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ABSTRACT

Artificial neural networks (ANN’s) have been shown to
be a potentially powerful approach to classification. As in
nature’s neural networks, training is performed by example
rather than with rules. In this paper, we demonstrate how the
use of arbitrary nonlinearities can improve the storage capacity
of a class of layered classification ANN’s (L-CANN’s). The
network’s storage capacity is on the order of the number of
neurons used to stimulate the response. L-CANN’s can be
trained by viewing the training data only once. Classification
boundaries corresponding to maximum points of confusion, if
known, can also be learned. Iteration is not required in the
recall mode. The manner in which a network responds to data
outside the training set can be straightforwardly evaluated.
The L-CANN also has the ability to recognize the unfamiliarity
of stimuli for which it was not trained.

INTRODUCTION

Artificial neural networks (ANN’s) used as classifiers
have a stimulus layer of neurons to provide the data input into
the system and a response layer which provides the
corresponding classification. In general, linear classifiers have
the inability to separate complex classification regions. The
observation that the perceptron was unable to perform a simple
XOR operation was a major factor in the decrease in research
into artificial neural networks (ANN’s) in the sixties [1].
Specifically, visualize a unit square with its lower left corner at
the origin. The XOR operation would assign a value of one to
the origin and the (1,1) corner. The remaining two corners are
assigned a value of zero. There exists no straight line (and
therefore no linear classifier) with the ability to separate the
ones from the zeros. ANN’s ,of course, were never considered
to be potential commercially viable architectures for XOR
gates. The point is that if the linear ANN was unable to
perform a simple XOR, there is little chance that it will
perform successfully in more complex classification problems.

Linear classifier ANN’s can be augmented to perform
nonlinear classification by the use of a hidden layer of neurons.
The states of the hidden neurons are typically some nonlinear
function of the network’s stimulation states such as a product
[2], a weighted sum of states followed by a memoryless
nonlinearity such as a sigmoid [3] or logic operations.

This developmental approach is used as a presentation
order in this paper. First, we review a linear classifier that used
linear discriminant functions [4-6] (also called composite
matched filters or linear combination filters). The number of
stimuli-response pairs that can be stored in such a network is
shown to be on the order of the vector length of the data.
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Using arbitrary nonlinearities, we show that the storage
capacity of the network can be arbitrarily increased by the use
of hidden neurons the states of which are arbitrary nonlinear
functions of the stimulus. The performance of the resulting
layered classification artificial neural network (L-CANN) is
favorably compared to those of other ANN’s. Attributes
considered include training dynamics, recall dynamics,
capacity and generalization.

LINEAR DISCRIMINANT FUNCTION
CLASSIFIERS

A set of stimuli vectors {s,|1<n <N } is to be made
to correspond to a set of response vectors {r, [ 1 < n <N }.
That is, we wish to design a classifier that will output, say, r3
when the input is s3. We define the stimulus and response
matrices respectively as

R=[rilrp]..1ry]
and
S=[s7lsyl..Isy]

Classification is then accomplished through the synthetic
discriminant function matrix

C=R[STS]IST )]
Note that C S = R and that, as a consequence,
Csp=rp;1<n<N. 2)

We have thus achieved our desired relational mapping.

What is the capacity of this linear classifier? That is,
what is the maximum number of relational vector pairs that can
be stored before the classifier no longer works as predicted in
(2)? Note in (1) that we have made the assumption that the
correlation matrix ST S is not singular. If the stimulus training
vectors are of length L, then Sis L x Nand STSis N xN . If N
<L and S is of full column rank, then ST S is not singular. If,
however, N > L , then ST S must be singular and the classifier
is overdetermined. Thus, under the full rank assumption, we
conclude that

Npax =L 3)

That is, the number of relational pairs that can be stored
faithfully cannot exceed the length of one of the stimulus
vectors or, in the parlance of ANN’s, the number of stimulus
neurons.

For the XOR, we would require the N = 4 combinations
of the L = 2 input bits. From (3), the linear synthetic
discriminant function classifier will clearly not work.
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INCREASING THE CAPACITY
WITH NONLINEARITIES

The capacity of the synthetic discriminant function
classifier can be increased by increasing the length of the
stimulus vectors. This can be done artificially. A stimulus
vector s, cannot be thus successfully lengthened by adding
new elements that are linear combinations of previous
elements. The rank of the corresponding augmented S matrix
would not increase. We can, however, choose most any
nonlinear combination and affect a rank increase. The first
new element to be addended to sp, for example, could be the
square of the first element of s,. The second new clement
could be the cosine of the sum of all the elements of s5,. For
stimulus matrices containing only zeros and ones, logic
operations can be used. Our only concern is that the rank of
the augmented stimulus matrix increase with each nonlinearity.
For any chosen set of nonlinearities, there does exist, of course,
a training data set for which the newly generated states will not
increase the matrix rank. The possibility of this happening,
however, can be reduced by using extra neurons in the hidden
layer for insurance.

