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A common pattern recognition problem is finding a library element closest, in some sense, to a given reception.
In many scenarios, optimaldetection requires Nmatched filters forNlibrary elements. Since Ncan often be
quite large, there is a need for suboptimal techniques that base their decisions on a reduced number of filters.
The use of composite matched filters (CMFs) (also called synthetic discriminant functions or linear combina-
tion filters) is one technique to achieve this reduction. For two level CMF outputs, the reduction is from Nto
log2N matched filters. Previously, the coefficients of the CMF output were restricted to positive values-
often 0 and 1. We refer to such filters as binary CMFs. An alternative approach is to use-land +1 for filter
coefficients. This alternative filter will be called a bipolar CMF. This paper demonstrates how the extension
from a binary to a bipolar CMF greatly improves the detection performance while still maintaining the
reduced computational requirements of the binary CMF. Furthermore, the bipolar CMF is invariant to
scale: multiplying the inputb a positive constant gives the same processor output. This desirable behavior
does not exist for the binary CMF.

1. Introduction

Matched filters are commonly used in the design of
pattern recognition systems that decide for the pres-
ence of one of Nlibrary elements. For many scenarios,
N matched filters are required. Since N can often be
quite large, there is a need for suboptimal techniques
that base their decision on a reduced number of filters.
One such technique is the use of composite matched
filters or CMF'sl-6 (also referred to as linear combina-
tion filters and synthetic discriminant functions).
Each CMF is a linear combination of library elements.
These filters have been simulated56 and implemented1

with some success. In most previous work, the coeffi-
cients at the CMF output have been restricted to posi-
tive values, often 0 and 1. We will refer to the 0,1
restricted filter as the binary CMF. An alternative
approach is to use -1 and +1 for filter coefficients.
We will call this filter a bipolar CMF. The primary
purpose of this paper is to demonstrate how the exten-
sion from a binary to a bipolar CMF greatly enhances
the detection performance while maintaining reduced
complexity, compared with the optimal matched filter
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bank. Empirical results show that the bipolar CMF is
superior to the binary case even when the processing is
inexact.

II. Preliminaries

In this section we briefly review the CMF formula-
tion. The notation follows that of Marks and Atlas.5

Let fn n = 0,. . .,N - 1 denote Nlibrary elements of
length L. We form the L X N library matrix

F = [fo .. fN-l]

and definethel X N library-correlation matrix RF =
FTF. The nmth element of RF is f fm where the
superscript T denotes transposition. The L X P CMF
matrix is defined as

(1)

where si is the ith CMF. Here P = log2N because, at
most, log2N bits are required to specify N distinct
binary numbers. Given an f E f . . . fN-1}, we make a
classification decision based on the output STf As
was done in Refs. 1 and 4, we define

S = FR- AT

where i is the P X N matrix of ones and zeros formed
from the binary representation of the integers 0,. .. ,N
- 1. For example, if N = 4 (P = 2), we have

'[0 0 11
A _ o 1 12

t t t t
0 1 2 3.

(2)
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'In general, the ith column of A is the binary represen-
tation of i. The first row of A contains the least signifi-
cant bit (LSB), while the Pth contains the most signifi-
cant bit (MSB). An unknown input vector is classified
by the output vector which is the binary representation
of its index; i.e., we have

STfm = (3)

where Am is the mth column of , or the binary represen-
tation of m E 0,1,. . .,N-11.

Ill. Effect of Input Noise

An exact version of f e .t.fo.. ,fN_11 is never received
in practice. A more realistic model assumes we receive
f + t where t is a vector of length L containing additive
noise samples. Replacing fm by fm + in Eq. (3)
produces an output 8 m + q rather than 5m, where iq =

STE. When t is zero mean with covariance matrix Rt =
EtfT, the output noise vector has zero mean compo-
nents with covariance matrix

R = EqqT = STR S, (4)

where E denotes expectation. If t is jointly Gaussian,
N(O,Rt), then q is Gaussian N(O,R,,). These second-
order properties totally determine f,7(x), the probabili-
ty density function (pdf) of q (Ref. 7)

f,,(x) = I(27r)l R; -1 2 exp[-l/ 2xTR lx]. (5)

Even if t is non-Gaussian, under loose conditions, X will
be approximately Gaussian distributed due to the cen-
tral limit theorem. Therefore, we will use the Gauss-
ian model in our analysis.

