
For odd n, it is found that emin is dependent on the width of to be ill-posed is that an interpolation function has infinite energy. Specific 
the receive band, but is not significantly affected by the choice of examples include the case where (a) the signal and the (2 n)th derivative of 

center frequency. Fig. 5 shows emi,, plotted against filter band- the signal are both simultaneously sampled at half the Nyquist rate and (b) 

width for n = 5, d =1,2, and n = 7, d =1,2. It can be seen from the signal’s and the (2 n + l)th derivative’s samples are interlaced at Nyquist 

this figure that the use of higher order discriminator filters (d = 2) intervals. 

can greatly increase emin. Hence, improvements in amplitude 
response obtained by increasing d, may, in some cases be at the 

I. INTRODUCTION 

expense of increasing the amplitude of the group delay ripple. It There have been a large number of generalizations of the 

may be noted that when the ripple amplitude is of the order of sampling theorem. A band-limited signal can be regained from 

a more rapid convergence may be obtained by replacing 
;?;;.+I 

samples of the output of an all-pass filter, bunched samples, or 

in (8) with (-1)“. This has the effect of making the signal-derivative samples [l]-[6]. In each case, the average sam- 

average group delay of T,, h (w) at wc equal to T, - c. In this case pling rate must equal or exceed the Nyquist rate. One could infer 

a small negative I$, which may be corrected quickly, can be that any such set of independent data taken at the Nyquist rate 

expected. might suffice to uniquely specify the signal. Indeed, such state- 
ments have been made in textbooks. Although possibly true in 

IV. CONCLUSIONS the absence of noise, there are certain cases where a small 

A method for designing equiripple group delay, all-pole filter perturbation on sample values yields unbounded interpolation 

sets, for use in frequency-discriminating FSK modems has been noise levels. 

presented. The design algorithm involves the simultaneous mini- An example is signal and derivative sampling. Shannon [7] was 

mization of two objective functions. In practice, the algorithm the first to note that one could sample at half the Nyquist rate if 

has always been found to converge rapidly to the required at each sample location two samples were taken: one of the signal 

solution, provided that the restrictions regarding minimum ripple and one of the signal’s derivative. This sampling theorem was 

amplitude are observed. From a theoretical viewpoint, however, it generalized to m derivatives by Linden [l] and has found its way 

is not clear that such an optimum will always exist. In addition, it into a number of tutorials and texts [4]-[6]. Consider the seem- 

has been shown that the minimum ripple amplitude obtainable is ingly innocent alteration of sampling at the Nyquist rate with 

dependent upon the order of the receive filter, the order of the interlaced signal and first derivative samples taken at each Nyquist 

discriminators and the width of the receive band. Results have interval. As we will demonstrate, restoration here is ill-posed. 

been presented to illustrate the relationship between these param- Indeed, subjecting the samples to sample-wise white noise renders 

eters. the restoration unstable. Hence, one would wish to sample an 

The algorithm has been successfully used to design the odometer and speedometer simultaneously, rather than sequen- 

receive-discriminator filter set for an all-digital implementation tially, to determine position. 

of a (V-21 type) 300 baud FSK modem. Details of this implemen- Our purpose herein is to discuss a class of ill-posed sampling 

tation are reported in [2]. theorems as generated by Papoulis’ Generalized Sampling Theo- 
rem [4], [8]. Sufficient conditions for ill-posedness will be give 
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F(w) =Sf(t) 

1985, to be published. = irn f(t)eMiwrdr 
*-cc 

Much work has been done on finding f(t) from either partial 
knowledge or filtered versions of f(t). Define p,(t) as unity for 

Ill-Posed Sampling Theorems It] < r and zero, otherwise. Then, regaining f(t) from f(t)p,(t) 
and f( t)[l - p,(t)] are, respectively, the classic extrapolation and 

KWAN FAI CHEUNG AND ROBERT J. MARKS. II interpolation problems. Restoring f(t) from its samples { f( nT) ] 
- cc < n < co} results in the classic Shannon sampling theorem 

