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Abstract. Gerchberg’s iterative extrapolation algorithm is generalized to
two dimensions in two distinct ways. The first generalization is imple-
mented on a coherent optical processor. Fundamental limitations are
discussed. A second generalization is reformulated discretely and
placed in closed form. A number of digital implementations are
presented. A generalized methodology is then developed for a certain
class of deconvolution problems. Gerchberg’s algorithm and other
deconvolution algorithms are shown to be special cases. Algorithm con-
vergence and stability (posedness) are discussed and exemplified. Last,
methods of incorporating further object information into the iterative

algorithms are explored.

1. INTRODUCTION

With knowledge of an image in a given function class only over a
portion of its domain, the extrapolation problem is to determine or
estimate the image over the rest of its domain. An example of such
a function class is that of analytic signals. With knowledge of the
signal over an arbitrarily small interval one can, in principle,
generate the signal everywhere by a Taylor series or some other
method of analytic continuation.

Much attention has been focused on extrapolation of finite
energy bandlimited images. Indeed, all bandlimited functions are
analytic everywhere."? As is reviewed in Appendix A, Slepian and
Pollak? formulated a classic extrapolation algorithm involving im-
age expansion in terms of prolate spheroidal wave functions.4?
Clever statistical approaches to the same problem were developed
by Frieden.!®13 A least squares approach has recently been pro-
posed by Howard.'*!5 A comparison of some extrapolation
algorithms is given by Rushford and Frost,!6

Herein, we will deal with an extrapolation algorithm developed
by Gerchberg.,!720 Gerchberg’s algorithm, in iterative form, in-
volves only the elementary operations of Fourier transformation
and truncation. The algorithm is generalized to two dimensions in
two distinct ways. Implementation of one of the extensions on a
coherent optical processor with passive feedback is discussed. The
second extension, reformulated discretely, is placed in closed form.
The algorithms can also be easily adapted to perform interpola-
tions.

Extrapolation in the frequency domain is referred to as super
resclution. Super resolution is a special case of deconvolution. We
demonstrate that Gerchberg’s algorithm is simply a special case of a
large class of deconvolution algorithms. Other special cases include
Cadzow’s extrapolation algorithm?!22 and Van Cittert’s decon-
volution algorithm.23-23

2. GERCHBERG’S EXTRAPOLATION ALGORITHM
2.1. Background

A finite energy signal f(x) is herein defined to be bandlimited with
bandwidth interval @ if it conforms to the following three condi-
tions:

f(x) = S F(u)exp(j2mux)du ; (la)
Q

j [f(x)|2dx = j |F(u)|2du < oo ; (1b)

9] = | Wodu < o (10)
—o0

where F(u) is the signal’s Fourier transform,

F(u) = #[f(x)]

Qo

f(x)exp(-j2rux)dx ,

- 00

and Wgq(u) is the gate window corresponding to the bandwidth in-
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Let T correspond to an interval on x, and let

fx); xe T

gT(X):
0 ;x¢T.

The extrapolation problem is to determine f(x) with knowledge of
gr(x) and Q. If T corresponds to the complement of a finite inter-
val, we have an interpolation problem. The development to follow
is applicable for any T.

Gerchberg’s algorithm, illustrated in Fig. 1, is a specific applica-
tion of the iterative imposition of both frequency and spatial do-
main constraints, as discussed by Fienup in the preceding chapter.
Beginning with g;(x), we first perform a Fourier transform. The
frequency constraint is satisfied by keeping only those frequency
components within the Q interval in step 2. Step 3 is a simple inverse
Fourier transformation. To satisfy spatial constraints, we replace
this function in the T interval by g(x) in steps 4 and 5. This first
estimate is Fourier transformed and the cycle is repeated. In the
absence of noise, convergence of the NP estimate of f(x), fiy(x), as
N-—oo has been proven in three distinct ways,!7-20

If we define the bandlimiting operator

B = F'Wou) 7,
then the iterative algorithm can be written as

fu®) = gp(x) + [1-rpx)] Bofy,(X), 2
where the spatial rectangular window is

léx e A

rT(x)=
0O;x¢ T.

Motivated by Eq. (2), a condensed illustration of the algorithm is
shown in Fig. 2. Note that g(x) is block orthogonal to the N'P tail
estimate [1-rp(x)]f(x) (i.e., the product of the two functions is
identically zero). This observation allows an enlightening geometric
view of the iterative algorithm in a Hilbert space setting.!? In Fig. 3,
we illustrate three subspaces as three lines in a planar L, function
space. The horizontal line contains all L, functions identically zero
outside the interval x € T. The vertical line contains all L, func-
tions identically zero within the interval x € T. These two function
classes are block orthogonal and are thus drawn perpendicular. The
third function class, Bg, consists of all L, functions with bandwidth
interval Q. The bandlimited function we desire as an extrapolation
(interpolation) result—henceforth referred to as the target function
f(x)—lies somewhere in this space. The information we have, g(x),
is the projection of f(x) onto the space of T interval functions.

To regain f(t) from g(x) we first project g{x) onto Bg. With
reference to Eq. (2), this, in turn, is projected onto the space of im-
ages identically zero within T. This vector is added to the g(x) vector
to arrive al the first estimate, f,(x), of the target function. The pro-
cess is then repeated and the estimate iteratively converges to f(x).

2.2. An interative optical implementation
A coherent processor capable of executing Gerchberg’s algorithm
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Fig. 1. Hlustration of Gerchberg’s iterative extrapolation algorithm.
In the limit, fp(x)—1(x).
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Fig. 2. Gerchberg’s iterative algorithm using the 24 operator.

in two dimensions is pictured in Fig. 4.2%27 In plane P1, a 2-D trun-
cated signal g(x,y) is input into the system. The input is assumed
zero outside of a specified area T. Outside this aperture is a mirror
whose purpose will be explained shortly.

Lens L1 performs a Fourier transform on the input correspond-
ing to step 1 in Fig. I. Thus, & [g(x,y)] is incident on plane P2
where a pupil of dimension § is placed. The dimension of this aper-
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Fig. 3. Youla’s illustration of the convergence of Gerchberg's
algorithm in Fig. 2 in a Hilbert space.
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Fig. 4. A coherent optical processor for implementing Gerchberg’s
extrapolation algorithm in two dimensions.

ture is determined by the known bandwidth arca @ of the target ob-
ject f(x,v). The field amplitude immediately to the right of plane P2
is thus the truncated version of the input’s Fourier transform. This
corresponds to step 2 in Fig. 1.