IV. Decoding Procedure

We take a hypothesis testing viewpoint in which the
decision is among Nhypotheses IHmnl'Cj. Under Hm, a
vector (pattern) fm + , is received and the CMF out-
puts a vector

Hm *= ST(fn + )=m+ ; m0,1.N-i. (6)

We consider two techniques for deciding among the N
hypotheses. The first of these deciding procedures
was suggested previously'-3 and is computationally
straightforward. It is carried out by simple threshold-
ing of the elements of At. The second technique is
optimal in the sense of minimizing the probability of a
decoding error PE. A decoding error occurs when, for
n = m, we decide for Hn given that Hm is actually true.
Equivalently, we maximize the probability of a correct
decision. Thus,

N-1

PE = 1 - y PfHmI Hm Pr{Hm1,
m=0

where Pr{HnI Hml is the probability of deciding for Hn
given that Hm is true and PrIHm} is the prior probabili-
ty of Hm. This second approach leads to a computa-
tionally intensive postprocessing decoding procedure.
As will be shown, minor modification of our A matrix
leads to a decoding procedure that is both computa-

tionally attractive and optimal in the sense of minimiz-
ing of PE.

V. Thresholding

In the absence of input noise, the components of the
CMF output vector V are traditionally binary, 0 or 1.
The thresholding decoder simply clips the components
of at 1/2. Namely, if Vi is a component of t, a decoding
vector b with components bi is formed such that

b= ; pi

Since b has binary components and is of length P =
log2N, the 2 N possible b vectors span the range of
binary representation of 0,1,... ,N-1. Thus, b repre-
sents the desired classification decision. The proce-
dure is computationally attractive because it acts inde-
pendently on each of the P =. log2N components of b.
The following section will demonstrate that this tech-
nique is suboptimal.

A. Voronoi Partitioning

A less computationally attractive, but optimal, pro-
cedure is that suggested by detection theory.8 In the
absence of noise, the vectors 4& = m; m = 0,. .. ,N - 1
correspond to the vertices of a P-dimensional hyper-
cube. Conditional on Hm being true and in the pres-
ence of input noise t - N(O,Rt), we find t' ' N(6m,R ),
where R., = STRtS. In general even if the elements of

are white, the elements of 17 are correlated; i.e., R, is
not diagonal. This implies that the density of X is not
spherically symmetric. An example for Rt = I and P
= 2 is shown in Fig. 1(a). The implication for the
optimal decoding procedure is that, because of the
element-to-element correlation, any decoder that op-
erates on the elements of & separately will be subopti-
mal.

To derive the optimal decoder we uncorrelate the
noise vector q by a coordinate transformation. Since
R', is a covariance matrix it will in all practical situa-
tions be positive definite. Thus, there exists a real
orthogonal P X P matrix L(LLT = LLT = I) such that R
= LALT. Here A is a diagonal matrix whose iith ele-
ment, Xi > 0, is the ith eigenvalue corresponding to the
normalized eigenvector l; the ith column of L9. Mak-
ing the substitution Thy = Lq gives iw - N(O,A); i.e., the
pdf of air is given by

(7)fx() = n (21rj) 1/2 ex .2

From Eq. (7) we see that the components of air are
statistically independent. We can define

n"'(l) 7P) T
71iid =;T F\

where n,(j) is the jth component of Thy. The compo-
nents of Miid are independent and identically distribut-
ed (iid).

