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Abstract:

Although optical processor implementations of artificial neural networks
promise algorithmic convergence at the speed of light, little attention is normally given to
the consequences of different optical path lengths required within the processor on the
resulting performance. Such clock skew can have significant degrading effects on the
predicted accuracy and speed of the processor. A similar problem occurs in iterative
electronic asynchronous artificial neural networks when, for example, the time delay
between two neurons is proportional to their physical separation. In this paper, we show
that, in the absence of temporal dispersion, certain iterative algorithms have steady state
solutions which are independent of clock skew. Examples include stable linear feedback
and feedback using soft (slowly varying) nonlinearities. Both are special cases of using a
contractive mapping in the feedback path. Feedback using hard nonlinearities, on the
other hand, can result in a steady state solution which depends on the clock skew.

Introduction:

A number of analog [1-5] and discrete [6-12] optical processors have been
proposed that use feedback. Shamir [13] has noted that in such systems, the time
required for feedback can vary significantly due to the variation of optical path lengths.
In certain cases, disregarding this clock skew in processor analysis can lead to drastically
different implementation results. A similar problem occurs in iterative asynchronous
artificial neural networks where the communication time delay between two neurons is
proportional to their physical separation.

In this paper, we show that, in certain feedback algorithms, clock skew does
not affect the steady state solution of the processor. When an iterative algorithm uses a
(possibly nonlinear) contractive operation in the feedback path, the resulting steady state
solution is shown to be unaffected by clock skew. Clock skew is shown, however, to
have an effect on the steady state result when hard nonlinearities are used in the feedback
path [14-16].
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Preliminaries:

In this section, we develop a general description for temporally non-
dispersive clock skew in an feedback processor and then show specific instances where
that model can be used to determine whether the steady state solution is affected by the
skew. We consider only a discrete model, although our approach can be readily applied
to analog processors.

Let a field of N states, {S, | I < n < N}, be altered by feedback in a
skewed processor. Let U, denote the instantaneous operator that maps the previous
states into the current nth state at time . We can then write:

Sp(t) = Oul {Sm(t-Tpm) I Sm<N}];1<n<N (¢))
where T, is the clock skew corresponding to the time required for the state Sy, to make

a contribution to the state S,. If we let + —co and assume a stable steady state, then (1)
becomes:

Sn(22) = Ol { Sm(>=) I SM<N)1;1Sn <N @

Although not explicitly indicated, this steady state solution is, in general, a function of

the clock skew. If, however, (2) has only a single solution for all S,(es), then the clock
skew has no effect on the steady state solution.

Some specific examples of iterations unaffected by clock skew will now be

given.

Solution of Simultaneous Equations:
Let S, denote a vector of states at time n, f a like dimensioned forcing
vector and A an square matrix. The linear difference equation
sn+1 =f+ Asn (3)
is known to converge to the steady state solution

Su=[I-AJ1f 4

if the spectral radius (magnitude of the maximum eigenvalue) of A does not exceed one
[17]. With reference to (1), if performed on a skewed processor, (3) would be
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implemented as*
N
S = X 8y, Sm(tTu) + fuph(ty); 1Sn<N )
m=1
where ¥, denotes the time skew of the input’s contribution, W(") is the unit step function
and f, is the nth element of . Letting t —oo and assuming a stable result gives

Sn(e0) = ¥ 8, Sm(ee) + f,; 1 <n<N (6)

m=1

or, equivalently, in matrix- vector form
Se=AS.+f (7

If I - A is not singular, then the solution to this equation is (4). Clock skew therefore
does not effect the solution. The alternating projection neural network (without the
sigmoid nonlinearity) when interpreted either homogeneously [18-21] or, in layered form
[20-21] from the hidden to output layer, is a special case of this example.

Contractive Operators:
In this section, we explore a more general criterion for which clock skew
does not affect steady state results. We may write (2) in vector form as

S(e0) =¥ S(e0) (8)
If the vector operator O is a contractive operator, then

||1‘)x-13y||5r”x—y|| ®
where

|lall2-aTa
and0<r<l. If 0<r<1,then ¥ is said to be nonexpansive. If 9 is contractive, then

the solution of (8) is unique [17-19] and there is no contribution of clock skew to the
steady state result. When ¥ is nonexpansive, (8) can have a number of solutions.

* Alternately, the forcing vector can be time varying due to, say, the source’s rise time.
If the forcing vector approaches a steady state value of fj, and the system remains stable,
then the steady state result remains the same.
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Example:
Our previous example is a special case of a contractive mapping since, from (6),

0 S(e0) = A S(o0) +f
The operator is contractive if
HAax-H-@Aay-Hll=1TAaxy || <r |l xy ]
This is clearly true if the spectral radius of A does not exceed one.

Example:
We can nonlinearly generalize (7) to

S.=n(AS_+f)+1, (10)
where both f; and f, are forcing functions and 7 is a pointwise nonlinearity. By a
pointwise nonlinearity, we mean that, if z = 1 w, then the nth element of z is equal to
Na(w(n)) where 1y, is a given function. In the parlance of neural networks, 1 would be

referred to as a sigmoid operator [25-26]. Using (9), the corresponding operator is
contractive if

I nax+f)-nAay+ty [ <rllx-y]] 1)

We will show that the operator is contractive if the spectral radius of A does not exceed
one and 1 contains soft nonlinearities. A nonlinearities is said to be soft if

| dna@)/d0 | <1;1<m<N
for all ¢. As is illustrated in Figure 1, this constraint has the property that
| nx-my | < | x|
As a result,
[ nAax+f)-n@ay+t) [ < | l@Ax+1)- @Ay + £ ||
Using the results of the previous example, the operator corresponding to (10) is clearly
contractive and clock skew has no effect on the final result.

This unique convergence constraint can be generalized to the requirement
that
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Figure Caption:
Figure 1: An example of a soft nonlinearity. Any interval on the z axis maps to a smaller
interval.

| dna@)/do | <pA):1<m<N

where p(A) is the spectral radius of A.

Hard Nonlinearities:

Clock skew can be a factor when implementing an iterative algorithm with
hard nonlinearities. Conwell [22] discusses such effects in certain neural networks which
use no forcing functions and a unit step nonlinearity:

1 ; 620
NA(9)

0 ; otherwise
Different clock skews produced different steady state results.
Conclusions:
We have shown that clock skew does not affect the steady state solution of

iterative algorithms when the feedback operation is contractive. Such skew can occur in
in asynchronously operated neural networks and in optical processors with feedback.
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