The next step is to perform an inverse Fourier transform—equiv-
alent 1o performing three Fourier transforms. The first is done by
tens L2, The transform is reflecied by the night-hand mirror and is
again transformed by Lens L2, 1f f(x,y) is real, its spectrum will be
Hermetian, and € will therefore by symmetric about the origin. The
light propagating from right to left will thus pass through the Q
pupil unaltered. The third Fourier transform is then performed by
lens 1.1,

Steps 4 and 5 take place simultancously. The unwanted center
portion of the signal exits through the mirror’s aperture and is lost
te the system, The remainder of the signal, corresponding to the
tails in the function shown between steps 4 and 5 in Fig. 1, is
reflected back into the processor. The truncated image g(x,y) is, of
course, still being input into the system. The net result is that the
field amplitude exiting plane P1 is the first estimate of f(x,y) in
Gerchberg’s algorithm. This is put into the system, and step 6 is
performed. After a number of iterations, the extrapolated signal
should appear on plane P1 (and also on plane P3).

Note, however, that there is no method yet to detect the pro-
cessor output. This can be done by placing a highly transmitting
pellicle at an angle in the feedback path to sample the output.

There are a number of degrative factors associated with this im-
plementation. Extrapolation algorithms are highly sensitive to inut
noise and perturbations, Both of these degrative factors are
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Fig. 5. A plot of the degrading coefficient t|; in the absorptive loss
error in Eq. (4). The ideal tp; = 0 situation occurs when there is no
absorptive loss.

characteristic of coherent optical processors.

To illustrate the sensitivity to a small algorithm perturbation,
consider the loss in each feedback cycle due to the reflectance of the
detection pellicle and absorptance of the optical elements, Instead
ol Eq. (2), we are implementing

?N(X) = g|(x) + DII’FT(X)] ;%’“fN_l(X), (3)

where p < 1 denotes the transmittance of one feedback cycle. We
will consider the effect of absorptive loss for the case where T ex-
tends from -as2to a/2, and @ is the interval defined by u| = W.
As is shown in Appendix B, the rms error ¢, generated from ab-
sorptive losses is given by

oo

&2
e = Z tn [Tm %, 4
m=0
where (,,, derived in Appendix B, is plotted in Fig. 5 for two values

of space-bandwidth product, and f, is the inner product of f(x)
with an m'" order prolate spheroidal wave function (see Appendix
A). Forp = 1,1, = 0.

Making the very rough approximation

0;0=m < 2Wa
I m = 2Wa, (5
we obtain
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gp(x) and Q. If T corresponds to the complement of a finite inter-
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Motivated by Eq. (2), a condensed illustration of the algorithm is
shown in Fig. 2. Note that g(x) is block orthogonal to the Nt ail
estimate [1-rp(x)]fy(x) (i.e., the product of the two functions is
identically zero). This observation allows an enlightening geometric
view of the iterative algorithm in a Hilbert space setting.!® In Fig. 3,
we illustrate three subspaces as three lines in a planar L, function
space. The horizontal line contains all L, functions identically zero
outside the interval x € T. The vertical line contains all L, func-
tions identically zero within the interval x € T. These two function
classes are block orthogonal and are thus drawn perpendicular. The
third function class, Bg, consists of all L, functions with bandwidth
interval ©. The bandlimited function we desire as an extrapolation
(interpolation) result—henceforth referred to as the target function
f(x)—lies somewhere in this space. The information we have, g(x),
is the projection of f(x) onto the space of T interval functions.

To regain f(t) from g(x) we first project g(x) onto Bg. With
reference to Eq. (2), this, in turn, is projected onto the space of im-
ages identically zero within T. This vector is added to the g(x) vector
to arrive at the first estimate, f,(x), of the target function. The pro-
cess is then repeated and the estimate iteratively converges to f(x).

2.2. An interative optical implementation
A coherent processor capable of executing Gerchberg’s algorithm
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Fig. 2. Gerchberg’s iterative algorithm using the %7 operator.

in two dimensions is pictured in Fig, 4.26:27 In plane P1, a 2-D trun-
cated signal g(x,y) is input into the system. The input is assumed
zero outside of a specified area T. Outside this aperture is a mirror
whose purpose will be explained shortly.

Lens L1 performs a Fourier transform on the input correspond-
ing to step 1 in Fig. 1. Thus, # [g(x,y)] is incident on plane P2
where a pupil of dimension £ is placed. The dimension of this aper-
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Fig. 3. Youla’s illustration of the convergence of Gerchberg’s
algorithm in Fig. 2 in a Hilbert space.

mirror mirror
¥ “

Fig. 4. A coherent optical processor for implementing Gerchberg’s
extrapolation algorithm in two dimensions.

ture is determined by the known bandwidth area Q of the target ob-
ject f(x,y). The field amplitude immediately to the right of plane P2
is thus the truncated version of the input’s Fourier transform. This
corresponds to step 2 in Fig, 1.

The next step is to perform an inverse Fourier transform—equiv-
alent 1o performing three Fourier transforms. The first is done by
lens L2. The transform is reflected by the right-hand mirror and is
again transformed by Lens L2. If f(x,y) is real, its spectrum will be
Hermetian, and @ will therefore by symmetric about the origin. The
light propagating from right to left will thus pass through the Q
pupil unaltered. The third Fourier transform is then performed by
lens L1,

Steps 4 and 5 take place simultaneously. The unwanted center
portion of the signal exits through the mirror’s aperture and is lost
to the system. The remainder of the signal, corresponding to the
tails in the function shown between steps 4 and 5 in Fig. 1, is
reflected back into the processor. The truncated image g(x,y) is, of
course, still being input into the system. The net result is that the
field amplitude exiting plane PI is the first estimate of f(x,y) in
Gerchberg’s algorithm. This is put into the system, and step 6 is
performed. After a number of iterations, the extrapolated signal
should appear on plane PI (and also on plane P3).

Note, however, that there is no method yet to detect the pro-
cessor output. This can be done by placing a highly transmitting
pellicle at an angle in the feedback path to sample the output.

There are a number of degrative factors associated with this im-
plementation. Extrapolation algorithms are highly sensitive to inut
noise and perturbations. Both of these degrative factors are
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Fig. 5. A plot of the degrading coefficient ty, in the absorptive loss
error in Eq. (4). The ideal t; = 0 situation occurs when there is no
absorptive loss.

characteristic of coherent optical processors.

