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ABSTRACT

The nouon of a global computaton performed by a large
number of simple and identical logic elements (neural network) has
recently stirred great interest in the field of patern recognition. The
appeal lies in the simulation of human neural processing and the
high potental for fast VLSI and optical architecures. In order to
gain a preliminary understanding of the efficacy of this approach
for speech analysis applications, we have applied several simulated
peural networks to the problem of speaker-independent vowel nor-
malization. The results of this normalization were compared with
human percepmal data and it was found that an orthogonal projec-
tion neural network matched the human data fairly well. It was also
found that a conventonal matched filter classifier performed better
than the neural petworks. A neural network version of this best
classifier was derived and tested.

INTRODUCTION

There has recently been a rapid growth of interest in artificial
peural network research. In 1982, Hopfield published a paper (1]
which has inspired a number of researchers in various disciplines
10 investigate neural petwork models. The original model
presented was a programmable, auto-associative memory for static
binary pattems. Its operation was asynchronous and stochastic.
This model had the ability to recall stored memories when a partial
and noisy version of the memory was input. McEliece et al (2]
analyzed the model to estimate its information storage capacity
using statistical approximations. Several researchers reported opd-
cal implementation of the model with some simplification and
modification (e.g., Psaltis and Farhat [3]; Athale et al. [4]). Typi-
cally, these models operated synchronously with uniformly zero
thresholds and no external inputs.

Instead of using the outer product matrix in the Hopfield
model, Personnaz et al. [S] suggested an orthogonal projection
matrix which projects an input vector onto the subspace spanned
by the stored memory vectors. Their model operated synchronously
with zero thresholds, bipolar (+1 and -1) states, and no extemnal
inputs. On the condition that all the stored vectors are linearly
independent, the model showed more reliable auto-associative capa-
bility than the original Hopfield model.

Based on these results, we simulated various neural network
formulations, applied these to recognize vowels whose spectra are
time invariant, and evaluated performance by a sequence of test
inputs which scan through the F, - F, feawre plane. One simu-
lated peural network model was the modified Hopfield model with
the orthogonal projection matrix, which operated synchronously
with zero thresholds and no external inputs. The original model

using the outer product matnx was also simulated for comparison.
A conventional thresholded matched filter classifier was used as a

control and a neural network approximation of the control was also
simulated.

Vowel spectra were quantized as binary input and storage
panems. The test input sequence was created by specifying the first
two formant frequencies. F, ansz scanningmmughmei‘l -F,
plane. The prototypes were obtained using the averaged formant
frequencies found in the classic study by Peterson and Bamey (6]
and the performance of the network formulation was assessed by
comparisons with human perceptual performance. The goal of this
study was to0 check the validity of these network types for the lim-
ited task of speaker independent vowel recognition.

BACKGROUND AND NETWORK FORMULATIONS

Hopfield Model

The basic idea behind Hopfield’s net is to have L identical
neurons, each with an initial stored binary value. The ith neuron is
assumed to be connected to the jth neuron with a transmittance of
Tij.lfmemmofmeuputswanwmnexceedsaspeciﬁedtmcs-
bold, the neuron fires (sets its binary value). If the sum is less than
the threshold, the neuron tums off (resets its binary value). This
process continues for all neurons until a stable state is reached.

The choice of T‘.i‘s is the programmed part of the neural net-
work. Hopfield designed these interconnection values as a represen-
tation of stored binary vectors or ‘‘library elements.” Given a por-
ton of one of the library element vectors, the entire vector can
sometimes be regenerated by iterative operations described above.
Furthermore, the algorithm is highly tolerant of faults. Elemems
(peurons) can be destroyed or intercormect values can be grossly
quantized (7], and the processor will still be functional.

Synchronous Hopfield Model (Outer Product)

In Hopfield’s derivation of the choice of intercomnecs. an
coergy function was formulated and minimized. Also, it was
assumed that neurons were not synchronous. In order to utilize
conventional signal space formulations, a synchronous version of
the Hopfield model can be derived:

Let {f 1 1Sa SN) denote a set of library elements, each
of length L. The ith element of f_ is f_. Each f is either 1 or
-1. We form the Lx L matrix T with elements

N
T‘.j = zf”.f_j; ig=12..L

Presented at International Conf. Acoust., Soeech, and Sia. Proc.,

Dallas, TX, April 6-10, 1987



We define the Lx N library matrix by
F'“\'z 'N]

resulting in .