Abstract --There are a number of innocent appearing sampling theorems 131: 
that are ill-posed, i.e., a small amount of noise superimposed on the data 
can render the interpolation unstable. Using Papoulis’ Generalized Sam- 
pling Theorem, we show that a sufficient condition for a sampling theorem 

T= n/o. 
n=-CC 
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and 9 denotes the Fourier transform operator. 
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tion algorithm yields f(t)+ q(t) as its result where q(t) is the interpolation noise level then follows as 
algorithm response to the data noise alone. The restoration-noise 
level is then v*(t) 4 2 ; IYk(~-“T)I*. 

k-l n---o0 

where E denotes-pectation operator. If the input noise level 
Clearly, q*( 1) is periodic with period T. Application of the 
Poisson sum formula yields 

is bounded and Q*(I) is not, .then the algorithm is ill-posed. 
‘, The extrapolation problem is ill-posed [9]-[12]. The sampling 

-12m 00 
v’(t) + C C W,( nc)ej*” (4) 

theorem .and interpolation problems are well-posed [9], [13]. k-l n--w 
There are cases where the restoration noise level can be bounded 
over finite intervals rendering a globally ill-posed problem’locally 

where 

well posed [14]. ‘, 
wk(@) -Fi~k(r)i2 

III. GENSRALIZFJD SAMPLING THEOREM 

Many of the generalizations of the sampling theorem discussed 
in the introduction were eloquently brought under the umbrella 
of a single theorem by Papoulis [4], [8]. Briefly stated, let 
(&(Olk -lJ,* * -9 m } be the outputs from m specified filters 
with transfer functions { Hk( 0)) and common input f(f). We 
sample each gk (r) at l/m th the Nyquist rate. The input can then 
be restored by the interpolation formula: 

f(l)- f E &(nT)J’k(t-nT), T=y. (1) 
k-l n---o0 

The interpolation functions are found by 

: y&(r) rfl-‘+‘Yk(o,l)eiordo, k=1,2,.-.,m (2) 
--Q 

where ce 2w/T- 2u/m and the Y&(w,I)‘s are solutions of the 
set of equations: 

and 

&(~)=~Yk(t). ’ 
Note that (4) is simply a Fourier series with coefficients 

(5) 

c ” 

We, accordingly, define the average interpolation noise level by 

(6) 

H,(o) .a. 
H,(o+c) .a. 

(3) 

H,[w+(‘m-l)c] H2[W+(‘m-l)c] --a 

Here, t is arbitrary and - u < o < - u + c. Clearly there is no 
solution if the H matrix is identically zero over any finite 

or using parseval,s Iheorem 
’ 

subinterval. 
co - -y z kiIl_y=~lY,(~v~~. 

NV. NOISE %2NSlTIVlTY Thus the average interpolation noise level is infinite if any one of 
In this section, we explore the sensitivity of the Generalized the m interpolation functions has unbounded energy. 

Sampling Theorem to sample wise white noise. We demonstrate 
that a sufficient condition for a sampling theorem to be ill-posed v. EXAMPLES 
is that. the energy of any one of the m interpolation functions is 
infinite. 1. Derivative Sampling 

Let {[,(nT)lk -1,2,- - ., m; -oo<n<co}denoteazeromean Consider the m - 1 case corresponding to pth-order derivative 
discrete stochastic noise sequence. If g, (nT)+ .$ (nT) is used in sampling 
(3) instead of gk(nT), the output is f(t)+ n(r) where H,(w) = (i#. 

‘l(f)- iii i? ~d~T).Y,(~-~T)- 
We can, in principle, regain all frequency components other than 
zero. Note, however, that (6) becomes 

k-l n---m 
T 

‘We will assume that the noise is stationary and sample-wise 4 a 

white: ‘O-m -/ / -*Pdu=w. 

E[ WT)t;UT)] = i&8,-, 
Thus the corresponding sampling theorem is ill-posed. 