To illustrate the sensitivity to a small algorithm perturbation,
consider the loss in each feedback cycle due to the reflectance of the
detection pellicle and absorptance of the optical elements. Instead
of Eq. (2), we are implementing

() = g0(x) + pll-rp()] Bofn.,(), (3)

where p < 1 denotes the transmittance of one feedback cycle. We
will consider the effect of absorptive loss for the case where T ex-
tends from -as2to a/2, and Q is the interval defined by Ju| = W.
As is shown in Appendix B, the rms error ¢, generated from ab-
sorptive losses is given by

oo

CAT 2 I (4)
m=0
where t,,,, derived in Appendix B, is plotted in Fig. 5 for two values

of space-bandwidth product, and f, is the inner product of f(x)
with an m'" order prolate spheroidal wave function (see Appendix
A). Forp=1,t, = 0.

m
Making the very rough approximation

0:0=m < 2Wa

m
1; m = 2Wa, (5)

we obtain
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2 s
= X

m=2Wa
which is roughly equivalent to the amount of energy outside of | x
= a/2 (sec Appendix A):

(é = jix\zn’/z‘:r(x)‘zdx

oo
- E (I-Ay) fm‘Z

m=0

i
U1
3.'.;

o

m=2Wa
where we have made the approximation?

1;0=m < 2Wa

m = 2Wa. (6)

Thus, for p < 1, the error ¢, will be of the same order of
magnitude as c,.

To empirically illustrate the effects of absorptive losses, ex-
trapolation of a sin x/x function was chosen. This function has
been shown to extrapolate well, thus minimizing effects due to in-
put noise and other algorithm perturbations. The extrapolation
results for two values of p are shown in Fig. 6. For p = 1, the ex-
trapolation is indistinguishable from the target function. The ratio
ei/s% is shown versus p in Fig. 7. A typical value for p is 0.9.28

In Fig. 8, we show some experimental results from a coherent ex-
trapolation. Figure 8(a) shows a bandlimited image with Q being a
circle. Note the starlike structure immediately to the left of center.
Figure 8(b) shows the extrapolation result. The portion of the im-
age to the left of the vertical line was passed, and the right side is
the extrapolation result. Although seemingly little of the structure
far from the border has been faithfully reconstructed, note that
three of the limbs of the star appear to be regenerated. As is the
case with any extrapolation algorithm, we can, at best, only hope to
extract a few more degrees of freedom from a truncated image.
Other experimental results are given by Marks and Smith. 272

Cederquist and Lee®® have suggested use ol a similar coherent
processor—based on a confocal Fabry-Perot interferometer—to
iteratively implement Gerchberg's algorithm. A noniterative
gedanken coherent processor for extrapolation has been proposed
by Frieden.*®

2.3. The extrapolation matrix

Sabri and Steenaart’! have placed Gerchberg’s iterative algorithm
into closed form. In this section, we review Sabri and Steenaart’s
technique, extend it to two dimensions, and illustrate its perfor-
mance through various digital implementations,

One can easily show by induction that Eq. (2) can be written as

N
i) = Y [Hrp(x)) Bgl"gr(x), @
n=0

or, in the limit as N— oo,
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oo
0 = Y (1001 8 gl"er(x)
n=0
= [1-11-T(x)} 98 o] g7 (%) ®)

where, in the second step, we have used a generalized geometric
series.

Let us digitize the operators. & becomes a low-pass filter
matrix, Bg, r(x) becomes a maltrix rp with ones appropriately
placed along the diagonal, and I becomes the identity matrix 1. Let
f and :g‘-l- denote the vectors containing sample values of f(x) and
g(x), respectively. Then

f =E gr,
where
E = [I-{L-1¢1Bg] 9



<

Fig; 8. Results of coherent optical extrapolation: (a) target image;
(b) extrapolation.

is one form of the Sabri-Steenaart extrapolation matrix. If, instead,
the N jteration estimate fN is desired, then, from Eq. (7), we have

fv = En 21, (10)
where

N
Ey= X [(rpBgl®. (11

n=40

Note that, in either case, the extrapolation matrices E and EN are
parametrized only by T and Q.

2.4. A second 2-D iterative extrapolation algorithm

In Sec. 2.2, we generalized Gerchberg’s algorithm to two dimen-
sions in a manner that required knowledge of the entire spectral
pupil 2. Now we develop a second generalization to two dimensions
—first in iterative and then in closed form—that requires
knowledge only of a vertical and horizontal projection of .32
Consider the 2-D case where T consists of one or more disjoint
“islands,” as pictured in Fig. 9(a). Consider the 1-D function cor-
responding to the horizontal slice of g(x,y) at y = y,. The “‘dura-
tion’ of this function is dictated by T. In order to extrapolate the
slice, however, we must also know its corresponding 1-D band-
width interval. To determine this bandwidth interval, consider the
spectrum in Fig. 9(d) and its inverse transform in y in Fig. 9(b).
View the inverse transform from Figs. 9(d) to 9(b) as being per-
formed along vertical slices. If the slice intersects 2, we are inverse

Fig. 9. lllustration of the equivalent bandwidth intervals of paraliel
slices of bandlimited images.

transforming a function with compact support. From the uncer-
tainty principle of Fourier analysis, the result is a function which is
bandlimited (in the 1-D sense) and is thus not identically zero over
any finite region. If the slice does not intersect @, the inverse
transform is, of course, zero. We thus conclude that the function in
Fig. 9(b) is nonzero only within the shaded strip defined by the in-
terval 2, . The bandwidth interval of the horizontal slice in Fig. %(a)
is therefore Q, irrespective of our choice of ¥o- Generalizing, we
conclude that two I-D functions corresponding to two parallel
slices of a bandlimited image have identical bandwidth intervals.
Note, as shown in Fig. 9(c) for the vertical case, that this interval
can be disjoint,

With knowledge of the duration and bandwidth intervals of each
horizontal slice, we can apply Gerchberg’s algorithm in one dimen-
sion to each horizontal slice in Fig. 9(a) and generate f(x,y) for the
strip defined by all y € Ty. Then, using the bandwidth interval Q_,
this result can be vertically extrapolated to yield f(x,y) over the en-
tire (x,y) plane.

Mathematically, we can write the horizontal extrapolation as

oo

Y AT erxy)

m=0

f(x,y)rTy(y) =

where

r}legx = [l-rp(x, )] %’gx ,

and r(x,y) defines the 2-D truncating pupil:
I;x,y)ET

TT(X,y) =
0;(x,y )¢ T.