Let 1 denote the nonlinear operation performed on the
stimulus vector to increase its length from L to Ly. The
augmented vector is:

Spe=[snla,]T
where
an=Ms,; I1<n<N.

The augmented stimulus matrix follows as

o [:]

A=[a1|a2|.A.|aN]
The augmented synthetic discriminant matrix follows as
C,=R{[S;TS,]J-18,T.

If the number of stored responses, N, does not exceed L, then
an input of 5,4 produces and output of ry.

where

EXAMPLE I: Consider an XNOR with stimulus matrix:
-1-111
S=
-1 1-11
and response matrix

R= [1-1-11]

Since N = 4, we require a minimum of two neurons in the
hidden layer to make Ly = 4. We arbitrarily choose the
nonlinearities to be:

aj =1+ cos(sy +52)
and
ay =1+ cos(sy - 52).

0229
A=
26062
where ¢ = 1 + cos(2) =0.5839. It follows that
C=[(00-6 0]

Therefore

where 8 = 0.7061. Therefore, in the neural network
architecture shown in Figure 1, the interconnect values from
the input to the output neurons are zero. As we could expect,
multiplying the first or last column of Sy by C gives one. Use
of either of the remaining two columns gives -1.
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FIGURE 1: A NEURAL NETWORK ARCHITECTURE INTERPRETATION OF THE
XNOR prOBLEM IN EXAMPLE 1. THE INTERCONNECTS TO THE OUTPUT
NEURON ARE GIVEN BY THE C4 MATRIX,

A LAYERED CLASSIFIER NEURAL NETWORK

The number of relations that can be stored in the
layered neural network in the previous section cannot exceed
the number of neurons in the input and hidden layer. Indeed, if
the number of neurons in the hidden layer is sufficiently large,
we need not even consider connecting the input neurons to the
output neurons. We denote the hidden states in such a L-
CANNby { hp| 1 £n <N} where

hn=ms,; 1<n<N.
We form the hidden layer matrix
H=(hilhy|...| hy].
The interconnects from the hidden to output neurons are then
C=R[HTH]-1HT. 4)

The number of stored relations cannot exceed the number of
hidden neurons.

EXAMPLE 2: We again consider the XNOR of Example . A
minimum of N = four hidden neurons are required. We choose
the following nonlinearities:

hy = exp(sy + 252)
hp = exp(s1 - 252)
hp = exp(-si - 252)
hy = exp(-s1 + 252)
The corresponding neural network architecture is shown on
Figure 2.
For the XOR training data, we have
e3 el el €3
H= el e3 e el
e3 el el e3
el &3 &3 ¢l
from which we compute
C =[0.0585 -0.0587 0.0586 -0.0577 }.
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FiGure 2: TuE L-CANN DESCRIBED IN EXAMPLE 2 FOR GENERATING
THE XNOR. THE STATES IN THE HIDDEN LAYER ARE EXPONENTIALS OF A
WEIGHTED SUM OF THE INPUT STATES,

HIDDEN LAYER INTERCONNECTS

Thus far we have required only that the input neuron
layer be connected to the hidden layer and that the hidden layer
be connected to the output layer. We will, in addition, use
interconnect values among the hidden neurons for two reasons.
First, it allows the neural network to be easily trained and,
second, lets the neural network evaluate whether it has been
trained on a given input vector. An example of our fully
trained L-CANN is shown in Figure 3 for two input and output
neurons and three hidden neurons. The interconnects among
the hidden layers are given by the projection matrix [7-11]

P=H[HTH]1HT. 5)

Multiplying any vector 4 by P results in a vector that is the
linear combination of {h, | 1 £n <N } that is closest to & in the
mean square sense or, equivalently, P 4 is the orthogonal
projection of 4 onto the column space of H.

The hidden layer interconnects can be used to ascertain
whether an excitation vector s has been previously learned.
First, we let the input tos

hidden layer interconnects and nonlinearities compute 4 =1 5.
The hidden layer interconnects can then petform an iteration to
generate P h internal to the hidden layer. The states P h are
then, on a node by node basis, subtracted from the previous
states to compute

e=(I-P)h (6)

If 4 had been previously seen in training data, then then € is
identically zero. Thus, if an appropriate metricon €, €.g.

