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Multidimensional-signal sample dependency at Nyquist
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When a multidimensional signal is uniformly sampled, its spectrum is replicated. If the signal is band limited and
the replications (1) contain regions that are identically zero and (2) are not aliased, then the samples are dependent.
Indeed, lost samples can be regained from those remaining. In dimensions greater than one, there are spectral
regions of support for which this is the case even when sampling is performed at the Nyquist (minimum) density
(e.g., a circular spectral region of support in two dimensions). When the known samples are perturbed by additive
noise, lost-sample restoration noise levels in certain cases can be obtained by simple geometrical observations in the
frequency domain. The results are specifically applied to coherent and incoherent optical images of objects of finite
extent obtained from imaging systems with circular pupils.

1. INTRODUCTION

In one dimension, a band-limited signal's samples are inde-
pendent when sampling is performed at the Nyquist rate.
In higher dimensions, band-limited signal samples obtained
at Nyquist (minimum) densities can display a strong depen-
dence. Indeed, lost samples can be regained from those
remaining. In the one-dimensional case, oversampling is
required for sample dependency.", 2

The ability to restore lost samples of a multidimensional
band-limited signal sampled at Nyquist density is deter-
mined solely by the shape of the support of the signal's
spectrum. If the shape is such that replicated nonoverlap-
ping versions can fill the space with no gaps, then Nyquist
samples are independent. Otherwise, they are not.

An example of the former in two dimensions is a rectangle.
A circle is an example of the latter. Any coherent or inco-
herent image of an object of finite extent obtained from an
imaging system with a circular pupil has a spectrum with
circular support. 3 Nyquist samples from such images are
thus dependent, and lost samples can be evaluated from
those remaining.

In this paper, after a brief review of the sampling theorem
in N dimensions, we derive specific formulas for restoring
lost samples in certain Nyqust sampled signals. The sensi-
tivity of the restoration to additive noise is then presented.
The results are fascinating interpretations of noise levels
based on areas of regions of support. (Here and later, area
refers to N-dimensional area; e.g., for N = 3, area refers to a
volume). Applications to optical images are then addressed
specifically.

2. PRELIMINARIES

Before stating the closed-form algorithm for lost-sample
restoration, it is necessary to state the results of the N-
dimensional sampling theorem for nonrectangular sampling
geometry. Details of the theorem are admirably presented

by Dudgeon and Mersereau4 from Petersen and Middleton's
initial treatments

N-Dimensional Sampling
Let Ix(t)l t = (t1, t2, .. ., tNY1 denote an N-dimensional signal.
(The prime is for vector or matrix transposition.) The cor-
responding spectrum is

X(Q) = to x(t) exp(-jQ't)dt,

where Q = (MI, Q2, . . ., QN)' and

Lt =IJJt2 JtN

The inverse transform is

x(t) = 2)f X(Q) exp(12gtOdg.

Let V be an N X N sampling matrix corresponding to the
manner in which x(t) is sampled. In general,

V = [vI.v2 * * * VN] I

where the va's are sampling vectors. For example, in Fig. 1,
N = 2 and

V =[1 _ 2](1

In general, the sampling density is

D = 1 samples
i det VI (unit length)N

For a specified V, the sample signal is

x(t) = E x(Vn)bD(t - Vn), (2)
n
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Fig. 1. Sampling geometry corresponding to the sampling matrix
in Eq. (1).
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Fig. 2. Spectrum replication from the sampling geometry of Fig. 1.

As we shall see, the geometry of the replication is dictated by
{uI n = 1, 2,..., NI, where

U = [UljU2 ' *. *UN]-

For our example in Eq. (1),

U =[ 3r/2]
L7 r/2J

Thus, if X(Q1, Q2) were confined to be within the shaded
ellipse at the origin in Fig. 2, then the corresponding X(Q1,
Q2) would have the periodic structure shown.

For a given V, there can exist a number of ways to separate
X(Q) into periods. A period cell, when replicated, must fill
the entire Q plane. For a given V, all cells will clearly have
the same area. A possible cell for the example in Fig. 2 is the
rotated rectangle shown in Fig. 3.