Vertical extrapolation follows as

(o]
foy) = 3 a8 g 6y )
n=0
Qo [0 ]
> r’f%’"ygny Y Ta 8100y) (12)

n=0 m=0
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where
Hr g, = Qrr 01 By -

Note that we can rewrite Eq. (12) as

oo n
Y X ool p, #Pgar(xy)
LT, Oy &% T,0. ST

f(}(‘y) —
n=0 m=0
and, in the spirit of iteration, define
N n
2 ., h-m ;
o) = 33 X0 Ay g aPg sy (3
n=0 m=0
Note that
M) = [ xy) + aylx,y), (14)
where
N
N-1m
B = ), W r, 0, A Tagriy) .
m=0
Furthermore,
an(x,y) = by(x,y) + 'y{"rv gg\.aN_|(x73") , (15)

where

bulxy) = AN g gr(x.y) -

Obviously,

by(x,y) = .Y(J-i-‘ﬂ\bN_l(x,y). (16)

Equations (14), (15), and (16) define an iterative form of Eq. (13)
with initializations

fo(y) = a5(6y) = bo(,y) = g(x,y) .

Some proofs of the convergence of f(x,y) to I(x,y) for some
specific truncation apertures are given by Marks.?2

A contrast between the above algorithm (#2) and that im-
plemented on the coherent processor (#1) are in order. Algorithm 1
requires knowledge of the entire spectral pupil region Q. Algorithm
2 requires only knowledge of two projections of @: Q, and Q,. We
are thus utilizing less information in this case and, as might ﬁ;e ex-
pected, will in some sense diminish algorithm effectiveness.

Consider Fig. 10, in which we wish to extrapolate g(x,y). Using
algorithm 2, the value of the extrapolation at point P, which lies
within T_, is determined solely from information gained from the
intersection of g(x,y) with line L,. Point P, lies in the area where
we have extrapolated the horizontal extrapolation. Point P, is a
hybrid case, formed both from information from g(x,y) and the
horizontal extrapolation. Thus, we conclude that algorithm 2 ex-
trapolates to a point using only 1-D slices of the original signal
and/or previous extrapolations. Every point exterior to T,
however, is related to every point within T. This observation is
made clear upon inspection of point P, in Fig. 10. The extrapolated
value at P, can, in principle, be determined from the intersection of
any line through P, that intersects T. Algorithm 1, on the other
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Fig. 10. lllustration of the contribution of the known portion of the
image to extrapolated values at various points.

hand, clearly relates each interior point to each exterior point with
the price that the entire spectral region £ must be known.

2.5. Closed form 2-1) extrapolation

In this section, algorithm 2 is placed in closed torm. We limit
ourselves initially to separable truncating pupils:

IHx,y) = rT_\_(x)f'] V(Y) .

For this case, the duration and bandwidth interval ol each horizon-
tal slice is equivalent. Thus, when digitized, the same extrapolation
matrix is used on each horizontal slice of the truncated image. Once
extrapolated into a horizontal strip, each vertical slice can also be
extrapolated by a single extrapolation matrix.

Let g4 denote the matrix of sample values from g (x,y) and L
(E,) be the extrapolation matrix in cither Eq. (9) or Eq. (11)
parametrized by T, and @, (T, and ©,). Then,

= BBl (1)

where f is the matrix of sample values from the extrapolated image,
and the prime denotes matrix transposition.

A straightforward generalization holds when r(x,y) has a finite
T, and T, but is not separable. For a given y within T,, we can ex-
trapolate” each horizontal slice of g(x,y) using an extrapolation
matrix parametrized by the same bandwidth interval £, and the in-
terval corresponding to the intersection of the horizontal line at our
chosen y with r(x,y). Once g (x,y) is extrapolated into a horizontal
strip wiihin T, vertical extrapolation can be performed with a
single extrapolation matrix parametrized by T, and Q.. The
algorithm, in fact, is applicable to all T such that asingle vertical or
horizontal extrapolation does not fill the entire plane. Consider,
for example, Fig. 11 and let T = T,. The horizontal “*extrapola-
tion”” would fill T4. The vertical “‘extrapolation” would then fill T,
and T,.

The algorithm is not applicable to the case where T is chosen
such that a single vertical or horizontal extrapolation fills the plane.
Such a case is whenT = T, + T,in Fig. I'l. Analternate approach
is thus necessary. One method is simply to perform a single 1-D ex-
trapolation:

oo
fy) = Yo afgrxy. (18)

n=(



Fig. 11. Regions of convergence.

Note, however, for T = T, + T, in Fig. 11, the portion of g(x,y)
in T is not used to determine f(x,y) in region T,. A better method,
in this case, equivalent to averaging, is

oo
. 1
f(x,y) = = b3 [ g+ HT g lery) (19

n=0

For T = T, + T; + T, even this method does not use information
in T, for the result. One might conclude that better extrapolation
can be gained by averaging the contributions of a larger and larger
number of radial strips. Radial extrapolation could similarly be ap-
plied to algorithm 2, as presented at the beginning of this section.
Each radial strip, however, requires knowedge of another projec-
tion of Q. Thus, in the limit, we would require complete knowledge
of Q.

Note, lastly, that the algorithms in Eqgs. (18) and (19) can easily
be placed in either iterative or closed form.

2.6. Some closed form extrapolation results

In this section, we present empirical results of the closed form 2-D
extrapolation algorithm.¥ A number of bandlimited target images
were crealed and a square (NxN), N = 34, matrix of sample
values f was formed. A smaller (m x m) square matrix gr was then
used as the truncated image. The extrapolation mairices were
formed by the matrix inversion technique. A Hilbert transform
low-pass matrix?* was utilized for By,. Each target function was
chosen to explore a particular aspect of the algorithm performance.

[t is desirable to have a figure of merit to quantify the goodness
of the extrapolation results. Let f denote the extrapolation result.
One obvious merit comparison is
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Fig. 12. A 2-D sinc function (bottom figure) and its extrapolation
(top figure) generated from the truncated image (center figure).

and [k|? = (k k). From the Cauchy-Schwarz inequality, |¢|
< 1. This figure of merit, however, is insensitive to the goodness of
the extrapolation “‘near’’ the truncated image. An obvious altera-
tion is to run the inner product sum from the center of the matrix to
a centered d xd square. The matrices f and f, however, are both
equivalent to g within the m x m centered square. We remove this
bias and write our final figure of merit as

A

(_fi‘_f)m,d
Y = oo Bl
“l‘ m,d ‘i‘ m,d
where
d xd square
(1 )ma = > fiifij -

outside m x m square

A value of ¢(d) near unity then dictates a good result. Under the
assumption that the extrapolation is better “‘near” to where the im-
age is known, ¢(d) should be a monotonically decreasing function
of d. The example implementations to follow are presented in
pseudo 3-D plots. The top figure in each case corresponds to the
target function, The center plot shows the truncated image, and the
bottom plot is the extrapolation result.