We have just described the first stage of the optimal
decoder. Given + we form hypotheses: Hm : {/ = L4
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Fig. 1. Illustration of Voronoi partitioning for binary CMF output
for P = 2. (a) Each of the four library elements with colored
Gaussian noise. (b) The axes are scaled so that the noise about each
point is iid. The plane is partitioned into four regions. Each region
contains those points closest to the library point contained in that
region. The partition boundary is mapped back to its original
coordinates in (c). This partitioning then leads to maximum detec-

tion probability.

= LOm + 1w; m = 0.. . ,N-1. Note that by uncorre-
lating or whitening the noise we have distorted the
hypercube. However, optimal decoding of the hy-
pothesis test Hm can operate on the components of V,4,
separately. Intuitively, this is because the noise vec-
tor qe has independent components and the value of
7,j(j) provides no information about 77,(i), i j. The
effect of distorting the hypercube is depicted in Fig.
1(b). Essentially, while 4' N(Om,R,,) under Hm we
have VI,, N(LbmA) after the linear transformation L.
Once we whiten the noise (and assuming equally likely
hypotheses PrjHm = 1/N for all m = 0,1. .. ,N - 1), the
optimal decoder or decision procedure decides for Hm
when the Euclidean distance between AP,, and Lbm,(I I Aw
- L4 1), is minimum. This is known as minimum
distance decoding.10 Since any possible observation
vector is closest to only one vertex. Li, the decoder
induces the partition shown in Fig. 1(b). This process

is known as Voronoi partitioning." In practice, we
could carry out the procedure in our original observa-
tion space (on 4 rather than 41.) by first stretching the
jth axis by A and then transforming by L. This
process is illustrated for our example in Fig. 1(c). The
Voronoi partition minimizes the probability of a de-
coding error. Nonequally likely input patterns can be
handled by a straightforward modification, although
the Voronoi partition is more difficult to determine.

Although this technique is optimum, the use of Vor-
onoi partitioning clearly requires extensive post-CMF
processing relative to simple thresholding. Since, in
principle, we need to compare our observation 41. = L
to each of the N = 2P library element locations Li, the
complexity of the postprocessing is of the order of that
of a conventional matched filter. This defeats the
purpose of the CMF.

B. Alteration of the CMF Matrix

With a small alteration of the CMF matrix S, we
develop a system in which optimal decoding (Voronoi
partitioning) reduces to simple thresholding. Thus,
given that we reduce our number of matched filters
from N to log2N, a simple decodable system exists
which is optimal. We consider only the following sim-
plified situation:

(a)

The input noise is iid. As before we can generally lift
the Gaussian assumption by an appeal to the central
limit theorem.

(b) The library elements are orthonormal; namely,

RF = FFT= I.

(c) The library elementsf .. . ,fn- are equally like-
ly.

The basis of our alteration is to modify the CMF
matrix S = FRjlAT by replacing every 0 in , by -1.
Denote this new bipolar matrix by A. For example,
Eq. (2) becomes

(10)

There are two main advantages to this change:
(1) Using i1s, we threshold at 0 rather than 1/2 as

before. Although for optical processors this will re-
quire bipolar encoding techniques,121 3 the resulting
CMF classification performance increases with the in-
put scale parameter. That is, for all A > 1, the perfor-
mance of the bipolar system to the input Af + is
uniformly better than that due to f + since we
threshold at 0. Previously, we set our threshold at 1/2
(when A = 1) and the classification performance will
decrease when A > 1. In detection theory parlance,
the bipolar decoding procedure is uniformly most pow-
erful with respect to an unknown A > 0. We would not
change our decoding procedure even if we knew the
value of A.

(2) The bipolar matrix A has the property that
AAT = NJ.
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That is, the rows of A are orthogonal.
Next we examine PE for the bipolar system. Our

CMF matrix is

S = FAT.

Using Eq. (9), the covariance matrix of the output
noise , is now

R = Enn = EFATttTAFT = NAI.

The output noise is now uncorrelated and, by the
Gaussian assumption, statistically independent. As
such, no distortion is required prior to Voronoi parti-
tioning. The optimal decision boundaries are simply
hyperplanes aligned with the coordinate axes. This is
illustrated for our N = 4 example in Fig. 2.