The N-Dimensional Sampling Theorem
An N-dimensional signal is band limited in the low-pass
sense if its spectrum is identically zero outside of an N-
dimensional hypersphere of finite radius. Then we can find
a sampling matrix V such that the corresponding sample
spectrum consists of nonoverlapping components. Under
this condition, it is possible to regain X(Q) from 2(Q) in Eq.
(3). We choose a region 3 e Q that contains only the zeroth-
order spectrum. Then

X(Q2) = X(O)F(O), (5)

where

I= {det VI; Q e3 -

An illustration for our running example is shown in Fig. 3.
Note that 13 could correspond to a cell region @ or the
spectrum's region of support A. To regain x(t), we inverse
transform Eq. (5) and obtain

x(t) = x(t) * At),

where the asterisk denotes N-dimensional convolution and

S21
f(t) = Idet JVI exp(jg't)dO. (6)

Substituting Eq. (2) gives the desired interpolation formula:

x(t) = E3 x(Vn)f(t - Vn). (7)
n

Fig. 3. One cell of Fig. 2. The region of integration, 13, must
contain the spectral support region, JL, and must not infringe onto
adjacent spectra. @ is a cell region. The areas of the regions .A, 13,
and @ are A, B, and C, respectively.

where 5D(-) is the Dirac delta and n = (n1, n2 ,... , nN)'. The
spectrum of x(t) is the replication of the spectrum of x(t):

X(Q) = D EX(Q -Uk), (3)
k

where U, the Fourier periodicity matrix, satisfies

3. RESTORING LOST SAMPLES

In this section, we will show that an arbitrarily large but
finite number of lost samples can be regained from those
remaining for certain band-limited signals even when sam-
pling is performed at the minimum density. The problem
addressed is one of well-posed interpolation rather than ill-
posed extrapolation. 6 -9

Let A denote a set of M integer vectors corresponding to
the A lost-sample locations in an N-dimensional band-lim-
ited signal sampled in accordance with a sampling matrix, V.

Theorem: If x(t) is a band-limited signal and V is chosen
(4) to ensure that there is no aliasing between adjacent cells,

Robert J. Marks II

UNV= 27rI.



270 J. Opt. Soc. Am. A/Vol. 3, No. 2/February 1986

then the missing samples can be regained from solution of with respect to that of @. Indeed, restoration is no longer
the M equations: possible when 13 = e.

The restoration algorithm in Eq. (8) is linear. Let t(t)
>3 16(k - n) - f[V(k - n)]jx(Vn) = > x(Vn)f[V(k - n)]; denote a zero mean stochastic process. If x(t) is uncorrelat-

neA naM ed with t(t), then the use of jx(Vn) + t(Vn)jn $ St1 in Eq. (8)
instead of lx(Vn)In $4 A1 will result in Ix(Vn) + n(Vn)ln E Al,

k E A (8) where I{(Vn)ln e Ml is the response to It(vn)jn s A1 alone:

assuming that the solution is not singular. [The Kronecker
delta function, 6(n), is unity when n = 0 and is zero other-
wise.] The left-hand side of Eq. (8) contains the unknown
samples. The right-hand side can be found from the known
data.

Corollary: For a single lost sample at the origin, if f(O) 5d
1,

x(O) = [1 - f(O)]' > x(Vn)f(-Vn). (9)
n•O

>3 [6(k - n) -fV(k - n)1]7(Vn) = >3 t(Vn)fV(k - n)1.
ne At nsA

(10)

The restoration noise, -q, depends linearly on the data noise,
t. Thus the cross correlation between these two processes
and the autocorrelation of 77 can be determined from a given
data noise autocorrelation. 11

Out treatment will be limited to the case when a single
sample is lost and the data noise is samplewise white, i.e.,

This follows from Eq. (8) for M = 1 and A containing only
the origin. Note that, by using Eq. (7), the signal's interpo-
lation can be written directly void of the sample at the origin:

x(t) = > x(Vn)[f(t - Vn) + {1 - f(O)- 1f(-Vn)f(t)].
nHO

Theorem Proof: We can write Eq. (7) as

x(t) = (>3 + >) x (Vn)f(t - Vn).
neAt n4.4t

This expression can be evaluated at M points, and we can
solve for Ix(Vn)ln e A4. Let these M points be the t = Vk,
where k e A4:

x(Vk) = ( + E x(Vn)f{V(k - n); k e A.
net mt AC>1

Rearranging gives Eq. (8).
Corollary: A sufficient condition for Eq. (8) to be singular

is when the integration region, 13, is equal to a cell region, @.
Proof: On a cell, the functions jexp(jQ'Vn)l form an or-

thogonal basis set. From Eq. (6) with 13 = @ we have

f(vn) = I det VI exp(F Q'Vn)dQ.fV) (27r)N J expf~nd

The left-hand side of Eq. (8) is thus zero and the resulting set
of equations singular.