Example #1. In Fig. 12, the target function is a 2-D sinc function:
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Fig.13(a-e). Extrapolation results for five shifted 2-D sinc functions. The top figure—in each case is the target image. The center figure is the

truncated image, and the bottom figure is the extrapolation result.

g(x,y) = Isinc[2(0.125)(x-17)]} fsinc[2(0.125)(y-17)]} .

The sinc function was found to produce the most accurate
reconstruction of any of the functions that were tried. The figure of
merit was found to slowly decrease monotonically with respect to d
with a minimum value of 0.975.

Example #2. This group of figures depicts the extrapolation results
for five sequentially shifted off-axis sinc functions. Figure 13(a)
shows the extrapolation result when the center of the target sinc
function was located at point (2,32) in the x,y planc. The input is
extremely low in energy. In Fig. 13(b), the target function has been
moved closer to the center of the matrix along the diagonal. For
this shift and all subsequent ones, the target function was moved
three units in the positive x direction and three units in the negative
y direction. Figure 13(c) shows the result of extrapolating the target
sinc, which has been moved yet closer to the center along the
diagonal. There is still very little energy available as input. A pro-
nounced peak is forming in the corner. In Fig. 13(d), the target
function has been shifted again. The remarkable thing about this
particular extrapolation is its accuracy in view of the small amount
of energy that was passed as input. The final extrapolation in this
group is depicted in Figure 13(e). The extrapolation here is very
good. Figure 13(f) is the figure of merit graph for the five preceding
cases. The lines corresponding to Figs. 13(a) and 13(b) show better
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Fig. 13(f). Figures of merit for the shifted sinc function extrapola-
tion results.

extrapolation close to the truncation aperture than do those cor-
responding to Figs. 13(c) and 13(d). Thus, even though a low
percentage of the target function was available, extrapolation near
to the truncation is still good. Note that, in cach case, o(d)




decreases roughly monotonically.

Example #3. In g 14, we illustrated that extrapolation should be
better on the vertical and horizontal strips than at the corners. The
centered sinc in example #1 is a very nice signal to extrapolate
because most of its structure lies along centered horizontal and ver-
tical strips. The sinc function does not give a very good indication
of the performance of the algorithm within the corner regions of
the matrix however. Therefore, a rotated sinc was used as an input
in order to study the extrapolation in these regions. The rotated
sinc has most of its structure within the corner regions, and it is
given by

e(x,y) = [sinc2(0.125)(x-¥)][sinc2(0.125)(x + y-34)] .

As expected, the results in Fig. 14(a) are inferior to the unrotated
case in Fig. 12(a). The corresponding figure of merit, shown in Fig.
14(b), decreases monotonically.

Fxample #4. So far, all of the target functions discussed have been
single sinc functions. The results for the sinc functions were quite
good, and it was hoped that a sum of sincs would also produce
similarly good results. A target function was created that consisted
of a sum of four sinc functions arranged to look like a stylized face.
Two sinc functions with equal widths in the x and y dimensions
were positioned as “‘eyes,”” a sinc function that was elongated in the
y direction was centered and became the ‘‘nose’” (which partially
obscures the left eye), and a sinc function that was broad in the x
direction was positioned below center for the ‘““mouth.’’ In Fig. 15,

the results of the extrapolation are shown. It was hoped that by

passing the nose, we could reconstruct the entire face. The mouth
came through okay, but the eyeballs were a bit attenuated.

Example #5. In this example, we attempt to extrapolate a sinc func-
tion on a constant bias. A value of -0.6 was added to each sampled
value of the sinc function, and the resulting extrapolation is pic-
tured in Fig. 16. It appears that the algorithm was unable to predict
the presence of the bias term. The finite (x,y) aperture does not
convey low frequency information well since only a fraction of the
““periods’ of these terms can be generated.

Example #6. The final set of figures illustrates the performance of
the extrapolation algorithm when the input is perturbed by zero-
mean, additive, white Gaussian noise. The signal-to-noise (SNR)
ratio was changed by specifying different variances for the Gaus-
sian distribution.

In Fig. 17(a), the output for a sinc perturbed by a Gaussian noise
is illustrated. The density function of this noise is given by

1
—expl-w?/267]

N2 oo

where ¢ is the variance, The signal-to-noise ratio is 10,0 (SNR =
1/a), where the signal strength in ecach case is taken to be the max-
imum value of the target signal, which is roughly unity. The input is
obviously very distorted, with only the main lobe of the sinc func-
tion being even partially recognizable. The extrapolated output is
extremely poor. Note the scale change caused by the high amplitude
peaks in the corners of the output matrix. The horizontal and ver-
tical strips corresponding to the first-order (direct) extrapolation
have relatively low amplitude and could possibly be accurate, but
the corners, corresponding to the second-order (indirect) extrapola-
tions, are wildly varying. This same effect is characteristic when the
bandwidth has been specified incorrectly, The value of o reduces to
0.01 in Fig. 17(b), 0.001 in Fig. 17(c), 0.0001 in Fig. 17(d) and
0.00001 in Fig. 17(e). This last result corresponds to an incredible
SNR of 10%, dramatically illustrating extrapolation’s extreme sen-
sitivity to noise. The figures of merit for the five extrapolations are
graphed in Fig. 17(f). As expected, the more noise, the worse the

Fig. 14(a). Extrapolation results (bottom figure) for a rotated sinc
function (top figure) from the truncated image (center figure).
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Fig. 14(b). Figure of merit for the rotated sinc function.

extrapolation.

The sensitivity of the results in this example result directly from
the ill-posedness of the particular extrapolation problem (discussed
in detail later in this chapter). Such ill-posed problems many times
manifest themselves digitally as ill-conditioned matrices.?® Such
matrices are characterized by an eigenvalue range of many orders
of magnitude and are extremely sensitive to small input data pertur-
bations.®

For an elementary, vet dramatic, example of an ill-conditioned
matrix, consider the operation
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Fig. 15. Extrapolation results (bottom figure) of a stylized face (lop
figure) from the nose (center figure).

32.258} [ 1 ] ‘ [7.346]
25.250 1 5750 1

The ratio of maximum to minimum matrix eigenvalue is of the
order of 10°. Conventional inversion, as expected, gives

1.00
g
If, however, we perturb the data point 7.346 to 7.347, we obtain
-10,752.667 7.347 15.17
13,201,333 ] [ 5.750 ] - [-11.33 ] '
The solution changes by an order of magnitude. This same
phenomenon is that encountered in the results of Fig. 17.