[l ell2=¢Te,

exceeds a prescribed threshold, then we conclude that the
network has not been trained on the network’s stimulus, s.

TRAINING

The hidden layer interconnects are invaluable when
training the neural network. In establishing the neural
interconnects, we with to avoid the matrix inversion operations
explicitly used in the interconnect equations in (1) and (5).
We, rather, would prefer that the interconnects be trained
internally by exposing the network to the training data in a
sequential manner. In this section, we will show that this
indeed can be done and that, furthermore, the network has only
to see each training vector only once.

For a given set of nonlinearities, assume that we have
hidden layer interconnects P and hidden to output
interconnects C. We are presented with a new relational pair, s
and . We wish to update the interconnects so that a stimulus
of s will result in a response 5. We assume that the network’s
capacity is large enough to learn the new data. The
interconnect updating requirement can be shown to be [11]
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FIGURE 3: ILLUSTRATION OF A FOUR STEP TRAINING PROCEDURE FOR A L-
CANN. THE PROCEDURE FOR UPDATING THE HIDDEN TO OUTPUT
INTERCONNECTS IS IN THE RIGHT COLUMN AND THE HIDDEN INTERCONNECTS
IN THE RIGHT COLUMN. EXCEPT FOR THE NEEDED COMPUTATION OF THE

NORM OF THE HIDDEN LAYER ERROR VECTOR, €, ALL OPERATIONS ARE
PERFORMED BY THE NETWORK.

N

T

€ 3=Ci3+&;01/(€Te) ;

P=P+ccT/(eTe)
and
C=C+06¢€T/(eTe)

where the underline denotes the updated interconnect matrix
and

6=r-Ch @)

Except for the normalizing factor €T g, all training can be
performed internal to the neural network. The four step
procedure is illustrated in Figure 3. First, the stimulus s is used
to generate the hidden neural states. In the second step, the
hidden layer interconnects are used to compute Ph while,
simultaneously, the hidden-to-output interconnects generate
Ch at the output nodes. Next, the computed states are
subtracted from the imposed states at both the hidden and
output layers. At the hidden layer, Ph is subtracted from h and,
at the output layer, C A is subtracted from 4. The result is the
error vectors defined respectively in (6) and (7). The states of
the neurons in the hidden and output nodes are assigned these
error values. In the fourth and final step, the neuron
interconnects are updated. From (1), the interconnect between
hidden neuron 3 and output neuron 1 is updated in accordance
to

c13=c13 + 81 €3/(eT ©)



The interconnect is thus updated proportional to the product of
the errors at the neurons that the interconnect connects.
Similar updating is simultaneously performed among the
hidden layer interconnects. For example

P13 =p13 + €1 €3/(eT€).

GENERALIZATION

Within the previously discussed constraints, and choice
of nonlinearities will result in a neural network that will
respond correctly to training data. The fashion in which the
classifier responds to stimulus not in its training set is referred
to as the manner in which the network generalizes.
Equivalently, generalization is the manner in which the
network interpolates among the trained points. While the
choice of nonlinearities does not affect the manner in which the
network responds to training data, it does affect the way the
network generalizes.

The mathematics describing generalization for the L-
CANN is straightforward. For a stimulus s, the response is

r=Cns

Generalization over a region of interest is computed by
allowing s to range over that region and computing the
corresponding response.
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FiGurRe 4: (LEFT) TiE GENERALIZATION OF THE XNOR v ExawpLe 1
AS DESCRIBED IN ExampLE 3. (RiGNT) THE GENERALIZATION ERROR.

THE ERROR AT THE TRAINING POINTS (THE SQUARE VERTICES) 1S ZERO.

a-n (1)

FiGURE 5: (Lert) Tue GENERALIZATION OF THE XNOR v ExaMper 2
AS DESCRIBED.IN ExAMPLE 4. (RIGHT) THE GENERALIZATION ERROR. TIIE
ERROR AT THE TRAINING POINTS IS ZIRO.

EXAMPLE 3: The generalization of the augmented XNOR L-
CANN in Example I is shown at the left of Figure 4. The sign
of the output neuron state is shown as a function of the stimuli,
(s1,52). The right plot is the square of the difference of the top
plot from the floating point value of the output neural state, and
represents the generalization error. The generalization error at
the vertices of the unit square are, by our design, zero.

EXAMPLE 4: The generalization of the augmented XNOR L-
CANN in Example 2 is shown at the left in of Figure 5. The
sign of the output neuron state is shown as a function of the
stimuli, (s7,52). The right plot is the corresponding
generalization error.
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