The restoration algorithm in this section alternatively
could have been derived by a generalization of the iterative
technique in Ref. 1. The treatment here, however, is more
compact although maybe less intuitive. The results in Ref.
1 are equivalent to the N = 1 case. The same is true of
Section 4 and Ref. 2.

4. NOISE SENSITIVITY

Our purpose here is to investigate the restoration algo-
rithm's performance when inaccurate data are used.2'10 In
general, the algorithm becomes more unstable when (1) M
increases and/or (2) the area corresponding to 13 increases

E[t(Vn)t*(Vm)] = _e6(n -m), (11)

where 42 is the data noise level (variance) and E denotes
expectation. With no loss in generality, we place the lost
sample at the origin, and Eq. (10) becomes

10 = [1 - f(O)1f' > t(Vn)f(-Vn).
n#O

Taking the square of the magnitude, expectating, and using
Eq. (11) gives

2(0)/t2 = [1 - f(O)]-12 > If(-Vn)j 2,

n6O
(12)

where the restoration noise level is

7 2(°) = E[ I n(O)12 .]

The sum in Eq. (12) can be evaluated through Eq. (9) with
x(t) = f*((-.t) [=f(t) since F(Q) is real]. The result is

2(0 t2 = f(O) 
1 -f(O)

(13)

The result has a fascinating geometrical interpretation.
From Eq. (6)

f(O) = .I d I J dQ.

But, with an illustration in Fig. 3,

B = J dQ

= area of integration, 13

and

C= J dQ

- area of cell, @

= I det Ul

= (27r)N/I det VI,

where we have used Eq. (4). Thus Eq. (13) can be written as
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2 (O) = (C_ 1) * (14)

~2 (~~)1

The restoration noise level is thus directly determined by
the areas of the integration region for f(t) and the area of a
cell. Equation (14) is a strictly increasing function of B.
Thus, for minimum restoration noise level, we choose 13 = A
= the region of support of the signal x(t).

For Nyquist density sampling in one dimension, A = 3 =
@. In this case oversampling is required to restore lost
samples.1 For higher dimensions, the restoration capability
is dependent on the region of support of the signal's spec-
trum. If the support is the shape of a cell (e.g., rectangular,
hexagonal), then restoration is not possible at the Nyquist
density.

Note, as is shown at the bottom of Fig. 4, that the area of A
is less than that of @. Thus, in the absence of noise, an
arbitrary number of lost image samples can be restored from
those (infinite number) remaining. For 13 = A, the interpo-
lation function here iS3

f(t&, t2) =
W Ji[W(t 1

2 + t2
2)1/2]

2irD (t 1 + t2
2 )

Noise Effects
Here, we will numerically illustrate the effects of samplewise
white noise on restoring a lost sample from an image that has
a spectrum with circular support. Suboptimal rectangular
sampling is considered first, followed by the optimal hexago-
nal case. Both cases are extended to higher dimensions.

Filtering
Samplewise white noise has a uniform spectral density and
thus significant high-frequency energy. Once lost data have
been restored, the data noise level can be reduced by filter-
ing the result through 13 assuming that B < C. The noise
level at the lost sample location remains the same.2 The
noise level at locations far removed from the lost-sample
locations will asymptotically be the same as that for the
filtered noisy samples if no data were lost. If t(Vn) is zero
mean and stationary, then after filtering, the process 1(Vn)
is also stationary. If the data noise is white as in Eq. (11), its
spectral density is uniform in @. Thus if we filter the noise
through 13, the resulting normalized noise level is

0/42 = B/C. (15)

(A more rigorous derivation is given in Appendix A.) To
minimize, we clearly would choose 13 = A.

For a single lost sample in samplewise white noise, the
ratio of the restoration noise level to that of data far removed
is, after filtering through 13,

(16)

where we have used Eqs. (14) and (15). To minimize, we
again would choose 13 = A. Note that Eq. (16) exceeds both
unity and Eq. (14).

5. APPLICATION TO IMAGING SYSTEMS

An object of finite extent is imaged through a system with a
circular pupil. If the monochromatic illumination is either
coherent or incoherent, the image will have a spectrum with
support inside a circle whose radius W is proportional to that
of the pupil.