[39.604

31.000

[ 8416.667 -10,752.667] [7.346 ]

-10,333.333 13,201.333 5.750

[ 8416.667

-10,333.333

3. A CLASS OF DECONVOLUTION ALGORITHMS
3.1. Background

In this section, we will show that Gerchberg’s extrapolation
algorithm is one of a number of deconvolution algorithms that can
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Fig. 16. Extrapolation results (bottom figure) of a 2-D sinc function
with a bias (top figure) generated from the truncated image (center
figure).

be deduced from a general methodology. Let f(x) be bandlimited in
the sense of Eq. (1). Let k(x) be an as of yet arbitrary function, and
define the degraded image g(x) by

g(x) = fxkx) .

Given g(x), k(x), and @, the problem at hand is to determine f(x).
Note that if we switch the roles of the spatial and frequency do-
main, this amounts to a deconvolution problem. If k(x) = r(x), we
can have either an extrapolation problem for finite T or, if T is the
complement of a finite interval, an interpolation problem. In the
frequency domain, the corresponding deconvolution problem is
referred to as super resolution.

Define an operator & such that

Ef(x) = g(x). (20)
Since f(x) is already bandlimited,

B of(x) = f(x) . 2n
Admissible & ’s thus include

# = k(x); (22a)

€=1-[1-k(x)] Bg; (22b)




Fig. 17. Extra
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result.

polation results for a 2-D sinc function perturbed by zero mean white Gaussian noise with o = (a)0.1, (b)0.01, (c)10-3, (d)10-4, and

(e)10-5. In each case, the top figure is the desired image, the center figure is the truncated image, and the bottom figure is the extrapolation

M ow R N B e O

# = k(x) e‘)/?ﬂ y

(22¢)
€=1-[Bgkx)]; (22d)
‘ - =.0000]
ST =T e e —_ = a R
i \\\ \“ﬁ‘,ﬁ‘_‘ o - %):[‘jj’ﬂ +k(x)] -1, (22¢)
P T
| \\ \ The possibilitics arc obviously limitless. If we can invert #, then,
R from Eq. (20), f(x) can be found. That is,
T
I (0 = 9809, 23)
BTN
RN RN where
i _\\ N 900l

8 10 12 14

D= @

BN 5= o e s o S A

Te 8 o 2 24 5 28 30 2 34 36

d

is the deconvolution operator, Using Eq. (21), we can equivalently
write

results.

Fig. 17(f). Figures of merit for the noisy sinc function extrapolation

f(x) = By D e(x) . (24)

Let us examine some specific cases:
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1) For & = k(x) in Eq. (22a), the solution to Eq. (23) is
f(x) = g(x)/k(x) .

This is a familiar deconvolution form with its familiar problems
at those points where k(x) = 0.

2) Digitizing the ¢ in Eq. (22b) gives

Fork = 1, D = E is a Sabri-Steenaart extrapolation matrix.3!

3) Digitizing Eq. (22¢) and using Eq. (24) gives
T = Bo(kBy)'e ,

which, for k = ry, is recognized as Cadzow’s one-step ex-
trapolation algorithm 2!

To place the algorithms in iterative form, define the operator .«
such that

€ =1-.a7. (25)

Then, using Eqg. (23) and a genceralized geometric series, we have

f(x) = [1- ] 'g(x)

I
=Y, gx). (26)
n=0
In the spirit of iteration, define
N
fin® = Y, e, 27)
n=0

which, in turn, can be shown to be equivalent to

fu(x) = 8(x) + o [ (%) (28)

with initialization f (x) = g(x). Going through a similar derivation
using Eq. (24) gives

fN(X) = !%'ﬁg(x) + —CBQ v./di_i(X) Z (29)

The f’s in Eqs. (28) and (29) arc not necessarily equal,although
both ideally should converge to the same target function. Consider
some specific examples:

1) For ¢ = k(x) in Eq. (22a), Eq. (28) becomes
fx) = &(x) + [1-k(x)]f, ),
which is the Van Cittert deconvolution algorithm,23-25

2) For ¢ in Eq. (22b), Eq. (28) becomes
f(®) = g(x) + [1-k(x)] B ol (¥,
which is the deconvolution algorithm of Prost and Goutte.37
For k(x) = rp(x), it is recognized as Gerchberg’s iterative ex-
trapolation algorithm.!?

3) For ¥ in Eq. (22¢), Eq. (29) becomes
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) = Boex) + (1- B gk(x)ify (X)),
where we have recognized that

B ofx) = fyx) .

This is recognized as the iterative form of Cadzow’s algorithm.
Equivalently,

fn) = Bolex) + {1-kE)fy, ()],

which is simply Van Cittert’s deconvolution algorithm with a
low-pass filter operation in each iteration.

3.2. Algorithm convergence

Not all the iterative algorithms formulated by the techniques of the
previous sections converge in the absence of noise. Here we present
necesssary and sufficient conditions for convergence for the case of
extrapolation. In the preceding chapter, Fienup presents a
methodology by which the convergence of certain iterative
algorithms can be accelerated.

Let k(x) = r(x) be a centered unit-amplitude rectangle over the
interval |x| =< a/2. Let Q be the interval defined by |u| = W.
Then, from Eq. (A4) in Appendix A, we can express gr(x) as

g']‘(x) - E f“m\j/m(x)r']"(x) -

m=0
Equation (27) can then be written as

Q0

i = Y (O™, (30)
m=0
where
N
M) = Y 6, (31)
n=0

and
B MHx) = A Y (RIr(x) (32)

In order for Eq. (30) to converge to f(x) via Eq. (A4), we must have

lim O (™(x) = },,(x). (33)

N— oo

Our purpose in this section is to examine the nature of this con-
vergence.
We can write ﬂn(m) as

6, (Mx) = [ a, (M (x) + b, [y (x), (34)

where b, (™) is the contribution of ¥,,(x) to the estimate of the tails
of f(x) in the nth iteration, and a, (m) + b,{™ is the corresponding
residual value contained in the [x| < a/2 interval. As is shown in
Appendix C, the performance of the algorithm is completely deter-
mined by al(m) and bl(m). For example, we show that, in order for
the algorithm to converge, it is necessary that the roots of the
polynomial

D(z) = zz(al(m) + 1) z + (al(m} + b](‘“)) (35)



lie within the unit circle, |z| < 1.
Let us examine the nature of convergence more closely. Substi-
tuting Eq. (34) into Eq. (31), we obtain

£, ) = [AN(m)rT(x) - BN(”‘]] Yiss0X 5 (36)
where
AN(m) N an(m)
= X : (37)
n=0
BI\'(m) bﬂ(m)

To be consistent with Eq. (33), we require

AN(m} 0

lim
N— oo = 2 (38)