2. Interlaced Signal- Derivative Sampling 

where 8,, is the Kronecker delta, p”- E[&,(nT)I*] is the data A less obvious ill-posed sampling theorem arises when we 
noise level, and the asterisk denotes complex conjugate. The nonuniformly interlace pth order derivative samples with signal 
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t-Q--t--T+ 

Fig. 1. Interlaced Signal-Derivative Sampling. The hollow dots represent 
samples of the pth derivative and the solid dots are signal samples. The 
restoration problem is ill-posed if (a) a=0 and p is even, or(b) n=T/2 
and p is odd. The Nyquist interval is T/2. 

samples. For this m = 2 sampling theorem, the corresponding 
filters are 

HI(O) = (iw)” 

H,(w) = ejuw. 

The filter outputs are thus 

a(t) =fTt) 

g*(t) =f(t+a). 

The sampling geometI): is illustrated in Fig. 1. 
Solving (3) and using (2) and (5) gives 

Po,2(a-~) 

A(o) - A(u-a) 1 
Y*(w) =T 

A(w) 

(a-u) PeA-o)apo,2 w-f ( 1 - 
A(w-o) 

(74 

0) 

where 

Clearly, both Y, (0) and Y, (0) have poles either when A(w) = 0 
or A (w - a) = 0. The former occurs when 

(geAao+277n) = (&) + u)” 

or 

w=+j;cot (yy”). n=O,l;.., p-l. 

One of these roots is real when (a) a = 0 and p is even, or (b) 
(Y = T/2 and p is odd (corresponding to n = p/2 and n = 
(p - 1)/2, respectively.) In either case, the real pole generated by 
A(w) is at - u/2 and that generated by A( o - u) is at u/2. 
Clearly, application of (6) exposes this class of sampling theorems 
as ill-posed. 

VI. NOTES 

I. Sample Contributions in the III- Posed Sampling Theorems 

Insight into the ill-posedness of the sampling theorems can be 
gained by inspection of the interpolation functions. Consider, for 
example, m =l derivative sampling with p =l. It follows that 

where the sine integral is 

483 

Si( t) = I’% d7. 
0 7 

Since Si( t) - f n/2, interpolation at any point is affected 
t++m 

significantly by every sample value, no matter how distant. 
A similar contribution occurs for the ill-posed cases of inter- 

laced signal-derivative sampling. We can, in general, invert (7) 
using contour integration [15]. For p = 2 and (Y = 0, the results 
are 

yi(r)=+[sin($Si($)+cos($)sinc($-) 

2 - +smc 2~ ( )I 
y2(f)=:Si n(i;Sr (-1 at 

2 

where sincx = sin(ax)/(rx). Again, the occurrence of the sine 
integrals makes possible equally significant contributions from all 
sample values, no matter how far removed from the point of 
interpolation. The weighted noise levels from each sample value 
thus add to a random variable with unbounded variance. 

2. Effects of Oversampling 

Suppose f(t) is ru-band limited, where r < 1. Then it is also u 
band limited. Thus the generalized sampling theorem expression 
is applicable. The transform of (1) is 

F(w)= 2 Y,(w) E 
[ 

gk(nT)e-jnwT p,(w). 
k=l n--CC 1 

We can pass F(w) through a low-pass filter unity for 101< ru 
and zero elsewhere. The result is 

F(o)= E Y&(w) f 
i 

gk(nT)e-j”“’ 1 P,,( 0) 
k=l II=--00 

In the time domain, this is equivalent to using the interpolation 
function set { Fk( t)} in place of { yk(t)} in (1) where 

Going through the same analysis as before, we find the average 
interpolation noise level for the oversampled case is 

Comparing with (6), we conclude that &, Q c,,. Oversampling, in 
general, thus buys us a lower average interpolation noise level 
1131, WI. 

Consider, then, the ill-posed interlaced derivative signal sam- 
pling theorem. If we sample at a rate greater than twice the 
Nyquist rate, the integral in (7) will not include the poles at 
w = + u/2 and the resulting sampling theorem becomes well- 
posed. 