T=FF

Hence. we refer 0 T as the owser product marrix. Note that this
mode! assumes SYmMmMELNC interconnects (T., = T’) and autointer-
connects (T, 2 0).

Consider a given imtalization or input vector, g, composed of
+1's. We can form the iteranon

8y = SEN(TR,, ]

where g, = § and the vector operator, sgn, examines each element
of Tg,, and. if the element is positive, sets it to 1. Otherwise, the
element is reset 0 -1.

Each iteration can be described from a signal space stand-
point. F g, = a where cach element of a is proportional © the
magnitude of a projection of g, omo f,. These @, actually
correspond 0 the outputs of a maiched ﬁltq‘ring operation where
the input is g,, and the filter is f;. Fa = FF g,, will therefore be
equivalent to 2 linear combination of the f;'s weighted by the pro-
jection components. The last pant of each iteration, which is the
sgn, corresponds 1 a nonlinear thresholding operation. This is
equivalent to finding the nearest comner of a hypercube in the L-
dimensional signal space.

This overall iterarive process is therefore algorithmically

equivalent 1o the block diagram shown in figure 1. If the behavior
of the synchronous Hopfield network is the same as the asynchro-
nous net, the above iteration would ideally converge o the library
elcmemf_ that is closest to g in the Hamming distance sense.

Orthogonal Projection Model

This model involved a change m only the formulation for T,
i.e. only the interconnection weights were modified in the neural
pet. As first suggested in {S], we used an orthogonal projection to
formulate an alternative to T which will be referred 10 as 1. This
alternative will project g, onto the subspace spanned by f, where
i=12,..N and L>N. The basic idea behind the orthogonal pro-
jecdon is to make sure that the neural network is always able ©

converge o0 any given library element when that library element is
used as the input. Namely,

r =1
for i = 1,2....N. These equalities are the same as
F=1F

If all f, are linearly independent, then rank(F] = N and a pseudo-
inverse of F can be defined as

= [FTF]-lFT
and the desired equalities imply that
t=FF =FFF] F
The iteration for the orthogonal projection network is therefore
8y, = sen(ley,)

Matched Fllter Qassifier

This formulation, which does not correspond t0 a neural
network-type design, was used as the control. The goal is o use a
mmmnwuummr_ that is the
closest 10 the input g in the Hamming distance sense. The first step
is the same as the bank of matched filters described in the synchro-
nous Hopfield model. i.e. find

a= FT;
The second step consists of searching through the elements of @ ©
find the maximum. say a_. The index m then points to f_ as the
closest library element The rank-ordered search through the ele-

ments of @ does not fit the usual definitions of a neural network
architecture. Furthermore. this control classifier is non-iterative.

Lateral Inhibition Mode!

This last formulation was driven by the need to put an
approximate version of the above matched filter classifier into a
neural network architecture. The second siep of the marched filter
classifier was replaced with an iterative neural network which con-
sisted of positive and identical autointerconnects and negative and
identical connections between neurons. Each neuron could take on
an integer (and not just binary) value. The effect of this structure
was intended 10 enhance large initial values while suppressing
smaller values. In the limit, the processor with the largest inigal
value will increase infinitely while the value swored at all other pro-
cessors will continue 0 decrease. Thus, the largest matched filter
output eventually becomes much larger than ail other outputs.

In order 10 make this structure practical, a clipping nonlinear-
ity n was used at each neural output 7| had a linear input-output
relationship between two empirically chosen thresholds. The max-
imum matched filter output was indicated whenever a neural output
reached the larger of the two thresholds. This neural network-based
classified can be expressed as two steps. The first step is identical
10 the comtrol classifier, i.e. find

a= FTg
Note that this non-iterative step could be accomplished by a neural

petwork with interconnection weights comresponding to the ele-
meats of all f‘.. The second step is the lateral inhibition iteration

a)hl = ‘“Ha')l]
where

H=(1+UN)I- (mv)‘f'l’T

where | is the idenrity marrix, T is a vector of length N which con-
sists of all 1's, and H thereby specifies the network intercomnec-
tions for lateral inhibition.

METHODS

The data base used for this study was the average vowel for-
mant frequencies found for 76 speakers (male, female, and chil-
dren) and the human identification of vowels produced by listening
tests with 70 subjects. Ten vowels were used and all of this data
comes from the study by Peterson and Bamey [6].