BN(HI) 1

This significance of this relationship is made clearer by substituting
Eq. (36) into Eq. (30):

oo

fux) = 2 [AN““’MXHBNW’) Fontn ) - (39)
m=0

As is shown in Appendix C, these coefficients can be found from

A !(m} ool
: D(z)
e : (40)
i Z2bl(m)
By m PN
(z-HD@) |

where the double arrow denotes a conventional unilateral

z-transform pair’®:

[o.¢]
B~ X B (41)

N=0
Consider some specific examples:

1) For the € in Eq. (22b), we have Gerchberg’s algorithm, and,
from Eq. (A2),

Y (X)) = [T (A Wy (%)
Thus, al(”') = A, and bl(”‘) = Np- Since |h,| < 1, the roots

of D(z) lie within the unit circle and the algorithm converges,
From Eq. (40), we have

AN[m} 7
z-(1 "?\m)
BN(,"} ,?‘mZ
(z-Dlz-(1A)]
Since

Z

el e
Z-C

we obtain, after a partial fraction expansion,

AN{m) (1')\n1)N

= ; (42)
BN(m) 1'(l')‘m)N

a result obtained in a different way by Papoulis.2?
2) For the ¢ in Eq. (22d), we have

'4““’Vl/m(x)r'r(x) = Ay )]y (x)

Thus, a,(™ = -1 and b,(™ = )\ . The algorithm converges.
After some computation, we find that, for odd N,

N+ 1

2
BN(m) = 1-(I-Ap) :

which, as required, converges to unity, but more slowly than
Eq. (42).

3

—

For the # in Eq. (22¢), we obtain a{™ =1 -\  and b, (™M =0,
By = 0, and there is a zero estimate for |x| = a/2. This
algorithm, however, displays a different type of convergence,
Note that

57
AN(m) Y TR . EE TP
(z-Dlz-(1-N )]

from which we obtain

AN(II]) w _1_ [_(l_hl]])N—l )
}\ﬁ'l
Substituting into Eq. (39) and filtering gives
[o ]
"ﬂ!lfN(x) i E [ ]'(l'km)M] ] me’xm(x) ’

m=0
which tends to f(x) as N—co. This algorithm thus iteratively
builds a signal on |x| = a/2 that, when filtered, gives the Nth
estimate of the extrapolated signal.?!

4

—

For & in Eq. (22e), we have al(m) = 1 and bl(m) = -Ap. The
roots of D(z) lie outside of the unit circle. The correspending
iterative algorithm thus diverges.

3.2. Algorithm stability

It is instructive to examine the stability (or posedness) of the decon-
volution algorithms of the previous section. In the following stahil-
ity analysis, we draw freely from the work of Youla.!® An
algorithm is said to be globally stable if the supremum (least upper
bound) of the ratio of the rms output to input error can be bound.
If & exists, it is linear. The output error Af(x) due (o an input per-
turbation Ag(x) is thus

Af(x) = P Ag(x) . (43)

Define the L, norm by
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=2}

j [ h(x)|2dx .

Iheol =

Then, the desired quantity to be bound is
I AT(x) |
lag)|

where “‘sup” denotes the supremum. This relation, however, is
simply the definition of the operator norm3;

DA
19| =sup 2200 (44)
|Ag(x)]

Thus, if @ is a bounded operator, deconvolution is globally stable.
If @ is bounded, it is also continuous.

A second useful stability criterion arises from the following
analysis:

| Ag(x) | | & Af(x)]

| Af(x)- oof Af(x)|

v

AT | - [ Af(x)]

[\

|Afe) [ [1-] 2 |1, (45)

where, in the second step we have used the triangle inequality and,
in the last step, the definition of the operator norm. From Egs. (44)
and (45), it follows that

| @ | = ;
- |
Thus, if
et | <1, (46)

we are also assured of global stability. Note that this criterion is
also a sufficient condition for the geometric series expansion in Eq.
(26).

We now illustrate application of Eq. (46) to the case where f(x) is
known over the interval |x| = a/2 and Q is given by |u| = W,
From Appendix A,

A f(x) = [1-r (x)]f(x)

[e0]
= (0] Y () .
n=0
Thus,
|| = sup | e f(x)]
)| =1
oo
= sup Y aapf, 2. (47
)| =1 n=0

Since, from Parseval’s theorem,
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@12 = Y 1f,12,
n=0

the sup in Eq. (47) occurs when \l:m |2 = 1, which gives Mo = 0.
Thus,

|| =1,

and the algorithm is globally unstable.

Consider next the case where T consists of all |x| = a/2 (inter-
polation). The problem here is to ““fill up” the |x| < a/2 interval.
Following the above development, we have

Qo
|| = sup Yo o lEal2s
[fx)] =1 n=0

which occurs for \€0|2 = 1. Thus,*

|| = VA, < 1

L]

and the problem is globally stable.

Stability criteria to date have considered the output error over
the entire domain.!?#42 Empirical results®? and intuition®3-45 dic-
tate that extrapolation results are better near to where the image is
known. Possibly new local stability measures are in order.

3.4. Incorporation of further ¢ priori knowledge

In this section, we present two methods by which further object in-
formation can be incorporated into the deconvolution algorithms.

First, consider the case where we can place a bound on the ob-
ject’s energy. That is, we know an ¢ such that

(o]

S |f(x)|2dx = €2. (48)

—0o

With this we can bound f(x). Since f(x) is bandlimited, it is not af-
fected by filtering:

[ee]

m=jmwmw

—0o

where
wo(x) = F [Wgu)] .

Thus, using Schwarz’s inequality,

[oe] oo
teol2= [ @ [ wgecn i
- ~0o
From Parseval’s theorem,
oo oo
j ‘wq(8)]2dE = j W) |%du ,
e .

or, since Wg, = WQE, we have from Egs. (1c¢) and (48) the bound

Ifx)| < evV]Q[ = A. (49)
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Fig. 18. Gerchberg’s iterative algorithm with a zero-memory
nonlinearity (ZNL). Compare with Fig. 2.

This bound can be placed in the iterative algorithm as a zero-
memory nonlinearity (ZNL), as shown in Fig. 18 for Gerchberg’s
iterative algorithm. The ZNL corresponding to Eq. (49) is shown in
Fig. 19(a). If, in addition, we know that the object in positive, the
ZNL in Fig. 19(b) would be appropriate. Rushford and Frost!6
used the ZNL in Fig. 19(c), which corresponds to knowledge of a
positive target function and no energy bound. Due to the nonlinear
ZNL, this algorithm alteration is not placed in closed form.