At exactly twice the Nyquist rate, the integration limits in (7) 
are at the pole locations. Thus 2, = co. We can, however, discard 
the derivative samples and use the conventional (well-posed) 
sampling theorem to restore the signal. Thus we are confronted 
with the curious task of discarding the derivative samples to 
improve the interpolation noise level. 
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Fomasini-Marchesini model, it is possible to obtain results also 
for less general models. 

Although conditions for stability of the Fomasini-Marchesini 
model are theoretically simple and elegant, actual numerical 
verification is difficult and sometimes impossible due to the very 
high burden of computation. This difficulty is essentially due to 
the use of one-dimensional conditions for stability in verification 
of two-dimensional stability. 

It is known that the Fomasini-Marchesini model is stable if 
and only if the matrix (A, + .&A,) is stable for all real w, or 
equivalently the maximum spectral radius of that matrix with 
respect to w should be less than unity. Thus by knowing the 
maximum value of the norm llAl + ejwA2)11 with respect to w, the 
stability of the system can be determined. In this article we 
propose a method for evaluating this norm by transforming the 
system into a canonical form based on the generalized eigenstruc- 
ture of the state matrices A, and A,. 

II. PRELIMINARIES 

We consider the linear, stationary, finite dimensional, double- 
indexed dynamical system S(A,, A *, B1,Br, C) defined by the 
first-order partial difference equation [l], [2] 

x(h+l,k+l)=A,x(h,k+l)+A,x(h+l,k) 

+B,u(h,k+l)+B,u(h+l,k) 

y(h,k)=Cx(h,k) 

Stability Assessment of Two-Dimensional 
State-Space Systems 

K. V. FERNANDO AND H. NICHOLSON 

Abstract -The two-dimensional Fomasini-Marchesini model [l], [2] is 
one of the most general state&we models available. Although conditions 
for stability for this model are theoretically simple, actual numerical 
verification is not a trivial exercise. One way to overcome this problem is 
to compute the matrix norm max ]]A1 + eJWA2111 for real w, and the system 
is stable if this value is less than unity. We compute this value by 
transforming the two-dimensional system into a canonical form based on 
the generalized eigenstructure of the state matrices A, and A *. 

where u( h, k) is the input and y(h, k) is the output at “time” 
(h, k). We assume that a( h, k) and y(h, k) are defined in the 
field of real numbers and (h, k) takes integer values. We further 
assume that the local state-space is n-dimensional and thus 

x E Rnxl Ai E Rnx” Bi E RnXm, i =1,2, 

u E Rmxl y E RrX1 C E Rrx” 

The two-dimensional z-transform of the system S is given by 

~(z1,~2)/ti(~1,~2)=C(I-zlAl-~2A2)-1(~1B+~ZB) 

where the forward shift operators zi and z2 can be associated 
with the indices h and k, respectively. 

The state transitions of the system are based on the “shuffle 
product” [l], [2] of the matrices A, and A, which is defined as 

A, ’ wj A, E Rnx” 

where 

A, ’ W’A, = A; 

A,‘WjA,=Ai 

A, ’ W”A, = A,(A, i-1 w/‘A,)+A,(A,‘Wj-‘A,) 

For example, 

I. INTRODUCTION 

The two-dimensional Fomasini-Marchesini model [l], [2] is 
one of the most general state-space models available as it imbeds 
other known models [l]. Thus by studying the stability of the 
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A, 3 wz A, = A;A’z + AfA,A,A, + A,A,A;A, + A,A;A, 

+ A;A; + A,A;A,A, + A,A,A,Af 

+ A;A;A1 + A,A;Af + A,A,A,A,A,. 

We note that the shuffle product A, i wj A, is composed of ‘+jCi 
matrix product terms and computations of these products for 
large i, j is not an easy task. For example for i = 3 and j = 2, 
the binomial coefficient 5C, =lO and for i =lO, j = 5, 15C5 = 
3003. 
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