Because the boundaries are so aligned, evaluation of
the probability of error is straightforward. We evalu-
ate PE by considering only the error events associated
with a desired output of fN-j = [1 1 ... 1 ]T. Then

PE = 1 - Pr6P > 0,A2 > 0, * ' P > 1HN-1}-
Since the random vector 4' has the Gaussian distribu-
tion N(fNl, utI) under HN-1, we find

PE 1 f Pr[j > I HN-d-
j=1

Since

Pr [j > 01 HN-11 = exp[-(,j -1) 2/2Nao] dpr

we find that

PE = 1 - erfcHNa)1/2]jP

03

-I

0S -I-

2

0 A.

0
Fig. 2. Illustration for P = 2 that, under certain conditions, bipolar

CMFs perform optimally with zero thresholding.

PI 0.

(12)

where

erfc(x) = exp(-t 2/2)dt14I:.

Plots of PC = 1 - PE, the probability of detection or
correct classification (in percent) are shown in Fig. 3
for varous values of Ad and P = log2N.

VI. Effect of a Noisy Processor

In Ref. 5 we discussed the problems associated with
implementation on a noisy optical processor. By a
noisy processor we mean that the ideal CMF matrix S
given by Eq. (1) is replaced by S + S, where S is a P X N
matrix of noise samples. The components of S are
modeled by iid Gaussian random variables with zero
mean and a common variance a,2. Optimality of the
bipolar CMF is no longer guaranteed when the pro-
cessing is inexact. An exact performance analysis is
hampered by the non-Gaussian distribution of the out-
put vector 4' in the presence of both input and proces-
sor noise. We will demonstrate empirically that the
bipolar CMF outperforms the binary processor. The
comparison is carried out by a Monte Carlo simulation.

In the simulation we use library elements fnm =
On-r; n =0,1,... ,N-1 = 15 such thatthe input noise
vector t is taken to be N(Oa2I). The processor matrix
noise S is taken to be N(O,2I). Plots of PC vs Ad are
given in Fig.-4 corresponding to o = 0.1 and 0.2. Each

OC

0.3

Fig. 3. Percentage of correct decisions vs input noise standard
deviation (o) forP = 2 (top curve), 3,4,5, and 6 for the bipolar CMF.

1.0 --
F~~~~~ 0.9 ~ ~ ~ ~ ~ .

Pc 009 -. 1

Os0 0.~~05 2 .10

08 l

OC

Fig. 4. Monte Carlo simulation of percentage of correct decision vs
at for matrix noise standard deviations as = 0.1 and 0.2. The upper
dashed lines are for bipolar and the lower solid plots are for the
binary CMF; 90% confidence intervals are shown; P = 4.
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point is the result of 800 trials-50 for each input. The
error bars indicate 90% confidence intervals about
each data point and were calculated assuming Ber-
noulli trials. In both cases we see that the bipolar
CMF achieves a greater detection probability than the
binary CMF. This is directly related to the bipolar
system using optimal discussion processing, at least in
the processor noise-free case. As expected, the perfor-
mance of both systems degrades as o-2, the processor
noise variance, increases.

VII. Conclusion

We have applied the methodology of signal detecton
theory to develop optimal minimum probability of
error CMF processors. By using a CMF matrix with
bipolar rather than binary components, the computa-
tionally attractive threshold decoder is shown to be
identical to the optimal Voronoi partition decoding
technique. We have evaluated the probability of cor-
rect classification for a noise-free processor and ex-
tended the results, by Monte Carlo simulation, to the
more realistic noisy processor situation. In all cases,
the bipolar system outperforms the binary CMF. Fu-
ture papers will report on ongoing research which in-
cludes:

(1) a comparison of conventional and composite
matched filter error performance;

(2) error correcting coding techniques for noisy op-
tical processors as in Ref. 5.
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