For all four network formulations. a bipolar vector was used
1o represent the vowel spectra. This vector was constructed by
dividing the entire natural logarithm scaled frequency range (100 -
4 xHz) into L secuons. The spectra was quantized by assigning +1
w0 areas in the neighborhood of a formant and -1 to all other fre-

bins. This is shown schematically in figure 2. Note that
only the first 2 formants were used: the excursions of F, outside
the chosen frequency range eliminaed the usefulness of this higher
peak.

The bandwidth of the quannzed vowel (which was not deter-
mined by Peterson and Bamey) was chosen 1o have a fixed width
of 100 Hz for formants below SO0 Hz and w0 have a width equal to
2 times the formant frequency for frequencies above 500 Hz.

Using the notation of the previous section, the vowel spectral
coding corresponds w0 L = 100. The choice of N is based on the
number of stored pattems. In order not to exceed the capacity of
the various network formuladons, N was chosen to be 10, i.e. one
average female vowel was chosen as the library element for each
vowel classificatnon region. Therefore, in order to generate the van-
ous perwork interconnections. f, where i = 12,...,10 were derived
by quantizing the 10 average female vowels.

Each network was tested by inputs sets which exhaustvely
covered all possible choices of F, and F, where F>F,. The
final, stable, vector was determined for each input. These output
vectors then were used 10 determine the classification regions
described in the results.

RESULTS

All four vowel classificaion methods described were tested.
The assessmert of performance can be made by comparing the
automatically classified regions with the average regions found by
the human listeners in the Peterson and Bamey swdy. Figure 3
depicts these desired regions within the feature space. The areas
which listeners found ambiguous (i.e. inconsistent vowel labelings)
are npot included. These ideal regions are included as dashed lines
in all subsequent figures for reference.

Figure 4 shows the classification results for the Synchronous
Hopfield Model. It is fairly obvious that this model failed © 0
perform adequately. Omly ooe out of all 10 vowels was crudely
classified. The rest of the vowels, even those that were identical to
the stored average vowels, were not identified at all.

The orthogonal projection model’s resuit is shown in figure 5.
As intended, all vowels which closely resemble the stored average
were classified. However, several problems exist. The first is that a
spurious /i/ region exists for vowels with very low formant fre-
quencies. Another problem is the small size of the classificaton
regions. It was not possible to make this network formulation accu-
rately capaure the variation in articulation across male, female, and
children.

Figure 6 illustrates the regions for the control matched filter
classifier. Note that the regions are 2 better match to the percepmal
data than figure 5. Also, the variable detection threshold implicit in
this classifier allowed the regions to be larger.

The same experiments with the lateral inhibition mode! pro-
duces the results shown in figure 7. The spurious /i/ region is again
seen.  Nevertheless, the classification performance is somewhat
better than that seen in figure 5.

CONCLUSIONS AND FUTURE WORK

There is a large possible variety of neural network type struc-
tures which could be 6t 10 a signal classification problem. We have
demonstrated that a synchronous type of Hopfield model is of lirtle
use for the problem and parameters studied. An orthogonal projec-
ton modification improved the performance dramatically, but did
not equal the results seen for a conventional maiched filter
classifier. It was also shown that a neural network version of the
best performing classifier was almost as good.

It stull remains 0 be seen whether the performance of a
neural petwork can be any betier than the more conventional tech-
mques that have applied o problems of speaker independence.
However, the formulanons discussed may be appropriate for certain
architectures which are needed for very large vocabularies. We feel
that this study has helped o provide a firmer theorescal foundation
for more extensive studies of novel architecures for speech
analysis. Several needed extensions are the use of neural networks
for dynamic patterns in speech. the addition of leaming 0 update
the interconnecton weights. and the performance of neural net-
works which include more inspiration from the biology, e.g. cas-
caded networks and temporal synchrony. Other issues important to
the speech analysis problem include the potential for neural net-
works w0 distinguish regions which are not linearly separable and
for learning networks to automatically cluster distinct features [8).
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Figure 1. Representanon of synchronous Hopfield model.
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Figure 2. Schematic representation of bipolar coding of vowel
spectra.
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Figure 3. Human listener vowel classificaton results. Data from
Peterson and Barney {6).
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Figure 4. Vowel dassification result for synchronous Hopfield
model.
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Figure 5. Vowel cdassification resul for onhogonal projection
mbdel.
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Figure 6. Vowel classification result for matched filter classifier
(comntrol).
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Figure 7. Vowel classification result for lateral inhibition model.
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