’ (s)I2. This 
is because  minimization  of IE(s)I2 with  respect  to ai and bi is a 
linear  problem. In fact, beginning  with  Kalman [ 101  in  1958, 
almost all pole  zero  modeling  techniques  utilize  this  error 
criterion.  The  first  two  techniques-the  least-squares  and  the 
eigenvalue  methods-as  implemented  by  the  present  researchers, 
utilize  the  minimization  of IE(s)I2. On  the  other  hand,  the 
third  technique-the  pencil-of-function  method-minimizes a 
weighted IE(s)I2. This  weighting is particularly  useful  when 
one is interested  in  very  accurate  locations of poles  and  zeros 
in a specified  region of the  complex s plane. 

The  obvious  question  now  raised is “what  guarantee  does 
one  have of obtaining a ‘good’solution if IE(s)I2 is minimized?” 
It is clear  when  the  data is noise  free  and  the  system  order n 
is correctly  chosen  that  minimization  of IE(s)I2 is  equivalent 
to  minimization  of IE’ (s)I2. This is because  when E ( s )  is zero, 
E’ (x) is  of  course  zero  because  the  latter  is  the  result of passing 
the  former  through  the  linear  filter 1 /A(s).  

However, if y ( t )  is  contaminated  with  noise,  such  that  the 
noise  contaminated  output Y, (s) is 

then  minimization  of  the  error  results  in 

Thus,  the  output noise  plays a crucial  role  in  computation of 
the  system  poles  by  minimizing IE(s)12. This is  a  well observed 
fact  for  Prony’s  method [8] , which is similar to  the  least- 
squares  technique [ 31. 