Nyquist Sampling of Optical Images
The Nyquist sampling density here is achieved when the
circles in the frequency domain are densely packed as is
shown at the top of Fig. 4. This corresponds to a sampling
matrix

[ T -T1
L Tl/4 T/IA

where T = 7rIW. The corresponding optimal sampling ge-
ometry, shown in Fig. 5, is thus hexagonal. 4

Fig. 4. Top, densely packed circles correspond to Nyquist sam-
pling of images with spectra of circular support. Note the hexago-
nal structure. Bottom, a single hexagonal cell with inscribed circu-
lar spectrum support.
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Rectangular Sampling
If limited to rectangular sampling, minimum density sam-
pling is accomplished by the sampling matrix

V=[T 0
L° TI

where T = 7r/W. The corresponding replicated spectra are
shown at the top of Fig. 6. A single cell of this replication is
shown on the bottom. The restoration noise level from Eq.
(14) follows as

:X:~~~

•2

_2o = -1

3.66
(17)

After filtering through the A circle, the ratio of the resto-
ration noise level to data at points far removed from the
origin is

2(0) _ I- 7 4.6
12 L 41 , (18)

c- 4.66

where we have used Eq. (16) with B = A = 7rW2. The lost-
sample noise is thus 6.7 dB above the filtered data noise at
infinity.

The results can easily be extended to higher dimensions.
Assume that the spectrum has support within an N-dimen-
sional hypersphere of radius W (Ref. 12):

r2I F 2N7r(N-1)/2 (N l) ! WN

N!
N/2 

I 2r W

odd N
(19)

even N

Fig. 6. Top, minimum density rectangular sampling of images with
spectra of circular support yields circles packed as shown. Bottom,
a single cell with inscribed circular spectrum support.
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Fig. 7. Plots of 4O(0)/4 (filled circles) and n2(0)/p' (open circles)
in dB [10 logio(-)]. The solid lines are for minimum density rectan-
gular sampling and the dashed for Nyquist (hexagonal) sampling.

For rectangular sampling, C = (2W)N. The corresponding
plots of 772(o)/2 and i12(o)/i2 are shown as solid lines in Fig. 7.

Hexagonal Sampling
A single hexagonal cell is shown at the bottom of Fig. 7 for
minimum density sampling. The area of the hexagon is

C = 2_W 2 .

Thus, from Eq. (14) for B = A = -rW2

9.74,

and, similarly, from Eq. (16)

2 (°) = 1_T 4,2 = (i/ -_

10.74

As one would expect, these values (-10 dB) are greater than
those of the corresponding rectangular sampling cases in
Eqs. (17) and (18).

In higher dimensions, Nyquist sampling would corre-
spond to densely packed hyperspheres in the frequency do-
main. A table of the cell volume to circumscribed cubic
volume is given by Dudgeon and Mersereau.4 We can use
this table in conjunction with Eq. (19) to generate the resto-
ration noise level plots in Fig. 7 for Nyquist density sampling
when the signal's spectrum support is a hypersphere. The
plots are shown with broken lines and, as we would expect,
exceed the corresponding rectangular sampling results.

6. CONCLUSIONS

We have shown that, in the absence of noise, an arbitrarily
large but finite number of lost samples can be regained from
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those samples remaining under the conditions that (a) the
data (with the lost samples) are not aliased and (b) there are
sections in the sampled signal's spectrum that are identically
zero. In dimensions greater than one, these conditions can
apply even at Nyquist densities.

Noise analysis was performed for the case of one lost
sample when the remaining data were corrupted by zero
mean stationary white noise in terms of the sample. The
resulting restoration noise levels are given by simple alge-
braic expressions involving various areas in the frequency
domain. In all cases, minimum restoration noise level was
achieved when the area of the support of the interpolation
function's spectrum was at its minimum allowable value.

APPENDIX A

Here we derive Eq. (15). Let the samples be subjected to
noise, t(Vn), with autocorrelation as in Eq. (11). Then if
x(Vn) + t(Vn) is used in Eq. (7) in lieu of x(Vn), the result is
x(t) + 4(t), where

CO(t) = E(Vn)f(t - Vn).
n

Squaring the magnitude of both sides and taking the expect-
ed value gives

4,2(t) = -(t-vn)l.
n

This sum can be evaluated using Eq. (7) with x(t) = f * (T -
t):

f * (r-t) = / f * (r - Vn)f(t - Vn).
n

For r = t we obtain Eq. (15), recognizing that 4 2(t) = 42 is

independent of t.
Note that this result is a quantitative mesure of the trade-

off between sampling density and interpolation noise level.
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