A second algorithm alteration is possible when a portion of the
object’s spectrum is known, In this case, one merely inserts the
known portion of the spectrum in each iteration as well as perform-
ing the bandlimiting truncation. This algorithm has been iteratively
implemented on tomographic data by Sato et al.*® Using previous
notations, the algorithm can also easily be reformulated in closed
form. Stark et al.?7 *¥ have recently shown thal finite-energy non-
bandlimited images can be restored in many cases from limited
spatial and spectral information.

Other methods of incorporating ¢ priori knowledge into iterative
restoration algorithms are presented in the chapter by Fienup.
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APPENDIX A: PROLATE SPHEROIDAL WAVE
FUNCTIONS

Let T be the interval defined by |x| = a/2 and Q the interval de-
fined by 'u| = W. The solutions to the integral equation

Al

An¥m(x) = 2W Y (E)SINe2W(x-£)d¢ (A1)

-a/2

arc prolate spheroidal wave functions as normalized by Slepian and
Pollak.? An equivalent expression for Eq. (A1) is
}‘m‘:"’m('\') ’ﬁsﬂﬁm(x)r'l'(x) ' (A2)

Since ¥ ,,(x) is obviously bandlimited, we also have

(a)
-A
b =,
o out
Ay ‘

S in

i) out
r in

Fig. 19. Some possibe ZNLs: (a) when the image energy is known;
(b same. but with positivity constraint; and (c) with positivity con-
straint only

Y(X) = By (x). (A3)

A bandlimited function f(x) with bandwidth interval {! can be writ-
ten as

oo
f(x) = E fm’*"m(x)’ (Ad)
m=0
where
(o]
= ‘ F(x)  (X)dX
“oo
1
- ‘ f(xf, (x)dx (AS5)
}\m il a2
1

\ F(x), (x)dx .
1“)‘“1 dx| >ars2

The eigenvalues are positive and real and ordered as

135 N BN sov B9 Ol (A6)
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The functions are orthonormal on (-o0,):
oo

S PN CSIVANER TS SE N

-0

and orthogonal on T and its complement:

v a2
‘ Yn(dx = Ny, s
a2

d/n(x)w[n(x)dx ( l 7}\I'l)ﬁ

n-m *

S\x|za/2

where 6,, denotes the Kronecker delta.

APPENDIX B: ABSORPTIVE LOSS ANALYSIS IN A
COHERENT OPTICAL EXTRAPOLATOR

Here we derive Eq. (4) and the corresponding expression for t, .
Equation (3) can be written as

N
) = Y Ipll-r(0] Bo"g(x) - (B1)

n=0
Using the prolate spheroidal wave function expansion, we have

g0 = 100 Y Fdm®),

m={0
oo
[1-rp(x)] & gep(x) = [1-r4(x)] E Anfm¥m(®)
m=0
oo
[[1-rp(0] B glPer(x) = 110l Y ANp(IAD ()
m=0
Qo
rp(0] BolPer(0) = D000 Y5 Ap(IA)™ 0,00
m=0
As N — oo Eqg. (B1) becomes
f(x) = lim (%)
N—oo
oo (o]
= g0 + 0] P 2 A ()
n=1 m=0

Reversing summation order and applying a geometric series gives
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_ i PA ¥ (%)
T = g0 + (101 L i (B2)
m=0 L=pllhg

Note that, for the ideal case of p = 1, the summation corresponds
to the expansion of f(x) in Eq. (A4), and f(x) = f(x). This amounts
to Papoulis’ proof of Gerchberg’s algorithm.*?

The deviation of f(x) from f(x) is measured by

oo
eAz = S .f(x)—?-(x)\zdx

— o

(o0}
- Fo2
- Z tn ! fml s
m=0

where we have used Eqgs. (A4) and (B2) and
(1-p)*(1-0)
_ m ) (B})
[1-p(1-A,)]?
Note, for p = 1, t,;, = 0. The plot in Fig. 9 was generated using the
numerical values of A, given by Slepian and Sonnenblick.” Note
that for the unit-step approximation in Eq. (6), Eq. (B3) becomes
Eq. (5).

APPENDIX C: ITERATIVE EXTRAPOLATION
ALGORITHM CONVERGENCE

Here we derive the convergence expressions for ilerative extrapola-
tion algorithms, specifically Eqs. (35) and (40). We begin with ex-
amination of a recursion relation for Gn(“') in Eq. (32):

tm

Bt (G = S PG

= o | a,(Mrp(x) + by (M ] Ym(x) . (€
Using Eqgs. (20) and (25) with f = ¢, gives
Y (x) = [1r()]Y g (x) .
Equation (C1) thus becomes
O+ 1 ™) = a, ™ A () (x)
+ by M1 ()] (%)
=, | a My b ] V(%) (C2)

+ bﬂ(m)[] -rT(X)]l}/n](x) »

where we have used Egs. (32) and (34) with n = 1. Also,

L l(m)(x) = [aﬂ + l(m)r'l'(x) + by, I(m}} V(). (C3)

Equating coefficients of r3, in Egs. (C2) and (C3) and then the
coefficients of ¥, yields the following recurrence relationship for
the coefficients:



By l(m) a[(m) -1 an(m)
. (C4)

1(m) b](m) 1 bn(m)

Note that, from Egs. (32) and (34), we obtain the following initial
conditions for n = 0:

a (M 1
I 2w 0

The coupled difference equations in Eq. (C4) can be solved by
conventional Z-transform methods.*® Using the transform defini-
tion in Eq. (41), with n instead of N, we obtain

i (m) z(z-1)
D(z)
- ) (C5)
b, ) zb,(M/D(z)

where D(z)—the characteristic equation of the matrix in (C4)—is
given in Eq. (35). Note that, since

e a (M 7
D(z) E
zbl(m) n=0 (@) 0
- bn z
D(z)
we have, from Eq. (37),
i z(z-1)
A (m) e 0
N D(z)
lim
N—oo = = , (C6)
Zbl(m)
BN(m) . 1
D(z)
L. dliz=1

which is consistent with Eq. (38). Equation (C6), however, assumes
that the transforms converge at z = 1. In general, the Z-transform
of a causal sequence converges outside of a circle. The circle’s
radius in this case is determined by the pole furthest from the
origin. Thus, in order for Eq. (C6) to be valid, all of the zeroes of
D(z) must lie within the unit circle. Otherwise, the algorithm
diverges.
The Z-transform pair

N oo
E Cn = — 2 1 E CNziN
0 N=0

Z
n=0

follows from Eq. (41). Application to Eq. (C4) yields, via Eq. (37),
the Z-transform pairs in Eq. (40).
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